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1. Jordan Domains

To begin with, we construct harmonic measure and solve the Dirichlet problem in
the upper half plane and the unit disc. We then prove the Fatou’s theorem on non-
tangential limits. Then we construct harmonic measure on domains bounded by
Jordan curves, via the Riemann mapping theorem and the Carathéodory theorem on
boundary correspondence. We review two topics from classical complex analysis, the
hyperbolic metric and the elementary distortion theory for univalent functions. We
conclude this chapter with the theorem of Hayman and Wu on length of level sets. Its
proof is an elementary application of harmonic measure and the hyperbolic metric.

1.1 The Half Plane and the Disc
Denote H := {z : Im(z) > 0} for the upper half plane and R for the real line. Sup-
pose that a < b are real numbers. Then the function

z—0b z—0b
0 :=0(z) := arg( ) = Im log( )
Z—a Z—a

g z, on(a,b)
10, onR\(a,b)

Viewed geometrically, 8(z) = Re(go(z)) where ¢(z) is any conformal mapping from
H to the strip {0 < Re(z) < 7} which maps (a,b) onto {Re(z) = #} and R\(a, b)
onto {Re(z) = 0}.

Let E C R be a finite union of open intervals and write

E = (a;.b), with b_ < a; < b,
j=1

1s harmonic on H, and

Set

0;:=0,(z) = arg( — )
J
and define the harmonic measure of E at z € H to be
Definition: Harmonic Measure (for Set of Finite Union in Half Plane)

The harmonic measure of £ C R at z € H 1s defined to be

n Q
w(z, E,H) == Y L. 1.1
(z, E.H) Ef - (1.1)
Remark 1.1: Some Elementary Properties for Harmonic Measure on Half Plane
i) O<w(EH) <1VzeH. (Positive)
(i) w(z,E,H)—> lasz— E. (Boundary Limit on E)
(iii) w(z, E,H) - 0asz — R\E. (Boundary Limit off E) ¢

The function w(z, E, H) is the unique harmonic function on H satisfies the above
properties. The uniqueness of w(z, E, H) is a consequence of the following lemma,
known as the Lindel6f’s maximum principle.

Lemma 1.1: Lindel6f’s Maximum Principle
Suppose that the function u(z) is harmonic and bounded above on a region £
such that Q # C. Let F be a finite subset of dQ and suppose that
3



lim supu(z) <0 VE € 0Q\F. (1.2)
fandd
Then u(z) < 0 on Q.
Proof:

Fix z, € Q. Then the map

transforms €2 into a bounded region, and thus
Z— 2

we may assume that Q is bounded. If (1.2) holds V{ € 0Q, then the lemma is

just the ordinary maximum principle.

Denote F := {{}, -+, {y}, let e > 0, and set

1 (2) = u(z)—eZlog(

j=1

diam(Q2) )
|z — Gl

Then u, is harmonic on £ and
lim supu,(z) <0 V{ € 0Q.
=
Therefore, u, < 0 Ve. Finally, since ¢ is arbitrary, sending € | 0 gives

il diam(Q)
<1i log( ——— ) =
u(2) elﬂ)lgjzzl Og< |z =l )

b

as desired.
[]
Definition: Dirichlet Problem (over Half Plane)
Given a domain € and a function f € C(0€2), the Dirichlet problem for f on Q
is to find a function u € C(Q) such that
(1) Au =0o0nQQ.
(i) u |aQ = f.
The following result treats the Dirichlet problem on the upper half plane H.
Theorem 1.2: Existence and Uniqueness for Solution to Dirichlet Problem on H
Suppose f € C(R U {o0}). Then there exists a unique function
u:=u € C(HU {c0})
such that u is harmonic on H and u |, = f.
Proof:
Step I Existence
We can assume that f'is real-valued and f(c0) = 0. For € > 0, take disjoint
open intervals
]j = (t~, tj+1)aj =1,-.n

and real constants c¢;, so that the simple function
n

HOEDWAN
J=1
where 1 ? denotes the indicator function, satisfies

Ife = fllLeom) < € (1.3)
Set



n
u,(z) ;= Z c;(z, I, H).
j=1
Ift € R\(_J al, then by Remark 1.1 (ii) and (iii),

j=1
im u,(z) = £.(0).

Hoz—t
Therefore by (1.3) and Lindel6f’s maximum principle Lemma 1.1, the limit

u(z) ;= ling u,(2)

exists. Moreover, the limit is harmonic on H (by Harnack’s theorem) and satis-

fies
sup |u(z) —u(z)| < 2e.
z€H
We claim that for all t € R,
lim sup | u,(z) = f(1)] < &. (1.4)
z—t

Claim: (1.4) holds Vt € RU {0}
n

It is clear that (1.4) holds if ¢ & U ol. To verify (1.4) at the endpoints
j=1
t;v1 € 0l;N AL, notice that

¢+ ¢y
G [ Wk, - (L)

sup O)(Zaljn[jﬂ’ﬂ'ﬂ)‘

z€H

J

2
where the blue terms equal to 1 by Remark 1.1 (i1), the red term equals to O by
Remark 1.1 (iii), and the inequality holds by Lindel6f’s maximum principle

Lemma 1.1. Moreover,

c;+c;

j j+1
(7)ot -

C: — C:
+1
< |l

lim ST G
=l 2
by Remark 1.1 (i1). Now, let ¢ € R, by (1.4) using in the first inequality,
lim sup |u(z) — ()| < sup|u(z) —u(z)| +lim sup |u,(z) — f(?)|

-t z€H 72—t
<3¢
The same holds for # = co. Therefore, u extends to be continuous on H and
u| ou = J> proving the existence.
Step II: Uniqueness
The uniqueness of u follows from the maximum principle Lemma 1.1.
]
For a < b, elementary calculus gives
Remark 1.2: Harmonic Measure for Interval over H



a)(x+iy,(a,b),|]-|]) = %(tan—l(x;a) _tan—l(x;b>>

b

1

= J — Y dt
L Tt —x)%+)?

Definition: Harmonic Measure (for Measurable Set on Half Plane)

If £ C R 1s measurable, we define the harmonic measure of E at z € H to be

cmLEHy=J-£ Y (1.5)
E

m (1 —x)?+y?
Note that when E is a finite union of open intervals then this definition (1.5) agrees

with the one in (1.1).

Definition: Poisson Kernel over Half Plane

For z = x + iy € H, the density |
y
P m (x —1)2+y2

1s said to be the Poisson kernel for H.

Definition: Poisson Integral over Half Plane
Iff e C(IR U{oo} ) , the proof of Theorem 1.2 shows that

Uup(z) = [ f@OP(t)dt,
R
and for this reason u,1s also called the Poisson integral of f.
Remark 1.3: Harmonic Measure as Transition Density and Harmonic Function
Note that the harmonic function w(z, E, €2) is
(1)  aharmonic function in its first variable z.
(i)  a Borel probability measure in its second variable E. o
Remark 1.4: Harmonic Measure Satisfies Harnack’s Inequality
If z;,z, € H, then

E.H
0<ct<L@EW o
w(ZZa E’ [H])

where C depends on z; and z, but not on E. This inequality, known as the
Harnack’s inequality, is easily proved by comparing the kernels in (1.5). o
Now let D be the unit disc {z : |z| < 1} and let E be a finite union of open arcs on
0D. Then we define
Definition: Harmonic Measure (for Set of Finite Union over Unit Disc)
The harmonic measure of £ at z in D is defined to be
w(z,E,D) == o(¢(2), p(E),H), (1.6)
where ¢ is the conformal mapping from D onto H.
Remark 1.5: Definition in (1.6) Does Not Depend on the Conformal Mapping
This harmonic function satisfies properties analogous to Remark 1.1 (1), (ii),
and (ii1). Thus by the Lindel6f’s maximum principle Lemma 1.1, the definition
(1.6) does not depend on the choice of . ¢



i(1+2)
1 -2

1—1|z|* do
w(z, E,D) = - 5 .
g le?—z|” 27

that

It follows by the change of variables ¢ (z) :=

An equivalent way to find this function is by a construction similar to (1.1). Note that
this is nothing but the Poisson integral formula, as the following theorem suggsts.
Theorem 1.3: Poisson Integral Formula over Unit Disc

Let f (¢'%) be an integrable function on dD and set

@) = uy(2) [Mf( oy L1zl do (1.7)
u(z) :=ux(z) = e . :
! 0 lei® — z|* 2
Then u(z) is harmonic on D. If fis continuous at e'% € 90D, then
lim  u(z) = f(e). (1.8)

D3z—e'%

The identity (1.7) tells us that the Poisson integral is harmonic over the unit disc D
and the identity (1.8) gives us the boundary behavior. In fact, (1.8) also holds if the
integrable function fis changed on a measure zero subset of 0D\ {e'%0}.

Definition: Poisson Integral (over Unit Disc)
The function u := uyis called the Poisson integral of f.

Definition: Poisson Kernel (over Unit Disc)
The kernel

1 1-1z)?
PO = ——
() 27 e

1s the Poisson kernel for the disc.
Definition: Solution to the Dirichlet Problem over Unit Disc

If f € C(dD) then
{uf(z), z€D
u(z) :=

f(@), z€D
is the solution of the Dirichlet problem for f on D.

In the special case when f(e’®) is continuous, Theorem 1.3 follows from Theorem
1.2 and a change of variables. Conversely, Theorem 1.3 shows that Theorem 1.2 can

dt
be extended to f € L'( ——— ), again by change of variables.
1+

Proof of Theorem 1.3:
Step I: Harmonicity of u.
We may suppose that f is real-valued. We have

Re< ¢ > * Z) =2nP,0)

el —z
by the definition of Poisson kernel over the unit disc. Thus, we see that u is
the real part of the analytic function
2r i0
o eV +zdo
[ fmerado

0 el —z7 2
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and therefore that u is a harmonic function. One can also see that u 1s harmonic

by differentiating the integral (1.7).

Step II: Boundary condition when fis continuous at e

Suppose that fis continuous at /% and let € > 0. Then by the continuity
| f(e?) —f(e™)| <&

on any interval [ = (6,, 8,) containing 6,. Setting

. 1- |z 0
u,(z) := J' _ >

6,

in @ i0
f(e )_ +f(€ O)w(za Ia D),
o2a\ e —z|? &
(note that the second identity in the right hand side comes from integration
over I). Now we have

Y
J % (f e —f (eieo)) (assumption and u,)
11eY—=2z2

() — 1,2)] = i
TR = 2n

<ew(z,1,D) (Continuity and definition of )

<e (Conformal invaraince)
However, by the assumption of u,, one has
lim u,(z) = f(e®).
z—e'0
Therefore, since fis continuous at e'%, taking the difference in conjunctio with
the continuity of harmonic function yields
lim sup | u(z) — f(e'®)| < €.

z—)eiao

Finally, since € > 0 is arbitrary, sending € | O yields the desired identity (1.8).
[]

1.2 Fatou’s Theorem and Maximal Functions
When f € L'(dD) the limit (1.8) can fail to exist for every { € dD. However, there
is a substitute result known as Fatou’s theorem, in which the approach z — { is
restricted to cones. This result allow us to extend Theorem 1.3 to f € L(oD).
Definition: Cone (over Unit Disc)
For { € 0D and a > 1, we define the cone
T ={z:1z=¢| <all -z}
Remark 1.6: Some Elementary Properties of Cones
(i)  Thecone I ({) is asymptotic to a sector with vertex { and angle
2 sec”!(a) that is symmetric about the radius [0,{]. (Asymptotic)
(i1)  The cones I',({) expanded as « increases. (Monotone in Angle) o
Definition: Non-Tangential Limit (over Unit Disc)
A function u(z) on D has non-tangential limit A at { € dD if
Iim u(z)=A (1.9)
Ly(0)>32=¢
for every a > 1.
Example 1.1: Example of Non-Tangential Limilt over Unit Cone
Z+

Consider the function u(z) := exp{ } This function u(z) is continuous
Z —

8



on dD\ {1}, and |u({)| = 1 on dD\ {1}, but u(z) has non-tangential limit O
atl=1 o

Non-Tangential Limit via Cone "2 o({)

—— Boundary a0

®  Boundary Point

= LimitA=f(Q)
Cone 0(Q)

--- Pathofz

Im(z2)

0.0
Re(z)

(Figure 1.1: Non-Tangential Limit via Cone I',({).)
Definition: Non-Tangential Maximal Function (over Unit Disc)
With fixed @ > 1, the non-tangential maximal function of u at { is defined as
ug(£) == sup |u(@)].
z€l,(0)
If u has a finite non-tangential limit at {, then
u¥(§) < oo Va > 1.

We will denote the Lebesgue measure for a set E as Leb(E) since we do not wish to
abuse the use of 1. We will explicitly emphasize the dimension d by Leb,(E) when-
ever necessary. Moreover, the almost everywhere property will be abbreviated as a.e.
property.

Theorem 1.4: Fatou’s Theorem
Let f(e'?) € L'(0D) and let u(z) be the Poisson integral of f. Then
lim u(z) =f() for Leb-a.e. { = ¢’ € 9D for every a > 1. (1.10)

Fp(0)22-¢
Moreover, for each @ > 1, one has
3+ 6a

Leb({c €D : k() > /1}> < Wfloaoy (11D

Fatou’s theorem tells us that any positive harmonic function on the unit disc posses-
ses a non-tangential limit at Leb-a.e. boundary points.
Definition: Solution to the Dirichlet Problem with Leb-a.e. Non-Tangential Limit
When u(z) is the Poisson integral of f € L!(dD) the function u = usis also

called the solution to the Dirichlet problem for f, even though u converges to
fon dD only non-tangentially and only Leb-a.e..

Definition: Weak Type 1-1
An operator K is said to be of the weak type 1-1 over some finite sums of
Dirac deltas if there exists a constant C > 0 such that for each 4 > 0, the
inequality

Leb({ | Kf | >z}>sc%



n
holds for every f = Z 5x,~’ where x;, -+, x,, are distinct points.
i=1
It is then obvious that (1.11) tells us that the operator L'(dD) 3 f — u’ is weak-
type 1-1. It follows from (1.10) that
uX({) < oo Leb-a.e.,

but (1.11) is a sharper, quantitative result. Therefore, in the proof we shall use (1.11)
to derive (1.10).
Remark 1.7: Proof for Fatou’s Theorem via Approximate Identity Argument

The proof of Fatou’s theorem is a standard approximate identity argument from

real analysis that derive a.e. convergence for all f € L'(0D) from

(@)  An estimate such as (1.11) for the maximal function.

(b)  The a.e. convergence (1.10) for all functions in a dense subset of L!(dD)

such as C(dD). ¢
The approximate identity argument will be performed later, we here use another

approach.
Proof of Theorem 1.4:

As promised, we first assume (1.11) and show that (1.11) implies (1.10).

Step I: (1.11) implies (1.10).

Fix a temporarily. We may assume that f is real-valued. Set

WA(C) = lim sup | u,(2) — (0|
I')2z-¢
as the difference in (1.10). Our goal is to show this value is arbitrarily small.
First, by the triangle inequality we have

WH(O) <ug(Q) + (D]

Now, using Chebyshev’s inequality! gives

Wl
(O] > ) s@.

Plot of P} (6) for z=0.600e%% (|z|]=0.600)
0.6
05

0.4

0.2

0.1

0.0

-3 =2 -1 0 1 2 3
6 (radians)

(Figure 1.2: Plot for P¥(@) for z = 0.600¢/°8%0(| 7| = 0.600))

1 Theorem: (Chebyshev’s Inequality in LP) If f € LP(u) then VA > 0, we have

Pd
p({x e R f(0)| > A}) < %

10



Therefore,
Leb({¢: Wi(&) > A})

< Leb({¢: u(¢) > A/2}) + Leb({C : | f()| > 2/2}) (1.12)
8+ 12a
= A
where the first inequality holds by the sub-additivity for Lebesgue measure

and the second inequality holds by assumption (1.11) and the above display.
Fix € > 0 and let g € C(dD) be such that

If = &llLiom) < £,
Now by (1.8) in Theorem 1.3, W,({') = 0, and hence
Wf(g) = Wf—g(é’)'
Applying (1.12) to f — g yields

1/ 1l L1 omy

2
Leb({£: Wi0) > ) < ST 2D _ (g4 12ae,
E

Since € > 0 is arbitrary, sending € | 0 yields (1.10) for any fixed a Leb-a.e..
Finally, by Remark 1.6 (ii), the cones increases in the angle a, it follows that
(1.10) holds Va > 1, except for { in a set of Lebesgue measure zero, proving
(1.10) as we unfixed a.

To prove (1.11), we will dominate the non-tangential maximal function with a sec-
ond, simpler maximal function. To this end we need a definition and a lemma.
Definition: Hardy-Littlewood Maximal Function

Let f € L'(0D) and denote

Mf({) = sg Teb(D) Llfla’ﬁ

as the maximal average of | f | over subarcs I C dD that contains {. The
function M fis called the Hardy-Littlewood function of f.

Remark 1.8: Hardy-Littlewood Max Is Simpler than Non-Tangential Max
The function M fis simpler thatn u* because it features characteristic functions
of intervals instead of Poisson kernel. ¢

Lemma 1.5: Hardy-Littlewood Max as Upper Bound for Non-Tangential Max
Let u(z) be the Poisson integral of f € L'(dD) and let @ > 1. Then

ug (&) < (L +2a)Mf(Z). (1.13)

Proof:
Assume { = 1. Fix z so that §, := arg(z) has |§,| < . Define

P¥@):=sup {P ¢ : 0] < |gp| <7}

1 1+|z]
27 1—z|°

max (P,(0), P(-9)), |6,] <|60| <=

Observe that the function P}* satisfies the following properties:
(i)  P¥(0) is an even function of 6 € [—7, 7].

101 < 16,1

11



(i)  PX(0) is decreasing on [0,7x].

(i) P*0) > P0).
The even function P is the smallest decreasing majorant of P, on [0,7z]. With-
out loss of generality, we may assume that f (e'?) > 0, so that
f@”ﬂg&wesJ}@”ﬂ?wym
by property (iii). lelne properties (1) and (i1) imply that
fe)PHO)d0 < 1Pl piopyMf(D) (1.14)

because P is the ilulcreasing limit of a sequence of functions of the form
1
2 (551 c00@)
j=1 J
j=1

Now we claim that when z € I' (1),
Since then (1.13) follows from property (iii), (1.14), and (1.15).
Claim: (1.15) holds Vz € I' (1).
We shall consider two cases.

-1
If so, then for f = arg(z—>,
Z
16 16 : : .
<a (Triangle inequality)
1 —1z] |1 —-z]

wa |sin6y| _

< (Since |0, | < 7/2)
2 |1-z]
za |sin f| ..

= — (definition of )
2 1
Ta . :

< B3 (since |sinf| < 1)

Case II g <|6y| £mand z € ', (1).

Ifso, then |1 —z| > 1 and
161 Sal@ﬂ p
1 —1z] |1 —z]
where the first inequality holds by triangle inequality and the second holds
since |1 —z| > 1.
Hence, in either cases, we all have

>

12



T
P[] 10m) = 2[ P.(0)d0 + 2161 1+]]
X 21—z
<+ 2a)
where the first relation holds by the definition of P}* and the second relation
holds by bounds in Case I and Case I1I. This proves the claim, thus (1.15) holds
for each z € I' (1), and the desired (1.13) follows.

[]
By Lemma 1.5, the inequality (1.11) will follow from the simpler inequality
3N fI L
Leb({{ € 0D : Mf() > A}) 5%, (1.16)

which says that the operator L'(dD) 3 f — Mfis also weak type 1-1.
To prove (1.16), we use a covering lemma.
Lemma 1.6: Measure Bound for Open Intervals via Disjointed Subintervals
Let u be a positive Borel measure on dD and let {/;} be a finite sequence of

open intervals in dD. Then {/;} contains a pairwise disjoint subsequence {J; }

such that |
>0z u(Uh) (1.17)
k

J
Proof:

Because the family {Ij} is finite, we may assume that no I] 1s contained in the
union of the others. Denoting
[ = {e"g = (a;, bj)},
we may also assume that
0<a <a,<-:-<a,<2mn.
Then b;,| > b;, because otherwise [, C [;and b;_; < a;,,, because otherwise
[ CL_ Ul Ifn> 1, then
bn < bl + 27[ and bn—l < al + 271'
Consequently, the family of even-numbered intervals /; is pairwise disjoint. It
left us to thow that the bound (1.17) holds.
Claim: (1.17) Holds
The family of odd-numbered intervals /; is almost pairwise disjoint; only the
first and the last intervals can intersect (since we have run a whole perior). We

shall consider two cases, naturally, the even j and the odd j.

Case I j even.
Now, if
1
Z u(l;) < 5#( UIJ>
jeven j
we take the even numbered intervals to be the subcolletion {J, }.

Case II: j odd
Otherwise, we have

13



Z u(ly) = %ﬂ(UIJ)

jodd J
In this case, if
1
pl) < = 2 u(UIJ-),
jodd J

we take for {J,} the family of odd-numbered intervals, omitting the first inter-

val [;. Otherwise, if
1
pty > = 3 u(U1):
jodd J
we take {J,.} = {/;}. Then in each case (1.17) hods for the subsequence {J,}.
]
Lemma 1.7: Hardy-Littlewood Maximum Function Is Weak Type 1-1

The operator f — M fis weak type 1 — 1. That is, if f € L'(0D) then

3071
Leb({{ € 0D : Mf() > A}) gm. (1.18)

Proof:
Let K be a compact subset of E;, where E, 1s defined to be

E,:={{e€dD: Mf()>}.
For each { € E, there is an open interval / such that { € I and

J|f|d9>/1.
1

Leb(/)
So that
1
Leb(l) < E,[ | f1de6.

1
Since K is compact, we can cover K by finitely many such intervals, and we

may assume, without loss of generality, that they are labeled via {Ij}J’.‘zl, and

by Lemma 1.6, there is a subcollection {J,} that is pairwise disjoint and (1.17)
holds. Therefore, using sub-additivity in the first inequality and (1.17) in the
second, one has

Leb(K) < Leb( ) L) <3 Leb()
k

J=1

3
<-— Z J | f1dO (by above display)
k “Jk

W

S ;”f“Ll(alD) (Since Uk Jk C OID) .

Finally, since K is arbitrary, sending Leb(K') 1 Leb(E)) yields (1.18).
]

Now we can finish our proof for (1.11) and thus conclude the proof of Fatou’s the-
orem Theorem 1.4.

14



Proof of Theorem 1.4: Continued

By (1.13) and (1.18), the inequality (1.11) follows with constant
3+ 6a,
proving Fatou’s theorem.

[]
Now, by Fatou’s theorem Theorem 1.4, we can extend the result in (1.8) from f be-
ing continuous to f € L!(dD). Consequently, the continuous boundary condition for
the Dirichlet problem is generalized to boundedness. For the sakeness of simplicity,

we shall use DP to denote the Dirichlet problem whenever necessary.

Corollary 1.4.1: Solution to DP over Unit Disc for Bounded Boundary Condition
If u 1s a bounded harmonic function on D, then for every @ > 1 and for
Leb-a.e. £ = ¢ € dD,

fO = lim  u@)

[p(§)22=¢
exists, where u(z) is the Poisson integral of f, and
1/ 1l Looomy = sup [u(z)|.
zeD
Proof:

We shall prove this result via Banach-Alaoglu theorem?. For the application
available, we shall recover f in the unit ball.
Let {r,},>; C R be such that r,, — 1 for n sufficiently large. Let
fe®) := u(r,e”).
By Banach-Alaoglu Theorem, the sequence {f,},- has a weak* limit in the
dual space of L!(dD), namely, f € L*(dD), such that
1/ 1l Looomy < lim sup || f, [l eoopy (L™ normis Ls.c.)

n—oo

<sup|u(z)| (Lindelof's Maximum Principle)
z€D
Since u(r,z) is the Poisson integral of f,, and Poisson kernels are in L', u must

be the Poisson integral of f. This gives

| u@) | < (1l Logomy-
The desired result follows from (1.10) in Fatou’s Theorem 1.4.

[]
Remark 1.9: Harmonic Measure as Indicator Along Non-Tangential Limit over D

In particular, this corollary implies that for any measurable set £ C dD, there
exists a unique bounded harmonic function u(z) on D such that u(z) has non-
tangential limit 1, Leb-a.e.. It is the function

uz) =w(z, E,D). o

1.3 Carathéodory’s Theorem

2 Theorem: (Banach-Alaoglu Theorem) Let X be a separable Banach space. Then the closed unit
ball #,(0) := {x € X* : ||x|| £ 1} of X* is weak™ sequentially compact.
15



Let Q be a simply connected domain in the extended complex plane C*, where

C®=CU{o0}.

Definition: Jordan Curve and Jordan Domain
A simply connected domain  C C® is said to be a Jordan domain if I' = 0Q
is a Jordan curve (continuous simply connected curve) in C*.

Theorem 1.8: Carathéodory’s Theorem
Let ¢ be a conformal mapping from the unit disc D onto a Jordan domain €.
Then ¢ has a continuous extension to D, namely @, and the extension is a one-
to-one map from D onto Q.

Note that, since ¢ maps D onto Q, the continuous extension, denoted by ¢, must
map dD onto I' := 0Q, and because @ is a one-to-one on 0D, @ (e'®) parameterizes
the Jordan curve I'. Indeed, the Carath¢odory’s Theroem 1.8 tells us that the
bijectivity is preserved under the extension of @ : D — Q such that ¢ lp = .

Before we prove Carathéodory’s Theroem 1.8, we use it to solve the Dirichlet pro-
blem on a Jordan domain . Recall that the Fatou’s Theorem 1.4 enables us to
extend the boundary function from C(D) to L'(D), now we are able, thanks to the
result of Carathéodory’s Theroem 1.8, to extend the domain from D to D, and to
extend the range from Q to Q. This justifies the following definition.

Definition: Solution to DP over Jordan Domain for Bounded Boundary Function
Let f be a Borel function on I" such that f o ¢ is integrable on dD. If
w = @~ !(z), then

() = () [Mf i L Iw T do (1.19)
u(z) = u(z) = o (e :
! 0 Y et —w|* 27
is harmonic on €2, and by Theroem 1.8 in conjunction with Theorem 1.3,
Iim u(z) =f() (1.20)
Qo7

whenever ¢ ~1(¢) € dD is a point of continuity of f o ¢. In particular, if fis
continuous then (1.20) holds for every { € I and u(z) = u(z) solves the
Dirichlet problem for f on €.
If f is a bounded Borel function on I', then f o ¢ is Borel and the integral (1.19) is

well-defined. Thus we derive the harmonic measure for this extension.

Definition: Harmonic Measure (over Jordan Domain)
For any Borel set £ C I" we use (1.19) with f := 1 to define the harmonic
measure of E relative to Q by

i 1—|wl* d6
w(z,E Q) = o(w,¢ ' (E),D) = . . (1.21)
q)—l(E) | 619 il 7% | 277:
Note that w(z, E, €2) has the following properties.
(i) E — w(z,E) is a Borel measure on 9d€.
(1)  (1.19) can be rewritten as
u(z) =I fQ)dw(z, ). (1.22)
oQ
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Note that, we have been implicitly stating that the harmonic measure is nothing but
a measure transition kerenel. We shall mention this fact later, as one shall see the
advantage of pointing this out explicitly.

Equations (1.21) and (1.22) do not depend on the choice of conformal mapping ¢,
as we have mentioned this fact in Remark 1.5. This is because, in the case of Jordan
domain, that every conformal self map 7T of D,

o(Ton, (7)), D) = w(w,™'(E), D).
When f'is a bounded Borel function on 02, (1.22) and Fatou’s Theorem 1.4 give
sup | u(2) | = Il Loo(w)-

Z€Q
Moreover, Corollary 1.4.1 shows that every bounded harmonic function on €2 can be
expressed in the form (1.22), this is a direct result of the Riesz’s representation
theorem in the L? space.

The principal goal of this book is to find geometric properties of the harmonic me-
asure w(z, ') more explicit than the definition (1.21). But (1.21) already points out
the key issue:

Remark 1.10: Equivalent Question for Harmonic Measure over Jordan Domain
For a Jordan domain questions about harmonic measure are equivalent to ques-
tions about the boundary behavior of conformal mappings. o
Proof of Theroem 1.8:
Without loss of generality, we may assume that € is bounded, otherwise we
can apply Riemann mapping theorem. Fix { € dD, we first show that ¢ has a
continuous extension at (.
Step I: @ has a continuous extension at (.
Let 0 < 6 < 1, denote the open ball centered at { with radius o as
B, 8):={z€Q:|z-¢| <5},
and set
Ys :=DnNoJB(,0).
Then, since the conformal mappings preserve arcs, @(y;) is a Jordan arc with

o(rs)
Vs i ﬁn
I

(Figure 1.3: Proof of Continuity in the first step)

length
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L) = j o' ds.

Y5

(To see this, let z(7) 1= x(2) + iy(1), ds = |dz| = (E) " (E) @

thus we have L(ys) = [ |dz| fort € (a,b). Now, letI'(¢) = F(Z(t)), we have
Vs

_ dlIr  d
dt. By chain rule, — = —(p(z(t)) = (p'(z(t))z’(t)).

b
L(p(ry) = [ =

Now, one has

L?*(6) < <J 12d s) < J |p'(2) |2 d s) (Cauchy-Schwartz inequality)
Vs 75

dr

=L(5>(J |@'@) P ds)

Y5

<rd J |p'(2) |2 ds (L(0) is at most the circumference)

Vs
Therefore, for p < 1, dividing 6 on both sides and integrating gives

P LS
J ©) 45 < n” |¢'(z)|°dxdy (Cauchy-Schwartz)
0 DNB(p.{)

(1.23)
=7 Area(go([[]) N B(C,p)))
< 00.

Thus, there is a sequence 6, | 0 such that L(5,,) — 0 by the fininteness. When

L(6,) < oo, the curve qo(yén) has endpoints a,, 8, € Q, and both of these endp-

oints must lie on I' = 0€2. Indeed, if a,, € L, then some point near a, has two
distinct pre-images in D because ¢ maps D onto €2, and that is impossible as
@ 1s one-to-one.
Furthermore, by the completeness of Q (closed and bounded thus by Heine-
Borel theorem it is compact, and every compact subspace of a complete
normed linear space is complete),

|an_ﬁn| < L(an) - 0. (1.24)
Let o, be that closed subarc of I having endpoints &, and f, and having small
diameter. Then (1.24) implies that

diam(o,) — 0,

because the Jordan curve I' is homeomorphic to the circle. By the Jordan
curve theorem (which states that C\I" is disconnected and consists of two

components, where I" is a Jordan cuver), the curve
O-n U (p(}/én)
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devides the plane into two regions, and one of these regions, namely U, , is
bounded (again by Jordan curve theorem). Then U, C Q, because C*\Q
1s arcwise connected. Since
diam(0U,) = diam (o, U ¢ (y5)) — 0,
we conclude that
diam(U,) — O. (1.25)
Set
D, =Dn{z:|z-¢| <9,}.
We claim that
Claim: For n sufficiently large, ¢(D,) = U,.
Suppose not, then by connectedness, ¢(D\D,) = U, and

diam(U,) > diam((B©,112)) ) > 0.

Indeed, since D, has diameter at most 1, and since D,, is centered at a point on
0D, it has 1/2 inside D and 1/2 outside D, thus by the definition of U,, U, has
diameter at least the diameter of B(0,1/2). Then the result follows from the
open mapping theorem. Finally, since this display holds, it would contradict
our previous conslusion (1.25), thus for n sufficiently large, ¢(D,) is necessari-
ly U, proving the claim.
Therefore,

diam(¢(D,)) — 0
and ﬂ @(D,) consists of a single point, because @(D, ;) C ¢(D,). That

n
means ¢ has a continuous extension to at { € dD. Finally, as { is chosen arbitr-
ary, we conclude that ¢ has a continuous extension to D.
Step II: @ is bijective, that is, it is one-to-one and onto.
Let ‘@ denote the extension @ : D — Q. Since ¢ (D) = Q, @ maps D onto
Q. To show that ‘¢ is one-to-one, suppose

9(&) =9 (L) butl, # &,

The argument used to show that @, € I" also shows that ‘¢ (0D) =T, and so

we can assume that CJ € 0D forj = 1,2. The Jordan curve

(P0¢):0<r <1} u{P0s) :0<r <1}
bounds a domain W C Q, and then @ ~!(W) is one of the two components of

[D\({ré’l:OSrsl}U{r§2:0§r§1}>.

But since ‘¢ (0D) C I, one has

P (0D NP~ '(W)) cownoQ = {9}
and ‘¢ is constant on the arc dD. It follows that ‘¢ is constant, either by
Schwarz reflection principle (which states that an analytic function defined on
some open set in the upper half of the complex plane can be extended across
the real line) or by Jensen’s formula (mean value equality), and this
contradiction shows that
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P &) # 9.
This proves the bijectivity of ‘¢, thus concluding the proof.
[
One can also prove that ¢ is one-to-one by repeating for @ ' in the proof that ¢ is
continuous. The Cauchy-Schwarz trick used to prove (1.23) is known as a length-area
argument. The length-area method is the cornerstone of the theory of extremal length.

1

1.4 Distortion and the Hyperbolic Metric
Throughout, let D be the unit disc.
Definition: Hyperbolic Distance (over Unit Disc)
The hyperbolic distance from z; € Dto z, € D 1s

[ ldz]
p(21:29) = pp(2y, ) = inf [ ————, (1.26)
4| I - |Z |
where the infimum is taken over all arcs in D connecting z; and z,.
Remark 1.11: Hyperbolic Distance (over Unit Disc) Is Conformally Invariant

Let . denote the set of conformal self maps of D:

Z—a
T(z):=/11 —.,a€Dand [1]| =1.
When zt € 4, we have
1" 1

2 2”
1 -]T()] 1 -z
and thus the hyperbolic distance is conformally invariant, namely,
p(T(2),T(z) = p(z1.29), T € M. (1.27)
This conformal invariance is the main reason we are interested in the hyperbo-
lic distance. ¢
Definition: Hyperbolic Metric

The hyperbolic metric is the infinitesimal form —||2 of the hyperbolic
1—-|z
distance.
Remark 1.12: Hyperbolic Shortest Arc and Hyperbolic Length
Taking
{—Z
T() = ———
1 -7z
gives

,D(Zl, ZZ) = p(oaT(ZZ)) = [ —2
o -]z
Therefore, the hyperbolically shortest arc from O to 7'(z,) is the radius
[0,7(z,)], and its hyperbolic length is
1 1+ | T(Zz) |
0.7(z)) = —lo (—)
P(07) = 3108\ T

In general,
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1

1+

1 -Z12p |
-7 | ?

(1.28)

1
p(z,2) = = 10g<
2 1|
1 -Z12
and the hyperbolically shortest curve, or the geodesic, from z; to z, is a segment of
diameter of D or an arc of a circle in D orthogonal to dD.

By (1.28) we have
- 2p(Z],Z2) _ 1
i~ e
= — t h .
1 -Ziz e2r@in) 4+ 1 an p(Zl’ ZZ)
Denote
e2d _ 1
t :=1t(d) = tanh(d) = .
(d) @) =— —

Then the hyperbolic ball B = {z : p(z,a) < d} is the Euclidean disc

= pil
1 —az

and a conclusion shows that B has Euclidean radius

t(1 - 2
ra.d) = (_Ial)2 (1.29)
1 -1|al
and Euclidean distance to 0D
1—1¢
dist(B, oD) = (—)(1 ~1la]). (1.30)
1+ |alt

Therefore, if d is fixed, the Euclidean distance dist(B,dD) and the Euclidean
diameter of B are both comparable to dist(a, dD).

However, if a # 0 the Euclidean center of B is not a. The following figure shows
two hyperbolic balls with the same hyperbolic radius and two geodesics with the
same hyperbolic length.

(Figure 1.4: Geodesics and Hyperbolic Balls)
Note that this figure confirms that the hyperbolic balls need not have their center
being centered.
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Now, assume that y(z) is a univalent function in D, that is, assume y is analytic and
one-to-one on D). After dilating, translating, and rotating the domain y (D), v is
normalized by y(0) = 0 and y'(0) = 1, so that

w(z) =2+ ayz> + - (1.31)
Important examples for univalent functions are the Koebe functions.
Definition: Koebe Function
The Koebe function is defined by

(@) = (@) = ——

Note that

o0

w,(z) = Z nAnlzn

n=1
maps D to the complement of the radial slit [—1/4,00].
Theorem 1.9: Koebe One-Quarter Theorem
Assume y/(z) is a univalent function on D. If y(z) has the form (1.31) then
lay| <2 (1.33)
and

_ 1
dist(0,0y (D)) > T (1.34)

Equality in (1.33) and (1.34) hold if and only if y is a Koebe function.
Note that this result tells us that the disc D under a univalent map always has radius
at least 1/4 and this bound is sharp.
Proof of Theorem 1.9:
We first prove that (1.33) implies (1.34), then we prove (1.33), and finally we
deal with the equalities in both.
Step I (1.33) = (1.34).
Suppose w & w (D), we apply the noramlization argument. Let
wy (2)
w—y(2)
note that g is a Mdbius transformation. Moreover, one can check that
g(0)=0and g'(0) = 1.
Therefore, g has the form (1.31), namely,

1y,
g@)=z+ <a2 + —)z + -,
w
so that by our assumption (1.33),
1
‘a2+—| <2 (1.35)
w

g(2) =

Now, (1.35) in conjunction with (1.33) yields
| w | > D
4

as desired.
Step II: (1.33) holds
To prove (1.33), we define the odd function
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2
F@) =z ‘/’(Z)=Z+2

72 2

AR

By considering h; : u = z% h, : { = y(u), and hy:f(z) = z\/z, which are all
u

univalent functions, thus their composition

f@) :=hyehyoh(2)

is again univalent, and the C*-valued function

1 1 a 1
FR)i=——=——"Zz+=—+ ) bz" (1.36)
Z n=1

is also univalent in D. To complete the proof, we use the following lemma,
which is called the Area lemma, for whose proof shall be established after we
conclude the proof for Theorem 1.9.

Lemma 1.10: Area Theorem
If the univalent function F'(z) c)gatisﬁes (1.36), then

anbn|2§ 1. (1.37)
n=1
Proof of Theorem 1.9: Continued
To establish (1.33) we apply (1.37) to F' := 1/f. Since b; = — a,/2 and
|b,| <1, wehave |a,| < 2, proving (1.33).
Step I1I: Equality in (1.33) and (1.34) holds < y a 1s Koebe function
One can verify that equality in either (1.33) or (1.34) implies that y is a Koebe
function. The converse holds by using (1.32).
[]
Proof of Lemma 1.10:
The lemma is called the “Area Theorem” because of its proof.
For r < 1, the Jordan curve ‘
[ ={F(re?):0<0<2x}
encloses an area A(r), and by Green’s theorem
. . 027 jnl
—! —_ I i\ OF o
Ar)=— | wdw=— F(re'")y—(re')do.
2 r, 2 Jy 00

Therefore by (1.36) and Fourier series expansion,
(6]

A(r) = 7[(% - Y nlb, |2r2”>

n=1

& A
1—Zn|bn|2=1imﬁzo,

r—»1 7T

and

n=1

which yields (1.37).
[]

Theorem 1.11: Koebe’s Estimate for Conformal Image
Let ¢(z) be a conformal mapping from the unit disc D onto a simply connected
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domain Q. Then for all z € D,
1 , /
TP @10 = 121") < dist(p(2),0Q) < 9@ (1 =23, (138)

Proof:
We shall prove the left hand side and the right hand side in (1.38) respectively.
Step I: LHS in (1.38)
Fix z, € D. Then the univalent function

Z+z
(ﬂ< 1 +z_ooz ) B (ﬂ(ZO)
¢'(z0)(1 = 1201%)
satisfies w(0) = 0 and y'(0) = 1. Hence if w & @ (D), then by (1.34),
w = @(zp) > l
9'(zo)(1 =z |~ 4
and this gives the LHS in (1.38).
Step II: RHS in (1.38).
To prove the right hand side in (1.38), fix z € D, take

fon = 97 (@) + dist(p (), 0Q)w)

and apply the Schwarz lemma3 at w = 0 to the function

fw)—z
1—zf(w)

w(z) =

g(w) =
This yields the desired result.

We will often use the invariant form of (1.38).
Corollary 1.11.1: Koebe’s Estimate for Invariant Simply Connected Domain
Let y be a conformal mapping from a simply connected domain €2, onto a
simply connected domain £2,, and let y(z,) := w,. Then
i)l S22 el (1.39)
4 dist(zg, 0€2;)

Proof:
Applying (1.38) to
@(2) ==z + dist(zg, 0Q))z)
gives the left hand side of (1.39). As for the right hand side in (1.39), applying
the same argument to y/_l.
[]
Now we can extend our definition for hyperbolic distance over D to a simply conn-
ected domain Q C C.

3 Theorem: (Schwarz’s Lemma) Let f : D — D be holomorphic with £(0) = 0. Then
0] Forallz €D, |f(2)| < |z].

(i) | /O] <1
(iii) If either f(z) = z for some non-zero z € D, or | f'(0)| = 1, then f'is a rotation
about 0.
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Definition: Hyperbolic Distance (over Simply Connected Domain)
In a simply connected domain € C C, the hyperbolic distance is defined by
moving back to D via a conformal map ¢ : D — Q. We write
PoWi, wy) = pp(z), 25)
where Q 5 w; 1= ¢(z),z, € D,j = 1,2.
Again, by Remark 1.11, po(w,, w,) does NOT depend on the choice of the confor-
mal map ¢.
Definition: Quasi-Hyperbolic Distance
The quasi-hyperbolic distance from w; € € to w, € € is defined by

O e fJWZ |dw|
Wy, W,) :=1n _—
@b T2 , dist(w, 0Q)

in which the infimum is taken over all arcs in €2 joining w, and w,.

Remark 1.13: Hyperbolic Distance Bound over Simply Connected Domain
Since (1.38) can be rewritten as

ldz]| |dw | 4|dz|
< < ,
1—|z|* ~ distw,0Q) ~ 1 —|z|?
where w := @(z), we have
Pa(wp, wp) < Oo(wy, wy) < dpg(wy, wy). (1.40)
Consequently, the geometric statement following (1.29) and (1.30) about
hyperbolic distances near dD) remains approximately true in every simply
connected domain with non-trivial boundary. o
Definition: Whitney Square

Let €2 be any proper open subset of C. Then there exist closed squares {S;} 5,
having pairwise disjoint interiors and sides parallel to the axes, such that
() S has side length £(S;) = 27" for each j > 1.

i Q=[]Js;
j=1
(iii) diam(S)) < dist(S;, 0Q) < 4diam(S)).

The squares {S;};5 are called Whitney squares.

Here is one way to construct Whitney squares in the case diam(£2) < oo, the const-

ruction for the case diam(€2) = oo is also possible, but here we leave it as an exercise.
Let

27N < diam(Q) < 27V
and partition the plane into squares having sides parallel to the axes and side length
27N We call these 2~"-squares. The construction is done by induction.

We start with the base case. Include in the family {S;} 5, any 2=N_square S C Q sa-
tisfying (iii), and divide each of the remaining 2~"-squares into four squares of side
length 2=V=1.

Next, the induction step, include {S;} >, any of these new 2~N=l_squares contained
in Q satisfying (ii1), and continue.

Remark 1.14: Whitney Squares As Substitute for Hyperbolic Balls
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Whitney squares can be viewed as replacement of hyperbolic balls since there
are universal constants r; < r, such that each §; contains a hyperbolic ball of

radius r; and 1s contained in a hyperbolic ball of radius r,. o
Remark 1.15: Whitney Squares Are ALMOST Conformal Invariant
Assume that Q is simply connected, let ¢ : D — € be a conformal mapping,
let {S;};>, be the Whitney squares for  and let {7} };>, be the Whitney squa-
res for D. Then by (1.40) there is a constant M, NOT depending on the choice
of ¢ such that foreach k > 1,
(@)  @(T}) is contained in at most M Whitney squares S;.
(b) @~ !(S,) is contained in at most M Whitney squares T.
In particular, for each d > 0, there is an M(d) such that every hyperbolic ball
{z€Q:pn(z,a) < d} in Qis covered by M(d) Whitney squares. ¢
Theorem 1.12: Growth, Distortion, and Angular Distortion for Univalent Maps
Let yw(z) be a univalent function satisfying y(0) = 0 and y’'(0) = 1. Then

. | z] | z]
i) ———<|lyv@|<L———. (Growth Theorem)
(1+ Izll)2 (11— Ilzll)2
— |z + 1z
11 — <R £L— Distortion Theorem
) (el ! I+ 127 ( :
— / +
(iii) 2] < Yy @) < 2] . (Angular Distortion)
1zl +1z]) — ly@| — |zl —=]z])

Note that, shapes in D are distorted under a univalent map according to y". For ins-
tance, fast changes in the size of |y’(z)| cause by nearby curves of the same length
to be mapped to curves of very different length, or fast changes in arg(yj’(z)) make
straight line segments to be mapped to curves with sharp bends.

Proof of Theorem 1.12:
The critical inequality is (i1) and we shall prove (i1) first, then use (ii) to prove
(1) and (ii1) respectively.
Step I. Distortion theorem
Fix z, € D and take

l//( S ) — w(zp)

1+Zp2
= . 1.41
T = o  — Tl 2 (4D

Then fis univalent on D, f(0) = 0, and '(0) = 1. Now,

L= [ 2
| f7(0)| = |1//"(Zo) + ﬂ — 2%
y'(z0)

<4 (Koebe's One-Quarter Theorem)
Substituting z = refe into the above display yields
Py'zg) 21z 4
w'(zo)  1—|zl* |7 1=z
Applying the general formula of Radial derivative identity

(Definition of f')
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(Zg'(Z)) _ ORe(g)
Re =
| z| or
to g := log y'yields
2r—4 0 2r +4

<—1lo ! < )
2S5 gly'(zg)| < -

Integrating (1.42) along the radius [0,z] yields both inequalities in (i1).
Step II: Growth Theorem
To prove the upper bound in (i), integrate the upper bound in (ii) along [0,z].

(1.42)

To prove the lower bound, we can assume that |y (z)| < 7 because
| z| 1
<

1+]z])2 ~ 4
Then by (1.34), there exists an arc y € D with

w(y) = [0,w(2)].
Integrating |y'(z)||dz| along y yields the desired lower bound.
Step I1I: Angular Distortion
Finally, applying (i) at —z to the function f defined in (1.41) yields inequalities
in (ii1), concluding the proof.

[]
Remark 1.16: Equalities in Theorem 1.12 Holds < y Is Koebe

Once again, the equalities in Theorem 1.12, as well as in (1.42), hold if and
only if i 1s a Koebe function, following directly from Theorem 1.9. ¢

1.5 The Hayman-Wu Theorem
We give a very elementary proof, based o an idea of the late K.@yma (1992), of the
theorem of Hayman and Wu. Hayman-Wu theorem will be a recurrent topic through-
out. This result states that the preimage of a line or circle L under a conformal
mapping from the unit disc D to a simply connected domain € has total length
bounded by an absolute constant. The best known constant is in [72,47).
Theroem 1.13: Hayman-Wu Theorem
Let ¢ be a conformal mapping from D to a simply connected domain €2 and let
L be any line. Then
length(p~'(L N Q)) < 4. (1.43)
For the proof, we adapted the one developed by @yma and modified by Rohde. It
will be convenient to replace the hyperbolic metric p(z;, z,) by the pseudohyperbolic
metric.
Definition: Pseudohyperbolic Metric (over Unit Disc)

The pseudohyperbolic metric defined over D is given by
i1 — 2

Op(21, 2) = = tanh p(z;, 2,).

1 - 210
Definition: Pseudohyperbolic Metric (over Simply Connected Domain)
The pseudohyperbolic metric defined over a simplified connected domain €2
is given by
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So(wi. wy) 1= 8p (™ (w)), ™' (wp)).
Proof of Theorem 1.13:
We can assume that ¢ is analytic and one-to-one in a neighborhood of D and
that L = R.
Step I: Construction of Jordan Domain
Let L, denote the components of 2 N L and let £, be that component of
QNn{z:z € Q}
such that L, C €,. Then €, is a Jordan domain symmetric about R.
Step II: Construction of conformal mapping
By symmetry there is a conformal mapping y;, : €, — — iH such that
w(L,) = R* and y, extends continuously to Q.
For{ € dgo_l(Qk) N 0D, set
a =), x = [y, p =y (), and 2 := ¢~ ().
Then the composition
O :=p oy (lyopl)
(note that @ is a composition of conformal mappings hence it is conformal) is a
smooth map of
¢—1<U 00, N amp) c oD
k>1

¢! ( U Lk>\ P,
. k>1
where P and P are finite sets. Now, to prove Hayman-Wu theorem, it suffices
to prove the following claim.
Claim: |V | < 2. N
To prove this claim, suppose that I = (£, ) is an open interval contained in
¢~ 1(0Q,) N dD. Set

d = @(0), X = [y@], f =y (¥, and 7 := ¢~ '(B).
Then by Schwarz-Pick’s therom¢* using in the second relation, one has

5p (D), cD(Z)) = 6o(,f) (definition of 5,)
< 5Qk(ﬁ, E ) (Schwartz-Pick's Theorem)

onto

= 6_y(x,X) (y is conformal and definition of /3, ;5 )

X—X

(definition of o_y)

x+Xx
Therefore, one has

o(xu(p). - #) = 0(z.197'(Q) < 0(®E),1.D),

4 Theorem: (Schwarz-Pick’s Theorem) Suppose that iy : D — D is holomorphic. Then either y is

a hyperbolic contraction, or y is a hyperbolic isometry.
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where the first relation holds by the conformal invariance in Remark 1.5 and
the second holds by Lindel6f’s maximum principle Lemma 1.1.

Finally, sending { — { yields
Ve 1 1-]e@QF
=@~ 27 |-
by the growth theorem in Theorem 1.12. This concludes the proof.

[

Because it does not depend on the conformal mapping, the claim we proved in
Hayman-Wu Theorem 1.13 is actually stronger than (1.43).
In chapter 7 we shall see that for some 1 < p < 2, independent of ¢,

J ™YW P dw] < C, (1.44)
LNQ

but the largest permissible p is unkown. A slit disc shows that (1.44) fails at p = 2,
and a counterexample for some p < 2, due to Baerstein, will be given in the eighth

chapter. In chapter 10 we shall determine the class of curves L for which the
Hayman-Wu thereom (1.43) holds.

Summary of Chapter 1

Solving the Dirichlet problem on a domain Q is equivalent to constructing a harm-
onic measure on its boundary d€Q2. Our aim is to let the domain € and the boundary
condition be as general as possible, we first construct the harmonic measures in nice
domains. Before the construction of harmonic measure in any of the domains, we
need to demonstrate what properties are desired: Some elementary properties
(Remark 1.1), conformal invariance (Remark 1.5), and the Harnack’s inequality
(Remark 1.4).

In the first section, we start with construction of the Harmonic Measure (for Set
of Finite Union in Half Plane). The uniqueness is guaranteed by Lindelof’s
maximum principle Lemma 1.1 (and so are the later versions). We formulated the
Dirichlet problem on upper half plane and proved the desired solutions via the
harmonic measure — Existence and Uniqueness for Solution to Dirichlet Problem on
H in Theorem 1.2. Then we extend our definition of harmonic measure from finite
union in H to Harmonic Measure (for Measurable Set on Half Plane); we defined
Poisson Kernel (over Half Plane) and Poisson Integral (over Half Plane). The
conformal invariance of harmonic measure (Remark 1.5) enables us to define
Harmonic Measure (for Set of Finite Union over Unit Disc), which in turn
formulates Poisson integral formula in Theorem 1.3. The corresponding Poisson
kernel and Poisson integral on D are formulated, as well as the Dirichlet problem on
D.

We now have harmonic measures over H and D, which are related through a conf-
ormal mapping. For us to extend the definition of harmonic measure to a general
domain, we need to make sure that the conformal mapping always does the job
correctly. This leads us to consider one of the most extreme case - Non-Tangential
Limit (over Unit Disc). To control the non-tangential limit, it suffices to control the
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Non-Tangential Maximal Function (over Unit Disc), which happens to be bounded
above by Hardy-Littlewood Maximal Function via Lemma 1.5, as for the Hardy-
Littlewood maximal function, it is also weak type 1-1 by Lemma 1.7. Together, we
prove Fatou’s Theorem 1.4, which tells us that any positive harmonic function on D
possesses a non-tangential limit at almost all boundary points. Finally, we formulate
and solve the Dirichlet problem over unit disc with bounded boundary data in
Corollary 1.4.1. So far we have relaxed the boundary condition but we have not
generalized the domain, as a trade off we see that the harmonic measure over D is the
indicator function along the non-tangential limit (Remark 1.9).

In the second section we relaxed the conditions in Dirichlet problem but we did not
extend the underlying domains, we now do it in the third section by proving the
Carathéodory’s Theorem 1.8 that extends a conformal mapping ¢ from D onto a
Jordan domain Q, to the conformal mapping ¢ from D onto Q, such that ¢ lp = .

We formulate the solution to Dirichlet problem over Jordan domain with bounded
boundary data, therefore a harmonic measure over Jordan domain. This construction
tells us that the questions about harmonic measure on Jordan domains are equivalent
to the questions about the boundary behavior of conformal mappings (Remark 1.10).

Extension of harmonic measure from H to D and finally to simply connected dom-
ain  such that the extension solves the Dirichlet problem over € and relaxes the
boundary data from continuity to boundedness. All the constructions are dependent
on the behavior of conformal mappings, then it is natural to consider how good the
conformal mappings are, especially how good is its image, as we do not wish change
in the boundary data. To answer this, in the fourth section, we define the conformal
invariant hyperbolic distance and hyperbolic metric. We consider the univalent
function y on D which is analytic, one-to-one, y(0) = 0, and y'(0) = 1. A particular
example for this function is Koebe’s function. We proved Koebe’s One Quarter
Theorem 1.9, which tells us that the disc under univalent maps always has radius at
least 1/4 and this bound is sharp. With the help of this result, we are able to estimate
the image of D under conformal mappings (Theorem 1.11), as well as for image of
simply connected domains (Corollary 1.11.1). Finally, we defined the Whitney
Square, which is an almost conformal invariant substitute for hyperbolic balls
(Remark 1.15 and Remark 1.14 respectively). We proved the Growth rate,
Distortion, and Angular Distortion for univalent mappings in Theorem 1.12. All the
inequalities in our estimates are equalities provided the univalent function is Koebe.

As an application, we prove the Hayman-Wu Theorem 1.13, which states that the
preimage of a line or circle L under a conformal mapping from D to a simply
connected domain € has total length bounded by an absolute constant. Moreover, the
best known value is somewhere in [72,47).

2. Finitely Connected Domains
In this chapter we solve the Dirichlet problem on a domain bounded by a finite nu-
mber of Jordan curves. For a simply connected Jordan domain the problem was
solved in the first chapter via Carathéodory’s Theorem 1.8. For a multiple connected
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domain the problem will be reduced to the simply connected case using the Schwarz
alternating method.

Solving the Dirichlet problem on a domain €2 is equivalent to constructing a harm-
onic measure on d€2. In the second section we describe harmonic measures in terms
of the normal derivative of Green’s fnction in the case when d€2 consists of analytic
curves. In the fourth section we study the relation between the smoothness of 0€2 and
the smoothness of the Poisson kernel (the Radon-Nikodym derivative of harmonic
measure agains arc length). This relation hinges on two classical estimates for
conjugate functions which we shall prove in the third section.

2.1 The Schwarz Alternating Method
We start with two definitions and a result.
Definition: Finitely Connected Jordan Domain
Let Q be a plane domain such that d€2 is a finite union of pairwise disjoint
Jordan curves
0Q:=I"ulLu--Ul,
We say Q is a finintely connected Jordan domain.
Definition: Piecewise Continuous Function
A bounded funtion f on 0dQ2 is said to be piecewise continuous if there is a finite
set E C 0L such that
(i)  fis continuous on 0Q\E.
(ii)  fhas left and right limits at each point of E.

In this section we solve the Dirichlet problem for piecewise continuous boundary
functions on a finitely connected Jordan domain. For the sakeness of simplicity, we
shall denote F.C.J.D. for finitely Connected Jordan domain whenever necessary.
Remark 2.1: In Proving Solution to DP We Can Assume Bounded Domain

There is a technique which we did not use in the first chapter but will be used
quite often later. This technique is that, in proving solution to Dirichlet
problem over simply connected set {2, we can always assume €2 is bounded.
Indeed, the Riemann Mapping Theorem establishes a conformal equivalence
between any proper simply connected domain and bounded unit disc D. o
Theorem 2.1: Solution to DP on F.C.J.D. with Bounded Piecewise Continuous Data
Let Q be a finitely connected Jordan domain and let f be a bounded piecewise
continuous function on d€Q2. Then there exists a unique function u(z) = uf(z),

bounded and harmonic on € such that

lim u(@) = /() 2.1)
—
at every point of continuity ¢ of f. Moreover,
sup [u| <sup|f]. 2.2)
Q 0Q

Proof:
By Remark 2.1, we may assume, without loss of generality, that €2 is bounded.
The uniqueness of u,is an immediate consequence from Lindel6f’s maximum

principle Lemma 1.1.
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The existence of Us in case p = 1, that is, when Q is a Jordan domain, was

formulated in the definition of Harmonic Measure (over Jordan Domain).
Therefore, we may, without loss of generality, assume that p > 1.
Step I. Construct Dirichlet problems inductively on the Jordan domain

(Figure 2.1: Separate Finitely Connected Jordan Domain via Jordan Arcs)

Take a Jordan arc ¢ with endpoints a, b € Q such that Q, := Q\s is simply
connected and such that 6 N 0Q2 is a finite set.
Then
7—a
z—0b
has a single-valued analytic branch defined on €2, and we can solve the
Dirichlet problem on €2, by translating it to the Jordan region ¢(€2,).
Take a second Jordan arc & such that
51 := Q\ is simply connected, 6 N 0Q is a finite set, and 6 N 6 = .

() =

We can also solve the Dirichlet problem on 51.
Step II: Construct Harmonic Function by Harnack’s Principle
Continuing our induction on the Jordan domain in the first step, we shall const-
ruct solutions to each subdomain iteratively. This step shall give us a sequence
of bounded positive harmonic functions, and then Harnack’s theorem tells us
that this sequence converges to a bounded harmonic function.
Let E C 022 be a finite set and define

F:=EU(cNoQ)U (c NoQ).
Suppose, without loss of generality, that f € C(0Q\E) is positive and
bounded.
To start, let u; be the solution to the Dirichlet problem on ; with boundary

value
0), € 0Q

max,, f, (E€o
Then u,
(a)  is harmonic on €, and continuous on Q\F.
(b) matches its boundary data on dQ2,\ F.
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Next, let u; be the solution to Dirichlet problem on 51 with boundary data
u,(0), £ € 0Q,. Then &
(a’) is harmonic on €, and continuous on Q\F.
(b’) matches its boundary data on 0Q,\F.
In particular, by (a) and (a’),
u; = u; on 0Q\F.
By Lindel6f’s maximum principle Lemma 1.1, we have

U, <maxf =:u onocNQ
0Q

~

and therefore
u; < u;on Q\F.
Now, let u, be the solution to the Dirichlet problem on €2, with boundary data
uy(¢), ¢ € 0Q,. On 6 N Q we have
Uy =y < uy,
while on dQ\ F we have
U, =f =u,.
Therefore by Lindel6f’s maximum principle Lemma 1.1,
U, < uyon Q.
Consequently
U, < ity on Q\F.
Continuing this way we obtain a decreasing sequence
Up > Uy 2 Uy > Uy > Uy > o
of positive functions, which are harmonic on €2, and 51 respectively. Now by
Harnack’s principle, the limit
u(z) = lim u,(z) = lim u,(z)

n—->oo n—oo
1s a bounded harmonic function on € such that

u < u; < max f.
oQ
Step I1I: Our harmonic function solves DP with given boundary condition

To complete the proof, it suffices to prove

limu(z) = f(0)

7—¢
whenever { € 0Q2 is a point of continuity of f.
We may assume that { & o U E. Take a neighborhood V of { such that

W := VN Qis aJordan domain and such that
WnNn(EUo) =3.

Let ¢ be a conformal map from D onto W. By Carathéodory’s Theorem 1.8
@(0D) = oW, and for M; =pl)eWw, )

_ Lol | =12P oy do
u,(w) Iw—l(aﬁ) e 2|’ fowple )27r + ot e — 2 U, o @(e )27[-
Because ¢~ !(0Q) is a neighborhood of ¢ ~'(¢) in D, the first integral approa-
chesf({)asw — C.
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Finally, because |u, | < sup|f|, the second integral tends to O, uniformly in n
0Q
as w — (. Therefore (2.1) holds and thus the proof is complete.

[]
Combining steps 1-3 in the proof for Theorem 2.1, this construction for the proof
of solution to Dirichlet problem with boundary data is called Schwarz alternating
method. This method worth a remark to demonstrate how it works.
Remark 2.2: Schwarz Alternating Method

When working with finding solution to Dirichlet problem over a finitely

connected Jordan domain, the Schwarz alternating method is the collection of

the following steps:

(1)  Use Jordan arcs to partition the finitely connected Jordan domain into
disjoint subdomains, this relaxes the original problem to the Dirichlet
problem over a Jordan domain.

(i1))  Solve Dirichlet problem over each subdomains, then use Lindelof’s
maximal principle Lemma 1.1 to make sure the positive bounded
harmonic functions converge locally uniformly to zero (that is, they are
decreasing). Then by Harnack’s theorem they converge to a bounded
harmonic function.

(i11) Show that the harmonic function we obtained satisfies the boundary
condition. ¢

As we have proved the existence and the uniqueness for the solution to the Dirich-
let problem over finitely connected Jordan domains with bounded piecewise contin-
uous boundary data, the harmonic measure in this case is also characterized.
Definition: Harmonic Measure (over Finitely Connected Jordan Domain)

If Q is a finitely connected domain. Theorem 2.1 shows that the map

J o u(z)
is a bounded linear functional on C(0€2).The harmonic measure of a relatively
open subset U C 0Q is therefore defined by
w(z,U) =w(z,U,Q) = Sup{uf(z) e C0Q),0<L f<1y),
and of an arbitrary subset £ C 0Q is
w(z,E) =w(z, E,Q) ;= inflw(z,U) : UopeninodQ,U D E}.
Remark 2.3: Harmonic Measure over Finitely Connected Jordan Domain Is Borel

The above definition, which mimics the usual proof of Riesz representation

theorem, shows that w(z, E) is a Borel measure on 0d€2 such that

up(z) = I fQ)dw(z, ) (2.3)
oQ
for f continuous. ¢

Note that when € is connected, this definition of harmonic measure agrees with the
definition in Harmonic Measure (over Jordan Domain).
Remark 2.4: Harmonic Measure Satisfies Harnack’s Inequality
For every z;, 2, € € there exists, by virtue of Harnack’s inequality, a constant

¢ := ¢(zy, Zp) such that
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1
;a)(zl,E) <w(z,E) Lco(z, E) (2.4)

and the constants c(z;, z,) remain uniformly bounded if z; and z, remain in a
compact subset of €2. o
It 1s natural to ask, as Remark 2.2 suggests, that if the boundary condition can be
weakened to bounded and Borel? The answer is positve. We shall demonstrate this
into the following example.
Example 2.1: Boundary Data over F.C.J.D. Can Be Weakened to Bounded Borel
If f € L'(0Q, dw), and in particular if fis bounded and Borel, there is a
sequence {f,},>; C C(d€2) such that for some fixed z, € €2,

[Iﬂ(é)—f(é’)lda)(zo,é) - 0.

Denote
u,(2) = an(C)dw(Z,C)
and
u(z) = uy(2) = If(é)dw(z, ) (2.5)
Then by (2.4),

u,(z) = u(z) forall z € Q.
Again by (2.4), we also see that the harmonic functions {u,(z)},; are unifo-

rmly bounded on compact subsets of €2. Then by Harnack’s principlet the limit
function u(z) is harmonic on . o
Note that in Example 2.1, we did not use Schwarz alternating method directly. We
shall give a reason why after the new version for definition of solution to Dirichlet
problem.
Definition: Solution to DP over F.C.J.D. with Bounded Borel Boundary Data
The harmonic function u defined in (2.5) is called the solution to the Dirichlet
problem for f on Q. If fis bounded, then we also have

sup | up(2) | < I |l Leo(.d)-
zE€Q

Moreover, if f is bounded and continuous at { € 0€2, then
lirrgl u(z) = f({).
71—

The reason we cannot apply Schwarz alternating method in this situation is that the
condition for applying Lindel6f’s maximal principle Lemma 1.1 is not satisfied. That
1s to say, to apply Schwarz alternating method we need to guarantee the condition for
Lindel6f’s maximal principle, as well as the condition for Harnack’s theorem.
Remark 2.5: Condition for Applying Schwarz Alternating Method

Note that the Schwarz alternating method cannot be applied directly to a
bounded Borel function because the conditions of Lindel6f’s maximal princ-
iple Lemma 1.1 holds only for piecewise continuous functions. o

The next section will give a much more explicit description of the measure w(z, E)

when 0€2 has some additional smoothness.
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2.2 Green Functions and Poisson Kernels
Again let Q be a finitely connected Jordan domain, and assume that €2 is bounded.
For fixed w € Q, let h(z, w) be the solution to the Dirichlet problem for the boundary
value
f@@)=log|{ - w| € C(0Q), € 0L,
and define
Definition: Green Function with Pole (over Bounded Domain)
The Green function with pole w is defined by
g(z,w) :=log ; + h(z, w). (2.6)
|z - o]
Remark 2.6: Some Elementary Properties of Green Function with Pole
The Green function with pole @ has the following properties:
(i)  g(z, ) is continuous in z € Q\{w].
(1) g(z,w) > 0onQ.
(i) g({, w) = 0 on 0Q.
(iv) z +— g(z,w) is harmonic on Q\{w}.
(v) z+ g(z,w)—log ﬁ 1s harmonic at . o
W —2
The properties are easily derived from Theorem 2.1 and the definition (2.6). By the
Lindel6f’s maximum principle Lemma 1.1, (ii1), (iv), and (v) determine g(z, w)
uniquely.
Definition: Green Function with Pole (over Unbounded Domain)
When Q is unbounded, we fix a ¢ Q, then we use Poisson kernel or the
inversion argument to define the Green function.
(i) For w # oo, we let h(z, w) solve the Dirichlet problem on €2 for

£ —
J(§) :=log|—],
and define
gz, w) == log| ———| + h(z, w).
I—®
(1)) For @ = oo, we instead use inversion
f(©) = log T‘

to define A (z, o0) and set
g(Za OO) = 10g|Z - Cll + h(Z? OO)
These definitions are independent of the choice of a, and with them the properties
in Remark 2.6 still holds and (ii1), (iv), and (v) still determine g(z, @) uniquely.
Now it is natural to consider the Green function under the conformal mapping.
Definition: Green Function with Pole (under Conformal Mapping)
Suppose ¢ is a conformal mapping from one finitely connected Jordan domain
Q onto another finitely connected J’(\){dan domain Q. Then
@(z) > 0Q Vz — 0Q
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since @ : £ — € is a homeomorphism. It follows that the Green function with
pole @ under conformal mapping is
85(¢(Z), QD(CU)) = gQ(Z7 CU), (27)
because Green function is uniquely determined by (ii1), (iv), and (v) in
Remark 2.6.
Remark 2.7: Green Function with Pole over F.C.J.D. Is Conformal Invariant

If Q is the unit disc D then
l—-zo

g(z,w) = log (2.8)

I—®
Consequently Green function for any simply connected Jordan domain €2 can
be expressed in terms of the conformal mappingy : Q - D. ¢

Theorem 2.2: Green Function as Log of Conformal Mapping over F.C.J.D.

Let Q be a simply connected domain bounded by a Jordan curve, let w €
and let  : Q — D be a conformal mapping with y(w) = 0. Then
gz, w) = —log|y(2)].
Proof:
Direct calcuation gives

8alz. @) = gp(¥(2). y(@))

= gD(l//(Z),0> (by assumption y(w) = 0)

l—w()-0
w(z) =0

= —log|y(2)]
where the first equality holds by the definition in (2.7) and the third equality by
(2.8) in Remark 2.7.

[
Definition: Analytic Arc

An analytic arc is the image 1//((— 1,1)) of the open interval under a one-to-one

and analytic map y defined on a neighborhood of (—1,1).

Definition: Jordan Analytic Curve
A Jordan analytic curve is a Jordan curve that is a finite union of (open)
analytic arcs.

The following lemma states that every finitely connected Jordan domain has a rep-
resentation whose boundary contains pairwise disjoint analytic Jordan curves (thus
the Schwarz alternating method Remark 2.2 may be applied) and there exists an
homeomorphic extension to the boundary. Note that this result does not tell us that
the Schwarz alternating method is closed under finitely many conformal mappings, as
Remark 2.5 already told us that for this method to work, the boundary data must be
at least piecewise continuous.

Lemma 2.3: F.C.J.D. Has Partition and Homoemorphism Extension on Boundary
Let Q be a finitely connected Jordan domain. Then there exists a finitely
connected Jordan domain Q* such that
(1)  0Q* consists of finitely many pairwise disjoint analytic Jordan curves.
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(i)  There exists a conformal map from € onto Q* which extends to be a
homeomorphism from € onto Q*,
Proof:

Denote, for p > 1,

0Q:=TI"1u--Ul,
where each I', 1s a Jordan curve, 1 < j < p. We proceed the proof with
induction.

(Figure 2.2: Inductive construction for the proof)

Base Step:

Let €, be the component of C*\I'; containing €2, and let y; be a conformal
map from €2, onto D.

Induction Step:

Let €, be the component of C®\y,(I',) containing y;(€2), and let y, be a
conformal map from €2, onto D. Repeating this process for each bounded
curve, we obtain a conformal map y, from Q to a region Q* such that 9€2*
consists of finitely many pairwise disjoint analytic Jordan curves. Applying
Carathéodory’s Theorem 1.8 to each y;, we see that y, extends to a

homeomorphism from Q onto Q*.

Theorem 2.4: Green Function with Pole is Symmetric over F.C.J.D.
Let € be a finitely connected Jordan domain and let z;, z, € €. Then
8(z1,27) = 8(25, 79). (2.9)
Proof:
By Lemma 2.3 (i), we may assume that 0€2 consists of analytic Jordan curves.
When 0Q2 consists of analytic curves, an argument of Schwarz reflection prin-
ciple, which we shall use many times and in proving the Lemma 2.5, shows
that there is a neighborhood V of 0dQ to which z — g(z, @) has a harmonic
extension. Hence g(z, @) is analytic on some neighborhood V of 0Q2 and we
can use Green’s theorem in the form
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ov ou
(uAv —vAu)dxdy = (u—_, — v1>ds,
9 oy \ On on

where 7 is the unit vector pointing out from the domain %. Fix distinct z;, z, in
Q, we apply Green’s theorem on the domain

Q. =0\({lz—z | <e}uflz—z]| <¢€}),
when & is small, with

u(z) == g(z,z;) and v(z) := g(z, 25).
Now by Remark 2.6 (iii), u = v = 0 on 022, thus

ov ou
<u7 - v—_,)ds = 0.
50 on on

Now, by Remark 2.6 (iv), u and v are harmonic on €2, the area integral in
Green’s theorem vanishes. We conclude that

2 i0 J i0 do
€ g(zy+ee, z)—g(zy +€e”,z,)—
0 or 2

n o 0 N L
—& g(Z1 + ee’ ,Zz)_g(Zl + e’ ,Zl)_
0 or 2
(2.10)

2r o 0 0 aé
=e| gl t+ee,z)—gz+ee’, z)——
0 or 2r

2 0 0 i0 d@
—e| gz +ee”, z))—g(z, +ee”,2,)—
0 or 2

For ¢ sufficiently small, using the indices we used in Lemma 2.3 (1),

, 1

8l +ee,7) < 2log(—) Vk #)
€
we see that g(z, z;) has bounded derivatives near z; (since bounded analytic
Green function has locally bounded derivatives). This means that the first and
the third integrals in (2.10) tends to 0 as € — 0. Now by (2.6),
0

. 0
——g(z;+ e, z;) = —loge + O(1),
arg(z] ee”,z;) o 08¢ (1)

so that, as € | 0, the second integral in (2.10) tends to g(z,, 2,) and the fourth
integral in (2.10) tends to g(z,, z;). Finally, by Remark 2.6 (i1), the Green
function is positive on €2, it follows that the equality holds and hence the sym-
mery is proved.
[
The Schwarz reflection principle argument in the proof is of frequent use, so we
write it into the following remark.

Remark 2.8: Schwarz Reflection Principle Extends Harmonic Locally on Boundary
The Schwarz reflection principle does not only apply to the reflection over the
real axis, it also applies to a neighborhood of the boundary 0€2, that is, there is
a neighborhood V of dQ to which z — g(z, @) has a harmonic extension. ¢

Lemma 2.5: Sufficiency for Harmonic Extension to Analytic Curve over F.C.J.D.
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Suppose Q is a finitely connected Jordan domain and suppose y C d€2 is an
analytic arc. Let u(z) be a harmonic function in €.
(a) Iflimu(z) =0 V{ € y, then there exists an open set W D y U € such

7=
that u extends to be harmonic on W.
(b)  Ifin addition that u(z) > 0 on Q, then

gu(g) <0V¢ey. (2.11)
on

Proof:

We first show that there exists a harmonic extension, then we prove assertion
(a) and assertion (b).
Step I Existence of harmonic extension over neighborhood of {.
Lety € I', where I is a Jordan curve bounding €. Because y is an analytic arc,
by Remark 2.8, there exists a neighborhood V of { and a conformal mapping
y : V — D such that for { € y fixed,

H  w()=0.

i) w(VnNnQ) :=D :=Dn{Imw) < 0}.

(i) w@nV)=(-10).

Set
u oy Yw), w €D :=Dn {Im(w < 0}
V()= -uoy'@), weD":=Dn {Im()> 0}
0, w € (—1,1)

Then by Remark 2.6 (i), v is continuous in D; by Remark 2.6 (iv), v has mean
value property over sufficiently small circles centered at any @ € D. Hence v
is harmonic in D and

UW:=voy
defines a harmonic extension of u to V.
Step II: Assertion (a)
Suppose i, and u, are extensions of u to a neighborhood V; and V,, such that
VNV, Ny is connected, then &, = u, in the component of V; NV, that conta-
ins V; NV, Ny. It follows that # has a harmonic extension to some open set
W DoyuQ.
Step I1I: Assertion (b)

0
If in addition # > 0 on Q, then clearly ?u < 0 on y since otherwise (a) does
v

0
not hold. The inequality (2.11) then holds if and only if O_V(O) < 0. Thus it
Y

suffices to prove the following claim.

0
Claim: —v(0) < 0.

dy
We prove by contradiction. On D, by Schwarz lemma, there exists an analytic

function
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h :=v —ivwithIm(h) = —vand h(0) =
The Taylor expansion of 4 at O is
h(w) = a0+ O0(|o|""),a,#0.
But if n > 2, then
h(D7) N D* # @,

0
which is a contradiction. It follows that a; := h'(0) = — a—v(O) # 0. But
y

~

u:=voyand ?u < 0 on y, since y is conformal, 8_V(O) cannot be positive.
v y

[

When 0Q2 consists of analytic curves, Green function provides a formula for harm-

onic measure that generalizes the Poisson integral formula for D.

Theorem 2.6: Harmonic Measure as Generalization of Poisson Integral Formula
Assume 0€2 consists of finitely many pairwise disjoint analytic Jordan curves
and let z € Q. Then
(a)  Green function g({, z) extends to be harmonic (and hence real analytic)

on a neighborhood of 0€2 and

—0
a_,g(C ,2) > 0 on 0Q (2.12)
g

where ﬁg is the unit outer normal vector at { € d€.
(b) Ifin addition u € C(Q) is harmonic on £ then

u(z) = J g(C 2u (C)ﬁ (2.13)
sa  Ong

In particular, the second assertion gives the generahzatlon for the Poisson kernel
over finitely connected Jordan domain. Note that in classical potential theory our
definition for harmonic measure is defined to be the common value between Perron
function and the generalized Poisson integral. So far we did not introduce the Perron
function and our definition 1s different from the classical one, and now the reason is
obvious: since our definition is more flexible, and we are always ready for another
generalization.
Definition: Poisson Kernel (over Finitely Connected Jordan Domain)

In (2.13), the term defined by

1 o0
P({): __Tna_ﬁgg(g ,2), L € 0Q),

is called the Poisson kernel over finitely connected Jordan domain €2.

Proof of Theorem 2.6:
Fix z € Q. By Lemma 2.5, g({, z) extends to be harmonic (and real analytic)
on some neighborhood of 0€2 and then (2.12) is an immediate consequence of
(2.11). To prove (2.13), we first assume that u is analytic on a neighborhood of
0Q2.
Step I: (2.13) holds when u is analytic on a neighborhood of 9€2.
We apply Green’s theorem on
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Q. =Q\{w:|w-z|<é€)}
with e sufficiently small and v(w) := g(w, z). By Remark 2.6 (iv) we have
A, g(w,z) = Au=00n¢2,
and by Remark 2.6 (iii) we have
g = 0on 0Q.
Therefore Green’s theorem yields

2
J 7 g(é’ Z)“(C)ﬁ = 5[ gz + eeie, Z)iu(z + 8€i9)ﬁ
J 2z or

Q al’lc 0 27

o o\ 9 o 49
—e| u(z+ee)—g(z+ee,z)—.
0 or 2

Since for € > 0 sufficiently small, we have

. 1
gz +ee? z) < 210g<—>
€

by Remark 2.6 (v). Moreover, since u is analytic by assumption, we have
N N . dO
lime g(z+ee,z2)—u(z + ee”)— = 0.
=0 Jg or 2
As we have seen, (2.6) yields

0 L =0
—g(z+ee”, z) =—Iloge + 0(1),
or o€

while .
u(z + €€’y = u(z) + O(e)
since u is analytic on a neighborhood of d€. It follows that

o 0. 0 o . do
—e| u(z+ee')y—gz+ee’,2)— =u(z) + O(e),
0 or 2n
and this gives (2.13) when u is analytic on a neighborhood of 9€2.

Step II: (2.13) holds in general case
To prove (2.13) in general case, for 6 > 0 sufficiently large we define
={weQ:glwz) >0}
By uniqueness of Green function up to a harmonic correction, Q° has Green
function
gs(w,z) = g(w,z) — 6.
Therefore,
0 0
—85((.2) = —g({, z) on 0Q°.
on; on;
In a neighborhood N of a point {, € d€2, the function
p =g+1g (g denotes the complex conjugate)
1s a conformal map and

1
| ecauwas- |

278 J nnocs O {Re(2)=6}Ngp(N)

by the definition of conformal mapping ¢ and change of variables; note that

the right hand side convergs, as 6 | 0, to
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1 —0
J wep~'ds = —J —g (&, Du(l)ds.
{Re(2)=0}Ngp(N) 27 ) yq 01

Therefore, as 6 | 0, one has
1

—0 1 —0
—J jg(c,z)u(:>dsa—[ — 8¢, Du)ds.
2r ),

Qb 0n§ 27 00 ang
But (2.13) holds for u on Q° because u is analytic on a neighborhood of 0Q?,

as we have shown in the first step. Thus (2.13) holds on €2 by the above conve-
rgence.

[

People used to believe that harmonic measures can be singular with respect to

Hausdorff measure on “very wild” bou-ndaries, but Garnett, Marshall, et. al proved
that the absolute continuity holds on analytic bounds in 1980s.

Corollary 2.6.1: Absolute Continuity and Analyticity of Harmonic Measure on FCJD
If 0Q2 consists of finitely many pairwise disjoint analytic Jordan curves and if

z € Q, then
—0 ds({)
dw(z,{) = a—_,g(ZJZ) : (2.14)
né‘ 271'

In other words, harmonic measure for z € Q is absolutely continuous with
respect to the arc length on dQ2. The density (Radon-Nikodym derivative)

dw -1 0
= —2(z, =P
ds  2x o 8(z,8) = P({)

is real analytic on 0€2, and

dw

o] < — <Cz (215)

ds

for positive constants ¢; and c,.
Proof:

Using (2.2) in Theorem 2.1, (2.13) in Theorem 2.6, and the fact that Borel
measures are determined by their actions on continuous functions gives the

equality (2.14). The inequalities in (2.15) are an immediate consequence of
(2.12) in Theorem 2.6.

[
Remark 2.9: Comparing Harmonic Measure to Geometric Measure
One objective of this book is to compare harmonic measure for general

domains to more geometrical measures such as arc length, and Corollary 2.6.1
is the first result of this kind. ¢

Theorem 2.7: Solution to DP over F.C.J.D. with Bounded Borel Boudnary Data

Assume 0€2 consists of finitely many pairwise disjoint analytic Jordan curves
and for { € 0Q and a > 1 define

(&) :={z€Q:|z—{]| < adist(z,0Q)}.
If u(z) is a bounded harmonic function on €2, then
(i)  For ds-almost every ¢ € dQ2 the limit

Iim  u(z) =) (2.16)

To(0)32-¢
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exists.
(1)  u can be written as the Poisson integral formula

u(z) = [ P.(O)f(D)ds(C), (2.17)
(iii) The following isometry }f(g)zlds
sup [u(2)| = |1l 218)
Q

Conversely, if fis a bounded Borel function on 0€2, then (2.17) defines a
bounded harmonic function u(z) on € such that (2.18) holds ds-almost
everywhere. Moreover, if f is continuous at {, € 0€2 then

lim u(z) = f({y). (2.19)

2={p
Remark 2.10: Isometry Between Space of Bounded Harmonic Functions and L
By (2.18), we see (2.16) and (2.17) establish an isometry between the space of
bounded harmonic function on £ and L*°(d€2, ds) when 0d€2 consists of
analytic curves. ¢
Proof of Theorem 2.7:
We shall use a simple localization argument to prove the first assertion in the
first step, then we prove assertion (i1) and (iii) in the second step, we finally
deal with the converse direction in the third step.
Step I: Assertion (1)
A simple localization argument gives the existence of the non-tangential limit
f. If I is an open arc on 0€2, there exists a neighborhood V D I such that
VN oQ =1and VN Q is simply connected.
Moreover, there exists a conformal mapping y defined on V such that
w (VN Q) =D and y(/) is an arc on dD.
It follows that y maps conical approach regions at { € V N 0Q into cones at
w(l):
w(VNT () NBAL)) C Ty (w(©)),
where B4({) = {Z z—=C| <d:= 5(4’)}. Then, if u is a bounded harmonic
function on Q, we can apply Fatou’s Theorem 1.4 to u o ™! to obtain (2.16)
ds-almost everywhere on V N 0.
Step II: Assertion (ii) and (ii1)
The proof of (2.17) is exactly the same as the proof of (2.12) except that the

(Lebesgue’s) dominated convergence theorem (LDCT) is applied in (2.13). By
(2.16) we have

Iflle < suplu(z)|. (LDCT)
Q
Since

PZZOandJ Pds =1
0Q
by the definition of Poisson kernel, one has, via LDCT once more,

sup |u(z) | < [f |l
Q
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Hence (2.16) and (2.17) together implies (2.18), proving both assertions.

Step III. Converse

To prove the converse, let f € L*(d€2, ds). Then the discussion following (2.5)
shows that (2.17) defines a bounded harmonic function #(z) on € and

sup |u(z) | < [f |l
Q

Therefore, by (2.16), u has almost-everywheres a non-tangential limit, which
we will temporarily call it F, and u is the Poisson integral of F by (2.17).
It suffices to prove the following claim.
Claim: F = f almost-everywhere
Let V be a neighborhood of an open arc I such that
I =VNnoQand VN Q is simply connected.
For h € L*(0Q, ds), define

vp(2) = J P(OH()ds(E) — J P, V)R($)ds(D),
oQ I
where P({, V') is the Poisson integral for z € U N Q. If h € C(d€2) then by

(2.3), Theorem 2.1, (2.12), and (1.20), one has
limv,(z) =0 V{ e[,

=¢
and hence by Lemma 2.5 (1), v, extends to be harmonic in a neighborhood W
of I which does not depend on 4. Thus, by Exercise 1.5 (e) or (2.25) below, if
J is a compact subset of / and if € > 0, then there exists a neighborhood N of J
depending only on ||A|| , and &, such that
|v,| < ein N.
Now take {£,},5; C C(0L) so that
lim h, = fin L' and [l ]l < IIf Il

n—-oo
Foreachz € VN N, v, (z) = vx(2), and so
V()| <e.
Since € > 0 is arbitrary, we conclude that

vi(z) — 0.
7—fel

Now by Theorem 1.3,
F(O)-f()= Tlim v.(z) =0 almost-everywhere on J.

[, ({)2z—¢
Consequently, F' = f almost-everywhere and (2.16), as well as (2.18) holds for
all f € L*°(0€2, ds). Finally, if f is continuous at {, € /, then

J P, V)f(©)ds(E)
1

is continuous at §, by (1.20). Thus, (2.19) follows from the continuity of vy.
[]

5 By saying so we mean u has a non-tangential limit #-almost everywhere for whatever measure u
we do not care.
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Remark 2.11: Alternative Proof for Theorem 2.7 and Conformal Estimate
The converse can also be proved in another way. Using the real analyticity of
g(w, z), one can refine the proof of Lemma 1.5 and show that
sup |u(z)| < Cla, QM, f(C), (2.20)
(O
where u is the Poisson integral (2.17) and where the maximal function M, f({)

is the supremum of the averages of f over arcs y C 0Q with { € y:

1
M = —_— ds.
S () Sggy) 20 yIfI s

A variation on the covering lemma shows that M, is weak-type 1-1, and an
approximation, as in the proof of Theorem 1.4, then yields (2.16) for the
Poisson integral of f. This is the argument that MUST be used in the Euclidean
space R, d > 3.
With the same care, the conformal mapping proof of (2.16) in the text can also
be parleyed into a proof of the maximal estimate (2.20). <

Remark 2.12: Equivalent Definition for Harmonic Measure on F.C.J.D.
Let Q be any finitely connected Jordan domain and let ¢ be a conformal map,
given in Lemma 2.3, of Q onto a domain Q*, where dQ2* consists of analytic
Jordan curves. Since ¢ : Q — Q*, harmonic measure can be transplanted from
Q* to Q via ¢, just as it was in Section 1.3 for simply connected Jordan
domains. This gives an alternative but equivalent definition of harmonic mea-
sure for Q. o

In Section 2.4 we shall consider two questions. Let €2 be a finitely connected Jor-

dan domain.
Question I: If 0Q2 has some degree of differentiability and if f € C(d€2) also
has some degree of differentiability along 0£2, how smooth is the solution u(z)

as z approaches 9Q2?
Question II: What smoothness condition on 0€2, weaker than real-analyticity,
will ensure that
0
= g(z,¢) exists on dQ2 and (2.14) and (2.15) still hold?
n
¢
The two questions are equivalent. Their answers will depend on Kellogg’s theorem
about the boundary behavior of conformal mappings. The proof of Kellogg’s theorem
in turn depends on the estimates for conjugate functions in the next section.

2.3 Harmonic Conjugate
Let f € L'(0D) be real. For convenience we write £(6) for f(e’?). We shall benefit

from the fact that the Poisson integral of f € L'(dD) is always harmonic and real.
Definition: Harmonic Conjugate (Conjugate Function)

If u(z) is the Poisson integral of f on D, then u(z) is harmonic and real and

there exists a unique harmonic function %(z) such that

u(0) =0and F = u + iu is analytic on D.
The function u is called the harmonic conjugate or conjugate funciton of .
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One may recall the definition of harmonic minorant (respectively, hamonic majora-
nt). Heuristically, both the harmonic minorant and the harmonic conjugate are serving
as a harmonic “correction”, while the minorant serves as the continuity correction and
the conjugate serves as a differentiability correction.

Proposition 2.8: Non-Tangential Limit for Conjugate Function Exists A.E.
The non-tangential limit
fO) := lim  u(z) (2.21)

T, (e)2z—el?
exists a.e..
Proof:

This has an easy proof from Fatou’s Theorem 1.4: We may assume f > 0, so
that

G(z) := exp{ —u(z) + iﬁ(z)}
is bounded and analytic on D. By Corollary 1.4.1, G has non-tangential limit
G (e”) almost everywhere. Since

|G| =e/@Pandfe L,
|G(e)] > 0a.e.. At such €', G is continuous and non-zero on the cone
k:=T(e").
Consequently,
logG = — (u+iu)

has a continuous extension to

i0 1 i0
Kn{z |6 -G <E|G(e )|}
and the limit (2.21) exists at .
1

There is a close connection between harmonic conjugate and conformal mappings.
Remark 2.13: Connection Between Harmonic Conjugate and Conformal Map

T
If u is harmonic and if |u| < > then

@ (2) == J 'exp{i(u +iu)($)}d¢
0

is a conformal map from D to a finitely connected domain and

u=argq'
Indeed, if a # b € D, then
1

(b)) - pa) = (b - a)J ¢'(a+1(b —a)dt #0
0
because Re(¢p’) > 0. o

When fis bounded, or even continuous, it can happen that f is not bounded.
Example 2.2: Bounded Continuous Function with Unbounded Harmonic Conjugate
Let u + iu be the conformal map of D onto the region

1
{O<x<—}.
1+ |yl

Then u is continuous on D by Carathéodory’s Theorem 1.8, but # is not
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bounded. ¢
The next two assertions get around the obstruction that f may be unbounded even
when fis continuous.

Theorem 2.9: Zygmund’s Exponential Integrability for Harmonic Conjugate
Letf € L*(dD) be real with ||f]|, < 1.

/2
(a) ForO0< A< 5 there is a constant C,, depending only on 4, such that

1 -
2—7[JCXP{/1|f(9)| 1do < C,.
(b) Iff € C(dD), then for all A < o0,
1 .
sup —Jexp{ﬂ |71(re’)] }dO < .

0<r<1 &7
Proof:

Step I Assertion (a)

Let u(z) be the Poisson integral of f in D and consider the analytic function
g(2) == u(z) — iu(z).

For r < 1, g(z) satisfies

1 2r .
0?80 — _J 228e") g9
2r

0
because u(0) = 0. Therefore, by Euler’s identity,
1 (" . .
cos Au(0) = Z—J exp{iﬁ(re"g)}cos u(re'®)do.
T Jo

Butif0 < 4 < g, then

0 <cosd<cosiu <1
since |u| < 1. It follows that
1 (> .
—[ exp{Ai(re®®)}dé < sec .
2r J,
Then by Proposition 2.8 in conjunction with Fatou’s lemma, one has

1 271' 5
—[ e 0do < sec A.
21 ),

By repeating this argument with —f(6), we then obtain assertion (a) with
constant C; := 2 sec 4.

Step II: Assertion (b)

To prove (b), fix 4 < oo andNtake a trigonometric polynomial

pO) = Z (an cosn@ + b, sin n@)

n=0
T
such that |[f — p||, < CYh Then the conjugate

N
p(re'?) = Z r"(a,sinn® — b, cos nf)
n=0
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is bounded, while (a) gives

1 —_—

B, := sup —"exp{/l | (u —p)(re’9)| }d& < 00.
0<r<1 27

Therefore, since

b

@< 1P+ |@=p)

we have

1 - -
sup —Jexp{ﬂ | ii(re™®) | }d@ < BelPlle < oo,
O<r<l 270

which yields assertion (b).

Definition: Alpha-Holder Class and Alpha-Holder Continuous Function
Let 0 < a < 1. The a-Holder class C* is

{ |f©+0-r@) || }
C*:= < f € L®00D) : sup 2 <0 p.

>0 “

Every f € C“ agrees almost everywhere with a function continuous on dD.

A function f € C%is called an a-Holder continuous function.
Definition: Alpha-Ho6lder Norm

The class C* is given the a-Holder norm

Il = 1l + sup L EED T Dl
>0 ta N
In a moment we shall prove Privalov’s theorem that f € C* whenever f € C%. In

the Poisson integral formula

u(z) = Reij ¢ *Z py

(2.22)

2r el — 7z

the kernel '

e"+z . (analytic, inzeD

S

el — z real, atz =0
Then the uniqueness of u shows that .

- 1 (" e+

u(z) +iu(z) =: F(z) := — . f(®)d:r. (2.23)
2r)_, et —z

Definition: Herglotz Integral of Alpha-H6lder Continuous Class
The analytic function F(z) defined in (2.23) is called the Herglotz integral of
fec”
We shall denote
ou Jdu
Vu = (—, —>
ox dy
when u 1s differentiable on an open plane set. If u is harmonic and bounded on D then
u is the Poisson integral of some f € L*(dD) and by (2.23) the Cauchy-Riemann

equations
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, 1" e
Vu@ = 1@ = |~ | dt (2.24)
(ezt — Z)2
Therefore,
1 (" 1
| Vu(z)| << J .—Zdt>||f||oo (Holder's Inequality)
2r |eit — z| (2.25)

<201 = 12D Nl
We will often make use of the following consequence of (2.25):
Remark 2.14: Locally Bounded Harmonic Function Has Local Bounded PDE
If u(z) is harmonic and |u(z)| < M on By(z) for some M > 0 and HBp(z)

denotes the open ball centered at z with radius R > 0. Then

4M
sup |Vu| < = (2.26)

Bri(2)

To prove (2.26) simply apply (2.25) to U(w) := u(z + Rw). The next theorem sho-

ws that f € C? if and only if the estimate (2.25) can be upgraded to

|Vl = 0((1 = |2)*).

Theorem 2.10: Criterion of Alpha-Holder Continuous Class with Norm Bound
LetO < a < 1,letf € L®(dD) be real, and let u(z) be the Poisson integral
of f. Then the following conditions are equivalent:

(a) fecC“
by fec~
(© |Vu@|=0(1-z)*").
(d) u € C¥%D), thatis, Vz,2, € D,
|u(z)) —u(zy) | = 0( |2y _Zz|a)-
Moreover, there exists a constant C;, independent of &, such that

- C,
) IFlles < —— Il (2.27)
C,
(©) |w(z>|s1_ —IZI)“‘lllfllca» (2.28)
and
@ sy TH@I G w {1 =12D"Vu@] | (229)
witn 1o —2l" a|z|<1

The equivalence (a) < (b) was first proved by Privalov who worked directly with
the imaginary part of the integral (2.23); (a) & (c) was proved by Hardy and

Littlewood in 1931.

Proof of Theorem 2.10:
Clearly (d) = (a) since if (d) holds then u is uniformly continuous over D.
We first show (a) = (c) and establish (2.28), then we show (¢) = (d) and
establish (2.29). Finally, we show (a) < (b) and inequality (2.27) will follow
because | Vu| = | Vi | by an application of Cauchy-Riemann equation.
Step I: (a) = (c) and construction of (2.28).
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Assume (a) holds, that is, assume u is the Poisson integral of f € C“. We pro-

1 . z
ve (2.28). By (2.25) we may assume |z| > 5 Let e'0 := ——. Since

, |z
elt
J—dt =0,

(eit — 7)2
(2.24) yields .
1 (" e"(f() - f(1))
Vu@| = | = J |
so by (2.25) again
|Vu@)| < lj O _f(tg)l dt
) _p | e —z |

T

_ 1J |f@ f(tg)ldt+lj |f@ f(tg)ldt.
rol<i=2l |t =zl R R E I L
The inequality
1 —|z| < |e" —z| holds for all ¢,
it follows that

— 1-1z| ;a
1[ | f(0) f(to)ldts 201711, J "
T jng<io et —z)? A-1zD2), =
LW
= ol DT

When 1 — |z| < |t —1,| £ 7, the inequality
|t — t0|2 <c-|e"- ZI2 for all ¢ independent of z,
thus the second term

1 1) —f(t 2 d
Y IOR IO e
T g<li=to)<x €7 —2Z] a 1-z
2¢[f o .
<——=(1 -z
z(l —a)

Combining these bounds together, we obtain (2.28) with
2 l-a 2(c+1)
C, = sup —<c+ >= :
O<a<l l+a /4
Step II: (c) = (d) and (2.29)
If (c) holds, we may assume (1 — |z])!=%| Vu(z)| < 1.

w ¥

(1)1:(1_6)21 .// B s é

wWe= (1-0)z2

(Figure 2.3: Choice of z;, w;, and parallelogram)
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Letz, = re'l € D, as illustrated below
g =i

1 1
We may assume |z;| > B and o = |z, — p| £ 7 Set w; := (1 = §)z;. Then

|u(z) —u(z) | < uz) —ul@)| + [u(zy) —u(w@) | + |u(w;) — u(w,)|.
However,
Tooou g
|u() — u(@))| = J —(1e")ds
(1-6)r;
o1
< (1 —1)*'dt (assumption (c))

(definition of w; and §)

Ji1-s
60
S )
a
while
|u(y) — w(@y)| < o) — oy max(1 = [@;)*!  (assumption (c))
j=12

< 6% (definition of w; and §)
Therefore (d) and (2.29) hold.
Step III: (a) < (b) and (2.27)
Finally, suppose (a) holds. Then (c) holds and

|Vii| =0((1—|z])*™).

Therefore (d) and (2.29) hold for u, and 1 extends continuously to 0D where
i has boundary value f by Poisson integral properties (see Theorem 1.6 (ii)
Ransford). It follows that f € C% because (d) = (a). Finally, since

f==f+u),
it follows that (a) < (b) and hence (2.27) holds.

It is useful to introduce the following notion.
Definition: k times Continuously Differentiable
Let k be a non-negative integer, let 0 < a < 1 and let f € C(dD). We say

d
f € CH*if fis k times continuously differentiable on 0D and <%)k fec”

provided a > O.
If F(z) is analytic on D we say F € C***(D) if F and its first k derivatives F’, F”,

.-, F® extend continuously to D and if there is C such that

|FOz) — FO(z,) | < Clz = 5,|°

for all z;,z, € D.

Corollary 2.10.1: Criterion for Alpha-Hdlder Class Extension to Boundary of Unit Disc
Assume k is a non-negative integer and assume 0 < a < 1. Let f € C(dD) be
real and let F(z) = u(z) + iu(z) be the Herglotz integral of f. Then

F € C***D) & f € CK*(0D).

Proof:

Because f € Re(f), it is clear that f € CK**(dD) if F € C***([D). Assume
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f € C%(9D). If (@) has Fourier series
f(e) ~ Z aneinQ

n=—oo

then F' has Taylor series

F(z) = ay+2 Z a,z".

n=1

Therefore E, which has Fourier series
(00]
a ~ ina e™,
n=—oo
has Herglotz integral iz F'(z) and the corollary follows from a special case
k = 0, which is Theorem 2.10.
[]
Remark 2.15: Theorem 2.10 Fails when a = 1, Corollary 2.10.1 Fails whena = 0
Theorem 2.10 fails when @ = 1. The harmonic conjugate of a continuously
differentiable function on dD need not have a continuous derivative, and the
conjugate of a Lipschitz function, that is, a function satisfying
| f(O+0)—fO)] <M]t],
need not to be a Lipschitz function.
For the same reason, Corollary 2.10.1 fails when @ = 0 and k is a non-
negative integer. ¢
However, conjugation does preserve the Zygmund class.
Definition: Zygmund Class
The Zygmund class, denoted as Z*, is the class of continuous functions f on

dD such that
If@+1)+f(O0—1)—2f(O)ll
sup < o0

>0 ?
Definition: Zygmund Norm and Zygmund Function

The Zygmund class has norm
/(0 +1)+1(0—1) -2l
1 llz+ = llflleo + sup :

>0 l
When f € Z*, we say fis a Zygmund function.
Define
| Vau@) | =1V = (11,@) ° + 1y, (@) 1*)
2 (" e'f(n) ‘
=|F'(9)|=|—| ———=dt
7! ‘ﬂ[_” (el — 2)?

where F = u + iii is the Herglotz integral of f € L'(dD). If f € C?, then (2.26) and
(2.28), applied to u, in the disc K 1-1:(z), gives us
2

| Vou@) | = 0((1 = |z2])*7?). (2.30)
Conversely, if (2.30) holds, then integrating F"’ along radii shows that
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|Vuz)| = 0((1 —|z])*") and f € C.

Thus (2.30) provides yet another characterization of C* functions, in terms of second

derivatives. Zygmund functions have a similar characterization.

Theorem 2.11: Criterion for Zygmund Boundary Data with Zygmund Norm Bound
Let f € L*(dD) be real and let u(z) be the Poisson integral of f. Then the
followings are equivalent:

(a) feZ*
(b) fezZ*
© V@ |=0(1-1zD7).
There is a constant C such that
11|z« < ClIf ll 2= (2.31)

and

”f(|/|,z* <l + Sup {A=1zDIVu@ |} < Cllfllge. (2:32)
S
Notice that by (2.30) and (2.32), Z* C C* for a < 1. In particular, if f € Z*, then f
and f are continuous. On the other hand, if f is Lipschitz, then clearly f € Z*. To
make our contents self-contained, we define the Lipschitz function formally and point
out that a function lives in C“ is not necessarily Lipschitz.
Definition: Lipschitz Function, Class of Lipschitz Function
A function f such that | f(x) — f(y)| < C|x — y| for all x and y where C is
a constant independent of x and y is called a Lipschitz function. In particular,
we denote C%! as the space of all Lipschitz functions.
Definition: Norm on Class of Lipschitz Function
The norm of f € C%! is defined to be
1/ 0+ —fDlls

Ifllcor == |If |l + sup
>0 !

Remark 2.16: Zygmund Class, Lipschitz Class, and Alpha-Holder Class

Provided a < 1, one has
Continuous Differentiability = Lipschitz = Zygmund

= a-Holder = Continuity

That is to say,
Clcc™czxcc*cCfora<l,

where C! is the space of continuously differentiable functions and C is the
class of continuous functions. <

Proof of Theorem 2.11:
The logic is the same as in the proof of Theorem 2.10. First assume (a) holds
and we establish (c) and the right hand side of (2.32). Then we assume (c) and
prove (a) and establish the left hand side of (2.32). Finally we prove (a) < (b)
and establish (2.31).
Step I: (a) = (c) and right hand side of (2.32)
Assume (a) holds. Fix z € D, we may assume that 7 = |z| = Re(z) and

|z]| > 7 Because
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ei@
[—dG =0

(el — 7)2
and f(—0) has Herglotz integral F(Z), we have
92 1 [e"(f0)+f(=1) = 2f(0))
—u(z) = ReF'"(z) = — . dt
ox2 @) @) nJ (e —|z])3
and using (2.25) in the last relation yields
2
—u(z)| = |ReF”"(z)| (assumptionon |z]|)
Ox?2
1 «| 1 > *
L [ el e J Il
7 <o U=1zl) T _z<inzn 2]

<= zD7MIfll s
where the middle relation holds by integration by parts and ¢ comes from the
bound in a-Hdlder continuity.

82
Unfortunately, this trick does not help us with |ImF"(z) | = ‘ 720 u|. Instead
xXoy
2
we apply (2.26) to u := —uon 9B 1-121(z), which yields
X 2
0’ Cllfllz
ul| < ———.
dyox? (1—1z])?
An integration in conjunction with the above two display then gives
0’ , CNfll , Iz
uz)| < [F'0)] + ds < C :
dyox o (1—s5)? 1—]z|

Thus (c) is proved, and the right hand side of (2.32) holds.
Step II: (¢) = (a), and the left hand side of (2.32) holds
Now assume (c) holds. Then by (2.30), f € C* and f and f are both continuous

4
by Theorem 2.10. Fix 8 and f with 0 < t < wand set r := 1 ——. Then

T
FO+1)+O—1)—=2f0)=FfO + )—u(re"*N+£(6 — 1)
—u(re'@"n) -2£(6) (2.33)
+u(re' @0y +u(re'@=")
‘B‘LW)
o’

'['B’t‘)
o

(Figure 2.4: Choice of points in calculation)
Because
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2

. . 0
w(re' 0y + u(re' @0y — 2u(re®y| < |t|* sup ﬁu(a))
lw|=r

the last two terms on the right hand side of (2.33) are O(|¢|) by assumption
(c). Using assumption (c) once again we have

lim(1 — s)—u(se'*) =0
s—1 os

an integration by parts shows that

. ! 02 0
fla) — u(re'®) = J (1- s) u(se’e)ds + (1 - r)—u(re “).

Therefore when (c) holds, the sum of the first two lines of the right hand side
of (2.33) is

t . . .
— (u(re ) + u (re®") — 2ur(re’9)) + O(1)
T

t .
< —|u (rei@+0) u(rel")| u (re @y — y (re®)| + 0(r)
T
212 0>
<2 sup u(w)| + 00 < C't.
T wl=r 1 OF

Thus (a) is proved and the left hand side of (2.32) is established following the
constants in the previous argument.
Step III: (a) = (b) and (2.31)
Since | V,u' | = | V,u| by Cauchy-Riemann equation, it follows that (a) < (b)
and (2.31) follows.

[]

2.4 Boundary Smoothness

Let Q2 be a Jordan domain with boundary I" and let ¢ be a conformal mapping from
D onto 2, so that ¢ extends to a homeomorphism from dD to the Jordan curve
I' = 0Q2. In this section we examine the connection between the smoothness of I" and
the differentiability of ¢ on dD. When I' has some degree of smoothness, we also
study the relation between the differentiability of f € C(I") and the differentiability of
its solution u,to the Dirichlet problem at points of I".

The results do not depend on the choice of the mapping ¢ : D — € because any
other such map has the form ¢ o T, with T' € . (the set of all conformal self maps of
D). We first show that the smoothness of ¢ in a neighborhood of ¢ ~1(¢) depends
only on the smoothness of I in a neighborhood of ¢.

Theorem 2.12: Analytic Continuation of Riemann Maps Across Shared Arcs in Nested Jordan Domains
Let Q, and €, be Jordan domains such that Q, C €, and let y € 92, N 0L,
be an open subarc. Let ¢; be a conformal map of D onto £2;. Then

/s qu ° ¢ has an analytic continuation across ¢; I, and w' # 0on

o7 ().
Proof:
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The analytic function y := ¢, Lo @, from D into D has a continuous and
unimodular (|y(z) | = 1) extension to the arc ¢ I(y). By Schwartz reflection
w has an analytic and one-to-one extension to a neighborhood of ¢ Iy)inC
and hence v’ # 0 on ¢ 1.

[]
Let I" be an arc parameterized as {{(?) : a < t < b}.
Definition: Tangent of Arc
We say I has a tangent arc at {, := {(%,) if
1) — :
lim =75 _ e (2.34)
iy [ @) — &
and
1) — .
WG _ e (2.35)

Iim —— =
iy | E(0) — &l
where 0 < 7 < 2.
Definition: Unit Tangent Vector of Arc
If both (2.34) and (2.35) are valid, then I' has a unit tangent vector e'* at o-
Note that once I" admits a tangent vector it admits a unit tangent vector by
normalizing.
Except for reversals of orientation, the existence of a tangent at {, and its value e”
do not depend on the choice of the parameterization ¢ — {(z).
Definition: Continuous Tangent of Arc
We say that I" has a continuous tangent if I" has a tangent at each { € I" and if
e is continuous on I" (in ).
Theorem 2.13: Criterion for Tangent and Continuous Tangent on Jordan Boundary
The curve I has a tangent at ¢ = @(e'?) if and only if the limit

lim arg(M) (2.36)
Daz—e'? Z— el?
exists and is finite. In that case,
im arg(M) —2(&) -0 -2 mod 2r. (2.37)
Daz—e'? Z— el? 2

The curve I has a continuous tangent if and only if arg ¢'(z) has a continuous
extension to D. Moreover, if I" has a continuous tangent, then ¢ € C%(0D) for
all @ < 1 and I" rectifiable (a rectifiable curve is a curve of finite length).

There exist Jordan domains 2 and conformal maps ¢ : D — € such that dQ2 has a
continuous tangent but ¢ & C'(dD). An example can be built from the connection in
the previous section between conjugate functions and conformal maps.

Example 2.3: Conformal Map with Continuous Tangent But Not Continuously Differentiable

If u(e') is continuous and |u| < > then u(e'?) = arg ¢'(¢'?), where ¢ is a

conformal mapping onto a Jordan domain, but
iu(e”) = —log|g'(e?)|
may not be bounded above or below, but u & C loD). o
Proof of Theorem 2.13:
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Set
v(z) = arg(q)z(z_)—;f)

% is holomorphic and v(z) is the imaginary part of a holomorphic
function, it follows that v(z) is harmonic on . Moreover, v is continuous on
D\ {e}.

Step I: Criterion for Tangent

IfT has a tangent ar { = @(e'?) or if the limit (2.36) exists at ', then v(z) is
bounded on D. Thus, in either case, v is the Poisson integral of v(e?) by an

application of Corollary 1.4.1. Therefore, by Carathéodory’s Theorem 1.8,

v has a continuous extension to ¢‘? if and only if v has a continuous exten-
oD

sion to e'?, and if and only if I" has a tangent at { by the definition (2.34) and
(2.35) for tangent. Furthermore, (2.37) holds when v is continuous at e’ (the
modulo term 27 comes from aperiodic).
Step II: Criterion for Continuous Tangent
We shall prove the sufficiency first, then the necessity, and finally the assertion
in the moreover part.
Step 11.1: Sufficiency
Now suppose [ has a continuous tangent. Then 7 o ¢ is continuous on 9D since
this is the composition between two contihnuous functions. If 4 # 0, then
@(ze™) — ¢(2)

Az): arg( 2@ = 1) )
is continuous on D and harmonic on D (use the same argument as we did for v
in the first step). For |z| < 1, a direct computation yields

lim 4,(c) = arg ¢'(2).
For |z| = 1, there exist k such that 0 < |k| < [&]| such that
<(p(ze’h) - ¢(2)

arg ;

Since

) = arg(¢(ze™ — ¢(z)) (Mean Value Theorem)

= (1 o ¢)(ze™*) (Definition of 7 o ¢)
Consequently, by using the above two displays, one obtains
: T
lim A;(z) = (7 ° @)(z) — arg(z) — —,
h—0 2

with the convergence uniformly on dD by Dini’s theorem (see Ransford), and
hence arg(¢’) is the Poisson integral of the continuous function

(Top)(e®)—0—=

2
by (1.7) in Theorem 1.3.
Step I1.2: Necessity
Now suppose arg ¢’(z) has a continuous extension to D. For r < 1, the curve
T, :={pre?):0<0<2r}

has tangent eir9)re”) satisfying
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ei(roqp)(reig) — ieié’ei arg ¢'(re'?)
and e'™? @ has a continuous extension to D\ {0} by an application of

Carathéodory’s Theorem 1.8. Then for 4 > 0, we have
arg (e @) — p(e")) = lim arg(p(re"®™) — p(re'?))  (Continuity)
r—1

= lim7 o p(re’®*)) (Mean Value Theorem)

r—1

where 0 < k, < h. Therefore,

lim arg (g (e"®™) — (™)) = lim 7 2 p(2),
hl0 z—el?
and a similar argumetn applies for 2 < 0:

lim arg(go(e’(9+h)) — qz)(ela)) = lim 70 ¢(2) + 7.
Thus I" has a continuous tangent by definition.
Step 11.3: Moreover Part of Criterion for Continuous Tangent

If I" has a continuous tangent, then by Theorem 2.9 (b),
NG —
supJ |0/re®) [ d0 = sup | e~ @04 =: B, < oo

r<l1 r<l1

for all A < oo, where B, depends on ¢ and 4. Take 4 := , Where

l-—a
O<a<l.Leta<b<a+n Thenforanyr <1,

b . b o
J |(p’(re”9)|d9 <|b- a|a<[ |q)’(re’9)| d@)l_“ (Holder's Inequality)

<|b—al|”B;~® (Definition of B,)
Therefore ifa = 6, < 0; < --- < 8, = b, one has

n b
Z |g0(rei91) - ¢(reiei—1)| < [ |g0’(rei9)|d0 <|b- alaBlll_“. (2.38)
j=1 a
Sending r — 1 yields the rectifiability of ['and ¢ € C* forall ¢ < 1.
[]

Let k be a non-negative integer and let 0 < a < 1.
Definition: Alpha-Holder Class for Arc
We say that the curve I is of the class C¥* if
(1) T'isrectifiable.
(1)) In the arc parameterization
I'={y(s):0<s <AT):=length(l)},
the function y is k timkes continuously differentiable and
ﬂ e C%fora > 0.
d sk
Now we can state and prove the main result of this section.
Theorem 2.14: Kellogg’s Theorem
Letk > 1 and O < a < 1. Then the following conditions are equivalent:
(a) T'isofclass CH
(b) arge’ € CK1*%(oD).
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() ¢ € CH%D)and g’ # 0onD.
Remark 2.17: ¢ = 0 in Theorem 2.14 Ruins Equivalence
Note that if @ = 0 and £ > 1 then (a) & (c) but (a) & (b) still. ¢
We need an elementary lemma.
Lemma 2.15: Holder Continuity Equivalence for Analytic Functions and Its Inverse

Let k be a positive integer, and let 0 < a < 1. Let f € C!([0,1]) satisfying
f'>0and g = f~'. Then
g€ Ck+a ©f c Ck+a.

Proof:
The case a = 0 and k = 1 is clear since
1
gy =— > 0.
freog(y)

Casel:.a =0and k > 2
If « = 0 and k > 2, the proof is by induction: if f € C¥and g € C*~!, then
f'og € C*!and because f' > 0,

g =——eCckl.
fleg

Hence g € C*.
Casell:a > 0and k =1
Now suppose thata > O and k = 1. If ' € C“ then

1 1
lg'(v) —&g' )| = ‘ ’ - — (Definition of g')
frogly)  flog(y)
|f/ og(y)) —f"e g(y1)|
< (Minimizing Denominator)

min | f’|2

< Clgly) —gy)|* (a-Holder)

<C'ly, =y (a-Holder)
and so g’ € C“.
Case IIl: « > 0 and k > 2.
Finally, assume & > O and k > 2. If f € C*¥** then g € C* and g® can be
written as a sum of products of the functions

g(l), ...’g(k),f@) °g, ...,f(k) °og

by applying chain rule. All these functions are C', except perhaps f* » g, but
f®o g e C*and thus g® € C* The converse holds by swapping the role of
fand g in the above argument.

[]

Proof of Theorem 2.14:

We first prove (b) < (c), then we prove (c) = (a), finally we prove (a) = (b).

Step I: (b) © (¢)

We first prove the sufficiency.

Step 1.1: (b) = (c)

If arg ¢’ € CK17%(0D), 0 < & < 1, then by Corollary 2.10.1, one has
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log|g’'| € Ck1*e,
Taking exponential results in
¢/ c Ck—1+a(ﬁ)
and ¢’ # 0.
Step 1.2: (¢) = (b).
Conversely, if ¢’ € C¥1**([D) and ¢’ # 0, then
eiarg(qo’) — L/ = Ck—1+(x
|’
and arg ¢’ € CK-1+2(gD).
Step II: (¢) = (a)
Assume (c) holds. If

0
5(0) 1= I |9/ |,
Jo
then s’ > 0 and 5'(0) = | ¢'(e’)| € C*1**. Thus, a direct application of
Lemma 2.15 yields
el(s) e Ck_1+a.
By (2.37) in Theorem 2.13, one has

d .
arg d_}; = arg ¢'(e?¥)) 4 g + 60(5). (2.39)

Since arg ¢’ € CK"*% and @' € C*~1*%, we conclude from Corollary 2.10.1
that
dy

y e C42 and T is of the class C¥+2,
s

as desired.

Step III: (a) = (b).

Now assume (a) holds, i.e., assume I" is of class C¥*®. Then by an application
of Theorem 2.13, we obtain arg ¢’ € C; and by (2.39), we have

d(y o
(y °5)(0) cc
ds
Step I11.1: (a) = (b) when k = 1.
dy
Ifk =1, so that— € C? then
‘—swl) -<Lsy| < Cls@) - s (2.40)

so that by (2.38),

| ar ) — dr (6,)

dss( : dsS 2
for any € > 0. Thus, by Corollary 2.10.1,
argp’ € CU=9%and ¢’ € CU1-97,
Thus, by the definition of s, we have
s(0) = |9'e®)] € C'~9%and |5(68)) - 5(6,) | < K |6, — 6.
But then by (2.39) and (2.40), arg ¢’ € C*. Moreover, by the equivalent relat-
ions (a) and (b) in Theorem 2.10, we obtain
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s'"(0) = |@'(e?)] € C*and s € C'*2.
This concludes the case when k£ = 1 according to the definition of's.
Step 111.2: (a) = (b) when k > 2

d
Finally, when k > 2 we use induction. If & e c-1+agndif s(0) € Ck1+a

ds
then by (2.39), arg ¢’ € C*~1%¢ 5o that
5 = |¢/| —c Ck—1+a_
Using Theorem 2.10 once more, it follows that s € C ke ag desired
[]
Let £ be a non-negative integer and let 0 < # < 1. If T is of class C¥** and if
fe c),wesay f e CoH(I) if (foy)(s) € C, when viewed as a function of arc
lengthon T
Corollary 2.14.1: Change of Holder Class Coefficients under Conformal Map on Arc
Suppose I is of class C¥%, where k + a > 1, and suppose that f € C?A(T").
Set
n+o:=mink+a,?+f)where0 <o <landn € Ztu {0}.
Let ¢ be a conformal map of D onto €2, let G be the Herglotz integral of f o ¢,
and let F := G o ¢~!. Then
F € C"(Q).
Proof:
Using Corollary 2.10.1, Theorem 2.14, and Lemma 2.15.
[]
The same result holds for finitely connected Jordan domains whose boundary curv-
es are of class C¥*%, except that harmonic conjugate and Herglotz integrals cannot be
defined in multiply connected domains.
Corollary 2.14.2: Change of Holder Coefficients under Conformal Maps on F.C.J.D.
Let 0Q be a fininte union of pairwise disjoint C¥* Jordan curves, where
k+a > 1,and let f € C(0Q) be a C“*# function of arc length on each compo-
nent of 0€2. Set
n+o:=mink+a,?+f)where0 <o <landn € Ztu {0}.
Then u(z) := u(z) and its first n partial derivatives extend continuously to Q

and
| D"u(z)) — D"u(zy) | < K|z = 2,|°
for all z;,z, € Q, where D" denotes any n-th partial derivative.
Proof:

By Theorem 2.12 it suffices to work in some neighborhood of { € 0Q2. Let J
be the component of 0 such that { € J. Let Q, be that component of C*®\J
such that Q C €, and let u; be the solution to the Dirichlet problem on €,
with boundary value f.
Near J, u; has the required smoothness by Corollary 2.14.1. If ¢, is a confor-
mal map of D onto €, then

v = (u —uy) e ¢ is harmonicon A := {r < |z| < 1}
for some r < 1, v is continuous on A, and v = O on { |z| = 1}. Now according
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to Remark 2.8, the reflection of v extends to be harmonic across dD. Hence
v € C® and

U=u+vey, !
has as much smoothness as u; and ¢, both have.

]

Corollary 2.14.2 answers Question 1 from the end of Section 2.2. The next coroll-
ary answers Question 2.
Corollary 2.14.3: Absolute and Holder Continuity of Harmonic Measure on F.C.J.D.
If 0Q consists of finitely many pairwise disjoint Jordan curves of class C'*¢,

where a > 0, then
0g(z,¢) ds(()
on, 2m
In other words, harmonic measure for z € € is absolutely continuous with

respect to the arc length on 0€2, and the density
do -1 0g((2)

dw(z,0) = - (2.41)

= = P.(z
ds 2z om @
is of class C*(0€2) and satisfies
d
o <= <o, (2.42)
ds

for positive constants ¢; and c,.
Proof:
Let ¢ be a conformal map from Q* onto 2, where dQ2* consists of analytic
Jordan curves. If { = @({*) and z = @(z*), then
080((0) _ 0goCh ) 1
ong ongs |p'(C¥) |

and

, ds({)
|p'(C")] =
ds({*)
by Corollary 2.14.2 and the uniqueness of Green function (by Lindel6f’s
Lemma 1.1). By Remark 2.12, harmonic measure is conformally invariant
and now (2.42) follows from the case when d€2 is analytic, i.e., by the result
Corollary 2.6.1. Finally, using Corollary 2.14.2 once more,
9)
28 e c*09).
an:
Therefore, (2.42) holds because |¢’| > 0 on dQ* by Theorem 2.14.

[

When 0 is of class C!, harmonic measure is absolutely continuous with respect to
the arc length, but the density may not be continuous, bounded, or even bounded
below.

Example 2.4: Harmonic Measure << Arc Length = Bounded Density
There is a simply connected Jordan domain € such that 0Q2 € C 'but such that
no conformal map ¢ : D — Q is of class C! on D. Worse yet, | ¢’| can have
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infinite non-tangential limit at some point on 0D. ¢
The following example illustrates how Green’s theorem can be applied when 0L is
of class C'*¢, without first mapping to a domain with real analytic boundary.
Example 2.5: Green’s Theorem Applied to F.C.J.D. without Real Analytic Boundary
Green’s theorem can be used on a finitely connected domain bounded by a
finite number of pairwise disjoint C'*% curves with functions # and v in
Cl(0Q) N CXQ). ¢

Summary of Chapter 2
In this chapter, we solve the Dirichlet problem on a domain bounded by a finite
number of Jordan curves. Since solving the Dirichlet problem on a domain € is
equivalent to constructing a harmonic measure on d€2, our aim is to generalize the
harmonic measure to a broader class of boundary.

In the first section we introduced the Schwartz alternating method (see Remark
2.2) to prove Solution to Dirichlet Problem on Finitely Connected Jordan
Domain with Bounded Piecewise Continuous Boundary Function. This result
relaxes the boundary condition from continuous to bounded piecewise continuous,
while extending the Dirichlet problem from a simply connected domain to a Jordan
domain bounded by finitely many Jordan curves. Since the Dirichlet problem on € is
solved, the construction of a Harmonic Measure (over Finitely Connected Jordan
Domain) is immediate. In particular, the harmonic measure we constructed is Borel
there and satisfies Harnack’s inequality in conjunction with the uniform boundedness.
The Schwartz alternating method relies on Lindel6f’s maximal principle Lemma 1.1,
hence the piecewise continuity, which is necessary for Lemma 1.1, cannot be
relaxed, as Remark 2.5 demonstrated.

In the second section, we study the Green function and the Poisson integral. We
first introduced the Green Function with Pole (over Bounded Domain) along with
some elementary properties in Remark 2.6. We extended the definition to unbounded
domain Green Function with Pole (over Unbounded Domain), and finally
extended the definition to Green Function with Pole (under Conformal Mapping).
In particular, the Green function in all modes are uniquely determined by (iii), (iv),
and (v) in Remark 2.6, via an application of Lindel6f’s maximal principle Lemma
1.1. Moreover, Remark 2.7 tells us that the Green function is conformal invariant
on finitely connected Jordan domain. We then established the connection between
Green function and conformal mapping via Green Function as Log of Conformal
Mapping, we defined Analytic Arc and Jordan Analytic Curve so that we can
work with Green function under conformal mapping. We showed that Finitely
Connected Jordan Domain Has Partition and Homeomorphism Extension on the
Boundary. The fact that the Green function is symmetric in the space variables is
proved in Theorem 2.4. We then proved Sufficiency for Harmonic Extension to
Analytic Curve over Finitely Connected Jordan Domain, from which the formula
for harmonic measure that generalizes the Poisson integral on D is provided via
Green function in Theorem 2.6. The formal definition for Poisson Kernel (over
Finitely Connected Jordan Domain) is immediate, which generalizes our previous
definition in the unit disc . Next, we proved that the harmonic measure is absolute
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continuous with respect to the arc length on 02 and the density is real analytic there
in Corollary 2.6.1. Finally, the Solution to Dirichlet Problem over Finitely
Connected Jordan Domain with Bounded Borel Boundary Data is proved. This
result relaxes piecewise continuity to Borel, hence results in an alternative definition
for harmonic measure.

The rest of this chapter is to answer two questions that generalize our result in
Corollary 2.6.1. The first is to translate the boundary condition to the boundary
smoothness and the second is to relax the real-anlyticity. The main result is Kellogg’s
Theorem 2.14, which relies on the study of modes of continuity in Section 2.3.

Heuristically, the harmonic minorant (respectively, harmonic majorant) serves as
the harmonic correction for continuity. In the third section, we defined the harmonic
correction for differentiability, namely, Harmonic Conjugate (Conjugate
Function). We proved that Non-Tangential Limit for Harmonic Conjugate Exists
Almost Everywhere and established Connection Between Harmonic Conjugate
and Conformal Map. The harmonic conjugate does not behave well, as Example
2.1 suggest, a bounded continuous boundary function may have unbounded harmonic
conjugate. This forces us to control the unbounded nature for harmonic conjugate,
and one of the attempts i1s Zygmund's Exponential Integrability for Harmonic
Conjugate. We defined the Alpha-Holder Class and Alpha-Holder Continuous
Function, and Alpha-Holder Norm, Herglotz Integral of Alpha-Hdlder
Continuous Class to understand the room between continuously differentiability and
continuity. We proved Criterion for Alpha-Holder Continuous Class with Norm
Bound, defined k times Continuously Differentiable, and proved Criterion for
Holder Extension to Boundary of Unit Disc. We defined Zygmund Class and
Zygmund Norm and Zygmund Function and proved Criterion for Zygmund
Boundary Data with Zygmund Norm Bound. Finally, the previous classes, in
conjunction with Lipschitz Function, Class of Lipschitz Function and Norm on
Class of Lipschitz Function enables us to understand the room for between
continuously differentiability and continuity, illustrated in Remark 2.16.

The main result of the last section, and perhaps this chapter, is the promised
Kellogg’s Theorem 2.14. For us to state and prove it, we first proved Analytic
Continuation of Riemann Maps Across Shared Arcs in Nested Jordan Domains.
We defined modes of tangent: Tangent of Arc, Unit Tangent Vector of Arc, and
Continuous Tangent of Arc. Then we proved Criterion for Tangent and
Continuous Tangent on Jordan Boundary. In particular, Conformal map with
continuous tangent may not be continuously differentiable, as illusrated in Example
2.3. We defined the Alpha-Hoélder Class for Arc and proved Kellogg's Theorem via
Holder Continuity Equivalence for Analytic Functions and Its Inverse. The
Kellogg’s theorem is so important that the smoothness of the boundary function can
be understood via the smoothness of curves on the boundary; and the degree of
smoothness on arc can be found via Corollary 2.14.1. The answer to the first
question is for the change of degree of smoothness on finitely connected Jordan
domain, which is answered in Corollary 2.14.2. Finally, the answer to the second
question, which relaxes the real analyticity hence generalized Corollary 2.6.1, is
demonstrated in Corollary 2.14.3. We should keep in mind that the density between
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harmonic measure and arc length may be unbounded even they are absolutely
continuous with respect to each other, the counter-example is given in Example 2.4.

3. Potential Theory
The goal of this chapter is to solve the Dirichlet problem on an arbitrary domain €.
There are three traditional ways to solve the problem:
(1)  The Wiener method is to approximate €2 from inside sub-domains €2,
of the type studied in Chapter 2 and to show that the harmonic measure
w(z, E,Q,) converges weak™ to a limit measure on d€2. With Wiener’s
method one must prove that the limit measure w(z, E, ) does not
depend on the approximating sequence {£2,},-;.

(i)  The Perron method associates to any bounded function f on d€2 a
harmonic function &;on Q. The function ;s called the upper Perron

envelip of a family of subharmonic functions constrained by f on dQ2.
Perron’s method is elegant and general. With Perron’s method the
difficulty is linearity; one must prove that

P_p==Py
at least for f continuous.

(iii) The Brownian motion approach, originally from Kakutani in 1944,
identifies w(z, E, €2) with the probability that a random moving particle,
starting at z, first hit dQ2 in the set E. This method has considerable
intuitive appeal, but it leaves many theorems hard to reach.

We shall follow Wiener’s method and use the energy integral to prove that the limit
w(z, E, Q) is unique. This leads to the notion of capacity, equilibrium distribution,
and regular point and to the characterization of regular points by Wiener series.

For the Perron method see Ahlfors 1979 or Tsuji 1959. Appendix F includes
Kakutani’s theorem for the discrete version of Brownian motion.

We conclude this chapter with some potential theoretic estimates for harmonic me-
asures.

3.1 Capacity and Green Function
Let E be a compact plane set such that Q := C®\E is a finitely connected Jordan
domain. By Chapter 2 and a conformal mapping, we see that £2 has Green function
2o(z, 00) with pole at o0, and if a & Q, by (2.6), one has
8a(z, ) = log|z —a| + h(z, o)
where /(z, 00) is harmonic on by Remark 2.6 (iv), by Remark 2.6 (i) h(z, 00) is
continuous on d€2, and by Remark 2.6 (iii) one has
h({,o0)=—log|{—al,{ € 0Q.
(Recall that u(z) is harmonic at oo if u(1/z) is harmonic on a neighborhood of 0).
Our goal in this section is to (1) extend the definition for Green function to the fini-
tely connected Jodan doamin, (i1) show that the capacity for approximating sequence
{€,},>1 converges to the capacity for £ and the result is independent of the choice of
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{€,},>1, and (iii) calculate the logarithmic capacity for some elementary sets that are
often encountered.
Definition: Robin’s Constant
The quantity
y == y(E) := h(c0, )
1s called Robin’s constant for E, and we have
8o(z,00) =log|z| +y +o(l)asz = oo. (3.1)
Note that as 7 — oo, the Robin’s constant is the harmonic correction with both arg-
ument being infinity. It may happen that the Robin’s constant is oo, hence we take the
exponential to define the capacity. Here it is understood that e™* = 0.
Defintion: Logarithmic Capacity
Define the logarithmic capacity of E to be
Cap(E) := e 7P,
Thus Cap(E) > 0 in the case at hand. When Cap(E) = 0, E is called polar.
Remark 3.1: Log Capacity Scaling under Univalent Conformal Map
Let Q, and ©, be finitely connected Jordan domains such that co € €/ and
E; := C*\Q; for j = 1,2. Assume there is a conformal map y from €, onto

2, such that for | z| sufficiently large, one has
b
w(z) = az+by+—+ -
Z

with a > 0. Then
80,(z, ) = go (w(2), ),
so that by (3.1),
y(Ey) =y(Ey) +loga
and
Cap(E,) = aCap(E,). (3.2)
o
Proposition 3.1: Logarithmic Capacity of Closed Disc
The capacity of a closed disc is the radius of the disc, i.e., Cap (@r(x)) =r
for B.(x) :=={y :|x —y| <r} forsomer > 0.
Proof:
The desired result follows from
8ce\p(2, ) = log| z|
by Theorem 2.2.
[]

Now let E be any compact plane set and unite € for the component of C*\ E such
that co € €. Fix a sequence {Q,}, . of finitely connected domains such that

©0eEQ CQ CQ,. . CQ,

e=[]JQ,

n>1

such that
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and such that 0Q, consists of C!** Jordan curves for some a > 0. Define
E, :=C\Q,.
Theorem 3.2: Capacity and Robin Constant Independent of Approximating Sequence

The definition for logarithmic capacity and Robin’s constant we have constr-

ucted are independent of the choice of the approximating sequence {€2,},5 .
Proof:

Because Q, C Q,, |, it follows from an ordinary maximum principle for

harmonic functions that

8q,, (2, 00) > gq (z,00) on
and hence that
Y(E, ;) > y(E,) and Cap(E,, ) < Cap(E,).
Now define
Cap(E) := lim Cap(E)). (3.3)

n—oo
Because go(z, w) is an increasing function of €2, an interlacing of the domains

€2, shows that the definition (3.3) does not depend on the choice of the
sequence {€2,},5. Note that if £ := C\Q, then by definition,

Cap(0E) = Cap(E) = Cap(E ) = Cap(0 E ). (3.4)
By definition, the Robin constant
E)y=lo ( ) = lim y(E
riE) = log\ o ngy) = )

1s Robin’s constant for the arbitrary set E.
[]
Now we can talk about some elementary properties for logarithmic capacity and
Robin’s constant. Scaling under univalent conformal mapping has already been
offered in Remark 3.1.
Proposition 3.3: Monotonicity for Capacity and Robin’s Constant
If E C F then
Cap(E) < Cap(F)andy(E) > y(F). (3.5)
Proof:
This is an immediate consequence from (3.3).

If Cap(E) > 0, then
lim y(E,) = y(E) < oo,

n—-oo

and by Harnack’s principle
8o(z, 00) = lim g (z, o)

defines a harmonic function  having expansion
8oz, 00) =log|z| +y(E) + o(1) (3.6)
at infinity. When z = oo, the symmetry (2.9) in Theorem 2.4 shows that
8oz, w) = lim g (z,w) (3.7)

n—>oo

exists for all z, w € Q for z # w, and gq(z, w) satisfies condition (iii), (iv), and (V) in
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Remark 2.6, hence uniquely identified.

Definition: Green Function with Pole (over F.C.J.D.)
The function go(z, w) satisfies (3.7), (ii1), (iv), and (v) in Remark 2.6 is the
Green function for € with pole at w.

Using our definition for capacity in conjunction with the univalent conformal map-

ping, the following result

Proposition 3.4: Logarithmic Capacity for Interval

-«

4

Let a < f be two real numbers. Then Cap([a, P ]) = b

Proof:
Suppose E is compact and connected. Let € be the component of C*\ E such
that o € Q and lety : Q — C®\D be the conformal mapping such that for
| z| sufficiently large, one has

by
w(@)=az+by+—+ -
<

witha > 0. Forr > 1,

Q. :={z:|y@@]|>r}
is bounded by an analytic Jordan curve and
w(z)

8q,(z, 00) = log

Then by (3.7),as r | 1, go(z, 00) = log|w(z)|. Then using Proposition 3.1 in
the first equality and (3.2) in the second, one has

1 = Cap(D) = aCap(E).
Consequently, for [a, ] C R, the normalized conformal map has scaling

a
. It follows that

Cap([a, 1) = aCap(D) = “T_ﬂ

factor a with respect to D being

as desired.

Proposition 3.5: Log Capacity Lower Bound for Subset of Unit Disc
Leb(E
If E C dD then Cap(E) > sin( &) ), where Leb(E) denotes the usual

Lebesgue measure.
Proof:
If E is an arc on 0€2, then after a conformal mapping, Proposition 3.4 gives

Cap(E) = sin( Leb(®) >

Because of (3.3), we may assume that E is a finite union of arcs. Define

1 i0 4
F() :=—J ¢+
4 ), el -z

and let w(z) = w(z, E, D). Then by definition of harmonic conjugate and
(2.23), one has
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F(1/7) = — F(z) and F = g(a) +i@)onD.
Therefore,
-7 T
7 <Re(F) <~
2 2

Leb(E)
on Q := C®\E and F(0) = — F(o0) =

Q into the right half plane and H(co) = H(0). Now

. Hence H(z) := €™ maps

H(z) + HO
G(z)=log|z (z) + H(0)
H(z) — H(0)
is superharmonic on € and
lim G(z) > 0.
ZEQ—0Q

By the maximum principle, G(z) > 0 in Q so that
G(z) > an(z, oo) for all n.

For | z| sufficiently large,
G(z) =log|z| —log sin(

so that by (3.1),
—log sin(

Leb(E) ) .

Leb(E)

) 2 70Q,) ~ r(E)
It follows that

Cap(E) > sin< Leb(£) >,

as desired.

3.2 The Logarithmic Potential
Let u be a finite, compactly supported signed measure.
Definition: Logarithmic Potential
The logarithmic potential of y is the function

U/z):= Jlog

du(o).
T (9

Note that the logarithmic potential can also be defined as Jlog | & —z|du(f), the

only difference is that in our definition the log potential is a superharmonic function,
and the alternative definition makes the log potential become subharmonic.
Remark 3.2: Log Potential Converges Absolutely Lebesgue-Almost Everywhere

By Fubini’s theorem, the integral U, is absolutely convergent for Leb-almost

everywhere z. In particular, since we are working with the plane, the integral
U, is absolutely convergent for area-almost every z. o
Note that the name for the following lemma is not always correct! It depends on the
way we define the log potential, as prescribed.
Lemma 3.6: Log Potential as Superharmonic Function (In Our Setting)
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If u > 0, the log potential U,(z) is lower semicontinuous and superharmonic.

Proof:
The lemma holds because for { fixed, the function
- log ——
IS
is lower semicontinuous and superharmonic. Moreover, since for positive
measure y, the integration preserves subharmonicity and lower semicontinuity,
result follows.

[

The next theorem connects the notions of log potential, Green function, capacity,
and harmonic measure. Suppose Q := C®\E is bounded by a finite family of disjoint
C'*2 Jordan curves, a > 0, write ug for the harmonic measure of oo relative to €2,

dug = dw(oo, - Q) = ;—;dg(é’, o0)onyds = P ({)ds  (3.8)

where the second and the third relation holds by Corollary 2.14.3.

Theorem 3.7: Fundamental Identity for Log Potential
If Q := C*®\E is connected and bounded by finitely many pairwise disjoint
C'*% Jordan curves, then
(a)  The integral U, (z) is absolutely convergent at every z € C.

(Absolutely convergent Log Potential)
(b)  The potential U, is continuous on C.

B (Continuity of Log Potential)
(c.1) Forz € Q,

8(z,00) =y(E) - U, (2). 3.9)
(c.2) Forz € Q,
U, (2) <y(E). (3.10)
(c.3) Forz € C*\Q,
U, (2)=y(E). (3.11)

The identity (3.9) is also known as the fundamental identity for Green function. The
identity reads as the Green function with hole at infinity equals to the Robin’s
constant of the exterior domain subtracts the harmonic measure of infinity relative to
the domain. Moreover, the reason that the identity is fundamental since it reflects the
way we solve the Dirichlet problem: in Wiener and Brownian motion approaches, we
use Robin’s constant as the subtractor; in Perron’s approach, the subtractor is Perron’s
envelop.

Remark 3.3: Harmonic Measure of co Relative to €2 as Equilibrium Measure
Later we shall see that y; is the unique probability measure on E such that U,

1s constant on E. For this reason p is called the equilibrium distribution of E.
In particular, every equilibrium measure is a harmonic measure but the converse is
not true. This concept is helpful in two ways, we make a remark for two
interpretations:
Remark 3.4: Harmonic Measure as Inner Measure
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The equilibrium measure uy has constant log potential on exterior domain by
Remark 3.2. Then the fundamental identity for Green function (3.9) tells us
that: At equilibrium state, the Green function equals to the Robin’s constant

of exterior domain minus a constant term. Moreover, since Robin’s constant

is the magnitude of the log energy (different in a minus sign), this tells us that
at equilibrium state, the Green function equals to the log energy of the exterior
domain. Therefore, the equilibrium measure, as a ‘mass distribution’ to the
harmonic functions approximating d€2 from inside, can be regarded as an inner
measure. Substituting Robin’s constant by Perron’s envelop, the same holds for
Perron’s approach. ¢

The definition for harmonic measure w(z, E, £2) is then clear: Note that the harmo-
nic measure is a transition density, i.e. it is a harmonic in z and a probability measure
in E£. When equilibrium, then the probability measure for E is a constant, hence the
harmonic measure is itself the solution to the Dirichlet problem, which behave like an
inner measure. On the other hand, when the equilibrium state is not obtained, the
harmonic measure still behave like an inner measure, but with conditioning on the
exterior domain. In all scenarios, our interpretation is correct.

The second interpretation is that if we are given a collection of harmonic measure
indexed by time t € R, then {w'(z, E,Q)},cg should converge to an equilibrium
measure when ¢ — oo. Thus, the equilibrium measure can be regarded as the
asymptotic behavior of the harmonic measures. Moreover, consider a collection of
harmonic measures that starts at equilibrium, then not-equilibrium, and finally
converge to equilibrium; then the equilibrium state is recurrence. This interpretation
opens the way to the study of stochastic solution to Dirichlet problems.

Proof of Theorem 3.7:
We can assume 0 & Q (otherwise scaling and translating Q).
Step I: Assertion (a)
Clearly, the integral U,(z) is absolutely convergent at all z & d€Q since

g(z,oo)=10g|z|—[ log|{|dw(z,{)
oQ
by the definition of log potential and (3.1), and

1) == | togl¢ldot.o)
0Q
by the definition of Robin’s constant.

Step II: (c.1) for z & 0Q and (c.2)
For fixed z, € Q,

g(z,zy) = log dw(z,0), (3.12)

|l

< — 2 1e) C — 20
by definition of log potential and Green function. Because the right hand side
of (3.12) satisfies (iii), (iv), and (v) in Remark 2.6, they uniquely determine a

Green function. Now, sending z — oo yields
1
g(60.20) = 1) = | log =) = 1(E) = Uy, o)
— 20
72



where the first relation holds by (3.1), definition for Robin’s constant, and
(3.8). The second relation holds by the definition of log potential.

For z € Q, (c.1) is then a consequence of the symmetry of Green function via
Theorem 2.4, 1.e., g(00,z) = g(z, 00). Then because g(z, c0) > 0 on Q by
Remark 2.6 (i1), (c.1) implies (c.2).

Step III: (c.3) for z & 0Q2 P

Forz%ﬁ,v(é’)=log< Ty

one has
0 =v(o0) (Definition of v)
Z

=ngmwm@@)+ngl dug(§)
|{—z|

=—y(E)+U,(z) (Definition of Robin's constant and log potential)
where the second equality holds by integrating both sides of the first equality
with respect to yy and using the property of log log(a/b) = loga + log(1/b).
Therefore (c.3) holds for z & Q.
Step IV: (b) and (c.1), (c.3) for z € 0Q2.
If z € 092, then

) is harmonic on a neighborhood of Q and

U/(2) £liminf U, (z) < y(E) < o0

Qow—7
where the first inequality holds by the lower semicontinuity (L.s.c.) of U, by

Lemma 3.6, the second inequality holds by the fundamental identity for Green
function in (3.9) in conjunction with the positiveness of Green function by
Remark 2.6 (ii), and the last inequality holds since Cap(E) > 0.

Since the integrand is bounded below, that means the integral U,(z) converges
absolutely. By Cantor’s tour, 0Q consists of C'*% curves with Leb(dQ) = 0
where Leb is the Lebesgue measure. Then by the superharmonicity of U, in

Lemma 3.6 and the continuity of g(z, 00),
dédn

. dédn
U,(z) = lim sup U,z) o+ y— | =7
50 Q\ %B5(2) o B5(2)NQ no

where the first relation holds by taking ¢ := & + i{ and using (c.1), supermean
inequality of superharmonic function U, and continuity of Green function.

The second relation holds by the definition of Robin’s constant and continuity
of Green function. The notation B 5(z) denotes the ball centered at z with radii
6 > 0. Consequently, (c.1) and (c.3) holds at z € 0€2, and it follows that U, is

continuous on C.

[]
Let E be a compact set with Cap(E) > 0 and let E, := C*®\Q,, be as in the first se-

ction. Then by (3.7) and Theorem 3.7, any weak* limit point u; of the sequence
{ug }ps1 satisfies (c.1) and (c.2) on Q. In the fourth section we will use the energy

integral to show that there is a unique weak™ limit y, independent of the sequence E,
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and to establish a version of (c.3) for U, on E. A different proof of the uniqueness of
the weak™ limit {y },>, for a bounded domain €2 is given in Exercise 4.

3.3 The Energy Method
Let v be a signed measure with compact support.
Definition: Finite Energy

D s

we say that v has finite energy.
Definition: Energy Integral
If v has finite energy we define the energy integral /(v) by

Iv) = ﬂlog ﬁdu({)du(z) = [Uy(z)dy(z).

Remark 3.5: Positive Definiteness of Energy Integral and Zero Total Mass
The energy integral has a very important property: It is positive definite on
the space of signed measures .# with positive energy and zero intetal, i.e.,
the total mass v(C) = 0. ¢

Theorem 3.8: Positive Definiteness for Energy Integral and Vanishing Condition
If (3.13) holds and if v(C) = 0, then I(v) > 0. Moreover, if I(v) = 0 then
v =0.

Proof:

log dlv|(€)d|v|(z) < (3.13)

1
Denote L(z) := log ﬁ’ by Green’s theorem
Z

fl@) = ;—;”L(Z — W) Af(w)dudv (3.14)

whether f € C* has compact support, w = u + iv. The proof is divided into
two cases, in the first case we consider v < Leb, i.e., v is a compactly suppo-
rted absolutely continuous signed measure with respect to the Lebesgue meas-
ure. In the second case we prove the signed measure, and use mollification
argument to recover the absolute continuity via a kernel and use the special
case to derive the desired result.
Case I: Special case for absolutely continuous signed measure
First consider the special case of an absolutely continuous signed measure

dv = h(z)dxdy,
where 1 € C* has compact support and satisfies

”h(x)dxdy =0. (3.15)

Note that & serves as the kernel of v, hence the convolution
U,;=L*heC™.
For | z| sufficiently large, one has
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U, = [(L*h))]

[ 1
= [ log— h(w)du dv

(Definition of convolution)
|z —w]

IA

J log — 2L | h(w) [ du dv
|z —w|

C
< ﬁ J[ |h(w)| du dv  (Taylor expansion for large |z|)
Z

/

= ﬁ (since i compactly supported and integrable)
Z
(3.16)

and

/

IVU,(2)] < (3.17)

2
|z
by the same argument. For any f € C* with compact support, one has

ﬂ AU, fdxdy = ﬂ UAfdxdy (Green's theorem and Fubini)

= — ZJZJ'thdxdy

where the last equality holds by (3.14), definition dv := h(z)dxdy, and the
fact that 4 and f both have compact support. Therefore,

AU, = —2rh.
Now, combining (3.16), (3.17), and Green’s theorem using in the last equality,
we have

I(v) = ﬂ U,hdxdy (Definition of energy integral)

-1
= ,
1
T 2r
This shows that I(v) > 0 in this special case when v is an absolutely continu-

ous signed measure. Moreover, if I(v) = 0, then VU, = 0 and
-1
h=—AU,=0,
2r

JUVAUDdxdy (AU, = —2rh)

J |VUV|2dxdy.

hence v = 0, as desired.

Case II: General case via mollification argument

To derive the full Theorem 3.8 from the special case we apply a standard mol-
lification argument. Let v be a signed measure not necessarily with a compact

support. Let K € C°(C) be a compactly supported analytic function such that
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(i)  Kisradical, i.e., K(z) = K(|z]).
(i) K is positive definite, i.e., K > 0.

(i) K has Lebesgue integral 1, i.c., JKa’xdy = 1.

Note that K is a probability density kernel. Set

K.(2) = 8_2K<§>

and let v, be the absolutely continuous measure with density
h(z) =K. *v(z) = [Kg(z —w)dv(w)

(since K, and v are compactly supported, so 1s their convolution). Then for
all continuous function f,

e—0

lim“fdy‘8 = deu, (3.18)

that 1s,

weak*®
vV, —> V.
el0
Furthermore, h, € C* has compact support and satisfies (3.15) and it is then

the kernel for the absolutely continuous measure v,. Thus
I(v,) = ”Kg *K,* L(z = {)dv(2)dv({)
where
K. *K.(z) = JKg(z —w)K.(w)dudv
and consequently
K, * K, *L(w) = J (K, * K,(z))L(w — z)dxdy.

Now because K, is assumed to be radical, K, * K, is also radical. Moreover,
since L(z) is superharmonic by definition, one has
K. *K,*L(z) < L(2) (3.19)
by supermean inequality. Now, the lower semicontinuity (l.s.c.) of L(z) viewed
as a map to (— oo, 00| gives
K. *K,*L(z) > L(z)ase —» 0
by bounded convergence. Since v(C) = 0 by assumption, one has

1 1
Ulog mdv(g)dV(Z) = JJ'IOg |Z _ Cl dI/(C)dI/(Z)

for every a, f > 0. Therefore, without loss of generality, one may assume that
v is supported on {z : |z| < 1/2}. It follows from (3.13), (3.19), and classical
Lebesgue’s dominated convergence theorem (LDCT) that

lirr(% I(v,) =1(v)

and the positive definiteness is passed to I(v) by equality.
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Finally, suppose that /(v) = 0 and write U, := U, . One has
” |VU.|*dxdy = 1(v,) — 0 (3.20)

where the first relation holds by (3.16), (3.17), and Green’s theorem; the
second relation holds since lim I(v,) = I().

e—0

We also have
1
UJz) = O<ﬁ) uniformly in €
Z

because all /1, ¢ < 1, satisfying (3.15) and vanishing outsied a common
compact set. Then by (3.20) and Lemma 3.9 below, one has
m% ”| U(z)|*dxdy = 0.
e
Let f € C* with compact support. Then (3.18) in conjunction with Green’s
theorem yields
[fdv — Jfa’ve — —1[AfU€dxdy =0.
el0 el0 21
This results in the desired result v = 0.
[]
The equation
AU, = —-2nh (3.21)
is the usual Poisson’s equation. Before we prove the promised lemma to conclude the
proof of Theorem 3.8, we use a remark to demonstrate the mollification argument.
Remark 3.6: Mollification Argument
Mollification argument is used to construct an absolutely continuous measure
(with respect to Lebesgue measure, for example) with compact support from a
signed measure that is not necessarily compactly supported.
We start with given a signed measure v.
Step I: Define a Probability Density Kernel
We start with defining the probability density kernel K € C°(C) that is
(i)  compactly supported and analytic.
(i) K isradical,i.e., K(z) = K(|z]).
(i) K is positive definite, i.e., K > 0.

(iv) K has Lebesgue integral 1, i.e., Jdedy = 1.

Step II: Construct a Kernel that is uniformly bounded.
In our proof, we are aiming to prove the absolute continuity with respect to the
Lebesgue measure, so we set
<
K.(2) = 8_2K<—>.
€
In practice, by changing the normalizing terms, we can include other geometric

measures as well.
Step I1I: Construct absolutely continuous measure
Convolute new kernel with given measure to get absolutely continuous
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measures, that 1s, let v, be the absolutely continuous measure with density
h(z) =K, *v(z) = JKg(z —w)dv(w).

Step 1V: Derive weak convergence and compactly support result.

It can be shown that

weak*
UV, ——> U

el0
and by our design in the second step, v is compactly supported in
{z:]z]| < 1/2}.
In particular, the mollification argument tells us that a signed measure is the
weak limit of a sequence of compactly supported absolutely continuous signed
measures. ¢
Lemma 3.9: Bounded Log Potential with Vanishing Gradient Vanishes on Compacts
Assume U, (z) € C*(C) satisfy

C
(1) |U,(2)| < ﬁ for some constant C > 0.
Z

(i) VUl = O.

Then
U U, |*dxdy — 0 (3.22)
K
for every compact set K.
Proof:
Without loss of generality, we may assume that K C [-L, L] X [-R, R] for
L,R € C. Then

L 2
[ |Un(X,y)|2de2J |Un('x’y)_Un(xa_L)| dx + —
[-L,L] -L

(Fundamental Theorem for Calculus)

<[, (L5

oy
(Cauchy-Schwartz inequality)
2

, 2C : .12
<4L||VU, |7, + I (Triangle Inequality in L<)

2C?
dy)zdx + —
L

2C? o
— - (Assumption (i1))

Integrating over [—R, R] when L is large compared to R (vice versa) gives
the desired (3.22).
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Index of Definitions:
DP denotes Dirichlet problem
F.C.J.D. denotes finitely connected Jordan Domain

1.1

Harmonic Measure (for Set of Finite Union in Half Plane)
Dirichlet Problem (over Half Plane)

Harmonic Measure (for Measurable Set on Half Plane)
Poisson Kernel (over Half Plane)

Poisson Integral (over Half Plane)

Harmonic Measure (for Set of Finite Union over Unit Disc)
Poisson Integral (over Unit Disc)

Poisson Kernel (over Unit Disc)

Solution to the Dirichlet Problem over Unit Disc

1.2

Cone (over Unit Disc)

Non-Tangential Limit (over Unit Disc)

Non-Tangential Maximal Function (over Unit Disc)

Solution to the Dirichlet Problem with Leb-a.e. Non-Tangential Limit
Weak Type 1-1

Hardy-Littlewood Maximal Function

1.3

Jordan Curve and Jordan Domain

Solution to DP over Jordan Domain for Bounded Boundary Functions
Harmonic Measure (over Jordan Domain)

1.4

Hyperbolic Distance (over Unit Disc)

Hyperbolic Metric

Koebe Function

Hyperbolic Distance (over Simply Connected Domain)
Quasi-Hyperbolic Distance

Whitney Square

1.5
Pseudohyperbolic Metric (over Unit Disc)
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Pseudohyperbolic Metric (over Simply Connected Domain)

2.1
Finitely Connected Jordan Domain
Piecewise Continuous Function

Harmonic Measure (over Finitely Connected Jordan Domain)
Solution to DP over F.C.J.D. with Bounded Borel Boundary Data

2.2

Green Function with Pole (over Bounded Domain)

Green Function with Pole (over Unbounded Domain)
Green Function with Pole (under Conformal Mapping)
Analytic Arc

Jordan Analytic Curve

Poisson Kernel (over Finitely Connected Jordan Domain)

2.3

Harmonic Conjugate (Conjugate Function)

Alpha-Holder Class and Alpha-Holder Continuous Function
Alpha-Holder Norm

Herglotz Integral of Alpha-Holder Continuous Class

k times Continuously Differentiable

Zygmund Class

Zygmund Norm and Zygmund Function

Lipschitz Function, Class of Lipschitz Function

Norm on Class of Lipschitz Function

2.4

Tangent of Arc

Unit Tangent Vector of Arc
Continuous Tangent of Arc
Alpha-Holder Class for Arc

3.1

Robin's Constant

Logarithmic Capacity

Green Function with Pole (over F.C.J.D.)

3.2
Logarithmic Potential

33

Finite Energy
Energy Integral
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Index of Results:

Lemma 1.1:
Theorem 1.2:
Theorem 1.3:
Theorem 1.4:
Lemma 1.5:
Lemma 1.6:
Lemma 1.7:
Corollary 1.4.1:
Theorem 1.8:
Theorem 1.9:
Lemma 1.10:
Theorem 1.11:
Corollary 1.11.1:
Theorem 1.12:
Theorem 1.13:

Theorem 2.1:

Theorem 2.2:
Lemma 2.3:

Theorem 2.4:
Lemma 2.5:

Theorem 2.6:
Corollary 2.6.1:

Theorem 2.7:
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