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1. Jordan Domains 
    To begin with, we construct harmonic measure and solve the Dirichlet problem in 
the upper half plane and the unit disc. We then prove the Fatou’s theorem on non-
tangential limits. Then we construct harmonic measure on domains bounded by 
Jordan curves, via the Riemann mapping theorem and the Carathéodory theorem on 
boundary correspondence. We review two topics from classical complex analysis, the 
hyperbolic metric and the elementary distortion theory for univalent functions. We 
conclude this chapter with the theorem of Hayman and Wu on length of level sets. Its 
proof is an elementary application of harmonic measure and the hyperbolic metric. 

1.1 The Half Plane and the Disc 
   Denote  for the upper half plane and  for the real line. Sup-
pose that  are real numbers. Then the function 

 

is harmonic on , and 

 

Viewed geometrically,  where  is any conformal mapping from 
 to the strip  which maps  onto  and  

onto . 
    Let  be a finite union of open intervals and write 

, with . 

Set 

 

and define the harmonic measure of  at  to be 
Definition: Harmonic Measure (for Set of Finite Union in Half Plane) 
	 The harmonic measure of  at  is defined to be 

	 	 	 	 	   .	 	 	 	 (1.1) 

Remark 1.1: Some Elementary Properties for Harmonic Measure on Half Plane 
	 (i)	  .	 	 (Positive) 
	 (ii)	  as .	 	 (Boundary Limit on ) 
	 (iii)	  as .	 	 (Boundary Limit off )	  
   The function  is the unique harmonic function on  satisfies the above 
properties. The uniqueness of  is a consequence of the following lemma, 
known as the Lindelöf’s maximum principle.  
Lemma 1.1: Lindelöf’s Maximum Principle 
	 Suppose that the function  is harmonic and bounded above on a region  
	 such that . Let  be a finite subset of  and suppose that 

ℍ := {z : Im(z) > 0} ℝ
a < b

θ := θ(z) := arg( z − b
z − a ) = Im log( z − b

z − a )
ℍ

θ = {π, on (a, b)
0, on ℝ∖(a, b)

θ(z) = Re(φ(z)) φ(z)
ℍ {0 < Re(z) < π} (a, b) {Re(z) = π} ℝ∖(a, b)

{Re(z) = 0}
E ⊂ ℝ

E :=
n

⋃
j=1

(aj, bj) bj−1 < aj < bj

θj := θj(z) := arg(
z − bj

z − aj
)

E z ∈ ℍ

E ⊂ ℝ z ∈ ℍ

ω(z, E, ℍ) :=
n

∑
j=1

θj

π

0 < ω(z, E, ℍ) < 1 ∀z ∈ ℍ
ω(z, E, ℍ) → 1 z → E E
ω(z, E, ℍ) → 0 z → ℝ∖E E ⋄

ω(z, E, ℍ) ℍ
ω(z, E, ℍ)

u(z) Ω
Ω ≠ ℂ F ∂Ω
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	 	 	 	      .	 	 	 (1.2) 

	 Then  on . 
Proof: 

	 Fix . Then the map  transforms  into a bounded region, and thus 

	 we may assume that  is bounded. If (1.2) holds , then the lemma is 
	 just the ordinary maximum principle. 
	 Denote , let , and set 

. 

	 Then  is harmonic on  and 
 . 

	 Therefore,  . Finally, since  is arbitrary, sending  gives 

, 

	 as desired. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Definition: Dirichlet Problem (over Half Plane) 
	 Given a domain  and a function , the Dirichlet problem for  on  
	 is to find a function  such that 
	 (i)	  on . 
	 (ii)	 . 
    The following result treats the Dirichlet problem on the upper half plane . 
Theorem 1.2: Existence and Uniqueness for Solution to Dirichlet Problem on  
	 Suppose . Then there exists a unique function 

 
	 such that  is harmonic on  and . 
Proof: 
	 Step I: Existence 
	 We can assume that  is real-valued and . For , take disjoint  
	 open intervals 

,  
	 and real constants , so that the simple function 

, 

	 where  denotes the indicator function, satisfies 
	 	 	 	 	    .	 	 	 	 (1.3) 
	 Set 

lim sup
z→ζ

u(z) ≤ 0 ∀ζ ∈ ∂Ω∖F

u(z) ≤ 0 Ω

z0 ∉ Ω
1

z − z0
Ω

Ω ∀ζ ∈ ∂Ω

F := {ζ1, ⋯, ζN} ε > 0

uε(z) := u(z) − ε
N

∑
j=1

log( diam(Ω)
|z − ζj | )

uε Ω
lim sup

z→ζ
uε(z) ≤ 0 ∀ζ ∈ ∂Ω

uε ≤ 0 ∀ε ε ε ↓ 0

u(z) ≤ lim
ε↓0

ε
N

∑
j=1

log( diam(Ω)
|z − ζj | ) = 0

□

Ω f ∈ C(∂Ω) f Ω
u ∈ C(Ω)

Δu = 0 Ω
u |∂Ω = f

ℍ
ℍ

f ∈ C(ℝ ∪ {∞})
u := uf ∈ C(ℍ ∪ {∞})

u ℍ u |∂ℍ = f

f f (∞) = 0 ε > 0

Ij := (tj, tj+1) j = 1,⋯, n
cj

fε(t) :=
n

∑
j=1

cj1Ij

1Ij
∥fε − f ∥L∞(ℝ) < ε
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. 

	 If , then by Remark 1.1 (ii) and (iii), 

. 

	 Therefore by (1.3) and Lindelöf’s maximum principle Lemma 1.1, the limit 
 

	 exists. Moreover, the limit is harmonic on  (by Harnack’s theorem) and satis- 
	 fies 

. 

	 We claim that for all , 
	 	 	 	         .		 	 	 (1.4) 

	 Claim: (1.4) holds  

	 It is clear that (1.4) holds if . To verify (1.4) at the endpoints 

	 , notice that 

 

	 where the blue terms equal to  by Remark 1.1 (ii), the red term equals to  by  
	 Remark 1.1 (iii), and the inequality holds by Lindelöf’s maximum principle 
	 Lemma 1.1. Moreover,  

 

	 by Remark 1.1 (ii). Now, let , by (1.4) using in the first inequality, 

 

	 The same holds for . Therefore,  extends to be continuous on  and 
	 , proving the existence. 
	 Step II: Uniqueness 
	 The uniqueness of  follows from the maximum principle Lemma 1.1. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    For , elementary calculus gives 
Remark 1.2: Harmonic Measure for Interval over  

uε(z) :=
n

∑
j=1

cjω(z, Ij, ℍ)

t ∈ ℝ∖
n

⋃
j=1

∂Ij

lim
ℍ∋z→t

uε(z) = fε(t)

u(z) := lim
ε→0

uε(z)

ℍ

sup
z∈ℍ

|u(z) − uε(z) | ≤ 2ε

t ∈ ℝ
lim sup

z→t
|uε(z) − f (t) | ≤ ε

∀t ∈ ℝ ∪ {∞}

t ∉
n

⋃
j=1

∂Ij

tj+1 ∈ ∂Ij ∩ ∂Ij+1

  sup
z∈ℍ

cjω(z, Ij, ℍ)+cj+1ω(z, Ij+1, ℍ)−(
cj + cj+1

2 )ω(z, Ij ∩ Ij+1, ℍ)

≤
cj − cj+1

2
1 0

lim
z→tj+1

(
cj + cj+1

2 )ω(z, Ij ∪ Ij+1, ℍ) =
cj + cj+1

2
t ∈ ℝ

lim sup
z→t

|u(z) − f (t) | ≤ sup
z∈ℍ

|u(z) − uε(z) | + lim sup
z→t

|uε(z) − f (t) |

≤ 3ε
t = ∞ u ℍ

u |∂ℍ = f

u
□

a < b
ℍ
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Definition: Harmonic Measure (for Measurable Set on Half Plane) 
	 If  is measurable, we define the harmonic measure of  at  to be 

	 	 	            .	 	 	 (1.5) 

    Note that when  is a finite union of open intervals then this definition (1.5) agrees 
with the one in (1.1). 
Definition: Poisson Kernel over Half Plane 
	 For , the density 

 

	 is said to be the Poisson kernel for . 
Definition: Poisson Integral over Half Plane 
	 If , the proof of Theorem 1.2 shows that 

, 

	 and for this reason  is also called the Poisson integral of . 
Remark 1.3: Harmonic Measure as Transition Density and Harmonic Function 
	 Note that the harmonic function  is 
	 (i)	 a harmonic function in its first variable . 
	 (ii)	 a Borel probability measure in its second variable .	  
Remark 1.4: Harmonic Measure Satisfies Harnack’s Inequality 
	 If , then 

, 

	 where  depends on  and  but not on . This inequality, known as the  
	 Harnack’s inequality, is easily proved by comparing the kernels in (1.5).	  
    Now let  be the unit disc  and let  be a finite union of open arcs on 

. Then we define 
Definition: Harmonic Measure (for Set of Finite Union over Unit Disc) 
	 The harmonic measure of  at  in  is defined to be 
	 	 	 	 ,	 	 	 (1.6) 
	 where  is the conformal mapping from  onto . 
Remark 1.5: Definition in (1.6) Does Not Depend on the Conformal Mapping 
	 This harmonic function satisfies properties analogous to Remark 1.1 (i), (ii), 
	 and (iii). Thus by the Lindelöf’s maximum principle Lemma 1.1, the definition 
	 (1.6) does not depend on the choice of .	  

ω(x + iy, (a, b), ℍ) =
1
π (tan−1( x − a

y ) − tan−1( x − b
y ))

= ∫
b

a

1
π

y
(t − x)2 + y2

dt
⋄

E ⊂ ℝ E z ∈ ℍ

ω(z, E, ℍ) := ∫E

1
π

y
(t − x)2 + y2

dt

E

z = x + iy ∈ ℍ

Pz(t) :=
1
π

y
(x − t)2+y2

ℍ

f ∈ C(ℝ ∪ {∞})
uf (z) = ∫ℝ

f (t)Pz(t)dt

uf f

ω(z, E, Ω)
z

E ⋄

z1, z2 ∈ ℍ

0 < C−1 ≤
ω(z1, E, ℍ)
ω(z2, E, ℍ)

≤ C < ∞

C z1 z2 E
⋄

𝔻 {z : |z | < 1} E
∂𝔻

E z 𝔻
ω(z, E, 𝔻) := ω(φ(z), φ(E ), ℍ)

φ 𝔻 ℍ

φ ⋄
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    It follows by the change of variables  that 

. 

An equivalent way to find this function is by a construction similar to (1.1). Note that 
this is nothing but the Poisson integral formula, as the following theorem suggsts. 
Theorem 1.3: Poisson Integral Formula over Unit Disc 
	 Let  be an integrable function on  and set 

	 	 	      .	 	 (1.7) 

	 Then  is harmonic on . If  is continuous at , then 
	 	 	 	          .	 	 	 	 (1.8) 

   The identity (1.7) tells us that the Poisson integral is harmonic over the unit disc  
and the identity (1.8) gives us the boundary behavior. In fact, (1.8) also holds if the 
integrable function  is changed on a measure zero subset of . 
Definition: Poisson Integral (over Unit Disc) 
	 The function  is called the Poisson integral of . 
Definition: Poisson Kernel (over Unit Disc) 
	 The kernel 

 

	 is the Poisson kernel for the disc. 
Definition: Solution to the Dirichlet Problem over Unit Disc 
	 If  then 

 

	 is the solution of the Dirichlet problem for  on . 

    In the special case when  is continuous, Theorem 1.3 follows from Theorem 
1.2 and a change of variables. Conversely, Theorem 1.3 shows that Theorem 1.2 can 

be extended to , again by change of variables. 

Proof of Theorem 1.3: 
	 Step I: Harmonicity of . 
	 We may suppose that  is real-valued. We have 

 

	 by the definition of Poisson kernel over the unit disc. Thus, we see that  is 
	 the real part of the analytic function 

 

φ(z) :=
i(1 + z)
(1 − z)

ω(z, E, 𝔻) = ∫E

1 − |z |2

|eiθ − z |2
dθ
2π

f (eiθ) ∂𝔻

u(z) := uf (z) = ∫
2π

0
f (eiθ)

1 − |z |2

|eiθ − z |2
dθ
2π

u(z) D f eiθ0 ∈ ∂𝔻
lim

𝔻∋z→eiθ0
u(z) = f (eiθ0)

𝔻

f ∂𝔻∖{eiθ0}

u := uf f

Pz(θ ) :=
1

2π
1 − |z |2

|eiθ − z |2

f ∈ C(∂𝔻)

u(z) := {uf (z), z ∈ 𝔻
f (z), z ∈ ∂𝔻

f 𝔻

f (eiθ)

f ∈ L1( dt
1 + t2 )

u
f

Re( eiθ + z
eiθ − z ) = 2πPz(θ )

u

∫
2π

0
f (eiθ)

eiθ + z
eiθ − z

dθ
2π
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	 and therefore that  is a harmonic function. One can also see that  is harmonic 
	 by differentiating the integral  (1.7). 
	 Step II: Boundary condition when  is continuous at . 
	 Suppose that  is continuous at  and let . Then by the continuity 

 
	 on any interval  containing . Setting 

, 

	 (note that the second identity in the right hand side comes from integration  
	 over ). Now we have 

 

	 However, by the assumption of , one has 
. 

	 Therefore, since  is continuous at , taking the difference in conjunctio with  
	 the continuity of harmonic function yields 

. 

	 Finally, since  is arbitrary, sending  yields the desired identity (1.8). 
	 	 	 	 	 	 	 	 	 	 	 	 	  

1.2 Fatou’s Theorem and Maximal Functions 
    When  the limit (1.8) can fail to exist for every . However, there 
is a substitute result known as Fatou’s theorem, in which the approach  is 
restricted  to cones. This result allow us to extend Theorem 1.3 to . 
Definition: Cone (over Unit Disc) 
	 For  and , we define the cone 

. 
Remark 1.6: Some Elementary Properties of Cones 
	 (i)	 The cone  is asymptotic to a sector with vertex  and angle  
	 	  that is symmetric about the radius .		 (Asymptotic) 
	 (ii)	 The cones  expanded as  increases.	 (Monotone in Angle)	  
Definition: Non-Tangential Limit (over Unit Disc) 
	 A function  on  has non-tangential limit  at  if 
	 	 	 	            		 	 	 	 (1.9) 

	 for every . 
Example 1.1: Example of Non-Tangential Limit over Unit Cone 

	 Consider the function . This function  is continuous 

u u

f eiθ0

f eiθ0 ε > 0
| f (eiθ) − f (eiθ0) | < ε

I = (θ1, θ2) θ0

uε(z) := ∫[0,2π]∖I

1 − |z |2

|eiθ − z |2 f (eiθ)
dθ
2π

+ f (eiθ0)ω(z, I, 𝔻)

I

|u(z) − uε(z) | = ∫I

1 − |z |2

|eiθ − z |2 (f (eiθ) − f (eiθ0)) dθ
2π

(assumption and uε)

≤ εω(z, I, 𝔻) (Continuity and definition of ω)
≤ ε (Conformal invaraince)

uε
lim

z→eiθ0
uε(z) = f (eiθ0)

f eiθ0

lim sup
z→eiθ0

|u(z) − f (eiθ0) | < ε

ε > 0 ε ↓ 0
□

f ∈ L1(∂𝔻) ζ ∈ ∂𝔻
z → ζ

f ∈ L1(∂𝔻)

ζ ∈ ∂𝔻 α > 1
Γα(ζ ) := {z : |z − ζ | < α(1 − |z | )}

Γα(ζ ) ζ
2 sec−1(α) [0,ζ ]

Γα(ζ ) α ⋄

u(z) 𝔻 A ζ ∈ ∂𝔻
lim

Γα(ζ)∋z→ζ
u(z) = A

α > 1

u(z) := exp{ z + 1
z − 1 } u(z)
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	 on , and  on , but  has non-tangential limit  
	 at .	  

(Figure 1.1: Non-Tangential Limit via Cone .) 
Definition: Non-Tangential Maximal Function (over Unit Disc) 
	 With fixed , the non-tangential maximal function of  at  is defined as 

. 

	 If  has a finite non-tangential limit at , then 
 . 

   We will denote the Lebesgue measure for a set  as  since we do not wish to 
abuse the use of . We will explicitly emphasize the dimension  by  when-
ever necessary. Moreover, the almost everywhere property will be abbreviated as a.e. 
property. 
Theorem 1.4: Fatou’s Theorem 
	 Let  and let  be the Poisson integral of . Then 
	        for -a.e.  for every . 	 (1.10) 

	 Moreover, for each , one has 

	 	            .	 (1.11) 

   Fatou’s theorem tells us that any positive harmonic function on the unit disc posses-
ses a non-tangential limit at -a.e. boundary points. 
Definition: Solution to the Dirichlet Problem with Leb-a.e. Non-Tangential Limit 
	 When  is the Poisson integral of  the function  is also 
	 called the solution to the Dirichlet problem for , even though  converges to 
	  on  only non-tangentially and only -a.e.. 
Definition: Weak Type 1-1 
	 An operator  is said to be of the weak type 1-1 over some finite sums of  
	 Dirac deltas if there exists a constant  such that for each , the 
	 inequality 

 

∂𝔻∖{1} |u(ζ ) | = 1 ∂𝔻∖{1} u(z) 0
ζ = 1 ⋄

Γ2(ζ )

α > 1 u ζ
u*α (ζ ) := sup

z∈Γα(ζ)
|u(z) |

u ζ
u*α (ζ ) < ∞ ∀α > 1

E Leb(E )
λ d Lebd(E )

f (eiθ) ∈ L1(∂𝔻) u(z) f
lim

Γα(ζ)∋z→ζ
u(z) = f (ζ ) Leb ζ = eiθ ∈ ∂𝔻 α > 1

α > 1

Leb({ζ ∈ ∂𝔻 : u*α (ζ ) > λ}) ≤
3 + 6α

λ
∥f ∥L1(∂𝔻)

Leb

u(z) f ∈ L1(∂𝔻) u = uf
f u

f ∂𝔻 Leb

K
C > 0 λ > 0

Leb({ |K f | > λ}) ≤ C
n
λ
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	 holds for every , where  are distinct points. 

   It is then obvious that (1.11) tells us that the operator  is weak-
type 1-1. It follows from (1.10) that 

 -a.e., 
but (1.11) is a sharper, quantitative result. Therefore, in the proof we shall use (1.11) 
to derive (1.10). 
Remark 1.7: Proof for Fatou’s Theorem via Approximate Identity Argument	 
	 The proof of Fatou’s theorem is a standard approximate identity argument from 
	 real analysis that derive a.e. convergence for all  from 
	 (a)	 An estimate such as (1.11) for the maximal function. 
	 (b)	 The a.e. convergence (1.10) for all functions in a dense subset of  
	 	 such as .	  
   The approximate identity argument will be performed later, we here use another 
approach. 
Proof of Theorem 1.4: 
	 As promised, we first assume (1.11) and show that (1.11) implies (1.10). 
	 Step I: (1.11) implies (1.10). 
	 Fix  temporarily. We may assume that  is real-valued. Set 

 

	 as the difference in (1.10). Our goal is to show this value is arbitrarily small. 
	 First, by the triangle inequality we have 

. 
	 Now, using Chebyshev’s inequality  gives 1

. 

(Figure 1.2: Plot for  for ) 

f =
n

∑
i=1

δxi
x1, ⋯, xn

L1(∂𝔻) ∋ f → u*α

u*α (ζ ) < ∞ Leb

f ∈ L1(∂𝔻)

L1(∂𝔻)
C(∂𝔻) ⋄

α f
Wf (ζ ) := lim sup

Γα∋z→ζ
|uf (z) − f (ζ ) |

Wf (ζ ) ≤ u*α (ζ ) + | f (ζ ) |

{ζ : | f (ζ ) | > λ} ≤
∥f ∥L1(∂𝔻)

λ

P*z (θ ) z = 0.600ei0.800( |z | = 0.600)

 Theorem: (Chebyshev’s Inequality in ) If  then , we have 
1

.

L p f ∈ L p(μ) ∀λ > 0

μ({x ∈ ℝd : | f (x) | > λ}) ≤
∫ | f (x) |p d x

λp
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	 Therefore, 

	 	 		 (1.12) 

	 where the first inequality holds by the sub-additivity for Lebesgue measure 
	 and the second inequality holds by assumption (1.11) and the above display. 
	 Fix  and let  be such that 

. 
	 Now by (1.8) in Theorem 1.3, , and hence 

. 
	 Applying (1.12) to  yields 

. 

	 Since  is arbitrary, sending  yields (1.10) for any fixed  -a.e..  
	 Finally, by Remark 1.6 (ii), the cones increases in the angle , it follows that 
	 (1.10) holds , except for  in a set of Lebesgue measure zero, proving 
	 (1.10) as we unfixed . 
    To prove (1.11), we will dominate the non-tangential maximal function with a sec-
ond, simpler maximal function. To this end we need a definition and a lemma. 
Definition: Hardy-Littlewood Maximal Function 
	 Let  and denote 

 

	 as the maximal average of  over subarcs  that contains . The  
	 function  is called the Hardy-Littlewood function of . 
Remark 1.8: Hardy-Littlewood Max Is Simpler than Non-Tangential Max 
	 The function  is simpler thatn  because it features characteristic functions 
	 of intervals instead of Poisson kernel.	  
Lemma 1.5: Hardy-Littlewood Max as Upper Bound for Non-Tangential Max 
	 Let  be the Poisson integral of  and let . Then 
	 	 	 	         .	 	 	 	 (1.13) 
Proof: 
	 Assume . Fix  so that  has . Define 

 

	 Observe that the function  satisfies the following properties: 
	 	 (i)	  is an even function of . 

Leb({ζ : Wf (ζ ) > λ})
≤ Leb({ζ : u*α (ζ ) > λ /2}) + Leb({ζ : | f (ζ ) | > λ /2})
≤

8 + 12α
λ

∥f ∥L1(∂𝔻)

ε > 0 g ∈ C(∂𝔻)
∥f − g∥L1(∂𝔻) ≤ ε2

Wg(ζ ) = 0
Wf (ζ ) = Wf−g(ζ )

f − g

Leb({ζ : Wf (ζ ) > ε}) ≤
(8 + 12α)ε2

ε
= (8 + 12α)ε

ε > 0 ε ↓ 0 α Leb
α

∀α > 1 ζ
α

f ∈ L1(∂𝔻)

M f (ζ ) := sup
ζ∈I

1
Leb(I ) ∫I

| f |dθ

| f | I ⊂ ∂𝔻 ζ
M f f

M f u*α
⋄

u(z) f ∈ L1(∂𝔻) α > 1
u*α (ζ ) ≤ (1 + 2α)M f (ζ )

ζ = 1 z θ0 := arg(z) |θ0 | ≤ π
P*z (θ ):= sup {Pz(φ : |θ | ≤ |φ | ≤ π}

=
1

2π
1 + |z |
1 − |z |

, |θ | ≤ |θ0 |

max (Pz(θ ), Pz(−θ )), |θ0 | < |θ | ≤ π
P*z

P*z (θ ) θ ∈ [−π, π]
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	 	 (ii)	  is decreasing on . 
	 	 (iii)	 . 
	 The even function  is the smallest decreasing majorant of  on . With- 
	 out loss of generality, we may assume that , so that 

 

	 by property (iii). The properties (i) and (ii) imply that 

	 	 	          	 	 	 (1.14) 

	 because  is the increasing limit of a sequence of functions of the form 

 

	 with  and .  

	 Now we claim that when , 
	 	 	 	          .	 	 	 	 (1.15) 
	 Since then (1.13) follows from property (iii), (1.14), and (1.15). 
	 Claim: (1.15) holds . 
	 We shall consider two cases. 
	 Case I: . 

	 If so, then for , 

 

	 Case II:  and . 

	 If so, then  and 

, 

	 where the first inequality holds by triangle inequality and the second holds  
	 since . 
	 Hence, in either cases, we all have 

P*z (θ ) [0,π]
P*z (θ ) ≥ Pz(θ )

P*z Pz [0,π]
f (eiθ) ≥ 0

∫ f (eiθ)Pz(θ )dθ ≤ ∫ f (eiθ)P*z (θ )dθ

∫ f (eiθ)P*z (θ )dθ ≤ ∥P*z ∥L1(∂𝔻)M f (1)

P*z

∑
j≥1

cj( 1
2θj

1(−θj,θj)(θ ))
cj ≥ 0 ∑

j≥1

cj ≤ ∥P*z ∥L1(∂𝔻)

z ∈ Γα(1)
∥P*z ∥L1(∂𝔻) ≤ (1 + 2α)

∀z ∈ Γα(1)

−
π
2

≤ θ0 = arg(z) ≤
π
2

β = arg( z − 1
z )

|θ0 |
1 − |z |

≤ α
|θ0 |

|1 − z |
(Triangle inequality)

≤
πα
2

|sin θ0 |
|1 − z |

(Since |θ0 | ≤ π /2)

=
πα
2

|sin β |
1

(definition of β )

≤
πα
2

(since  |sin β | ≤ 1)
π
2

≤ |θ0 | ≤ π z ∈ Γα(1)

|1 − z | ≥ 1
|θ0 |

1 − |z |
≤ α

|θ0 |
|1 − z |

≤ πα

|1 − z | ≥ 1
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	 where the first relation holds by the definition of  and the second relation 
	 holds by bounds in Case I and Case II. This proves the claim, thus (1.15) holds 
	 for each , and the desired (1.13) follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    By Lemma 1.5, the inequality (1.11) will follow from the simpler inequality 

	 	 	       ,	 	 (1.16) 

which says that the operator  is also weak type 1-1. 
    To prove (1.16), we use a covering lemma. 
Lemma 1.6: Measure Bound for Open Intervals via Disjointed Subintervals 
	 Let  be a positive Borel measure on  and let  be a finite sequence of 
	 open intervals in . Then  contains a pairwise disjoint subsequence  
	 such that 

	 	 	 	         .	 	 	 	 (1.17) 

Proof: 
	 Because the family  is finite, we may assume that no  is contained in the 
	 union of the others. Denoting 

, 
	 we may also assume that 

. 
	 Then , because otherwise  and , because otherwise 
	 . If , then 

 and . 
	 Consequently, the family of even-numbered intervals  is pairwise disjoint. It 
	 left us to thow that the bound (1.17) holds.  
	 Claim: (1.17) Holds 
	 The family of odd-numbered intervals  is almost pairwise disjoint; only the  
	 first and the last intervals can intersect (since we have run a whole perior). We 
	 shall consider two cases, naturally, the even  and the odd . 
	 Case I:  even. 
	 Now, if 

 

	 we take the even numbered intervals to be the subcolletion . 
	 Case II:  odd 
	 Otherwise, we have 

∥P*z ∥L1(∂𝔻) = 2∫
π

|θ0|
Pz(θ )dθ +

2 |θ0 |
2π

1 + |z |
1 − |z |

≤ (1 + 2α)
P*z

z ∈ Γα(1)
□

Leb({ζ ∈ ∂𝔻 : M f (ζ ) > λ}) ≤
3∥f ∥L1(∂𝔻)

λ
L1(∂𝔻) ∋ f → M f

μ ∂𝔻 {Ij}
∂𝔻 {Ij} {Jk}

∑
k

μ(Jk) ≥
1
3

μ(⋃
j

Ij)
{Ij} Ij

Ij := {eiθ : θ ∈ (aj, bj)}
0 ≤ a1 < a2 < ⋯ < an < 2π

bj+1 > bj Ij+1 ⊂ Ij bj−1 < aj+1
Ij ⊂ Ij−1 ∪ Ij+1 n > 1

bn < b1 + 2π bn−1 < a1 + 2π
Ij

Ij

j j
j

∑
j even

μ(Ij) ≤
1
3

μ(⋃
j

Ij)
{Jk}

j
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. 

	 In this case, if 

, 

	 we take for  the family of odd-numbered intervals, omitting the first inter- 
	 val . Otherwise, if 

, 

	 we take . Then in each case (1.17) hods for the subsequence . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Lemma 1.7: Hardy-Littlewood Maximum Function Is Weak Type 1-1 
	 The operator  is weak type . That is, if  then 

	 	 	     .	 	 (1.18) 

Proof: 
	 Let  be a compact subset of , where  is defined to be 

. 
	 For each , there is an open interval  such that  and 

. 

	 So that 

. 

	 Since  is compact, we can cover  by finitely many such intervals, and we  
	 may assume, without loss of generality, that they are labeled via , and  
	 by Lemma 1.6, there is a subcollection  that is pairwise disjoint and (1.17) 
	 holds. Therefore, using sub-additivity in the first inequality and (1.17) in the  
	 second, one has 

 

	 Finally, since  is arbitrary, sending  yields (1.18). 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Now we can finish our proof for (1.11) and thus conclude the proof of Fatou’s the-
orem Theorem 1.4. 

∑
j odd

μ(Ij) ≥
2
3

μ(⋃
j

Ij)

μ(I1) ≤
1
2 ∑

j odd
μ(⋃

j

Ij)
{Jk}

I1

μ(I1) >
1
2 ∑

j odd
μ(⋃

j

Ij)
{Jk} = {I1} {Jk}

□

f → M f 1 − 1 f ∈ L1(∂𝔻)

Leb({ζ ∈ ∂𝔻 : M f (ζ ) > λ}) ≤
3∥f ∥L1(∂𝔻)

λ

K Eλ Eλ
Eλ := {ζ ∈ ∂𝔻 : M f (ζ ) > λ}

ζ ∈ Eλ I ζ ∈ I
1

Leb(I ) ∫I
| f |dθ > λ

Leb(I ) <
1
λ ∫I

| f |dθ

K K
{Ij}n

j=1
{Jk}

Leb(K ) ≤ Leb(
n

⋃
j=1

Ij) ≤ 3∑
k

Leb(Jk)

≤
3
λ ∑

k
∫Jk

| f |dθ (by above display)

≤
3
λ

∥f ∥L1(∂𝔻) (Since ∪k Jk ⊂ ∂𝔻) .

K Leb(K ) ↑ Leb(Eλ)
□
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Proof of Theorem 1.4: Continued 
	 By (1.13) and (1.18), the inequality (1.11) follows with constant 

, 
	 proving Fatou’s theorem. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Now, by Fatou’s theorem Theorem 1.4, we can extend the result in (1.8) from  be-
ing continuous to . Consequently, the continuous boundary condition for 
the Dirichlet problem is generalized to boundedness. For the sakeness of simplicity, 
we shall use DP to denote the Dirichlet problem whenever necessary. 
Corollary 1.4.1: Solution to DP over Unit Disc for Bounded Boundary Condition 
	 If  is a bounded harmonic function on , then for every  and for  
	 -a.e. , 

 

	 exists, where  is the Poisson integral of , and 
. 

Proof: 
	 We shall prove this result via Banach-Alaoglu theorem . For the application  2

	 available, we shall recover  in the unit ball. 
	 Let  be such that  for  sufficiently large. Let 

. 
	 By Banach-Alaoglu Theorem, the sequence  has a weak* limit in the 
	 dual space of , namely, , such that 

 

	 Since  is the Poisson integral of , and Poisson kernels are in ,  must 
	 be the Poisson integral of . This gives 

. 
	 The desired result follows from (1.10) in Fatou’s Theorem 1.4. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Remark 1.9: Harmonic Measure as Indicator Along Non-Tangential Limit over  
	 In particular, this corollary implies that for any measurable set , there 
	 exists a unique bounded harmonic function  on  such that  has non- 
	 tangential limit  -a.e.. It is the function 
	 	 	 	 	   .	 	 	 	 	  

1.3 Carathéodory’s Theorem 

3 + 6α

□
f

f ∈ L1(∂𝔻)

u 𝔻 α > 1
Leb ζ = eiθ ∈ ∂𝔻

f (ζ ) = lim
Γα(ζ)∋z→ζ

u(z)

u(z) f
∥f ∥L∞(∂𝔻) = sup

z∈𝔻
|u(z) |

f
{rn}n≥1 ⊂ ℝ rn → 1 n

fn(eiθ) := u(rneiθ)
{ fn}n≥1

L1(∂𝔻) f ∈ L∞(∂𝔻)
∥f ∥L∞(∂𝔻) ≤ lim sup

n→∞
∥fn∥L∞(∂𝔻) (L∞ norm is l.s.c.)

≤ sup
z∈𝔻

|u(z) | (Lindelöf's Maximum Principle)

u(rnz) fn L1 u
f
|u(z) | ≤ ∥f ∥L∞(∂𝔻)

□
𝔻

E ⊂ ∂𝔻
u(z) 𝔻 u(z)

1E Leb
u(z) = ω(z, E, 𝔻) ⋄

 Theorem: (Banach-Alaoglu Theorem) Let  be a separable Banach space. Then the closed unit 2

ball  of  is weak  sequentially compact.
X

ℬ1(0) := {x ∈ X* : ∥x∥ ≤ 1} X* *
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   Let  be a simply connected domain in the extended complex plane , where 
. 

Definition: Jordan Curve and Jordan Domain 
	 A simply connected domain  is said to be a Jordan domain if  
	 is a Jordan curve (continuous simply connected curve) in . 
Theorem 1.8: Carathéodory’s Theorem 
	 Let  be a conformal mapping from the unit disc  onto a Jordan domain .  
	 Then  has a continuous extension to , namely , and the extension is a one- 
	 to-one map from  onto . 
   Note that, since  maps  onto , the continuous extension, denoted by , must 
map  onto , and because  is a one-to-one on ,  parameterizes 
the Jordan curve . Indeed, the Carathéodory’s Theroem 1.8 tells us that the 
bijectivity is preserved under the extension of  such that . 
    Before we prove Carathéodory’s Theroem 1.8, we use it to solve the Dirichlet pro-
blem on a Jordan domain . Recall that the Fatou’s Theorem 1.4 enables us to 
extend the boundary function from  to , now we are able, thanks to the 
result of Carathéodory’s Theroem 1.8, to extend the domain from  to , and to 
extend the range from  to . This justifies the following definition. 
Definition: Solution to DP over Jordan Domain for Bounded Boundary Function 
	 Let  be a Borel function on  such that  is integrable on . If  
	 , then 

	 	 	    	 	 (1.19) 

	 is harmonic on , and by Theroem 1.8 in conjunction with Theorem 1.3, 
	 	 	 	 	  	 	 	 	 (1.20) 

	 whenever  is a point of continuity of . In particular, if  is 
	 continuous then (1.20) holds for every  and  solves the 
	 Dirichlet problem for  on . 
   If  is a bounded Borel function on , then  is Borel and the integral (1.19) is 
well-defined. Thus we derive the harmonic measure for this extension. 
Definition: Harmonic Measure (over Jordan Domain) 
	 For any Borel set  we use (1.19) with  to define the harmonic  
	 measure of  relative to  by 

	 	   .	 (1.21) 

	 Note that  has the following properties. 
	 (i)	  is a Borel measure on . 
	 (ii)	 (1.19) can be rewritten as 

	 	 	 	         .	 	 	 	 (1.22) 

Ω ℂ∞

ℂ∞ = ℂ ∪ {∞}

Ω ⊂ ℂ∞ Γ = ∂Ω
ℂ∞

φ 𝔻 Ω
φ 𝔻 φ̃

𝔻 Ω
φ 𝔻 Ω φ̃

∂𝔻 Γ := ∂Ω φ̃ ∂𝔻 φ(eiθ)
Γ

φ̃ : 𝔻 → Ω φ̃ |𝔻 = φ

Ω
C(𝔻) L1(𝔻)

𝔻 𝔻
Ω Ω

f Γ f ∘ φ ∂𝔻
w = φ−1(z)

u(z) = uf (z) = ∫
2π

0
f ∘ φ(eiθ)

1 − |w |2

|eiθ − w |2
dθ
2π

Ω
lim

Ω∋z→ζ
u(z) = f (ζ )

φ−1(ζ ) ∈ ∂𝔻 f ∘ φ f
ζ ∈ Γ u(z) = uf (z)

f Ω
f Γ f ∘ φ

E ⊂ Γ f := 1E
E Ω

ω(z, E, Ω) := ω(w, φ−1(E ), 𝔻) = ∫φ−1(E)

1 − |w |2

|eiθ − w |2
dθ
2π

ω(z, E, Ω)
E ↦ ω(z, E ) ∂Ω

u(z) = ∫∂Ω
f (ζ )dω(z, ζ )
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    Note that, we have been implicitly stating that the harmonic measure is nothing but 
a measure transition kerenel. We shall mention this fact later, as one shall see the 
advantage of pointing this out explicitly. 
    Equations (1.21) and (1.22) do not depend on the choice of conformal mapping , 
as we have mentioned this fact in Remark 1.5. This is because, in the case of Jordan 
domain, that every conformal self map  of , 

. 

When  is a bounded Borel function on , (1.22) and Fatou’s Theorem 1.4 give 
. 

Moreover, Corollary 1.4.1 shows that every bounded harmonic function on  can be 
expressed in the form (1.22), this is a direct result of the Riesz’s representation 
theorem in the  space. 
    The principal goal of this book is to find geometric properties of the harmonic me-
asure  more explicit than the definition (1.21). But (1.21) already points out 
the key issue: 
Remark 1.10: Equivalent Question for Harmonic Measure over Jordan Domain 
	 For a Jordan domain questions about harmonic measure are equivalent to ques- 
	 tions about the boundary behavior of conformal mappings.	  
Proof of Theroem 1.8: 
	 Without loss of generality, we may assume that  is bounded, otherwise we  
	 can apply Riemann mapping theorem. Fix , we first show that  has a 
	 continuous extension at . 
	 Step I:  has a continuous extension at . 
	 Let , denote the open ball centered at  with radius  as 

, 
	 and set 

. 
	 Then, since the conformal mappings preserve arcs,  is a Jordan arc with 

(Figure 1.3: Proof of Continuity in the first step) 
	 length 

φ

T 𝔻
ω(T(w), T(φ−1(E )), 𝔻) = ω(w, φ−1(E ), 𝔻)

f ∂Ω
sup
z∈Ω

|u(z) | = ∥f ∥L∞(ω)

Ω

L p

ω(z, E )

⋄

Ω
ζ ∈ ∂𝔻 φ

ζ
φ ζ

0 < δ < 1 ζ δ
B(ζ, δ ) := {z ∈ Ω : |z − ζ | < δ}

γδ := 𝔻 ∩ ∂B(ζ, δ )
φ(γδ)
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. 

	 (To see this, let , , 

	 thus we have  for . Now, let , we have 

	 . By chain rule, ). 

	 Now, one has 

 

	 Therefore, for , dividing  on both sides and integrating gives 

	       	 (1.23) 

	 Thus, there is a sequence  such that  by the fininteness. When 
	 , the curve  has endpoints , and both of these endp- 
	 oints must lie on . Indeed, if , then some point near  has two 
	 distinct pre-images in  because  maps  onto , and that is impossible as 
	  is one-to-one. 
	 Furthermore, by the completeness of  (closed and bounded thus by Heine- 
	 Borel theorem it is compact, and every compact subspace of a complete  
	 normed linear space is complete), 
	 	 	 	         .	 	 	 	 (1.24) 
	 Let  be that closed subarc of  having endpoints  and  and having small 
	 diameter. Then (1.24) implies that 

, 
	 because the Jordan curve  is homeomorphic to the circle. By the Jordan  
	 curve theorem (which states that  is disconnected and consists of two  

	  
	 components, where  is a Jordan cuver), the curve 

 

L(δ ) := ∫γδ

|φ′￼(z) |ds

z(t) := x(t) + iy(t) ds = |dz | = ( d x
dt )2 + (dy

dt )2dt

L(γδ) = ∫γδ

|dz | t ∈ (a, b) Γ(t) = Γ(z(t))

L(φ(γδ)) = ∫
b

a

d Γ
dt

dt
d Γ
dt

=
d
dt

φ(z(t)) = φ′￼(z(t))z′￼(t)

L2(δ ) ≤ (∫γδ

12ds)(∫γδ

|φ′￼(z) |2 ds) (Cauchy-Schwartz inequality)

= L(δ )(∫γδ

|φ′￼(z) |2 ds)
≤ πδ∫γδ

|φ′￼(z) |2 ds (L(δ ) is at most the circumference)

ρ < 1 δ

∫
ρ

0

L2(δ )
δ

dδ ≤ π∫ ∫𝔻∩B(ρ,ζ)
|φ′￼(z) |2 d xdy (Cauchy-Schwartz)

= π ⋅ Area(φ(𝔻 ∩ B(ζ, ρ)))
< ∞ .

δn ↓ 0 L(δn) → 0
L(δn) < ∞ φ(γδn

) αn, βn ∈ Ω
Γ = ∂Ω αn ∈ Ω αn

𝔻 φ 𝔻 Ω
φ

Ω

|αn − βn | ≤ L(δn) → 0
σn Γ αn βn

diam(σn) → 0
Γ

ℂ∖Γ

Γ
σn ∪ φ(γδn

)
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	 devides the plane into two regions, and one of these regions, namely , is  
	 bounded (again by Jordan curve theorem). Then , because  
	 is arcwise connected. Since 

, 
	 we conclude that 
	 	 	 	 	      .	 	 	 	 	 (1.25) 
	 Set 

. 
	 We claim that 
	 Claim: For  sufficiently large, . 
	 Suppose not, then by connectedness,  and 

. 

	 Indeed, since  has diameter at most , and since  is centered at a point on 
	 , it has  inside  and  outside , thus by the definition of ,  has 
	 diameter at least the diameter of . Then the result follows from the  
	 open mapping theorem. Finally, since this display holds, it would contradict  
	 our previous conslusion (1.25), thus for  sufficiently large,  is necessari- 
	 ly , proving the claim. 
	 Therefore,  

 
	 and  consists of a single point, because . That 	  

	 means  has a continuous extension to at . Finally, as  is chosen arbitr- 
	 ary, we conclude that  has a continuous extension to . 
	 Step II:  is bijective, that is, it is one-to-one and onto. 
	 Let  denote the extension . Since ,  maps  onto 
	 . To show that  is one-to-one, suppose 

 but . 
	 The argument used to show that  also shows that , and so 
	 we can assume that  for . The Jordan curve 

 
	 bounds a domain , and then  is one of the two components of 

. 

	 But since , one has 
 

	 and  is constant on the arc . It follows that  is constant, either by  
	 Schwarz reflection principle (which states that an analytic function defined on  
	 some open set in the upper half of the complex plane can be extended across  
	 the real line) or by Jensen’s formula (mean value equality), and this  
	 contradiction shows that 

Un
Un ⊂ Ω ℂ∞∖Ω

diam(∂Un) = diam(σn ∪ φ(γδn
)) → 0

diam(Un) → 0

Dn := 𝔻 ∩ {z : |z − ζ | < δn}

n φ(Dn) = Un
φ(𝔻∖Dn) = Un

diam(Un) ≥ diam(φ(B(0,1/2))) > 0
Dn 1 Dn

∂𝔻 1/2 𝔻 1/2 𝔻 Un Un
B(0,1/2)

n φ(Dn)
Un

diam(φ(Dn)) → 0

⋂
n

φ(Dn) φ(Dn+1) ⊂ φ(Dn)

φ ζ ∈ ∂𝔻 ζ
φ 𝔻

φ
φ̃ φ̃ : 𝔻 → Ω φ̃ (𝔻) = Ω φ̃ 𝔻

Ω φ̃
φ̃ (ζ1) = φ̃ (ζ2) ζ1 ≠ ζ2

αn ∈ Γ φ̃ (∂𝔻) = Γ
ζj ∈ ∂𝔻 j = 1,2

{ φ̃ (rζ1) : 0 ≤ r ≤ 1} ∪ { φ̃ (rζ2) : 0 ≤ r ≤ 1}
W ⊂ Ω φ̃ −1(W )

𝔻∖({rζ1 : 0 ≤ r ≤ 1} ∪ {rζ2 : 0 ≤ r ≤ 1})
φ̃ (∂𝔻) ⊂ Γ

φ̃ (∂𝔻 ∩ ∂ φ̃ −1(W )) ⊂ ∂W ∩ ∂Ω = { φ̃ (ζ1)}
φ̃ ∂𝔻 φ̃
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. 
	 This proves the bijectivity of , thus concluding the proof. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   One can also prove that  is one-to-one by repeating for  in the proof that  is 
continuous. The Cauchy-Schwarz trick used to prove (1.23) is known as a length-area 
argument. The length-area method is the cornerstone of the theory of extremal length. 

1.4 Distortion and the Hyperbolic Metric 
    Throughout, let  be the unit disc. 
Definition: Hyperbolic Distance (over Unit Disc) 
	 The hyperbolic distance from  to  is 

	 	 	          ,	 	 (1.26) 

	 where the infimum is taken over all arcs in  connecting  and . 
Remark 1.11: Hyperbolic Distance (over Unit Disc) Is Conformally Invariant 
	 Let  denote the set of conformal self maps of : 

,  and . 

	 When , we have 

, 

	 and thus the hyperbolic distance is conformally invariant, namely, 
	 	 	          , .	 	 	 (1.27) 
	 This conformal invariance is the main reason we are interested in the hyperbo- 
	 lic distance.	  
Definition: Hyperbolic Metric 

	 The hyperbolic metric is the infinitesimal form  of the hyperbolic 

	 distance. 
Remark 1.12: Hyperbolic Shortest Arc and Hyperbolic Length 
	 Taking 

 

	 gives 

. 

	 Therefore, the hyperbolically shortest arc from  to  is the radius  
	 , and its hyperbolic length is 

	 	 	             .		  

    In general, 

φ̃ (ζ1) ≠ φ̃ (ζ2)
φ̃

□
φ̃ φ̃ −1 φ

𝔻

z1 ∈ 𝔻 z2 ∈ 𝔻

ρ(z1, z2) = ρ𝔻(z1, z2) := inf ∫
z2

z1

|dz |

1 − |z |2

𝔻 z1 z2

ℳ 𝔻

T(z) := λ
z − a

1 − az
a ∈ 𝔻 |λ | = 1

zt ∈ ℳ
|T′￼(z) |

1 − |T(z) |2 =
1

1 − |z |2

ρ(T(z1), T(z2)) = ρ(z1, z2) T ∈ ℳ

⋄

|dz |

1 − |z |2

T(z) :=
z − z1

1 − z1z

ρ(z1, z2) = ρ(0,T(z2)) = ∫
T(z2)

0

|dz |

1 − |z |2

0 T(z2)
[0,T(z2)]

ρ(0,T(z2)) =
1
2

log( 1 + |T(z2) |
1 − |T(z2) | ) ⋄
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	 	 	 	  ,	 	 	 (1.28) 

and the hyperbolically shortest curve, or the geodesic, from  to  is a segment of 
diameter of  or an arc of a circle in  orthogonal to . 
    By (1.28) we have 

. 

Denote 

. 

Then the hyperbolic ball  is the Euclidean disc 
, 

and a conclusion shows that  has Euclidean radius 

	 	 	 	          	 	 	 	 (1.29) 

and Euclidean distance to  

	 	 	         .	 	 	 (1.30) 

Therefore, if  is fixed, the Euclidean distance  and the Euclidean 
diameter of  are both comparable to . 
   However, if  the Euclidean center of  is not . The following figure shows 
two hyperbolic balls with the same hyperbolic radius and two geodesics with the 
same hyperbolic length. 

(Figure 1.4: Geodesics and Hyperbolic Balls) 
Note that this figure confirms that the hyperbolic balls need not have their center 
being centered. 

ρ(z1, z2) =
1
2

log(
1 + |

z2 − z1

1 − z1z2
|

1 − |
z2 − z1

1 − z1z2
| )

z1 z2
𝔻 𝔻 ∂𝔻

z2 − z1

1 − z1z2
=

e2ρ(z1,z2) − 1
e2ρ(z1,z2) + 1

= tanh ρ(z1, z2)

t := t(d ) = tanh(d ) =
e2d − 1
e2d + 1

B = {z : ρ(z, a) < d}

{z :
z − a

1 − az
< t}

B

r(a, d ) =
t(1 − |a | )2

1 − t2 |a |2

∂𝔻

dist(B, ∂𝔻) = ( 1 − t
1 + |a | t )(1 − |a | )

d dist(B, ∂𝔻)
B dist(a, ∂𝔻)

a ≠ 0 B a
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   Now, assume that  is a univalent function in , that is, assume  is analytic and 
one-to-one on . After dilating, translating, and rotating the domain ,  is 
normalized by  and , so that 
	 	 	 	            .	 	 	 	 (1.31) 
Important examples for univalent functions are the Koebe functions. 
Definition: Koebe Function 
	 The Koebe function is defined by 
	 	 	 	   , .	 	 (1.32) 

	 Note that 

 

	 maps  to the complement of the radial slit . 
Theorem 1.9: Koebe One-Quarter Theorem 
	 Assume  is a univalent function on . If  has the form (1.31) then 
	 	 	 	 	 	 	 	 	 	 	 (1.33) 
	 and	  

	 	 	 	             .	 	 	 	 (1.34) 

	 Equality in (1.33) and (1.34) hold if and only if  is a Koebe function. 
   Note that this result tells us that the disc  under a univalent map always has radius 
at least  and this bound is sharp. 
Proof of Theorem 1.9: 
	 We first prove that (1.33) implies (1.34), then we prove (1.33), and finally we 
	 deal with the equalities in both. 
	 Step I: (1.33)  (1.34). 
	 Suppose , we apply the noramlization argument. Let 

, 

	 note that  is a Möbius transformation. Moreover, one can check that 
 and . 

	 Therefore,  has the form (1.31), namely, 

, 

	 so that by our assumption (1.33), 

	 	 	 	 	     .	 	 	 	 	 (1.35) 

	 Now, (1.35) in conjunction with (1.33) yields 

, 

	 as desired. 
	 Step II: (1.33) holds 
	 To prove (1.33), we define the odd function 

ψ (z) 𝔻 ψ
𝔻 ψ (𝔻) ψ
ψ (0) = 0 ψ′￼(0) = 1

ψ (z) = z + a2z2 + ⋯

ψ (z) := ψλ(z) =
z

(1 − λz)2
|λ | = 1

ψλ(z) =
∞

∑
n=1

nλn−1zn

𝔻 [−λ /4,∞]

ψ (z) 𝔻 ψ (z)
|a2 | ≤ 2

dist(0,∂ψ (𝔻)) ≥
1
4

ψ
𝔻

1/4

⇒
w ∉ ψ (𝔻)

g(z) :=
wψ (z)

w − ψ (z)
g

g(0) = 0 g′￼(0) = 1
g

g(z) = z + (a2 +
1
w )z2 + ⋯

a2 +
1
w

≤ 2

|w | ≥
1
4
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. 

	 By considering , , and , which are all 

	 univalent functions, thus their composition  
 

	 is again univalent, and the -valued function 

	 	 	   	 	 (1.36) 

	 is also univalent in . To complete the proof, we use the following lemma, 
	 which is called the Area lemma, for whose proof shall be established after we 
	 conclude the proof for Theorem 1.9. 
Lemma 1.10: Area Theorem 
	 If the univalent function  satisfies (1.36), then 

	 	 	 	 	     .		 	 	 	 (1.37) 

Proof of Theorem 1.9: Continued 
	 To establish (1.33) we apply (1.37) to . Since  and  
	 , we have , proving (1.33). 
	 Step III: Equality in (1.33) and (1.34) holds   a is Koebe function 
	 One can verify that equality in either (1.33) or (1.34) implies that  is a Koebe 
	 function. The converse holds by using (1.32). 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Proof of Lemma 1.10: 
	 The lemma is called the “Area Theorem” because of its proof. 
	 For , the Jordan curve 

 
	 encloses an area , and by Green’s theorem 

. 

	 Therefore by (1.36) and Fourier series expansion, 

 

	 and 

, 

	 which yields (1.37). 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Theorem 1.11: Koebe’s Estimate for Conformal Image 
	 Let  be a conformal mapping from the unit disc  onto a simply connected 

f (z) := z
ψ (z2)

z2
= z +

a2

2
z3 + ⋯

h1 : u = z2 h2 : ζ = ψ (u) h3 : f (z) = z
ζ
u

f (z) := h3 ∘ h2 ∘ h1(z)
ℂ∞

F(z) :=
1

f (z)
=

1
z

−
a2

2
z + ⋯ =

1
z

+
∞

∑
n=1

bnzn

𝔻

F(z)
∞

∑
n=1

n |bn |2 ≤ 1

F := 1/f b1 = − a2 /2
|b1 | ≤ 1 |a2 | ≤ 2

⇔ ψ
ψ

□

r < 1
Γr := {F(reiθ) : 0 ≤ θ ≤ 2π}

A(r)

A(r) =
−i
2 ∫Γr

wd w =
−i
2 ∫

2π

0
F(reiθ)

∂F
∂θ

(reiθ)dθ

A(r) = π( 1
r2

−
∞

∑
n=1

n |bn |2 r2n)

1 −
∞

∑
n=1

n |bn |2 = lim
r→1

A(r)
π

≥ 0

□

φ(z) 𝔻
23



	 domain . Then for all , 

	 	     .	 (1.38) 

Proof: 
	 We shall prove the left hand side and the right hand side in (1.38) respectively. 
	 Step I: LHS in (1.38) 
	 Fix . Then the univalent function 

 

	 satisfies  and . Hence if , then by (1.34), 

 

	 and this gives the LHS in (1.38). 
	 Step II: RHS in (1.38). 
	 To prove the right hand side in (1.38), fix , take 

 

	 and apply the Schwarz lemma  at  to the function 3

. 

	 This yields the desired result. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    We will often use the invariant form of (1.38). 
Corollary 1.11.1: Koebe’s Estimate for Invariant Simply Connected Domain 
	 Let  be a conformal mapping from a simply connected domain  onto a 
	 simply connected domain , and let . Then 

	 	 	          .	 	 (1.39) 

Proof: 
	 Applying (1.38) to 

 
	 gives the left hand side of (1.39). As for the right hand side in (1.39), applying 
	 the same argument to . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Now we can extend our definition for hyperbolic distance over  to a simply conn-
ected domain . 

Ω z ∈ 𝔻
1
4

|φ′￼(z) | (1 − |z |2 ) ≤ dist(φ(z), ∂Ω) ≤ |φ′￼(z) | (1 − z2)

z0 ∈ 𝔻

ψ (z) =
φ( z + z0

1 + z0z ) − φ(z0)

φ′￼(z0)(1 − |z0 |2 )
ψ (0) = 0 ψ′￼(0) = 1 w ∉ φ(𝔻)

w − φ(z0)
φ′￼(z0)(1 − |z0 |2 )

≥
1
4

z ∈ 𝔻
f (w) := φ−1(φ(z) + dist(φ(z), ∂Ω)w)

w = 0

g(w) :=
f (w) − z

1 − z f (w)

□

ψ Ω1
Ω2 ψ (z0) := w0

|ψ′￼(z0) |
4

≤
dist(w0, ∂Ω2)
dist(z0, ∂Ω1)

≤ 4 |ψ′￼(z0) |

φ(z) := ψ(z0 + dist(z0, ∂Ω1)z)
ψ−1

□
𝔻

Ω ⊂ ℂ

 Theorem: (Schwarz’s Lemma) Let  be holomorphic with . Then
3

	 (i)	 For all , .

	 (ii)	 .

	 (iii)	 If either  for some non-zero , or , then  is a rotation

	 	 about .

f : 𝔻 → 𝔻 f (0) = 0
z ∈ 𝔻 | f (z) | ≤ |z |

| f ′￼(0) | ≤ 1
f (z) = z z ∈ 𝔻 | f ′￼(0) | = 1 f

0
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Definition: Hyperbolic Distance (over Simply Connected Domain) 
	 In a simply connected domain , the hyperbolic distance is defined by 
	 moving back to  via a conformal map . We write 

 
	 where , , . 
    Again, by Remark 1.11,  does NOT depend on the choice of the confor-
mal map . 
Definition: Quasi-Hyperbolic Distance 
	 The quasi-hyperbolic distance from  to  is defined by 

, 

	 in which the infimum is taken over all arcs in  joining  and . 
Remark 1.13: Hyperbolic Distance Bound over Simply Connected Domain 
	 Since (1.38) can be rewritten as 

, 

	 where , we have 
	 	 	        .	 	 (1.40) 
	 Consequently, the geometric statement following (1.29) and (1.30) about 
	 hyperbolic distances near  remains approximately true in every simply 
	 connected domain with non-trivial boundary.	  
Definition: Whitney Square 
	 Let  be any proper open subset of . Then there exist closed squares  
	 having pairwise disjoint interiors and sides parallel to the axes, such that 
	 (i)	  has side length  for each . 
	 (ii)	 . 

	 (iii)	 . 
	 The squares  are called Whitney squares. 
    Here is one way to construct Whitney squares in the case , the const-
ruction for the case  is also possible, but here we leave it as an exercise. 
Let 

 
and partition the plane into squares having sides parallel to the axes and side length 

. We call these -squares. The construction is done by induction. 
    We start with the base case. Include in the family  any -square  sa-
tisfying (iii), and divide each of the remaining -squares into four squares of side 
length . 
    Next, the induction step, include  any of these new -squares contained 
in  satisfying (iii), and continue. 
Remark 1.14: Whitney Squares As Substitute for Hyperbolic Balls 

Ω ⊂ ℂ
𝔻 φ : 𝔻 → Ω

ρΩ(w1, w2) = ρ𝔻(z1, z2)
Ω ∋ wj := φ(zj) zj ∈ 𝔻 j = 1,2

ρΩ(w1, w2)
φ

w1 ∈ Ω w2 ∈ Ω

QΩ(w1, w2) := inf ∫
w2

w1

|dw |
dist(w, ∂Ω)

Ω w1 w2

|dz |

1 − |z |2 ≤
|dw |

dist(w, ∂Ω)
≤

4 |dz |

1 − |z |2

w := φ(z)
ρΩ(w1, w2) ≤ QΩ(w1, w2) ≤ 4ρΩ(w1, w2)

∂𝔻
⋄

Ω ℂ {Sj}j≥1

Sj ℓ(Sj) = 2−nj j ≥ 1
Ω = ⋃

j≥1

Sj

diam(Sj) ≤ dist(Sj, ∂Ω) < 4diam(Sj)
{Sj}j≥1

diam(Ω) < ∞
diam(Ω) = ∞

2−N+1 ≤ diam(Ω) < 2−N+2

2−N 2−N

{Sj}j≥1 2−N S ⊂ Ω
2−N

2−N−1

{Sj}j≥1 2−N−1

Ω
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	 Whitney squares can be viewed as replacement of hyperbolic balls since there  
	 are universal constants  such that each  contains a hyperbolic ball of 
	 radius  and is contained in a hyperbolic ball of radius .	  
Remark 1.15: Whitney Squares Are ALMOST Conformal Invariant 
	 Assume that  is simply connected, let  be a conformal mapping,  
	 let  be the Whitney squares for  and let  be the Whitney squa- 
	 res for . Then by (1.40) there is a constant , NOT depending on the choice 
	 of  such that for each , 
	 (a)	  is contained in at most  Whitney squares . 
	 (b)	  is contained in at most  Whitney squares . 
	 In particular, for each , there is an  such that every hyperbolic ball 
	  in  is covered by  Whitney squares.	  
Theorem 1.12: Growth, Distortion, and Angular Distortion for Univalent Maps 
	 Let  be a univalent function satisfying  and . Then 

	 (i)	 .	 	 (Growth Theorem) 

	 (ii)	 .	 	 (Distortion Theorem) 

	 (iii)	 .	 (Angular Distortion) 

    Note that, shapes in  are distorted under a univalent map according to . For ins-
tance, fast changes in the size of  cause by nearby curves of the same length 
to be mapped to curves of very different length, or fast changes in  make 
straight line segments to be mapped to curves with sharp bends. 
Proof of Theorem 1.12: 
	 The critical inequality is (ii) and we shall prove (ii) first, then use (ii) to prove 
	 (i) and (iii) respectively. 
	 Step I: Distortion theorem 
	 Fix  and take 

	 	 	 	      .		 	 	 (1.41) 

	 Then  is univalent on , , and . Now, 

 

	 Substituting  into the above display yields 

. 

	 Applying the general formula of Radial derivative identity 

r1 < r2 Sj
r1 r2 ⋄

Ω φ : 𝔻 → Ω
{Sj}j≥1 Ω {Tk}k≥1

𝔻 M
φ k ≥ 1

φ(Tk) M Sj
φ−1(Sk) M Tj

d > 0 M(d )
{z ∈ Ω : ρΩ(z, a) < d} Ω M(d ) ⋄

ψ (z) ψ (0) = 0 ψ′￼(0) = 1
|z |

(1 + |z | )2
≤ |ψ (z) | ≤

|z |
(1 − |z | )2

1 − |z |
(1 + |z | )3

≤ |ψ′￼(z) | ≤
1 + |z |

(1 + |z | )3

1 − |z |
|z | (1 + |z | )

≤
|ψ′￼(z) |
|ψ (z) |

≤
1 + |z |

|z | (1 − |z | )
𝔻 ψ′￼

|ψ′￼(z) |
arg(ψ′￼(z))

z0 ∈ 𝔻

f (z) :=
ψ( z + z0

1 + z0z ) − ψ (z0)

ψ′￼(z0)(1 − |z0 | )2

f 𝔻 f (0) = 0 f′￼(0) = 1

| f′￼′￼(0) | = ψ′￼′￼(z0) +
1 − |z0 |2

ψ′￼(z0)
− 2z0 (Definition of f )

≤ 4 (Koebe's One-Quarter Theorem)
z = reiθ

eiθψ′￼′￼(z0)
ψ′￼(z0)

−
2 |z0 |

1 − |z0 |2 ≤
4

1 − |z0 |2
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	 to  yields 

	 	 	 	 .	 	 	 (1.42) 

	 Integrating (1.42) along the radius  yields both inequalities in (ii). 
	 Step II: Growth Theorem 
	 To prove the upper bound in (i), integrate the upper bound in (ii) along . 

	 To prove the lower bound, we can assume that , because 

. 

	 Then by (1.34), there exists an arc  with 
. 

	 Integrating  along  yields the desired lower bound. 
	 Step III: Angular Distortion 
	 Finally, applying (i) at  to the function  defined in (1.41) yields inequalities 
	 in (iii), concluding the proof. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Remark 1.16: Equalities in Theorem 1.12 Holds   Is Koebe 
	 Once again, the equalities in Theorem 1.12, as well as in (1.42), hold if and  
	 only if  is a Koebe function, following directly from Theorem 1.9.	  

1.5 The Hayman-Wu Theorem 
    We give a very elementary proof, based o an idea of the late K.Øyma (1992), of the 
theorem of Hayman and Wu. Hayman-Wu theorem will be a recurrent topic through-
out. This result states that the preimage of a line or circle  under a conformal 
mapping from the unit disc  to a simply connected domain  has total length 
bounded by an absolute constant. The best known constant is in . 
Theroem 1.13: Hayman-Wu Theorem 
	 Let  be a conformal mapping from  to a simply connected domain  and let 
	  be any line. Then 
	 	 	 	        .		 	 	 (1.43) 
    For the proof, we adapted the one developed by Øyma and modified by Rohde. It 
will be convenient to replace the hyperbolic metric  by the pseudohyperbolic 
metric. 
Definition: Pseudohyperbolic Metric (over Unit Disc) 
	 The pseudohyperbolic metric defined over  is given by 

. 

Definition: Pseudohyperbolic Metric (over Simply Connected Domain) 
	 The pseudohyperbolic metric defined over a simplified connected domain  
	 is given by 

Re( zg′￼(z)
|z | ) =

∂Re(g)
∂r

g := log ψ′￼
2r − 4
1 − r2

≤
∂
∂r

log |ψ′￼(z0) | ≤
2r + 4
1 − r2

[0,z]

[0,z]

|ψ (z) | ≤
1
4

|z |
(1 + |z | )2

≤
1
4

γ ∈ 𝔻
ψ (γ) = [0,ψ (z)]

|ψ′￼(z) | |dz | γ

−z0 f

□
⇔ ψ

ψ ⋄

L
𝔻 Ω

[π2,4π)

φ 𝔻 Ω
L

length(φ−1(L ∩ Ω)) ≤ 4π

ρ(z1, z2)

𝔻

δ𝔻(z1, z2) :=
z1 − z2

1 − z1z2
= tanh ρ(z1, z2)

Ω
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. 
Proof of Theorem 1.13: 
	 We can assume that  is analytic and one-to-one in a neighborhood of  and 
	 that . 
	 Step I: Construction of Jordan Domain 
	 Let  denote the components of  and let  be that component of 

 
	 such that . Then  is a Jordan domain symmetric about . 
	 Step II: Construction of conformal mapping 
	 By symmetry there is a conformal mapping  such that 

 and  extends continuously to . 
	 For , set 

, , , and . 
	 Then the composition 

 
	 (note that  is a composition of conformal mappings hence it is conformal) is a 
	 smooth map of 

 

	 onto 
, 

	 where  and  are finite sets. Now, to prove Hayman-Wu theorem, it suffices 
	 to prove the following claim. 
	 Claim: . 
	 To prove this claim, suppose that  is an open interval contained in 
	 . Set 

, , , and . 
	 Then by Schwarz-Pick’s therom  using in the second relation, one has 4

 

	 Therefore, one has 
, 

δΩ(w1, w2) := δ𝔻(φ−1(w1), φ−1(w2))
φ 𝔻

L = ℝ

Lk Ω ∩ L Ωk
Ω ∩ {z : z ∈ Ω}

Lk ⊂ Ωk Ωk ℝ

ψk : Ωk → − iℍ
ψk(Lk) = ℝ+ ψk Ωk

ζ ∈ ∂φ−1(Ωk) ∩ ∂𝔻
α := φ(ζ ) x := |ψk(α) | β := ψ−1

k (x) z := φ−1(β )

Φ := φ−1 ∘ ψ−1
k ( |ψk ∘ φ |)

Φ

φ−1(⋃
k≥1

∂Ωk ∩ ∂Ω∖P) ⊂ ∂𝔻

φ−1(⋃
k≥1

Lk)∖ P̃

P P̃

|∇Φ | ≤ 2
I = (ζ, ζ̃ )

φ−1(∂Ωk) ∩ ∂𝔻
α̃ := φ(ζ̃ ) x̃ := |ψk(α̃ ) | β̃ := ψ−1

k (x̃ ) z̃ := φ−1(β̃ )

δ𝔻(Φ(ζ ), Φ(ζ̃ )) = δΩ(β, β̃ ) (definition of δΩ)

≤ δΩk
(β, β̃ ) (Schwartz-Pick's Theorem)

= δ−ℍ(x, x̃ ) (ψk is conformal and definition of β, β̃ )

=
x − x̃
x + x̃

(definition of δ−iℍ)

ω(x, ψk(φ(I )), − iℍ) = ω(z, I, φ−1(Ωk)) ≤ ω(Φ(ζ ), I, 𝔻)

 Theorem: (Schwarz-Pick’s Theorem) Suppose that  is holomorphic. Then either  is 4

a hyperbolic contraction, or  is a hyperbolic isometry.
ψ : 𝔻 → 𝔻 ψ

ψ
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	 where the first relation holds by the conformal invariance in Remark 1.5 and  
	 the second holds by Lindelöf’s maximum principle Lemma 1.1. 
	 Finally, sending  yields 

 

	 by the growth theorem in Theorem 1.12. This concludes the proof. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
  Because it does not depend on the conformal mapping, the claim we proved in 
Hayman-Wu Theorem 1.13 is actually stronger than (1.43). 
    In chapter 7 we shall see that for some , independent of , 

	 	 	 	    	 	 	 (1.44) 

but the largest permissible  is unkown. A slit disc shows that (1.44) fails at , 
and a counterexample for some , due to Baerstein, will be given in the eighth 
chapter. In chapter 10 we shall determine the class of curves  for which the 
Hayman-Wu thereom (1.43) holds. 

Summary of Chapter 1 
    Solving the Dirichlet problem on a domain  is equivalent to constructing a harm-
onic measure on its boundary . Our aim is to let the domain  and the boundary 
condition be as general as possible, we first construct the harmonic measures in nice 
domains. Before the construction of harmonic measure in any of the domains, we 
need to demonstrate what properties are desired: Some elementary properties 
(Remark 1.1),  conformal invariance (Remark 1.5), and the Harnack’s inequality 
(Remark 1.4). 
   In the first section, we start with construction of the Harmonic Measure (for Set 
of Finite Union in Half Plane). The uniqueness is guaranteed by Lindelöf’s 
maximum principle Lemma 1.1 (and so are the later versions). We formulated the 
Dirichlet problem on upper half plane and proved the desired solutions via the 
harmonic measure — Existence and Uniqueness for Solution to Dirichlet Problem on 

 in Theorem 1.2. Then we extend our definition of harmonic measure from finite 
union in  to Harmonic Measure (for Measurable Set on Half Plane); we defined 
Poisson Kernel (over Half Plane) and Poisson Integral (over Half Plane). The 
conformal invariance of harmonic measure (Remark 1.5) enables us to define 
Harmonic Measure (for Set of Finite Union over Unit Disc), which in turn 
formulates Poisson integral formula in Theorem 1.3. The corresponding Poisson 
kernel and Poisson integral on  are formulated, as well as the Dirichlet problem on 

. 
    We now have harmonic measures over  and , which are related through a conf-
ormal mapping. For us to extend the definition of harmonic measure to a general 
domain, we need to make sure that the conformal mapping always does the job 
correctly. This leads us to consider one of the most extreme case - Non-Tangential 
Limit (over Unit Disc). To control the non-tangential limit, it suffices to control the 

ζ̃ → ζ
|∇Φ |

1 − |Φ(ζ ) |2 ≤ π
1

2π
1 − |Φ(ζ ) |2

|ζ − Φ(ζ ) |2

□

1 < p < 2 φ

∫L∩Ω
| (φ−1)′￼(w) |p |dw | < Cp

p p = 2
p < 2

L

Ω
∂Ω Ω

ℍ
ℍ

𝔻
𝔻

ℍ 𝔻
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Non-Tangential Maximal Function (over Unit Disc), which happens to be bounded 
above by Hardy-Littlewood Maximal Function via Lemma 1.5, as for the Hardy-
Littlewood maximal function, it is also weak type 1-1 by Lemma 1.7. Together, we 
prove Fatou’s Theorem 1.4, which tells us that any positive harmonic function on  
possesses a non-tangential limit at almost all boundary points. Finally, we formulate 
and solve the Dirichlet problem over unit disc with bounded boundary data in 
Corollary 1.4.1. So far we have relaxed the boundary condition but we have not 
generalized the domain, as a trade off we see that the harmonic measure over  is the 
indicator function along the non-tangential limit (Remark 1.9). 
    In the second section we relaxed the conditions in Dirichlet problem but we did not 
extend the underlying domains, we now do it in the third section by proving the 
Carathéodory’s Theorem 1.8 that extends a conformal mapping  from  onto a 
Jordan domain , to the conformal mapping  from  onto , such that . 
We formulate the solution to Dirichlet problem over Jordan domain with bounded 
boundary data, therefore a harmonic measure over Jordan domain. This construction 
tells us that the questions about harmonic measure on Jordan domains are equivalent 
to the questions about the boundary behavior of conformal mappings (Remark 1.10). 
    Extension of harmonic measure from  to  and finally to simply connected dom-
ain  such that the extension solves the Dirichlet problem over  and relaxes the 
boundary data from continuity to boundedness. All the constructions are dependent 
on the behavior of conformal mappings, then it is natural to consider how good the 
conformal mappings are, especially how good is its image, as we do not wish change 
in the boundary data. To answer this, in the fourth section, we define the conformal 
invariant hyperbolic distance and hyperbolic metric. We consider the univalent 
function  on  which is analytic, one-to-one, , and . A particular 
example for this function is Koebe’s function. We proved Koebe’s One Quarter 
Theorem 1.9, which tells us that the disc under univalent maps always has radius at 
least  and this bound is sharp. With the help of this result, we are able to estimate 
the image of  under conformal mappings (Theorem 1.11), as well as for image of  
simply connected domains (Corollary 1.11.1). Finally, we defined the Whitney 
Square, which is an almost conformal invariant substitute for hyperbolic balls 
(Remark 1.15 and Remark 1.14 respectively). We proved the Growth rate, 
Distortion, and Angular Distortion for univalent mappings in Theorem 1.12. All the 
inequalities in our estimates are equalities provided the univalent function is Koebe. 
   As an application, we prove the Hayman-Wu Theorem 1.13, which states that the 
preimage of a line or circle  under a conformal mapping from  to a simply 
connected domain  has total length bounded by an absolute constant. Moreover, the 
best known value is somewhere in . 

2. Finitely Connected Domains 
    In this chapter we solve the Dirichlet problem on a domain bounded by a finite nu-
mber of Jordan curves. For a simply connected Jordan domain the problem was 
solved in the first chapter via Carathéodory’s Theorem 1.8. For a multiple connected 

𝔻

𝔻

φ 𝔻
Ω φ̃ 𝔻 Ω φ̃ |𝔻 = φ

ℍ 𝔻
Ω Ω

ψ 𝔻 ψ (0) = 0 ψ′￼(0) = 1

1/4
𝔻

L 𝔻
Ω

[π2,4π)
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domain the problem will be reduced to the simply connected case using the Schwarz 
alternating method. 
    Solving the Dirichlet problem on a domain  is equivalent to constructing a harm-
onic measure on . In the second section we describe harmonic measures in terms 
of the normal derivative of Green’s fnction in the case when  consists of analytic 
curves. In the fourth section we study the relation between the smoothness of  and 
the smoothness of the Poisson kernel (the Radon-Nikodym derivative of harmonic 
measure agains arc length). This relation hinges on two classical estimates for 
conjugate functions which we shall prove in the third section. 

2.1 The Schwarz Alternating Method 
    We start with two definitions and a result. 
Definition: Finitely Connected Jordan Domain 
	 Let  be a plane domain such that  is a finite union of pairwise disjoint 	 	
	 Jordan curves 

. 
	 We say  is a finintely connected Jordan domain. 
Definition: Piecewise Continuous Function 
	 A bounded funtion  on  is said to be piecewise continuous if there is a finite 
	 set  such that 
	 (i)	  is continuous on . 
	 (ii)	  has left and right limits at each point of . 
   In this section we solve the Dirichlet problem for piecewise continuous boundary 
functions on a finitely connected Jordan domain. For the sakeness of simplicity, we 
shall denote F.C.J.D. for finitely Connected Jordan domain whenever necessary. 
Remark 2.1: In Proving Solution to DP We Can Assume Bounded Domain 
	 There is a technique which we did not use in the first chapter but will be used 
	 quite often later. This technique is that, in proving solution to Dirichlet  
	 problem over simply connected set , we can always assume  is bounded. 
	 Indeed, the Riemann Mapping Theorem establishes a conformal equivalence  
	 between any proper simply connected domain and bounded unit disc .	  
Theorem 2.1: Solution to DP on F.C.J.D. with Bounded Piecewise Continuous Data 
	 Let  be a finitely connected Jordan domain and let  be a bounded piecewise 
	 continuous function on . Then there exists a unique function , 
	 bounded and harmonic on  such that 
	 	 	 	 	      		 	 	 	 (2.1) 

	 at every point of continuity  of . Moreover, 
	 	 	 	 	    .	 	 	 	 (2.2) 

Proof: 
	 By Remark 2.1, we may assume, without loss of generality, that  is bounded. 
	 The uniqueness of  is an immediate consequence from Lindelöf’s maximum  
	 principle Lemma 1.1.  

Ω
∂Ω

∂Ω
∂Ω

Ω ∂Ω

∂Ω := Γ1 ∪ Γ2 ∪ ⋯ ∪ Γp
Ω

f ∂Ω
E ⊂ ∂Ω

f ∂Ω∖E
f E

Ω Ω

𝔻 ⋄

Ω f
∂Ω u(z) = uf (z)

Ω
lim
z→ζ

u(z) = f (ζ )

ζ f
sup

Ω
|u | ≤ sup

∂Ω
| f |

Ω
uf
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	 The existence of  in case , that is, when  is a Jordan domain, was  
	 formulated in the definition of Harmonic Measure (over Jordan Domain). 
	 Therefore, we may, without loss of generality, assume that . 
	 Step I: Construct Dirichlet problems inductively on the Jordan domain 

(Figure 2.1: Separate Finitely Connected Jordan Domain via Jordan Arcs) 
	 Take a Jordan arc  with endpoints  such that  is simply 
	 connected and such that  is a finite set. 
	 Then 

 

	 has a single-valued analytic branch defined on , and we can solve the  
	 Dirichlet problem on  by translating it to the Jordan region . 
	 Take a second Jordan arc  such that 

 is simply connected,  is a finite set, and . 
	 We can also solve the Dirichlet problem on . 
	 Step II: Construct Harmonic Function by Harnack’s Principle 
	 Continuing our induction on the Jordan domain in the first step, we shall const- 
	 ruct solutions to each subdomain iteratively. This step shall give us a sequence  
	 of bounded positive harmonic functions, and then Harnack’s theorem tells us  
	 that this sequence converges to a bounded harmonic function. 
	 Let  be a finite set and define 

. 
	 Suppose, without loss of generality, that  is positive and  
	 bounded. 
	 To start, let  be the solution to the Dirichlet problem on  with boundary  
	 value 

 

	 Then  
	 	 (a)	 is harmonic on  and continuous on . 
	 	 (b)	 matches its boundary data on . 

uf p = 1 Ω

p > 1

σ a, b ∈ Ω Ω1 := Ω∖σ
σ ∩ ∂Ω

φ(z) :=
z − a
z − b

Ω1
Ω1 φ(Ω1)

σ̃
Ω̃ 1 := Ω∖σ̃ σ̃ ∩ ∂Ω σ ∩ σ̃ = ∅

Ω̃ 1

E ⊂ ∂Ω
F := E ∪ (σ ∩ ∂Ω) ∪ (σ̃ ∩ ∂Ω)

f ∈ C(∂Ω∖E )

u1 Ω1

u1(ζ ) := {f (ζ ), ζ ∈ ∂Ω
max∂Ω f, ζ ∈ σ

u1
Ω1 Ω∖F

∂Ω1∖F
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	 Next, let  be the solution to Dirichlet problem on  with boundary data 
	 , . Then  
	 	 (a’)	 is harmonic on  and continuous on . 
	 	 (b’)	 matches its boundary data on . 
	 In particular, by (a) and (a’), 

 on . 
	 By Lindelöf’s maximum principle Lemma 1.1, we have 

 on  

	 and therefore 
 on . 

	 Now, let  be the solution to the Dirichlet problem on  with boundary data 
	 , . On  we have 

, 
	 while on  we have 

. 
	 Therefore by Lindelöf’s maximum principle Lemma 1.1, 

 on . 
	 Consequently 

 on . 
	 Continuing this way we obtain a decreasing sequence 

 
	 of positive functions, which are harmonic on  and  respectively. Now by 
	 Harnack’s principle, the limit 

 

	 is a bounded harmonic function on  such that 
. 

	 Step III: Our harmonic function solves DP with given boundary condition 
	 To complete the proof, it suffices to prove 

 

	 whenever  is a point of continuity of . 
	 We may assume that . Take a neighborhood  of  such that 

	  is a Jordan domain and such that 
. 

	 Let  be a conformal map from  onto . By Carathéodory’s Theorem 1.8 
	 , and for , 

. 

	 Because  is a neighborhood of  in , the first integral approa- 
	 ches  as . 

ũ1 Ω̃ 1
u1(ζ ) ζ ∈ ∂Ω̃ 1 ũ1

Ω̃ 1 Ω∖F
∂Ω1∖F

u1 = ũ1 ∂Ω∖F

ũ1 ≤ max
∂Ω

f =: u1 σ ∩ Ω

ũ1 ≤ u1 Ω∖F
u2 Ω1

ũ1(ζ ) ζ ∈ ∂Ω1 σ ∩ Ω
u2 = ũ1 ≤ u1

∂Ω∖F
u2 = f = u1

u2 ≤ u1 Ω1

u2 ≤ ũ1 Ω∖F

u1 ≥ ũ1 ≥ u2 ≥ ũ2 ≥ u3 ≥ ⋯
Ω1 Ω̃ 1

u(z) = lim
n→∞

un(z) = lim
n→∞

ũn(z)

Ω
u ≤ u1 ≤ max

∂Ω
f

lim
z→ζ

u(z) = f (ζ )

ζ ∈ ∂Ω f
ζ ∉ σ ∪ E V ζ

W := V ∩ Ω
W ∩ (E ∪ σ) = ∅

φ 𝔻 W
φ(∂𝔻) = ∂W w := φ(z) ∈ W

un(w) = ∫φ−1(∂Ω)

1 − |z |2

|eiθ − z |2 f ∘ φ(eiθ)
dθ
2π

+ ∫∂𝔻∖φ−1(∂Ω)

|1 − |z |2

eiθ − z |2 un ∘ φ(eiθ)
dθ
2π

φ−1(∂Ω) φ−1(ζ ) ∂𝔻
f (ζ ) w → ζ
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	 Finally, because , the second integral tends to , uniformly in  

	 as . Therefore (2.1) holds and thus the proof is complete. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Combining steps 1-3 in the proof for Theorem 2.1, this construction for the proof 
of solution to Dirichlet problem with boundary data is called Schwarz alternating 
method. This method worth a remark to demonstrate how it works. 
Remark 2.2: Schwarz Alternating Method 
	 When working with finding solution to Dirichlet problem over a finitely  
	 connected Jordan domain, the Schwarz alternating method is the collection of 
	 the following steps: 
	 (i)	 Use Jordan arcs to partition the finitely connected Jordan domain into 		
	 	 disjoint subdomains, this relaxes the original problem to the Dirichlet  
	 	 problem over a Jordan domain. 
	 (ii)	 Solve Dirichlet problem over each subdomains, then use Lindelöf’s  
	 	 maximal principle Lemma 1.1 to make sure the positive bounded  
	 	 harmonic functions converge locally uniformly to zero (that is, they are  
	 	 decreasing). Then by Harnack’s theorem they converge to a bounded  
	 	 harmonic function. 
	 (iii)	 Show that the harmonic function we obtained satisfies the boundary  
	 	 condition.	  
    As we have proved the existence and the uniqueness for the solution to the Dirich-
let problem over finitely connected Jordan domains with bounded piecewise contin-
uous boundary data, the harmonic measure in this case is also characterized. 
Definition: Harmonic Measure (over Finitely Connected Jordan Domain) 
	 If  is a finitely connected domain. Theorem 2.1 shows that the map 

 
	 is a bounded linear functional on .The harmonic measure of a relatively 
	 open subset  is therefore defined by 

, 
	 and of an arbitrary subset  is 

. 
Remark 2.3: Harmonic Measure over Finitely Connected Jordan Domain Is Borel 
	 The above definition, which mimics the usual proof of Riesz representation  
	 theorem, shows that  is a Borel measure on  such that 

	 	 	 	       	 	 	 	 (2.3) 

	 for  continuous.	  
   Note that when  is connected, this definition of harmonic measure agrees with the 
definition in Harmonic Measure (over Jordan Domain). 
Remark 2.4: Harmonic Measure Satisfies Harnack’s Inequality 
	 For every  there exists, by virtue of Harnack’s inequality, a constant 
	  such that 

|un | ≤ sup
∂Ω

| f | 0 n

w → ζ
□

⋄

Ω
f ↦ uf (z)

C(∂Ω)
U ⊂ ∂Ω

ω(z, U ) := ω(z, U, Ω) := sup{uf (z) : f ∈ C(∂Ω),0 ≤ f ≤ 1U}
E ⊂ ∂Ω

ω(z, E ) := ω(z, E, Ω) := inf{ω(z, U ) : U open in ∂Ω, U ⊇ E}

ω(z, E ) ∂Ω

uf (z) = ∫∂Ω
f (ζ )dω(z, ζ )

f ⋄
Ω

z1, z2 ∈ Ω
c := c(z1, z2)
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	 	 	           	 	 	 (2.4) 

	 and the constants  remain uniformly bounded if  and  remain in a 
	 compact subset of .	  
    It is natural to ask, as Remark 2.2 suggests, that if the boundary condition can be 
weakened to bounded and Borel? The answer is positve. We shall demonstrate this 
into the following example. 
Example 2.1: Boundary Data over F.C.J.D. Can Be Weakened to Bounded Borel 
	 If , and in particular if  is bounded and Borel, there is a  
	 sequence  such that for some fixed , 

. 

	 Denote 

 

	 and  

	 	 	 	    	 	 	 (2.5) 

	 Then by (2.4),  
 for all . 

	 Again by (2.4), we also see that the harmonic functions  are unifo- 
	 rmly bounded on compact subsets of . Then by Harnack’s principlet the limit  
	 function  is harmonic on .		  
   Note that in Example 2.1, we did not use Schwarz alternating method directly. We 
shall give a reason why after the new version for definition of solution to Dirichlet 
problem. 
Definition: Solution to DP over F.C.J.D. with Bounded Borel Boundary Data 
	 The harmonic function  defined in (2.5) is called the solution to the Dirichlet 
	 problem for  on . If  is bounded, then we also have 

. 

	 Moreover, if  is bounded and continuous at , then 
. 

   The reason we cannot apply Schwarz alternating method in this situation is that the 
condition for applying Lindelöf’s maximal principle Lemma 1.1 is not satisfied. That 
is to say, to apply Schwarz alternating method we need to guarantee the condition for 
Lindelöf’s maximal principle, as well as the condition for Harnack’s theorem. 
Remark 2.5: Condition for Applying Schwarz Alternating Method 
	 Note that the Schwarz alternating method cannot be applied directly to a 
	 bounded Borel function because the conditions of Lindelöf’s maximal princ- 
	 iple Lemma 1.1 holds only for piecewise continuous functions.		  
   The next section will give a much more explicit description of the measure  
when  has some additional smoothness. 

1
c

ω(z1, E ) ≤ ω(z2, E ) ≤ cω(z1, E )

c(z1, z2) z1 z2
Ω ⋄

f ∈ L1(∂Ω, dω) f
{ fn}n≥1 ⊂ C(∂Ω) z0 ∈ Ω

∫ | fn(ζ ) − f (ζ ) |dω(z0, ζ ) → 0

un(z) := ∫ fn(ζ )dω(z, ζ )

u(z) := uf (z) = ∫ f (ζ )dω(z, ζ )

un(z) → u(z) z ∈ Ω
{un(z)}n≥1

Ω
u(z) Ω ⋄

u
f Ω f

sup
z∈Ω

|uf (z) | ≤ ∥f ∥L∞(Ω,dω)

f ζ ∈ ∂Ω
lim
z→ζ

u(z) = f (ζ )

⋄
ω(z, E )

∂Ω
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2.2 Green Functions and Poisson Kernels 
    Again let  be a finitely connected Jordan domain, and assume that  is bounded. 
For fixed , let  be the solution to the Dirichlet problem for the boundary 
value 

, , 
and define 
Definition: Green Function with Pole (over Bounded Domain) 
	 The Green function with pole  is defined by 

	 	 	 	  .	 	 	 (2.6) 

Remark 2.6: Some Elementary Properties of Green Function with Pole 
	 The Green function with pole  has the following properties: 
	 (i)	  is continuous in . 
	 (ii)	  on . 
	 (iii)	  on . 
	 (iv)	  is harmonic on . 

	 (v)	  is harmonic at .	  

   The properties are easily derived from Theorem 2.1 and the definition (2.6). By the 
Lindelöf’s maximum principle Lemma 1.1, (iii), (iv), and (v) determine  
uniquely. 
Definition: Green Function with Pole (over Unbounded Domain) 
	 When  is unbounded, we fix , then we use Poisson kernel or the  
	 inversion argument to define the Green function. 
	 (i)	 For , we let  solve the Dirichlet problem on  for 

, 

	 	 and define 

. 

	 (ii)	 For , we instead use inversion 

 

	 	 to define  and set 
. 

    These definitions are independent of the choice of , and with them the properties 
in Remark 2.6 still holds and (iii), (iv), and (v) still determine  uniquely. 
     Now it is natural to consider the Green function under the conformal mapping. 
Definition: Green Function with Pole (under Conformal Mapping) 
	 Suppose  is a conformal mapping from one finitely connected Jordan domain 
	  onto another finitely connected Jordan domain . Then 

  

Ω Ω
ω ∈ Ω h(z, ω)

f (ζ ) = log |ζ − ω | ∈ C(∂Ω) ζ ∈ ∂Ω

ω

g(z, ω) := log
1

|z − ω |
+ h(z, ω)

ω
g(z, ω) z ∈ Ω∖{ω}
g(z, ω) > 0 Ω
g(ζ, ω) = 0 ∂Ω
z ↦ g(z, ω) Ω∖{ω}

z ↦ g(z, ω) − log
1

|ω − z |
ω ⋄

g(z, ω)

Ω a ∉ Ω

ω ≠ ∞ h(z, ω) Ω

f (ζ ) := log
ζ − ω
ζ − a

g(z, ω) := log
z − a
z − ω

+ h(z, ω)

ω = ∞

f (ζ ) := log
1

ζ − a
h(z, ∞)

g(z, ∞) := log |z − a | + h(z, ∞)
a

g(z, ω)

φ
Ω Ω̃

φ(z) → ∂Ω̃ ∀z → ∂Ω
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	 since  is a homeomorphism. It follows that the Green function with 
	 pole  under conformal mapping is 
	 	 	 	      ,		 	 	 (2.7) 
	 because Green function is uniquely determined by (iii), (iv), and (v) in  
	 Remark 2.6. 
Remark 2.7: Green Function with Pole over F.C.J.D. Is Conformal Invariant 
	 If  is the unit disc  then 

	 	 	 	         .	 	 	 	 (2.8) 

	 Consequently Green function for any simply connected Jordan domain  can  
	 be expressed in terms of the conformal mapping .	  
Theorem 2.2: Green Function as Log of Conformal Mapping over F.C.J.D. 
	 Let  be a simply connected domain bounded by a Jordan curve, let  
	 and let  be a conformal mapping with . Then 

. 
Proof: 
	 Direct calcuation gives 

 

	 where the first equality holds by the definition in (2.7) and the third equality by 
	 (2.8) in Remark 2.7. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Definition: Analytic Arc 
	 An analytic arc is the image  of the open interval under a one-to-one 
	 and analytic map  defined on a neighborhood of . 
Definition: Jordan Analytic Curve 
	 A Jordan analytic curve is a Jordan curve that is a finite union of (open)  
	 analytic arcs. 
   The following lemma states that every finitely connected Jordan domain has a rep-
resentation whose boundary contains pairwise disjoint analytic Jordan curves (thus 
the Schwarz alternating method Remark 2.2 may be applied) and there exists an 
homeomorphic extension to the boundary. Note that this result does not tell us that 
the Schwarz alternating method is closed under finitely many conformal mappings, as 
Remark 2.5 already told us that for this method to work, the boundary data must be 
at least piecewise continuous. 
Lemma 2.3: F.C.J.D. Has Partition and Homoemorphism Extension on Boundary 
	 Let  be a finitely connected Jordan domain. Then there exists a finitely  
	 connected Jordan domain  such that 
	 (i)	  consists of finitely many pairwise disjoint analytic Jordan curves. 

φ : Ω → Ω̃
ω

g Ω̃(φ(z), φ(ω)) = gΩ(z, ω)

Ω 𝔻

g(z, ω) = log
1 − zω
z − ω

Ω
ψ : Ω → 𝔻 ⋄

Ω ω ∈ Ω
ψ : Ω → 𝔻 ψ (ω) = 0

g(z, ω) = − log |ψ (z) |

gΩ(z, ω) = g𝔻(ψ (z), ψ (ω))
= g𝔻(ψ (z),0) (by assumption ψ (ω) = 0)

= log
1 − ψ (z) ⋅ 0

ψ (z) − 0
= − log |ψ (z) |

□

ψ((−1,1))
ψ (−1,1)

Ω
Ω*

∂Ω*
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	 (ii)	 There exists a conformal map from  onto  which extends to be a  
	 	 homeomorphism from  onto . 
Proof: 
	 Denote, for , 

 
	 where each  is a Jordan curve, . We proceed the proof with  
	 induction. 

(Figure 2.2: Inductive construction for the proof) 
	 Base Step: 
	 Let  be the component of  containing , and let  be a conformal 
	 map from  onto . 
	 Induction Step: 
	 Let  be the component of  containing , and let  be a  
	 conformal map from  onto . Repeating this process for each bounded 	 	
	 curve, we obtain a conformal map  from  to a region  such that   
	 consists of finitely many pairwise disjoint analytic Jordan curves. Applying  
	 Carathéodory’s Theorem 1.8 to each , we see that  extends to a  
	 homeomorphism from  onto . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Theorem 2.4: Green Function with Pole is Symmetric over F.C.J.D. 
	 Let  be a finitely connected Jordan domain and let . Then 
	 	 	 	 	  .	 	 	 	 (2.9) 
Proof: 
	 By Lemma 2.3 (i), we may assume that  consists of analytic Jordan curves. 
	 When  consists of analytic curves, an argument of Schwarz reflection prin- 
	 ciple, which we shall use many times and in proving the Lemma 2.5, shows  
	 that there is a neighborhood  of  to which  has a harmonic 
	 extension. Hence  is analytic on some neighborhood  of  and we  
	 can use Green’s theorem in the form 

Ω Ω*
Ω Ω*

p ≥ 1
∂Ω := Γ1 ∪ ⋯ ∪ Γp

Γp 1 ≤ j ≤ p

Ω1 ℂ∞∖Γ1 Ω ψ1
Ω1 𝔻

Ω2 ℂ∞∖ψ1(Γ2) ψ1(Ω) ψ2
Ω2 𝔻

ψp Ω Ω* ∂Ω*

ψk ψp
Ω Ω*

□

Ω z1, z2 ∈ Ω
g(z1, z2) = g(z2, z1)

∂Ω
∂Ω

V ∂Ω z ↦ g(z, ω)
g(z, ω) V ∂Ω
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, 

	 where  is the unit vector pointing out from the domain . Fix distinct  in 
	 , we apply Green’s theorem on the domain 

, 
	 when  is small, with 

 and . 
	 Now by Remark 2.6 (iii),  on , thus 

. 

	 Now, by Remark 2.6 (iv),  and  are harmonic on , the area integral in 
	 Green’s theorem vanishes. We conclude that 

	 	 	 	 (2.10) 

	 For  sufficiently small, using the indices we used in Lemma 2.3 (i), 

 , 

	 we see that  has bounded derivatives near  (since bounded analytic  
	 Green function has locally bounded derivatives). This means that the first and 
	 the third integrals in (2.10) tends to  as . Now by (2.6), 

, 

	 so that, as , the second integral in (2.10) tends to  and the fourth 
	 integral in (2.10) tends to . Finally, by Remark 2.6 (ii), the Green  
	 function is positive on , it follows that the equality holds and hence the sym- 
	 mery is proved. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   The Schwarz reflection principle argument in the proof is of frequent use, so we 
write it into the following remark. 
Remark 2.8: Schwarz Reflection Principle Extends Harmonic Locally on Boundary 
	 The Schwarz reflection principle does not only apply to the reflection over the 
	 real axis, it also applies to a neighborhood of the boundary , that is,  there is  
	 a neighborhood  of  to which  has a harmonic extension.	  
Lemma 2.5: Sufficiency for Harmonic Extension to Analytic Curve over F.C.J.D. 

∫ ∫𝒰
(uΔv − vΔu)d xdy = ∫∂𝒰

(u
∂v
∂ ⃗n

− v
∂u
∂ ⃗n )ds

⃗n 𝒰 z1, z2
Ω

Ωε := Ω∖({ |z − z1 | ≤ ε} ∪ { |z − z2 | ≤ ε})
ε

u(z) := g(z, z1) v(z) := g(z, z2)
u = v = 0 ∂Ω

∫∂Ω
(u

∂v
∂ ⃗n

− v
∂u
∂ ⃗n )ds = 0

u v Ωε

 ε∫
2π

0
g(z1 + εeiθ, z1)

∂
∂r

g(z1 + εeiθ, z2)
dθ
2π

−ε∫
2π

0
g(z1 + εeiθ, z2)

∂
∂r

g(z1 + εeiθ, z1)
dθ
2π

= ε∫
2π

0
g(z2 + εeiθ, z2)

∂
∂r

g(z2 + εeiθ, z1)
dθ
2π

−ε∫
2π

0
g(z2 + εeiθ, z1)

∂
∂r

g(z2 + εeiθ, z2)
dθ
2π

ε

g(zj + εeiθ, zj) ≤ 2 log( 1
ε ) ∀k ≠ j

g(z, zj) zk

0 ε → 0
−

∂
∂r

g(zj + εeiθ, zj) =
∂
∂ε

log ε + O(1)

ε ↓ 0 g(z1, z2)
g(z2, z1)

Ω

□

∂Ω
V ∂Ω z ↦ g(z, ω) ⋄
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	 Suppose  is a finitely connected Jordan domain and suppose  is an 
	 analytic arc. Let  be a harmonic function in . 
	 (a)	 If  , then there exists an open set  such  

	 	 that  extends to be harmonic on . 
	 (b)	 If in addition that  on , then 

	 	 	 	             .	 	 	 	 (2.11) 

Proof: 
	 We first show that there exists a harmonic extension, then we prove assertion 
	 (a) and assertion (b). 
	 Step I: Existence of harmonic extension over neighborhood of . 
	 Let , where  is a Jordan curve bounding . Because  is an analytic arc, 
	 by Remark 2.8, there exists a neighborhood  of  and a conformal mapping 
	  such that for  fixed, 
	 	 (i)	 . 
	 	 (ii)	 . 
	 	 (iii)	 . 
	 Set 

 

	 Then by Remark 2.6 (i),  is continuous in ; by Remark 2.6 (iv),  has mean 
	 value property over sufficiently small circles centered at any . Hence   
	 is harmonic in  and 

 
	 defines a harmonic extension of  to . 
	 Step II: Assertion (a) 
	 Suppose  and  are extensions of  to a neighborhood  and  such that 
	  is connected, then  in the component of  that conta- 
	 ins . It follows that  has a harmonic extension to some open set 
	 . 
	 Step III: Assertion (b) 

	 If in addition  on , then clearly  on  since otherwise (a) does  

	 not hold. The inequality (2.11) then holds if and only if . Thus it  

	 suffices to prove the following claim. 

	 Claim: . 

	 We prove by contradiction. On , by Schwarz lemma, there exists an analytic  
	 function 

Ω γ ⊂ ∂Ω
u(z) Ω

lim
z→ζ

u(z) = 0 ∀ζ ∈ γ W ⊃ γ ∪ Ω

u W
u(z) > 0 Ω

∂
∂ ⃗n

u(ζ ) < 0 ∀ζ ∈ γ

ζ
γ ∈ Γ Γ Ω γ

V ζ
ψ : V → 𝔻 ζ ∈ γ

ψ (ζ ) = 0
ψ (V ∩ Ω) := 𝔻− := 𝔻 ∩ {Im(ω) < 0}
ψ (γ ∩ V ) = (−1,1)

v(ω) :=
u ∘ ψ−1(ω), ω ∈ 𝔻− := 𝔻 ∩ {Im(ω < 0}
−u ∘ ψ−1(ω ), ω ∈ 𝔻+ := 𝔻 ∩ {Im(ω) > 0}
0, ω ∈ (−1,1)

v 𝔻 v
ω ∈ 𝔻 v

𝔻
ũ := v ∘ ψ
u V

ũ1 ũ2 u V1 V2
V1 ∩ V2 ∩ γ ũ1 = ũ2 V1 ∩ V2

V1 ∩ V2 ∩ γ u
W ⊃ γ ∪ Ω

u > 0 Ω
∂
∂ ⃗v

u ≤ 0 γ
∂
∂y

v(0) < 0

∂
∂y

v(0) < 0

𝔻
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 with  and . 
	 The Taylor expansion of  at  is 

, . 
	 But if , then  

, 

	 which is a contradiction. It follows that . But 

	  and  on , since  is conformal,  cannot be positive. 

	 	 	 	 	 	 	 	 	 	 	 	 	  
    When  consists of analytic curves, Green function provides a formula for harm-
onic measure that generalizes the Poisson integral formula for . 
Theorem 2.6: Harmonic Measure as Generalization of Poisson Integral Formula 
	 Assume  consists of finitely many pairwise disjoint analytic Jordan curves 
	 and let . Then	  
	 (a)	 Green function  extends to be harmonic (and hence real analytic) 	
	 	 on a neighborhood of  and 

	 	 	 	        on 	 	 	 	 (2.12) 

	 	 where  is the unit outer normal vector at . 
	 (b)	 If in addition  is harmonic on  then 

	 	 	          .	 	 	 (2.13) 

   In particular, the second assertion gives the generalization for the Poisson kernel 
over finitely connected Jordan domain. Note that in classical potential theory our 
definition for harmonic measure is defined to be the common value between Perron 
function and the generalized Poisson integral. So far we did not introduce the Perron 
function and our definition is different from the classical one, and now the reason is 
obvious: since our definition is more flexible, and we are always ready for another 
generalization. 
Definition: Poisson Kernel (over Finitely Connected Jordan Domain) 
	 In (2.13), the term defined by 

, , 

	 is called the Poisson kernel over finitely connected Jordan domain . 
Proof of Theorem 2.6: 
	 Fix . By Lemma 2.5,  extends to be harmonic (and real analytic) 
	 on some neighborhood of  and then (2.12) is an immediate consequence of 
	 (2.11). To prove (2.13), we first assume that  is analytic on a neighborhood of 
	 . 
	 Step I: (2.13) holds when  is analytic on a neighborhood of . 
	 We apply Green’s theorem on 

h := v − iv Im(h) = − v h(0) = 0
h 0

h(ω) = anωn + O( |ω |n+1 ) an ≠ 0
n ≥ 2

h(𝔻−) ∩ 𝔻+ ≠ ∅
a1 := h′￼(0) = −

∂
∂y

v(0) ≠ 0

ũ := v ∘ ψ
∂
∂ ⃗v

u ≤ 0 γ ψ
∂
∂y

v(0)

□
∂Ω

𝔻

∂Ω
z ∈ Ω

g(ζ, z)
∂Ω

−∂
∂ ⃗nζ

g(ζ, z) > 0 ∂Ω

⃗nζ ζ ∈ ∂Ω
u ∈ C(Ω) Ω

u(z) = ∫∂Ω
−

∂
∂ ⃗nζ

g(ζ, z)u(ζ )
ds(ζ )

2π

Pz(ζ ) := −
1

2π
∂

∂ ⃗nζ
g(ζ, z) ζ ∈ ∂Ω

Ω

z ∈ Ω g(ζ, z)
∂Ω

u
∂Ω

u ∂Ω
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	 with  sufficiently small and . By Remark 2.6 (iv) we have 

 on  
	 and by Remark 2.6 (iii) we have 

 on . 
	 Therefore, Green’s theorem yields 

 

	 Since for  sufficiently small, we have 

 

	 by Remark 2.6 (v). Moreover, since  is analytic by assumption, we have 

. 

	 As we have seen, (2.6) yields 

, 

	 while 
 

	 since  is analytic on a neighborhood of . It follows that 

, 

	 and this gives (2.13) when  is analytic on a neighborhood of . 
	 Step II: (2.13) holds in general case 
	 To prove (2.13) in general case, for  sufficiently large we define 

. 
	 By uniqueness of Green function up to a harmonic correction,  has Green 
	 function 

. 
	 Therefore, 

 on . 

	 In a neighborhood  of a point , the function 
		 (  denotes the complex conjugate) 

	 is a conformal map and 

 

	 by the definition of conformal mapping  and change of variables; note that 
	 the right hand side convergs, as , to 

Ωε := Ω∖{ω : |ω − z | < ε}
ε v(ω) := g(ω, z)

Δωg(ω, z) = Δu = 0 Ωε

g = 0 ∂Ω

∫∂Ω

−∂
∂ ⃗nζ

g(ζ, z)u(ζ )
ds(ζ )

2π
= ε∫

2π

0
g(z + εeiθ, z)

∂
∂r

u(z + εeiθ)
dθ
2π

−ε∫
2π

0
u(z + εeiθ)

∂
∂r

g(z + εeiθ, z)
dθ
2π

.

ε > 0

g(z + εeiθ, z) ≤ 2 log( 1
ε )

u

lim
ε→0

ε∫
2π

0
g(z + εeiθ, z)

∂
∂r

u(z + εeiθ)
dθ
2π

= 0

∂
∂r

g(z + εeiθ, z) =
−∂
∂ε

log ε + O(1)

u(z + εeiθ) = u(z) + O(ε)
u ∂Ω

−ε∫
2π

0
u(z + εeiθ)

∂
∂r

g(z + εeiθ, z)
dθ
2π

= u(z) + O(ε)

u ∂Ω

δ > 0
Ωδ := {ω ∈ Ω : g(ω, z) > δ}

Ωδ

gδ(ω, z) = g(ω, z) − δ

∂
∂ ⃗nζ

gδ(ζ, z) =
∂

∂ ⃗nζ
g(ζ, z) ∂Ωδ

N ζ0 ∈ ∂Ω
φ := g + ig g

1
2π ∫N∩∂Ωδ

−∂
∂ ⃗nζ

g(ζ, z)u(ζ )ds = ∫{Re(z)=δ}∩φ(N )
u ∘ φ−1ds

φ
δ ↓ 0
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. 

	 Therefore, as , one has 

. 

	 But (2.13) holds for  on  because  is analytic on a neighborhood of , 
	 as we have shown in the first step. Thus (2.13) holds on  by the above conve- 
	 rgence. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
  People used to believe that harmonic measures can be singular with respect to 
Hausdorff measure on “very wild” bou-ndaries, but Garnett, Marshall, et. al proved 
that the absolute continuity holds on analytic bounds in 1980s. 
Corollary 2.6.1: Absolute Continuity and Analyticity of Harmonic Measure on FCJD 
	 If  consists of finitely many pairwise disjoint analytic Jordan curves and if  
	 , then 

	 	 	 	      .	 	 	 (2.14) 

	 In other words, harmonic measure for  is absolutely continuous with  
	 respect to the arc length on . The density (Radon-Nikodym derivative) 

 

	 is real analytic on , and 

	 	 	 	 	       	 	 	 	 	 (2.15) 

	 for positive constants  and . 
Proof: 
	 Using (2.2) in Theorem 2.1, (2.13) in Theorem 2.6, and the fact that Borel 
	 measures are determined by their actions on continuous functions gives the 
	 equality (2.14). The inequalities in (2.15) are an immediate consequence of 
	 (2.12) in Theorem 2.6. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Remark 2.9: Comparing Harmonic Measure to Geometric Measure 
	 One objective of this book is to compare harmonic measure for general  
	 domains to more geometrical measures such as arc length, and Corollary 2.6.1 
	 is the first result of this kind.	  
Theorem 2.7: Solution to DP over F.C.J.D. with Bounded Borel Boudnary Data 
	 Assume  consists of finitely many pairwise disjoint analytic Jordan curves 
	 and for  and  define 

. 
	 If  is a bounded harmonic function on , then  
	 (i)	 For -almost every  the limit 
	 	 	 	          	 	 	 	 (2.16) 

∫{Re(z)=0}∩φ(N )
u ∘ φ−1ds =

1
2π ∫∂Ω

−∂
∂ ⃗nζ

g(ζ, z)u(ζ )ds

δ ↓ 0
1

2π ∫∂Ωδ

−∂
∂ ⃗nζ

g(ζ, z)u(ζ )ds →
1

2π ∫∂Ω

−∂
∂ ⃗nζ

g(ζ, z)u(ζ )ds

u Ωδ u ∂Ωδ

Ω

□

∂Ω
z ∈ Ω

dω(z, ζ ) =
−∂
∂ ⃗nζ

g(z, ζ )
ds(ζ )

2π
z ∈ Ω

∂Ω
dω
ds

=
−1
2π

∂
∂ ⃗nζ

g(z, ζ ) = Pz(ζ )

∂Ω

c1 <
dω
ds

< c2

c1 c2

□

⋄

∂Ω
ζ ∈ ∂Ω α > 1

Γα(ζ ) := {z ∈ Ω : |z − ζ | < αdist(z, ∂Ω)}
u(z) Ω

ds ζ ∈ ∂Ω
lim

Γα(ζ)∋z→ζ
u(z) = f (ζ )
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	 	 exists. 
	 (ii)	  can be written as the Poisson integral formula 

	 	 	 	      ,		 	 	 (2.17) 

	 (iii)	 The following isometry holds 
	 	 	 	 	   .	 	 	 	 (2.18) 

	 Conversely, if  is a bounded Borel function on , then (2.17) defines a  
	 bounded harmonic function  on  such that (2.18) holds -almost  
	 everywhere. Moreover, if  is continuous at  then 
	 	 	 	 	    .	 	 	 	 (2.19) 

Remark 2.10: Isometry Between Space of Bounded Harmonic Functions and  
	 By (2.18), we see (2.16) and (2.17) establish an isometry between the space of 
	 bounded harmonic function on  and  when  consists of  
	 analytic curves.	  
Proof of Theorem 2.7: 
	 We shall use a simple localization argument to prove the first assertion in the  
	 first step, then we prove assertion (ii) and (iii) in the second step, we finally  
	 deal with the converse direction in the third step. 
	 Step I: Assertion (i) 
	 A simple localization argument gives the existence of the non-tangential limit 
	 . If  is an open arc on , there exists a neighborhood  such that 

 and  is simply connected. 
	 Moreover, there exists a conformal mapping  defined on  such that 

 and  is an arc on . 
	 It follows that  maps conical approach regions at  into cones at 
	 : 

, 
	 where . Then, if  is a bounded harmonic  
	 function on , we can apply Fatou’s Theorem 1.4 to  to obtain (2.16) 
	 -almost everywhere on . 
	 Step II: Assertion (ii) and (iii) 
	 The proof of (2.17) is exactly the same as the proof of (2.12) except that the  
	 (Lebesgue’s) dominated convergence theorem (LDCT) is applied in (2.13). By  
	 (2.16) we have 

 

	 Since 

 and  

	 by the definition of Poisson kernel, one has, via LDCT once more, 
. 

u

u(z) = ∫∂Ω
Pz(ζ )f (ζ )ds(ζ )

sup
Ω

|u(z) | = ∥f ∥L∞

f ∂Ω
u(z) Ω ds

f ζ0 ∈ ∂Ω
lim
z→ζ0

u(z) = f (ζ0)

L∞

Ω L∞(∂Ω, ds) ∂Ω
⋄

f I ∂Ω V ⊃ I
V ∩ ∂Ω = I V ∩ Ω

ψ V
ψ (V ∩ Ω) = 𝔻 ψ (I ) ∂𝔻

ψ ζ ∈ V ∩ ∂Ω
ψ (ζ )

ψ(V ∩ Γα(ζ ) ∩ ℬδ(ζ )) ⊂ Γβ(α)(ψ (ζ ))
ℬδ(ζ ) := {z : |z − ζ | < δ := δ(ζ )} u

Ω u ∘ ψ−1

ds V ∩ ∂Ω

∥f ∥∞ ≤ sup
Ω

|u(z) | . (LDCT)

Pz ≥ 0 ∫∂Ω
Pzds = 1

sup
Ω

|u(z) | ≤ ∥f ∥∞
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	 Hence (2.16) and (2.17) together implies (2.18), proving both assertions. 
	 Step III: Converse 
	 To prove the converse, let . Then the discussion following (2.5) 
	 shows that (2.17) defines a bounded harmonic function  on  and 

. 

	 Therefore, by (2.16),  has almost-everywhere  a non-tangential limit, which  5

	 we will temporarily call it , and  is the Poisson integral of  by (2.17). 
	 It suffices to prove the following claim. 
	 Claim:  almost-everywhere 
	 Let  be a neighborhood of an open arc  such that 

 and  is simply connected. 
	 For , define 

, 

	 where  is the Poisson integral for . If  then by 
	 (2.3), Theorem 2.1, (2.12), and (1.20), one has 

 , 

	 and hence by Lemma 2.5 (i),  extends to be harmonic in a neighborhood  
	 of  which does not depend on . Thus, by Exercise 1.5 (e) or (2.25) below, if 
	  is a compact subset of  and if , then there exists a neighborhood  of  
	 depending only on  and , such that 

 in . 
	 Now take  so that 

 in  and . 

	 For each , , and so 
. 

	 Since  is arbitrary, we conclude that 
. 

	 Now by Theorem 1.3, 
 almost-everywhere on . 

	 Consequently,  almost-everywhere and (2.16), as well as (2.18) holds for 
	 all . Finally, if  is continuous at , then 

 

	 is continuous at  by (1.20). Thus, (2.19) follows from the continuity of . 
	 	 	 	 	 	 	 	 	 	 	 	 	  

f ∈ L∞(∂Ω, ds)
u(z) Ω

sup
Ω

|u(z) | ≤ ∥f ∥∞

u
F u F

F = f
V I

I = V ∩ ∂Ω V ∩ Ω
h ∈ L∞(∂Ω, ds)

vh(z) := ∫∂Ω
Pz(ζ )h(ζ )ds(ζ ) − ∫I

Pz(ζ, V )h(ζ )ds(ζ )

Pz(ζ, V ) z ∈ U ∩ Ω h ∈ C(∂Ω)

lim
z→ζ

vh(z) = 0 ∀ζ ∈ I

vh W
I h

J I ε > 0 N J
∥h∥∞ ε

|vh | < ε N
{hn}n≥1 ⊂ C(∂Ω)

lim
n→∞

hn = f L1 ∥hn∥∞ ≤ ∥f ∥∞

z ∈ V ∩ N vhn
(z) → vf (z)

|vf (z) | < ε
ε > 0

vf (z)
z→ζ∈J

0

F(ζ ) − f (ζ ) = lim
Γα(ζ)∋z→ζ

vf (z) = 0 J

F = f
f ∈ L∞(∂Ω, ds) f ζ0 ∈ I

∫I
Pz(ζ, V )f (ζ )ds(ζ )

ζ0 vf
□

 By saying so we mean  has a non-tangential limit -almost everywhere for whatever measure  5

we do not care.
u μ μ
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Remark 2.11: Alternative Proof for Theorem 2.7 and Conformal Estimate 
	 The converse can also be proved in another way. Using the real analyticity of 
	 , one can refine the proof of Lemma 1.5 and show that 
	 	 	 	     ,	 	 	 (2.20) 

	 where  is the Poisson integral (2.17) and where the maximal function  
	 is the supremum of the averages of  over arcs  with : 

. 

	 A variation on the covering lemma shows that  is weak-type 1-1, and an 
	 approximation, as in the proof of Theorem 1.4, then yields (2.16) for the  
	 Poisson integral of . This is the argument that MUST be used in the Euclidean 
	 space , . 
	 With the same care, the conformal mapping proof of (2.16) in the text can also 	
	 be parleyed into a proof of the maximal estimate (2.20).	  
Remark 2.12: Equivalent Definition for Harmonic Measure on F.C.J.D. 
	 Let  be any finitely connected Jordan domain and let  be a conformal map, 
	 given in Lemma 2.3, of  onto a domain , where  consists of analytic 
	 Jordan curves. Since , harmonic measure can be transplanted from 
	  to  via , just as it was in Section 1.3 for simply connected Jordan  
	 domains. This gives an alternative but equivalent definition of harmonic mea- 
	 sure for .	  
   In Section 2.4 we shall consider two questions. Let  be a finitely connected Jor-
dan domain. 
	 Question I:	 If  has some degree of differentiability and if  also  
	 has some degree of differentiability along , how smooth is the solution  
	 as  approaches ? 
	 Question II: What smoothness condition on , weaker than real-analyticity, 	
	 will ensure that 

 exists on  and (2.14) and (2.15) still hold? 

The two questions are equivalent. Their answers will depend on Kellogg’s theorem 
about the boundary behavior of conformal mappings. The proof of Kellogg’s theorem 
in turn depends on the estimates for conjugate functions in the next section. 

2.3 Harmonic Conjugate 
    Let  be real. For convenience we write  for . We shall benefit 
from the fact that the Poisson integral of  is always harmonic and real. 
Definition: Harmonic Conjugate (Conjugate Function) 
	 If  is the Poisson integral of  on , then  is harmonic and real and 
	 there exists a unique harmonic function  such that 

 and  is analytic on . 
	 The function  is called the harmonic conjugate or conjugate funciton of . 

g(ω, z)
sup
Γα(ζ)

|u(z) | ≤ C(α, Ω)Ms f (ζ )

u Ms f (ζ )
f γ ⊂ ∂Ω ζ ∈ γ

Ms f (ζ ) := sup
ζ∈γ

1
ℓ(γ) ∫γ

| f |ds

Ms

f
ℝd d ≥ 3

⋄

Ω φ
Ω Ω* ∂Ω*

φ : Ω → Ω*
Ω* Ω φ

Ω ⋄
Ω

∂Ω f ∈ C(∂Ω)
∂Ω uf (z)

z ∂Ω
∂Ω

∂
∂ ⃗nζ

g(z, ζ ) ∂Ω

f ∈ L1(∂𝔻) f (θ ) f (eiθ)
f ∈ L1(∂𝔻)

u(z) f 𝔻 u(z)
ũ(z)

ũ(0) = 0 F = u + i ũ 𝔻
ũ u

46



    One may recall the definition of harmonic minorant (respectively, hamonic majora-
nt). Heuristically, both the harmonic minorant and the harmonic conjugate are serving 
as a harmonic “correction”, while the minorant serves as the continuity correction and 
the conjugate serves as a differentiability correction. 
Proposition 2.8: Non-Tangential Limit for Conjugate Function Exists A.E. 
	 The non-tangential limit 
	 	 	 	          	 	 	 	 (2.21) 

	 exists a.e..  
Proof: 
	 This has an easy proof from Fatou’s Theorem 1.4: We may assume , so  
	 that 

 
	 is bounded and analytic on . By Corollary 1.4.1,  has non-tangential limit 
	  almost everywhere. Since 

 and , 
	  a.e.. At such ,  is continuous and non-zero on the cone 

. 
	 Consequently, 

 
	 has a continuous extension to 

 

	 and the limit (2.21) exists at . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    There is a close connection between harmonic conjugate and conformal mappings. 
Remark 2.13: Connection Between Harmonic Conjugate and Conformal Map 
	 If  is harmonic and if , then 

 

	 is a conformal map from  to a finitely connected domain and 
. 

	 Indeed, if , then 

 

	 because .	  
    When  is bounded, or even continuous, it can happen that  is not bounded. 
Example 2.2: Bounded Continuous Function with Unbounded Harmonic Conjugate 
	 Let  be the conformal map of  onto the region 

. 

	 Then  is continuous on  by Carathéodory’s Theorem 1.8, but  is not 

f̃ (θ ) := lim
Γα(eiθ)∋z→eiθ

ũ(z)

f ≥ 0

G(z) := exp{ − u(z) + i ũ(z)}
𝔻 G

G(eiθ)
|G(eiθ) | = e−f (θ) f ∈ L1

|G(eiθ) | > 0 eiθ G
k := Γα(eiθ)

log G = − (u + i ũ )

K ∩ {z : G(z) − G(eiθ) <
1
2

G(eiθ) }
eiθ

□

u |u | <
π
2

φ(z) := ∫
z

0
exp{i(u + i ũ )(ζ )}dζ

𝔻
u = arg φ′￼

a ≠ b ∈ 𝔻

φ(b) − φ(a) = (b − a)∫
1

0
φ′￼(a + t(b − a))dt ≠ 0

Re(φ′￼) > 0 ⋄
f f̃

u + i ũ 𝔻

{0 < x <
1

1 + |y | }
u 𝔻 ũ
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	 bounded.	  
    The next two assertions get around the obstruction that  may be unbounded even 
when  is continuous. 
Theorem 2.9: Zygmund’s Exponential Integrability for Harmonic Conjugate 
	 Let  be real with . 
	 (a)	 For  there is a constant , depending only on , such that 

. 

	 (b)	 If , then for all , 

. 

Proof: 
	 Step I: Assertion (a) 
	 Let  be the Poisson integral of  in  and consider the analytic function 

. 
	 For ,  satisfies 

 

	 because . Therefore, by Euler’s identity, 

. 

	 But if , then 

 
	 since . It follows that 

. 

	 Then by Proposition 2.8 in conjunction with Fatou’s lemma, one has 

. 

	 By repeating this argument with , we then obtain assertion (a) with  
	 constant . 
	 Step II: Assertion (b) 
	 To prove (b), fix  and take a trigonometric polynomial 

 

	 such that . Then the conjugate 

 

⋄
f̃

f

f ∈ L∞(∂𝔻) ∥f ∥∞ ≤ 1
0 < λ <

π
2

Cλ λ
1

2π ∫ exp{λ | f̃ (θ ) |}dθ ≤ Cλ

f ∈ C(∂𝔻) λ < ∞

sup
0<r<1

1
2π ∫ exp{λ | ũ(reiθ) |}dθ < ∞

u(z) f 𝔻
g(z) := ũ(z) − iu(z)

r < 1 g(z)

eλg(0) =
1

2π ∫
2π

0
eλg(reiθ)dθ

ũ(0) = 0

cos λu(0) =
1

2π ∫
2π

0
exp{λũ(reiθ)}cos λu(reiθ)dθ

0 < λ <
π
2

0 < cos λ < cos λu ≤ 1
|u | ≤ 1

1
2π ∫

2π

0
exp{λũ(reiθ)}dθ ≤ sec λ

1
2π ∫

2π

0
eλ f̃ (θ)dθ ≤ sec λ

−f (θ )
Cλ := 2 sec λ

λ < ∞

p(θ ) =
N

∑
n=0

(an cos nθ + bn sin nθ)
∥f − p∥∞ <

π
2λ

p̃(reiθ) =
N

∑
n=0

rn(an sin nθ − bn cos nθ)
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	 is bounded, while (a) gives 

. 

	 Therefore, since 
, 

	 we have 

, 

	 which yields assertion (b). 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Definition: Alpha-Hölder Class and Alpha-Hölder Continuous Function 
	 Let . The -Hölder class  is 

. 

	 Every  agrees almost everywhere with a function continuous on . 
   	 A function  is called an -Hölder continuous function.  
Definition: Alpha-Hölder Norm 
	 The class  is given the -Hölder norm 

	 	 	     .	 	 (2.22) 

   In a moment we shall prove Privalov’s theorem that  whenever . In 
the Poisson integral formula 

, 

the kernel 

 

Then the uniqueness of  shows that 

	 	             .	 	 (2.23) 

Definition: Herglotz Integral of Alpha-Hölder Continuous Class 
	 The analytic function  defined in (2.23) is called the Herglotz integral of 
	 . 
    We shall denote 

  

when  is differentiable on an open plane set. If  is harmonic and bounded on  then 
 is the Poisson integral of some  and by (2.23) the Cauchy-Riemann 

equations 

Bλ := sup
0<r<1

1
2π ∫ exp{λ (̃u − p)(reiθ) }dθ < ∞

| ũ | ≤ | p̃ | + (̃u − p)

sup
0<r<1

1
2π ∫ exp{λ | ũ(reiθ) |}dθ ≤ Bλeλ∥p̃∥∞ < ∞

□

0 < α < 1 α Cα

Cα := {f ∈ L∞(∂𝔻) : sup
t>0

f (θ + t) − f (θ )
∞

tα
< ∞}

f ∈ Cα ∂𝔻
f ∈ Cα α

Cα α

∥f ∥Cα := ∥f ∥∞ + sup
t>0

∥f (θ + t) − f (θ )∥∞

tα

f̃ ∈ Cα f ∈ Cα

u(z) = Re
1

2π ∫
π

−π

eit + z
eit − z

f (t)dt

eit + z
eit − z

 is  {analytic, in z ∈ 𝔻
real, at z = 0

ũ

u(z) + i ũ(z) =: F(z) :=
1

2π ∫
π

−π

eit + z
eit − z

f (t)dt

F(z)
f ∈ Cα

∇u := (∂u
∂x

,
∂u
∂y )

u u 𝔻
u f ∈ L∞(∂𝔻)
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	 	 	     .	 	 (2.24) 

Therefore, 

	     	 (2.25) 

We will often make use of the following consequence of (2.25):  
Remark 2.14: Locally Bounded Harmonic Function Has Local Bounded PDE 
	 If  is harmonic and  on  for some  and   
	 denotes the open ball centered at  with radius . Then 

	 	 	 	 	   .	 	 	 	 (2.26) 

	 	 	 	 	 	 	 	 	 	 	 	 	  
    To prove (2.26) simply apply (2.25) to . The next theorem sho-
ws that  if and only if the estimate (2.25) can be upgraded to 

. 
Theorem 2.10: Criterion of Alpha-Hölder Continuous Class with Norm Bound 
	 Let , let  be real, and let  be the Poisson integral 
	 of . Then the following conditions are equivalent: 
	 (a)	 . 
	 (b)	 . 
	 (c)	 . 
	 (d)	 , that is, , 

. 
	 Moreover, there exists a constant , independent of , such that 

	 (b’)	 	 	         .	 	 	 	 (2.27) 

	 (c’)	 	         ,	 	 	 (2.28) 

	 and 

	 (d’)     .	 (2.29) 

   The equivalence (a)  (b) was first proved by Privalov who worked directly with 
the imaginary part of the integral (2.23); (a)  (c) was proved by Hardy and 
Littlewood in 1931. 
Proof of Theorem 2.10: 
	 Clearly (d)  (a) since if (d) holds then  is uniformly continuous over . 
	 We first show (a)  (c) and establish (2.28), then we show (c)  (d) and 
	 establish (2.29). Finally, we show (a)  (b) and inequality (2.27) will follow 
	 because  by an application of Cauchy-Riemann equation. 
	 Step I: (a)  (c) and construction of (2.28). 

|∇u(z) | = |F′￼(z) | =
1
π ∫

π

−π

eitf (t)
(eit − z)2

dt

|∇u(z) | ≤ ( 1
2π ∫

π

−π

1
|eit − z |2 dt)∥f ∥∞ (Hölder's Inequality)

≤ 2(1 − |z | )−1∥f ∥∞

u(z) |u(z) | ≤ M ℬR(z) M > 0 ℬR(z)
z R > 0

sup
ℬR /2(z)

|∇u | ≤
4M
R

⋄
U(ω) := u(z + Rω)

f ∈ Cα

|∇u | = O((1 − |z | )α−1)
0 < α < 1 f ∈ L∞(∂𝔻) u(z)

f
f ∈ Cα

f̃ ∈ Cα

|∇u(z) | = O((1 − |z | )α−1)
u ∈ Cα(𝔻) ∀z1, z2 ∈ 𝔻

|u(z1) − u(z2) | = O( |z1 − z2 |α )
C1 α

∥ f̃ ∥Cα ≤
C1

α(1 − α)
∥f ∥Cα

|∇u(z) | ≤
C1

1 − α
(1 − |z | )α−1∥f ∥Cα

sup
z1≠z2

|u(z1) − u(z2) |
|z1 − z2 |α ≤

C1

α
sup
|z|<1

{(1 − |z | )1−α |∇u(z) |}
⇔

⇔

⇒ u 𝔻
⇒ ⇒

⇔
|∇u | = |∇ ũ |

⇒
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	 Assume (a) holds, that is, assume  is the Poisson integral of . We pro- 

	 ve (2.28). By (2.25) we may assume . Let . Since 

, 

	 (2.24) yields 

, 

	 so by (2.25) again 

 

	 The inequality 
 holds for all , 

	 it follows that 

 

	 When , the inequality 
 for all  independent of , 

	 thus the second term 

 

	 Combining these bounds together, we obtain (2.28) with 

. 

	 Step II: (c)  (d) and (2.29) 
	 If (c) holds, we may assume . 

(Figure 2.3: Choice of , , and parallelogram) 

u f ∈ Cα

|z | ≥
1
2

eit0 :=
z

|z |

∫
eit

(eit − z)2
dt = 0

|∇u(z) | =
1
π ∫

π

−π

eit(f (t) − f (t0))
(eit − z)2

dt

|∇u(z) | ≤
1
π ∫

π

−π

| f (t) − f (t0) |

|eit − z |2 dt

=
1
π ∫|t−t0|<|1−z|

| f (t) − f (t0) |

|eit − z |2 dt +
1
π ∫1−|z|≤|t−t0|≤π

| f (t) − f (t0) |

|eit − z |2 dt .

1 − |z | ≤ |eit − z | t

1
π ∫|t−t0|<1−|z|

| f (t) − f (t0) |

|eit − z |2 dt ≤
2∥f ∥α

(1 − |z | )2 ∫
1−|z|

0

tα

π
dt

=
2∥f ∥α

π(1 + α)
(1 − |z | )α−1 .

1 − |z | ≤ | t − t0 | ≤ π
| t − t0 |2 ≤ c ⋅ |eit − z |2 c z

1
π ∫1−|z|<|t−t0|<π

| f (t) − f (t0) |

|eit − z |2 dt ≤
2c∥f ∥α

π ∫
π

1−|z|
tα−2dt

≤
2c∥f ∥α

π(1 − α)
(1 − |z | )α−1 .

C1 := sup
0<α<1

2
π (c +

1 − α
1 + α ) =

2(c + 1)
π

⇒
(1 − |z | )1−α |∇u(z) | ≤ 1

zj ωj
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	 Let , as illustrated below 

	 We may assume  and . Set . Then 

. 
	 However, 

 

	 while 

 

	 Therefore (d) and (2.29) hold. 
	 Step III: (a)  (b) and (2.27) 
	 Finally, suppose (a) holds. Then (c) holds and 

. 
	 Therefore (d) and (2.29) hold for , and  extends continuously to  where 
	  has boundary value  by Poisson integral properties (see Theorem 1.6 (ii)  
	 Ransford). It follows that  because (d)  (a). Finally, since 

, 
	 it follows that (a)  (b) and hence (2.27) holds. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    It is useful to introduce the following notion. 
Definition: k times Continuously Differentiable 
	 Let  be a non-negative integer, let  and let . We say 

	  if  is  times continuously differentiable on  and  

	 provided . 
    If  is analytic on  we say  if  and its first  derivatives , , 

,  extend continuously to  and if there is  such that 
 

for all . 
Corollary 2.10.1: Criterion for Alpha-Hölder Class Extension to Boundary of Unit Disc 
	 Assume  is a non-negative integer and assume . Let  be 
	 real and let  be the Herglotz integral of . Then 

. 
Proof: 
	 Because , it is clear that  if . Assume 

zj = rje
iθj ∈ 𝔻

|zj | ≥
1
2

δ = |z1 − z2 | ≤
1
2

ωj := (1 − δ )zj

|u(z1) − u(z2) | ≤ |u(z1) − u(ω1) | + |u(z2) − u(ω(2) | + |u(ω1) − u(ω2) |

|u(zj) − u(ωj) | = ∫
rj

(1−δ)rj

∂u
∂t

(teiθj)dt (definition of ωj and δ )

≤ ∫
1

1−δ
(1 − t)α−1dt (assumption (c))

≤
δα

α
,

|u(ω1) − u(ω2) | ≤ |ω1 − ω2 | max
j=1,2

(1 − |ωj | )α−1 (assumption (c))

≤ δα (definition of ωj and δ )

⇔

|∇ ũ | = O((1 − |z | )α−1)
ũ ũ ∂𝔻

ũ f̃
f̃ ∈ Cα ⇒

˜̃f = − f + u(0)
⇔

□

k 0 ≤ α < 1 f ∈ C(∂𝔻)

f ∈ Ck+α f k ∂𝔻 ( d
dθ )k f ∈ Cα

α > 0
F(z) 𝔻 F ∈ Ck+α(𝔻) F k F′￼ F′￼′￼

⋯ F(k) 𝔻 C
|F(k)(z1) − F(k)(z2) | ≤ C |z1 − z2 |α

z1, z2 ∈ 𝔻

k 0 < α < 1 f ∈ C(∂𝔻)
F(z) = u(z) + i ũ(z) f

F ∈ Ck+α(𝔻) ⇔ f ∈ Ck+α(∂𝔻)

f ∈ Re( f ) f ∈ Ck+α(∂𝔻) F ∈ Ck+α(𝔻)
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	 . If  has Fourier series 

 

	 then  has Taylor series 

. 

	 Therefore , which has Fourier series 

, 

	 has Herglotz integral  and the corollary follows from a special case  
	 , which is Theorem 2.10. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Remark 2.15: Theorem 2.10 Fails when , Corollary 2.10.1 Fails when  
	 Theorem 2.10 fails when . The harmonic conjugate of a continuously 
	 differentiable function on  need not have a continuous derivative, and the 
	 conjugate of a Lipschitz function, that is, a function satisfying 

, 
	 need not to be a Lipschitz function. 
	 For the same reason, Corollary 2.10.1 fails when  and  is a non- 
	 negative integer.	  
    However, conjugation does preserve the Zygmund class. 
Definition: Zygmund Class 
	 The Zygmund class, denoted as , is the class of continuous functions  on 
	  such that 

. 

Definition: Zygmund Norm and Zygmund Function 
	 The Zygmund class has norm 

. 

    	 When , we say  is a Zygmund function. 
    Define 

 

where  is the Herglotz integral of . If , then (2.26) and 
(2.28), applied to  in the disc , gives us 

	 	 	 	     .	 	 	 (2.30) 
Conversely, if (2.30) holds, then integrating  along radii shows that 

f ∈ Ck+α(∂𝔻) f (θ )

f (θ ) ∼
∞

∑
n=−∞

aneinθ

F

F(z) = a0 + 2
∞

∑
n=1

anzn

d f
dθ

d f
dθ

∼
∞

∑
n=−∞

inaneinθ

izF′￼(z)
k = 0

□
α = 1 α = 0

α = 1
∂𝔻

| f (θ + t) − f (θ ) | ≤ M | t |

α = 0 k
⋄

Z* f
∂𝔻

sup
t>0

∥f (θ + t) + f (θ − t) − 2f (θ )∥∞

t
< ∞

∥f ∥Z* := ∥f ∥∞ + sup
t>0

∥f (θ + t) + t(θ − t) − 2f (θ )∥∞

t
f ∈ Z* f

|∇2u(z) | = |∇ux | = (|uxx(z) |2 + uyx(z) |2 )1/2

= |F′￼′￼(z) | =
2
π ∫

π

−π

eitf (t)
(eit − z)2

dt

F = u + i ũ f ∈ L1(∂𝔻) f ∈ Cα

ux ℬ1 − |z |
2

(z)
|∇2u(z) | = O((1 − |z | )α−2)

F′￼′￼
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 and . 
Thus (2.30) provides yet another characterization of  functions, in terms of second 
derivatives. Zygmund functions have a similar characterization. 
Theorem 2.11: Criterion for Zygmund Boundary Data with Zygmund Norm Bound 
	 Let  be real and let  be the Poisson integral of . Then the 
	 followings are equivalent: 
	 (a)	 . 
	 (b)	 . 
	 (c)	 . 
	 There is a constant  such that 
	 	 	 	 	     	 	 	 	 (2.31) 
	 and 

	 	    .	 (2.32) 

    Notice that by (2.30) and (2.32),  for . In particular, if , then  
and  are continuous. On the other hand, if  is Lipschitz, then clearly . To 
make our contents self-contained, we define the Lipschitz function formally and point 
out that a function lives in  is not necessarily Lipschitz. 
Definition: Lipschitz Function, Class of Lipschitz Function 
	 A function  such that  for all  and  where  is 
	 a constant independent of  and  is called a Lipschitz function. In particular, 
	 we denote  as the space of all Lipschitz functions. 
Definition: Norm on Class of Lipschitz Function 
	 The norm of  is defined to be 

. 

Remark 2.16: Zygmund Class, Lipschitz Class, and Alpha-Hölder Class 
	 Provided , one has 

 

	 That is to say, 
 for , 

	 where  is the space of continuously differentiable functions and  is the 
	 class of continuous functions.	  
Proof of Theorem 2.11: 
	 The logic is the same as in the proof of Theorem 2.10. First assume (a) holds 
	 and we establish (c) and the right hand side of (2.32). Then we assume (c) and 
	 prove (a) and establish the left hand side of (2.32). Finally we prove (a)  (b) 
	 and establish (2.31). 
	 Step I: (a)  (c) and right hand side of (2.32) 
	 Assume (a) holds. Fix , we may assume that  and  

	 . Because 

|∇u(z) | = O((1 − |z | )α−1) f ∈ Cα

Cα

f ∈ L∞(∂𝔻) u(z) f

f ∈ Z*
f̃ ∈ Z*
|∇2u(z) | = O((1 − |z | )−1)

C
∥ f̃ ∥Z* ≤ C∥f ∥Z*

∥f ∥Z*

C
≤ ∥f ∥∞ + sup

z∈𝔻
{(1 − |z | ) |∇2u(z) |} ≤ C∥f ∥Z*

Z* ⊂ Cα α < 1 f ∈ Z* f
f̃ f f ∈ Z*

Cα

f | f (x) − f (y) | ≤ C |x − y | x y C
x y

C0,1

f ∈ C0,1

∥f ∥C0,1 := ∥f ∥∞ + sup
t>0

∥f (θ + t) − f (t)∥∞

t

α < 1
Continuous Differentiability ⇒ Lipschitz ⇒ Zygmund

⇒ α-Hölder ⇒ Continuity

C1 ⊂ C0,1 ⊂ Z* ⊂ Cα ⊂ C α < 1
C1 C

⋄

⇔

⇒
z ∈ 𝔻 z = |z | = Re(z)

|z | >
1
2
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	 and  has Herglotz integral , we have 

 

	 and using (2.25) in the last relation yields 

 

	 where the middle relation holds by integration by parts and  comes from the  
	 bound in -Hölder continuity. 

	 Unfortunately, this trick does not help us with . Instead 

	 we apply (2.26) to  on , which yields 

. 

	 An integration in conjunction with the above two display then gives 

. 

	 Thus (c) is proved, and the right hand side of (2.32) holds. 
	 Step II: (c)  (a), and the left hand side of (2.32) holds 
	 Now assume (c) holds. Then by (2.30),  and  and  are both continuous 
	 by Theorem 2.10. Fix  and  with  and set . Then 

	     (2.33) 

(Figure 2.4: Choice of points in calculation) 
	 Because 

∫
eiθ

(eiθ − z)2
dθ = 0

f (−θ ) F(z )
∂2

∂x2
u(z) = ReF′￼′￼(z) =

1
π ∫

eit(f (t) + f (−t) − 2f (0))
(eit − |z | )3

dt

∂2

∂x2
u(z) = |ReF′￼′￼(z) | (assumption on  |z | )

≤
1
π ∫|t|≤1−|z|

∥f ∥Z*| t |
(1 − |z | )3

dt +
c
π ∫1−|z|<|t|≤π

∥f ∥Z*

| t |2 dt

≤ C(1 − |z | )−1∥f ∥Z*
c

α

| ImF′￼′￼(z) | =
∂2

∂x∂y
u

u :=
∂2

∂x2
u ℬ1 − |z |

2
(z)

∂3

∂y∂x2
u ≤

C∥f ∥Z*

(1 − |z | )2

∂2

∂y∂x
u(z) ≤ |F′￼′￼(0) | + ∫

|z|

0

C∥f ∥Z*

(1 − s)2
ds ≤ C′￼

∥f ∥Z*

1 − |z |

⇒
f ∈ Cα f f̃

θ t 0 < t ≤ π r := 1 −
t
π

f (θ + t) + f (θ − t) − 2f (θ ) = f (θ + t)−u(rei(θ+t))+f (θ − t)
−u(rei(θ−t))+2u(reiθ)−2f (θ )
+u(rei(θ+t))−u(reiθ )+u(rei(θ−t))−u(reiθ)
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, 

	 the last two terms on the right hand side of (2.33) are  by assumption 
	 (c). Using assumption (c) once again we have 

, 

	 an integration by parts shows that 

. 

	 Therefore when (c) holds, the sum of the first two lines of the right hand side 
	 of (2.33) is 

 

	 Thus (a) is proved and the left hand side of (2.32) is established following the 
	 constants in the previous argument. 
	 Step III: (a)  (b) and (2.31) 
	 Since  by Cauchy-Riemann equation, it follows that (a)  (b) 
	 and (2.31) follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  

2.4 Boundary Smoothness 
    Let  be a Jordan domain with boundary  and let  be a conformal mapping from 

 onto , so that  extends to a homeomorphism from  to the Jordan curve 
. In this section we examine the connection between the smoothness of  and 

the differentiability of  on . When  has some degree of smoothness, we also 
study the relation between the differentiability of  and the differentiability of 
its solution  to the Dirichlet problem at points of . 
  The results do not depend on the choice of the mapping  because any 
other such map has the form , with  (the set of all conformal self maps of 

). We first show that the smoothness of  in a neighborhood of  depends 
only on the smoothness of  in a neighborhood of . 
Theorem 2.12: Analytic Continuation of Riemann Maps Across Shared Arcs in Nested Jordan Domains 
	 Let  and  be Jordan domains such that  and let  
	 be an open subarc. Let  be a conformal map of  onto . Then  
	  has an analytic continuation across , and  on  
	 . 
Proof: 

u(rei(θ+t)) + u(rei(θ−t)) − 2u(reiθ) ≤ | t |2 sup
|ω|=r

∂2

∂θ2
u(ω)

O( | t | )

lim
s→1

(1 − s)
∂
∂s

u(seiα) = 0

f (α) − u(reiα) = ∫
1

r
(1 − s)

∂2

∂s2
u(seiθ)ds + (1 − r)

∂
∂r

u(reiα)

 
t
π (ur(rei(θ+t)) + ur(rei(θ−t)) − 2ur(reiθ)) + O(t)

≤
t
π

ur(rei(θ+t)) − ur(reiθ) +
t
π

ur(rei(θ−t)) − ur(reiθ) + O(t)

≤
2t2

π
sup
|ω|=r

∂2

∂r∂θ
u(ω) + O(t) ≤ C′￼′￼t .

⇒
|∇2 ũ | = |∇2u | ⇔

□

Ω Γ φ
𝔻 Ω φ ∂𝔻
Γ = ∂Ω Γ

φ ∂𝔻 Γ
f ∈ C(Γ)

uf Γ
φ : 𝔻 → Ω

φ ∘ T T ∈ ℳ
𝔻 φ φ−1(ζ )

Γ ζ

Ω1 Ω2 Ω1 ⊂ Ω2 γ ∈ ∂Ω1 ∩ ∂Ω2
φj 𝔻 Ωj

ψ := φ−1
2 ∘ φ1 φ−1

1 (γ) ψ′￼≠ 0
φ−1

1 (γ)

56



	 The analytic function  from  into  has a continuous and 
	 unimodular ( ) extension to the arc . By Schwartz reflection  
	  has an analytic and one-to-one extension to a neighborhood of  in   
	 and hence  on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Let  be an arc parameterized as . 
Definition: Tangent of Arc 
	 We say  has a tangent arc at  if 

	 	 	 	            	 	 	 	 (2.34) 

	 and 

	 	 	 	          	 	 	 	 (2.35) 

	 where . 
Definition: Unit Tangent Vector of Arc 
	 If both (2.34) and (2.35) are valid, then  has a unit tangent vector  at . 
	 Note that once  admits a tangent vector it admits a unit tangent vector by 
	 normalizing. 
    Except for reversals of orientation, the existence of a tangent at  and its value  
do not depend on the choice of the parameterization . 
Definition: Continuous Tangent of Arc 
	 We say that  has a continuous tangent if  has a tangent at each  and if 
	  is continuous on  (in ). 
Theorem 2.13: Criterion for Tangent and Continuous Tangent on Jordan Boundary 
	 The curve  has a tangent at  if and only if the limit 

	 	 	 	         	 	 	 	 (2.36) 

	 exists and is finite. In that case, 

	 	       .	 	 (2.37) 

	 The curve  has a continuous tangent if and only if  has a continuous 
	 extension to . Moreover, if  has a continuous tangent, then  for  
	 all  and  rectifiable (a rectifiable curve is a curve of finite length). 
    There exist Jordan domains  and conformal maps  such that  has a 
continuous tangent but . An example can be built from the connection in 
the previous section between conjugate functions and conformal maps. 
Example 2.3: Conformal Map with Continuous Tangent But Not Continuously Differentiable 
	 If  is continuous and , then , where  is a 

	 conformal mapping onto a Jordan domain, but 
 

	 may not be bounded above or below, but .	  
Proof of Theorem 2.13: 

ψ := φ−1
2 ∘ φ1 𝔻 𝔻

|ψ (z) | = 1 φ−1
1 (γ)

ψ φ−1
1 (γ) ℂ

ψ′￼≠ 0 φ−1
1 (γ)

□
Γ {ζ(t) : a < t < b}

Γ ζ0 := ζ(t0)

lim
t↓t0

ζ(t) − ζ0

|ζ(t) − ζ0 |
= eiτ

lim
t↑t0

ζ(t) − ζ0

|ζ(t) − ζ0 |
= − eiτ

0 ≤ τ ≤ 2π

Γ eiτ ζ0
Γ

ζ0 eiτ

t ↦ ζ(t)

Γ Γ ζ ∈ Γ
eiτ(ζ) Γ ζ

Γ ζ = φ(eiθ)

lim
𝔻∋z→eiθ

arg( φ(z) − ζ
z − eiθ )

lim
𝔻∋z→eiθ

arg( φ(z) − ζ
z − eiθ ) = τ(ζ ) − θ −

π
2

mod 2π

Γ arg φ′￼(z)
𝔻 Γ φ ∈ Cα(∂𝔻)

α < 1 Γ
Ω φ : 𝔻 → Ω ∂Ω

φ ∉ C1(∂𝔻)

u(eiθ) |u | <
π
2

u(eiθ) = arg φ′￼(eiθ) φ

ũ(eiθ) = − log |φ′￼(eiθ) |
ũ ∉ C1(∂𝔻) ⋄
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	 Set 

. 

	 Since  is holomorphic and  is the imaginary part of a holomorphic 

	 function, it follows that  is harmonic on . Moreover,  is continuous on 
	 . 
	 Step I: Criterion for Tangent 
	 If  has a tangent ar  or if the limit (2.36) exists at , then  is  
	 bounded on . Thus, in either case,  is the Poisson integral of  by an 
	 application of Corollary 1.4.1. Therefore, by Carathéodory’s Theorem 1.8, 
	  has a continuous extension to  if and only if  has a continuous exten- 
	 sion to , and if and only if  has a tangent at  by the definition (2.34) and  
	 (2.35) for tangent. Furthermore, (2.37) holds when  is continuous at  (the 
	 modulo term  comes from aperiodic). 
	 Step II: Criterion for Continuous Tangent 
	 We shall prove the sufficiency first, then the necessity, and finally the assertion 
	 in the moreover part. 
	 Step II.1: Sufficiency 
	 Now suppose  has a continuous tangent. Then  is continuous on  since 
	 this is the composition between two continuous functions. If , then 

 

	 is continuous on  and harmonic on  (use the same argument as we did for  	
	 in the first step). For , a direct computation yields 

. 

	 For , there exist  such that  such that 

 

	 Consequently, by using the above two displays, one obtains 
, 

	 with the convergence uniformly on  by Dini’s theorem (see Ransford), and 
	 hence  is the Poisson integral of the continuous function 

 

	 by (1.7) in Theorem 1.3. 
	 Step II.2: Necessity 
	 Now suppose  has a continuous extension to . For , the curve 

 
	 has tangent  satisfying 

v(z) := arg( φ(z) − ζ
z − eiθ )

φ(z) − ζ
z − eiθ

v(z)

v(z) 𝔻 v
𝔻∖{eiθ}

Γ ζ = φ(eiθ) eiθ v(z)
𝔻 v v(eiθ)

v eiθ v |∂𝔻
eiθ Γ ζ

v eiθ

2π

Γ τ ∘ φ ∂𝔻
h ≠ 0

Ah(z) := arg( φ(zeih) − φ(z)
z(eih − 1) )

𝔻 𝔻 v
|z | < 1

lim
h→0

Ah(z) = arg φ′￼(z)

|z | = 1 k 0 < |k | < |h |

arg( φ(zeih) − φ(z)
h ) = arg(φ(zeih − φ(z)) (Mean Value Theorem)

= (τ ∘ φ)(zeik) (Definition of τ ∘ φ)

lim
h→0

Ah(z) = (τ ∘ φ)(z) − arg(z) −
π
2

∂𝔻
arg(φ′￼)

(τ ∘ φ)(eiθ) − θ −
π
2

arg φ′￼(z) 𝔻 r < 1
Γr := {φ(reiθ) : 0 ≤ θ ≤ 2π}

ei(τ∘φ)(reiθ)
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, 
	 and  has a continuous extension to  by an application of  
	 Carathéodory’s Theorem 1.8. Then for , we have 

 

	 where . Therefore, 
, 

	 and a similar argumetn applies for : 
. 

	 Thus  has a continuous tangent by definition. 
	 Step II.3: Moreover Part of Criterion for Continuous Tangent 
	 If  has a continuous tangent, then by Theorem 2.9 (b), 

 

	 for all , where  depends on  and . Take , where 	 

	 . Let . Then for any , 

 

	 Therefore if , one has 

	            .	 (2.38) 

	 Sending  yields the rectifiability of  and  for all . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Let  be a non-negative integer and let . 
Definition: Alpha-Hölder Class for Arc 
	 We say that the curve  is of the class  if  
	 (i)	  is rectifiable. 
	 (ii)	 In the arc parameterization  

, 
	 	 the function  is  times continuously differentiable and 

 for . 

    Now we can state and prove the main result of this section. 
Theorem 2.14: Kellogg’s Theorem 
	 Let  and . Then the following conditions are equivalent: 
	 (a)	  is of class . 
	 (b)	 . 

ei(τ∘φ)(reiθ) = ieiθei arg φ′￼(reiθ)

ei(τ∘φ)(z) 𝔻∖{0}
h > 0

arg(φ(ei(θ+h)) − φ(eiθ)) = lim
r→1

arg(φ(rei(θ+h)) − φ(reiθ)) (Continuity)

= lim
r→1

τ ∘ φ(rei(θ+kr)) (Mean Value Theorem)

0 < kr < h
lim
h↓0

arg(φ(ei(θ+h)) − φ(eiθ)) = lim
z→eiθ

τ ∘ φ(z)

h < 0
lim
h↑0

arg(φ(ei(θ+h)) − φ(eiθ)) = lim
z→eiθ

τ ∘ φ(z) + π

Γ

Γ

sup
r<1 ∫ φ′￼(reiθ)

λ
dθ = sup

r<1 ∫ e−λ ˜(arg φ′￼)(reiθ)dθ =: Bλ < ∞

λ < ∞ Bλ φ λ λ :=
1

1 − α
0 < α < 1 a < b < a + π r < 1

∫
b

a
φ′￼(reiθ) dθ ≤ |b − a |α (∫

b

a
φ′￼(reiθ)

λ
dθ)1−α (Hölder's Inequality)

≤ |b − a |α B1−α
λ (Definition of Bλ)

a = θ0 < θ1 < ⋯ < θn = b
n

∑
j=1

φ(reiθj) − φ(reiθj−1) ≤ ∫
b

a
φ′￼(reiθ) dθ ≤ |b − a |α B1−α

λ

r → 1 Γ φ ∈ Cα α < 1
□

k 0 ≤ α < 1

Γ Ck+α

Γ

Γ = {γ(s) : 0 ≤ s ≤ ℓ(Γ) := length(Γ)}
γ k

dkγ
dsk

∈ Cα α > 0

k ≥ 1 0 < α < 1
Γ Ck+α

arg φ′￼∈ Ck−1+α(∂𝔻)
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	 (c)	  and  on . 
Remark 2.17:  in Theorem 2.14 Ruins Equivalence 
	 Note that if  and  then (a)  (c) but (a)  (b) still.	  
    We need an elementary lemma. 
Lemma 2.15: Hölder Continuity Equivalence for Analytic Functions and Its Inverse 
	 Let  be a positive integer, and let . Let  satisfying 
	  and . Then 

. 
Proof: 
	 The case  and  is clear since 

. 

	 Case I:  and  
	 If  and , the proof is by induction: if  and , then 
	  and because , 

. 

	 Hence . 
	 Case II:  and  
	 Now suppose that  and . If  then 

 

	 and so . 
	 Case III:  and . 
	 Finally, assume  and . If  then  and  can be 
	 written as a sum of products of the functions 

 
	 by applying chain rule. All these functions are , except perhaps , but 
	  and thus . The converse holds by swapping the role of 
	  and  in the above argument. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Proof of Theorem 2.14: 
	 We first prove (b)  (c), then we prove (c)  (a), finally we prove (a)  (b). 
	 Step I: (b)  (c) 
	 We first prove the sufficiency. 
	 Step I.1: (b)  (c) 
	 If , , then by Corollary 2.10.1, one has 

φ ∈ Ck+α(𝔻) φ′￼≠ 0 𝔻
α = 0

α = 0 k ≥ 1 ⇏ ⇔ ⋄

k 0 ≤ α < 1 f ∈ C1([0,1])
f′￼> 0 g ≡ f −1

g ∈ Ck+α ⇔ f ∈ Ck+α

α = 0 k = 1

g′￼(y) =
1

f′￼∘ g(y)
> 0

α = 0 k ≥ 2
α = 0 k ≥ 2 f ∈ Ck g ∈ Ck−1

f′￼∘ g ∈ Ck−1 f′￼> 0

g′￼=
1

f′￼∘ g
∈ Ck−1

g ∈ Ck

α > 0 k = 1
α > 0 k = 1 f′￼∈ Cα

|g′￼(y1) − g′￼(y2) | =
1

f′￼∘ g(y1)
−

1
f′￼∘ g(y2)

(Definition of g′￼)

≤
f′￼∘ g(y2) − f′￼∘ g(y1)

min | f′￼|2 (Minimizing Denominator)

≤ C |g(y2) − g(y1) |α (α-Hölder)
≤ C′￼|y2 − y1 |α (α-Hölder)

g′￼∈ Cα

α > 0 k ≥ 2
α > 0 k ≥ 2 f ∈ Ck+α g ∈ Ck g(k)

g(1), ⋯, g(k), f (2) ∘ g, ⋯, f (k) ∘ g
C1 f (k) ∘ g

f (k) ∘ g ∈ Cα g(k) ∈ Cα

f g
□

⇔ ⇒ ⇒
⇔

⇒
arg φ′￼∈ Ck−1+α(∂𝔻) 0 < α < 1
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. 
	 Taking exponential results in 

 
	 and . 
	 Step I.2: (c)  (b). 
	 Conversely, if  and , then 

 

	 and . 
	 Step II: (c)  (a) 
	 Assume (c) holds. If 

, 

	 then  and . Thus, a direct application of 
	 Lemma 2.15 yields 

. 
	 By (2.37) in Theorem 2.13, one has 

	 	 	            .	 	 	 (2.39) 

	 Since  and , we conclude from Corollary 2.10.1 
	 that 

 and  is of the class , 

	 as desired. 
	 Step III: (a)  (b). 
	 Now assume (a) holds, i.e., assume  is of class . Then by an application 
	 of Theorem 2.13, we obtain ; and by (2.39), we have 

. 

	 Step III.1: (a)  (b) when . 

	 If , so that , then 

	 	 	  	 	 (2.40) 

	 so that by (2.38), 

 

	 for any . Thus, by Corollary 2.10.1, 
 and . 

	 Thus, by the definition of , we have 
 and . 

	 But then by (2.39) and (2.40), . Moreover, by the equivalent relat- 
	 ions (a) and (b) in Theorem 2.10, we obtain 

log |φ′￼| ∈ Ck−1+α

φ′￼∈ Ck−1+α(𝔻)
φ′￼≠ 0

⇒
φ′￼∈ Ck−1+α(𝔻) φ′￼≠ 0

ei arg(φ′￼) =
φ′￼

|φ′￼|
∈ Ck−1+α

arg φ′￼∈ Ck−1+α(∂𝔻)
⇒

s(θ ) := ∫
θ

0
φ′￼(eit) dt

s′￼> 0 s′￼(θ ) = |φ′￼(eiθ) | ∈ Ck−1+α

θ′￼(s) ∈ Ck−1+α

arg
dγ
ds

= arg φ′￼(eiθ(s)) +
π
2

+ θ(s)

arg φ′￼∈ Ck−1+α θ′￼∈ Ck−1+α

dγ
ds

∈ Ck−1+α Γ Ck+α

⇒
Γ Ck+α

arg φ′￼∈ C
d(γ ∘ s)(θ )

ds
∈ C

⇒ k = 1

k = 1
dγ
ds

∈ Cα

dγ
ds

s(θ1) −
dγ
ds

s(θ2) ≤ C |s(θ1) − s(θ2) |α

dγ
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s(θ1) −
dγ
ds

s(θ2) ≤ C |θ1 − θ2 |(1−ε)α

ε > 0
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 and . 
	 This concludes the case when  according to the definition of . 
	 Step III.2: (a)  (b) when  

	 Finally, when  we use induction. If  and if , 

	 then by (2.39), , so that 
. 

	 Using Theorem 2.10 once more, it follows that , as desired 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   Let  be a non-negative integer and let . If  is of class  and if 

, we say  if , when viewed as a function of arc 
length on . 
Corollary 2.14.1: Change of Hölder Class Coefficients under Conformal Map on Arc 
	 Suppose  is of class , where , and suppose that . 
	 Set 

 where  and . 
	 Let  be a conformal map of  onto , let  be the Herglotz integral of , 
	 and let . Then 

. 
Proof: 
	 Using Corollary 2.10.1, Theorem 2.14, and Lemma 2.15. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    The same result holds for finitely connected Jordan domains whose boundary curv-
es are of class , except that harmonic conjugate and Herglotz integrals cannot be 
defined in multiply connected domains. 
Corollary 2.14.2: Change of Hölder Coefficients under Conformal Maps on F.C.J.D. 
	 Let  be a fininte union of pairwise disjoint  Jordan curves, where  
	 , and let  be a  function of arc length on each compo- 
	 nent of . Set 

 where  and . 
	 Then  and its first  partial derivatives extend continuously to  
	 and 

 
	 for all , where  denotes any -th partial derivative. 
Proof: 
	 By Theorem 2.12 it suffices to work in some neighborhood of . Let  
	 be the component of  such that . Let  be that component of  
	 such that , and let  be the solution to the Dirichlet problem on   
	 with boundary value . 
	 Near ,  has the required smoothness by Corollary 2.14.1. If  is a confor- 
	 mal map of  onto , then 

 is harmonic on  
	 for some ,  is continuous on , and  on . Now according  

s′￼(θ ) = |φ′￼(eiθ) | ∈ Cα s ∈ C1+α

k = 1 s
⇒ k ≥ 2

k ≥ 2
dγ
ds

∈ Ck−1+α s(θ ) ∈ Ck−1+α

arg φ′￼∈ Ck−1+α

s′￼= |φ′￼| = ∈ Ck−1+α

s ∈ Ck+α

□
ℓ 0 ≤ β ≤ 1 Γ Ck+α

f ∈ C(Γ) f ∈ Cℓ+β(Γ) ( f ∘ γ)(s) ∈ Cℓ+β

Γ

Γ Ck+α k + α > 1 f ∈ Cℓ+β(Γ)

n + σ := min(k + α, ℓ + β ) 0 < σ < 1 n ∈ ℤ+ ∪ {0}
φ 𝔻 Ω G f ∘ φ

F := G ∘ φ−1

F ∈ Cn+σ(Ω)

□

Ck+α

∂Ω Ck+α

k + α > 1 f ∈ C(∂Ω) Cℓ+β

∂Ω
n + σ := min(k + α, ℓ + β ) 0 < σ < 1 n ∈ ℤ+ ∪ {0}

u(z) := uf (z) n Ω

|Dnu(z1) − Dnu(z2) | ≤ K |z1 − z2 |σ

z1, z2 ∈ Ω Dn n
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	 to Remark 2.8, the reflection of  extends to be harmonic across . Hence 
	  and 

 
	 has as much smoothness as  and  both have. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Corollary 2.14.2 answers Question 1 from the end of Section 2.2. The next coroll-
ary answers Question 2. 
Corollary 2.14.3: Absolute and Hölder Continuity of Harmonic Measure on F.C.J.D. 
	 If  consists of finitely many pairwise disjoint Jordan curves of class , 	  
	 where , then 

	 	 	               .	 	 	 (2.41) 

	 In other words, harmonic measure for  is absolutely continuous with  
	 respect to the arc length on , and the density 

 

	 is of class  and satisfies 

	 	 	 	 	       .		 	 	 	 (2.42) 

	 for positive constants  and . 
Proof: 
	 Let  be a conformal map from  onto , where  consists of analytic 
	 Jordan curves. If  and , then 

 

	 and 

 

	 by Corollary 2.14.2 and the uniqueness of Green function (by Lindelöf’s 
	 Lemma 1.1). By Remark 2.12, harmonic measure is conformally invariant 
	 and now (2.42) follows from the case when  is analytic, i.e., by the result 
	 Corollary 2.6.1. Finally, using Corollary 2.14.2 once more, 

. 

	 Therefore, (2.42) holds because  on  by Theorem 2.14. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    When  is of class , harmonic measure is absolutely continuous with respect to 
the arc length, but the density may not be continuous, bounded, or even bounded 
below. 
Example 2.4: Harmonic Measure  Arc Length  Bounded Density 
	 There is a simply connected Jordan domain  such that  but such that 
	 no conformal map  is of class  on . Worse yet,  can have 
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	 infinite non-tangential limit at some point on .	  
    The following example illustrates how Green’s theorem can be applied when  is 
of class , without first mapping to a domain with real analytic boundary. 
Example 2.5: Green’s Theorem Applied to F.C.J.D. without Real Analytic Boundary 
	 Green’s theorem can be used on a finitely connected domain bounded by a  
	 finite number of pairwise disjoint  curves with functions  and  in 
	 .	  

Summary of Chapter 2 
  In this chapter, we solve the Dirichlet problem on a domain bounded by a finite 
number of Jordan curves. Since solving the Dirichlet problem on a domain  is 
equivalent to constructing a harmonic measure on , our aim is to generalize the 
harmonic measure to a broader class of boundary. 
   In the first section we introduced the Schwartz alternating method (see Remark 
2.2) to prove Solution to Dirichlet Problem on Finitely Connected Jordan 
Domain with Bounded Piecewise Continuous Boundary Function. This result 
relaxes the boundary condition from continuous to bounded piecewise continuous, 
while extending the Dirichlet problem from a simply connected domain to a Jordan 
domain bounded by finitely many Jordan curves. Since the Dirichlet problem on  is 
solved, the construction of a Harmonic Measure (over Finitely Connected Jordan 
Domain) is immediate. In particular, the harmonic measure we constructed is Borel 
there and satisfies Harnack’s inequality in conjunction with the uniform boundedness. 
The Schwartz alternating method relies on Lindelöf’s maximal principle Lemma 1.1, 
hence the piecewise continuity, which is necessary for Lemma 1.1, cannot be 
relaxed, as Remark 2.5 demonstrated. 
   In the second section, we study the Green function and the Poisson integral. We 
first introduced the Green Function with Pole (over Bounded Domain) along with 
some elementary properties in Remark 2.6. We extended the definition to unbounded 
domain Green Function with Pole (over Unbounded Domain), and finally 
extended the definition to Green Function with Pole (under Conformal Mapping). 
In particular, the Green function in all modes are uniquely determined by (iii), (iv), 
and (v) in Remark 2.6, via an application of Lindelöf’s maximal principle Lemma 
1.1.  Moreover, Remark 2.7  tells us that the Green function is conformal invariant 
on finitely connected Jordan domain. We then established the connection between 
Green function and conformal mapping via Green Function as Log of Conformal 
Mapping, we defined Analytic Arc and Jordan Analytic Curve so that we can 
work with Green function under conformal mapping. We showed that Finitely 
Connected Jordan Domain Has Partition and Homeomorphism Extension on the 
Boundary. The fact that the Green function is symmetric in the space variables is 
proved in Theorem 2.4. We then proved Sufficiency for Harmonic Extension to 
Analytic Curve over Finitely Connected Jordan Domain, from which the formula 
for harmonic measure that generalizes the Poisson integral on  is provided via 
Green function in Theorem 2.6. The formal definition for Poisson Kernel (over 
Finitely Connected Jordan Domain) is immediate, which generalizes our previous 
definition in the unit disc . Next, we proved that the harmonic measure is absolute 

∂𝔻 ⋄
∂Ω

C1+α

C1+α u v
C1(∂Ω) ∩ C2(Ω) ⋄

Ω
∂Ω

Ω

𝔻

𝔻
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continuous with respect to the arc length on  and the density is real analytic there 
in Corollary 2.6.1. Finally, the Solution to Dirichlet Problem over Finitely 
Connected Jordan Domain with Bounded Borel Boundary Data is proved. This 
result relaxes piecewise continuity to Borel, hence results in an alternative definition 
for harmonic measure.  
  The rest of this chapter is to answer two questions that generalize our result in 
Corollary 2.6.1. The first is to translate the boundary condition to the boundary 
smoothness and the second is to relax the real-anlyticity. The main result is Kellogg’s  
Theorem 2.14, which relies on the study of modes of continuity in Section 2.3. 
   Heuristically, the harmonic minorant (respectively, harmonic majorant) serves as 
the harmonic correction for continuity. In the third section, we defined the harmonic 
correction for differentiability, namely, Harmonic Conjugate (Conjugate 
Function). We proved that Non-Tangential Limit for Harmonic Conjugate Exists 
Almost Everywhere and established Connection Between Harmonic Conjugate 
and Conformal Map. The harmonic conjugate does not behave well, as Example 
2.1 suggest, a bounded continuous boundary function may have unbounded harmonic 
conjugate. This forces us to control the unbounded nature for harmonic conjugate, 
and one of the attempts is Zygmund's Exponential Integrability for Harmonic 
Conjugate. We defined the Alpha-Hölder Class and Alpha-Hölder Continuous 
Function, and Alpha-Hölder Norm, Herglotz Integral of Alpha-Hölder 
Continuous Class to understand the room between continuously differentiability and 
continuity. We proved Criterion for Alpha-Hölder Continuous Class with Norm 
Bound, defined k times Continuously Differentiable, and proved Criterion for 
Hölder Extension to Boundary of Unit Disc. We defined Zygmund Class and 
Zygmund Norm and Zygmund Function and proved Criterion for Zygmund 
Boundary Data with Zygmund Norm Bound. Finally, the previous classes, in 
conjunction with Lipschitz Function, Class of Lipschitz Function and Norm on 
Class of Lipschitz Function enables us to understand the room for between 
continuously differentiability and continuity, illustrated in Remark 2.16.  
  The main result of the last section, and perhaps this chapter, is the promised 
Kellogg’s Theorem 2.14. For us to state and prove it, we first proved Analytic 
Continuation of Riemann Maps Across Shared Arcs in Nested Jordan Domains. 
We defined modes of tangent: Tangent of Arc, Unit Tangent Vector of Arc, and 
Continuous Tangent of Arc. Then we proved Criterion for Tangent and 
Continuous Tangent on Jordan Boundary. In particular, Conformal map with 
continuous tangent may not be continuously differentiable, as illusrated in Example 
2.3. We defined the Alpha-Hölder Class for Arc and proved Kellogg's Theorem via 
Hölder Continuity Equivalence for Analytic Functions and Its Inverse. The 
Kellogg’s theorem is so important that the smoothness of the boundary function can 
be understood via the smoothness of curves on the boundary; and the degree of 
smoothness on arc can be found via Corollary 2.14.1. The answer to the first 
question is for the change of degree of smoothness on finitely connected Jordan 
domain, which is answered in Corollary 2.14.2. Finally, the answer to the second 
question, which relaxes the real analyticity hence generalized Corollary 2.6.1, is 
demonstrated in Corollary 2.14.3. We should keep in mind that the density between 

∂Ω
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harmonic measure and arc length may be unbounded even they are absolutely 
continuous with respect to each other, the counter-example is given in Example 2.4. 

3. Potential Theory 
    The goal of this chapter is to solve the Dirichlet problem on an arbitrary domain . 
There are three traditional ways to solve the problem: 
	 (i)	 The Wiener method is to approximate  from inside sub-domains  
	 	 of the type studied in Chapter 2 and to show that the harmonic measure 
	 	  converges weak  to a limit measure on . With Wiener’s 
	 	 method one must prove that the limit measure  does not  
	 	 depend on the approximating sequence . 
	 (ii)	 The Perron method associates to any bounded function  on  a  
	 	 harmonic function  on . The function  is called the upper Perron 
	 	 envelip of a family of subharmonic functions constrained by  on . 
	 	 Perron’s method is elegant and general. With Perron’s method the 	 	
	 	 difficulty is linearity; one must prove that 

, 
	 	 at least for  continuous. 
	 (iii)	 The Brownian motion approach, originally from Kakutani in 1944, 	 	
	 	 identifies  with the probability that a random moving particle, 
	 	 starting at , first hit  in the set . This method has considerable 
	 	 intuitive appeal, but it leaves many theorems hard to reach. 
    We shall follow Wiener’s method and use the energy integral to prove that the limit 

 is unique. This leads to the notion of capacity, equilibrium distribution, 
and regular point and to the characterization of regular points by Wiener series. 
  For the Perron method see Ahlfors 1979 or Tsuji 1959. Appendix F includes 
Kakutani’s theorem for the discrete version of Brownian motion. 
    We conclude this chapter with some potential theoretic estimates for harmonic me-
asures. 

3.1 Capacity and Green Function 
    Let  be a compact plane set such that  is a finitely connected Jordan 
domain. By Chapter 2 and a conformal mapping, we see that  has Green function 

 with pole at , and if , by (2.6), one has 
 

where  is harmonic on  by Remark 2.6 (iv), by Remark 2.6 (i)  is 
continuous on , and by Remark 2.6 (iii) one has 

, . 
(Recall that  is harmonic at  if  is harmonic on a neighborhood of ). 
    Our goal in this section is to (i) extend the definition for Green function to the fini-
tely connected Jodan doamin, (ii) show that the capacity for approximating sequence 

 converges to the capacity for  and the result is independent of the choice of 
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, and (iii) calculate the logarithmic capacity for some elementary sets that are 
often encountered. 
Definition: Robin’s Constant 
	 The quantity 

 
	 is called Robin’s constant for , and we have 
	 	 	       as .	 	 (3.1) 
    Note that as , the Robin’s constant is the harmonic correction with both arg-
ument being infinity. It may happen that the Robin’s constant is , hence we take the 
exponential to define the capacity. Here it is understood that . 
Defintion: Logarithmic Capacity 
	 Define the logarithmic capacity of  to be 

. 
	 Thus  in the case at hand. When ,  is called polar. 
Remark 3.1: Log Capacity Scaling under Univalent Conformal Map 
	 Let  and  be finitely connected Jordan domains such that  and 	 	
	  for . Assume there is a conformal map  from  onto 
	  such that for  sufficiently large, one has 

 

	 with . Then 
, 

	 so that by (3.1), 
 

	 and 
	 	 	 	 	 .	 	 	 	 (3.2) 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Proposition 3.1: Logarithmic Capacity of Closed Disc	  
	 The capacity of a closed disc is the radius of the disc, i.e.,  
	 for  for some . 
Proof: 
	 The desired result follows from 

 
	 by Theorem 2.2. 	  
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Now let  be any compact plane set and unite  for the component of  such 
that . Fix a sequence  of finitely connected domains such that 

, 
such that 

, 

{Ωn}n≥1

γ := γ(E ) := h(∞, ∞)
E
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∞
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E
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gΩ1
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⋄
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□
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and such that  consists of  Jordan curves for some . Define 
.  

Theorem 3.2: Capacity and Robin Constant Independent of Approximating Sequence 
	 The definition for logarithmic capacity and Robin’s constant we have constr-	 
	 ucted are independent of the choice of the approximating sequence . 
Proof: 
	 Because , it follows from an ordinary maximum principle for 	 	
	 harmonic functions that 

 on , 
	 and hence that 

 and . 
  	 Now define 
	 	 	 	        .	 	 	 	 (3.3)	 	

	 Because  is an increasing function of , an interlacing of the domains 	
	  shows that the definition (3.3) does not depend on the choice of the 	 	
	 sequence . Note that if , then by definition, 
	 	 	    .	 	 (3.4) 
	 By definition, the Robin constant 

 

	 is Robin’s constant for the arbitrary set . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   Now we can talk about some elementary properties for logarithmic capacity and 
Robin’s constant. Scaling under univalent conformal mapping has already been 
offered in Remark 3.1. 
Proposition 3.3: Monotonicity for Capacity and Robin’s Constant 
	 If  then  
	 	 	          and .	 	 	 (3.5) 
Proof: 
	 This is an immediate consequence from (3.3). 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    If , then 

, 

and by Harnack’s principle 
 

defines a harmonic function  having expansion 
	 	 	           	 	 	 (3.6) 
at infinity. When , the symmetry (2.9) in Theorem 2.4 shows that 
	 	 	 	        	 	 	 	 (3.7) 

exists for all  for , and  satisfies condition (iii), (iv), and (v) in  
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Remark 2.6, hence uniquely identified. 
Definition: Green Function with Pole (over F.C.J.D.) 
	 The function  satisfies (3.7), (iii), (iv), and (v) in Remark 2.6 is the 
	 Green function for  with pole at . 
    Using our definition for capacity in conjunction with the univalent conformal map-
ping, the following result 
Proposition 3.4: Logarithmic Capacity for Interval 

	 Let  be two real numbers. Then . 

Proof: 
	 Suppose  is compact and connected. Let  be the component of  such 
	 that  and let  be the conformal mapping such that for 
	  sufficiently large, one has 

 

	 with . For , 
 

	 is bounded by an analytic Jordan curve and 

. 

	 Then by (3.7), as , . Then using Proposition 3.1 in  
	 the first equality and (3.2) in the second, one has 

. 
	 Consequently, for , the normalized conformal map has scaling  

	 factor  with respect to  being . It follows that 

 

	 as desired. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Proposition 3.5: Log Capacity Lower Bound for Subset of Unit Disc 

	 If  then , where  denotes the usual  

	 Lebesgue measure. 
Proof: 
	 If  is an arc on , then after a conformal mapping, Proposition 3.4 gives 

. 

	 Because of (3.3), we may assume that  is a finite union of arcs. Define 

, 

	 and let . Then by definition of harmonic conjugate and  
	 (2.23), one has 
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 and  on . 

	 Therefore, 
 

	 on  and . Hence  maps 

	  into the right half plane and . Now 

 

	 is superharmonic on  and 
. 

	 By the maximum principle,  in  so that 
 for all . 

	 For  sufficiently large, 

 

	 so that by (3.1), 

. 

	 It follows that 

, 

	 as desired. 
	 	 	 	 	 	 	 	 	 	 	 	 	  

3.2 The Logarithmic Potential 
    Let  be a finite, compactly supported signed measure. 
Definition: Logarithmic Potential 
	 The logarithmic potential of  is the function 

. 

   Note that the logarithmic potential can also be defined as , the 

only difference is that in our definition the log potential is a superharmonic function, 
and the alternative definition makes the log potential become subharmonic. 
Remark 3.2: Log Potential Converges Absolutely Lebesgue-Almost Everywhere 
	 By Fubini’s theorem, the integral  is absolutely convergent for -almost 
	 everywhere . In particular, since we are working with the plane, the integral 
	  is absolutely convergent for area-almost every .	  
   Note that the name for the following lemma is not always correct! It depends on the 
way we define the log potential, as prescribed. 
Lemma 3.6: Log Potential as Superharmonic Function (In Our Setting) 
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4 ) + ⋯

−log sin( Leb(E )
4 ) ≥ γ(∂Ωn) → γ(E )

Cap(E ) ≥ sin( Leb(E )
4 )

□

μ

μ

Uμ(z) := ∫ log
1

|ζ − z |
dμ(ζ )

∫ log |ζ − z |dμ(ζ )

Uμ Leb
z

Uμ z ⋄
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	 If , the log potential  is lower semicontinuous and superharmonic. 
Proof: 
	 The lemma holds because for  fixed, the function 

 

	 is lower semicontinuous and superharmonic. Moreover, since for positive  
	 measure , the integration preserves subharmonicity and lower semicontinuity, 
	 result follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   The next theorem connects the notions of log potential, Green function, capacity, 
and harmonic measure. Suppose  is bounded by a finite family of disjoint 

 Jordan curves, , write  for the harmonic measure of  relative to , 

	 	       	 (3.8) 

where the second and the third relation holds by Corollary 2.14.3. 
Theorem 3.7: Fundamental Identity for Log Potential 
	 If  is connected and bounded by finitely many pairwise disjoint 
	  Jordan curves, then 
	 (a)	 The integral  is absolutely convergent at every . 
	 	 	 	 	 	 	 (Absolutely convergent Log Potential) 
	 (b)	 The potential  is continuous on . 
	 	 	 	 	 	 	 	      (Continuity of Log Potential) 
	 (c.1)	 For , 
	 	 	 	         .	 	 	 	 (3.9) 
	 (c.2)	 For , 
	 	 	 	 	      .		 	 	 	 (3.10) 
	 (c.3)	 For , 
	 	 	 	 	      .		 	 	 	 (3.11) 
   The identity (3.9) is also known as the fundamental identity for Green function. The 
identity reads as the Green function with hole at infinity equals to the Robin’s 
constant of the exterior domain subtracts the harmonic measure of infinity relative to 
the domain. Moreover, the reason that the identity is fundamental since it reflects the 
way we solve the Dirichlet problem: in Wiener and Brownian motion approaches, we 
use Robin’s constant as the subtractor; in Perron’s approach, the subtractor is Perron’s 
envelop. 
Remark 3.3: Harmonic Measure of  Relative to  as Equilibrium Measure 
	 Later we shall see that  is the unique probability measure on  such that  	
	 is constant on . For this reason  is called the equilibrium distribution of . 
    In particular, every equilibrium measure is a harmonic measure but the converse is 
not true. This concept is helpful in two ways, we make a remark for two 
interpretations: 
Remark 3.4: Harmonic Measure as Inner Measure 

μ > 0 Uμ(z)

ζ

z ↦ log
1

|ζ − z |

μ

□

Ω := ℂ∞∖E
C1+α α > 0 μE ∞ Ω

dμE := dω(∞, ⋅ ,Ω) =
−1
2π

∂g(ζ, ∞)∂ ⃗nζds = P∞(ζ )ds

Ω := ℂ∞∖E
C1+α

UμE
(z) z ∈ ℂ

UμE
ℂ

z ∈ Ω
g(z, ∞) = γ(E ) − UμE

(z)
z ∈ Ω

UμE
(z) < γ(E )

z ∈ ℂ∞∖Ω
UμE

(z) = γ(E )

∞ Ω
μE E Uμ

E μE E
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	 The equilibrium measure  has constant log potential on exterior domain by 
	 Remark 3.2. Then the fundamental identity for Green function (3.9) tells us  
	 that: At equilibrium state, the Green function equals to the Robin’s constant 
	 of exterior domain minus a constant term. Moreover, since Robin’s constant 
	 is the magnitude of the log energy (different in a minus sign), this tells us that 
	 at equilibrium state, the Green function equals to the log energy of the exterior 
	 domain. Therefore, the equilibrium measure, as a ‘mass distribution’ to the 
	 harmonic functions approximating  from inside, can be regarded as an inner 
	 measure. Substituting Robin’s constant by Perron’s envelop, the same holds for 
	 Perron’s approach.	  
    The definition for harmonic measure  is then clear: Note that the harmo-
nic measure is a transition density, i.e. it is a harmonic in  and a probability measure 
in . When equilibrium, then the probability measure for  is a constant, hence the 
harmonic measure is itself the solution to the Dirichlet problem, which behave like an 
inner measure. On the other hand, when the equilibrium state is not obtained, the 
harmonic measure still behave like an inner measure, but with conditioning on the 
exterior domain. In all scenarios, our interpretation is correct. 
    The second interpretation is that if we are given a collection of harmonic measure 
indexed by time , then  should converge to an equilibrium 
measure when . Thus, the equilibrium measure can be regarded as the 
asymptotic behavior of the harmonic measures. Moreover, consider a collection of 
harmonic measures that starts at equilibrium, then not-equilibrium, and finally 
converge to equilibrium; then the equilibrium state is recurrence. This interpretation 
opens the way to the study of stochastic solution to Dirichlet problems. 
Proof of Theorem 3.7: 
	 We can assume  (otherwise scaling and translating ). 
	 Step I: Assertion (a) 
	 Clearly, the integral  is absolutely convergent at all  since 

 

	 by the definition of log potential and (3.1), and 

 

	 by the definition of Robin’s constant. 
	 Step II: (c.1) for  and (c.2) 
	 For fixed , 

	 	        ,		 (3.12) 

	 by definition of log potential and Green function. Because the right hand side  
	 of (3.12) satisfies (iii), (iv), and (v) in Remark 2.6, they uniquely determine a 
	 Green function. Now, sending  yields 

, 

μE

∂Ω

⋄
ω(z, E, Ω)

z
E E

t ∈ ℝ {ωt(z, E, Ω)}t∈ℝ
t → ∞

0 ∉ Ω Ω

Uμ(z) z ∉ ∂Ω

g(z, ∞) = log |z | − ∫∂Ω
log |ζ |dω(z, ζ )

γ(E ) = − ∫∂Ω
log |ζ |dω(z, ζ )

z ∉ ∂Ω
z0 ∈ Ω

g(z, z0) = log
z

z − z0
− ∫∂Ω

log
ζ

ζ − z0
dω(z, ζ )

z → ∞

g(∞, z0) = γ(E ) − ∫ log
1

|ζ − z0 |
dμE(ζ ) = γ(E ) − UμE

(z0)
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	 where the first relation holds by (3.1), definition for Robin’s constant, and  
	 (3.8). The second relation holds by the definition of log potential. 
	 For , (c.1) is then a consequence of the symmetry of Green function via 
	 Theorem 2.4, i.e., . Then because  on  by 
	 Remark 2.6 (ii), (c.1) implies (c.2). 
	 Step III: (c.3) for  

	 For ,  is harmonic on a neighborhood of  and 

	 one has 

 

	 where the second equality holds by integrating both sides of the first equality 
	 with respect to  and using the property of log . 
	 Therefore (c.3) holds for . 
	 Step IV: (b) and (c.1), (c.3) for . 
	 If , then 

 

	 where the first inequality holds by the lower semicontinuity (l.s.c.) of  by 
	 Lemma 3.6, the second inequality holds by the fundamental identity for Green 
	 function in (3.9) in conjunction with the positiveness of Green function by 
	 Remark 2.6 (ii), and the last inequality holds since . 
	 Since the integrand is bounded below, that means the integral  converges 
	 absolutely. By Cantor’s tour,  consists of  curves with  
	 where  is the Lebesgue measure. Then by the superharmonicity of  in 
	 Lemma 3.6 and the continuity of , 

 

	 where the first relation holds by taking  and using (c.1), supermean 
	 inequality of superharmonic function , and continuity of Green function. 
	 The second relation holds by the definition of Robin’s constant and continuity 
	 of Green function. The notation  denotes the ball centered at  with radii 
	 . Consequently, (c.1) and (c.3) holds at , and it follows that  is 
	 continuous on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Let  be a compact set with  and let  be as in the first se-
ction. Then by (3.7) and Theorem 3.7, any weak  limit point  of the sequence 

 satisfies (c.1) and (c.2) on . In the fourth section we will use the energy 
integral to show that there is a unique weak  limit  independent of the sequence  

z ∈ Ω
g(∞, z) = g(z, ∞) g(z, ∞) > 0 Ω

z ∉ ∂Ω
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= − γ (E ) + UμE
(z) (Definition of Robin's constant and log potential)
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dξdη
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and to establish a version of (c.3) for  on . A different proof of the uniqueness of 
the weak  limit  for a bounded domain  is given in Exercise 4. 

3.3 The Energy Method 
    Let  be a signed measure with compact support. 
Definition: Finite Energy 
	 If 

	 	 	    	 	 	 (3.13) 

	 we say that  has finite energy. 
Definition: Energy Integral 
	 If  has finite energy we define the energy integral  by 

. 

Remark 3.5: Positive Definiteness of Energy Integral and Zero Total Mass 
	 The energy integral has a very important property: It is positive definite on 
	 the space of signed measures  with positive energy and zero intetal, i.e., 
	 the total mass .	  
Theorem 3.8: Positive Definiteness for Energy Integral and Vanishing Condition 
	 If (3.13) holds and if , then . Moreover, if  then 
	 . 
Proof: 

	 Denote , by Green’s theorem 

	 	 	        	 	 	 (3.14) 

	 whether  has compact support, . The proof is divided into  
	 two cases, in the first case we consider , i.e.,  is a compactly suppo- 
	 rted absolutely continuous signed measure with respect to the Lebesgue meas- 
	 ure. In the second case we prove the signed measure, and use mollification  
	 argument to recover the absolute continuity via a kernel and use the special  
	 case to derive the desired result. 
	 Case I: Special case for absolutely continuous signed measure 
	 First consider the special case of an absolutely continuous signed measure 

, 
	 where  has compact support and satisfies 

	 	 	 	 	   .	 	 	 	 (3.15) 

	 Note that  serves as the kernel of , hence the convolution 
. 

	 For  sufficiently large, one has 

UμE
E

* {μEn
}n≥1 Ω

ν

∬ log
1

|z − ζ |
d |ν | (ζ )d |ν | (z) < ∞

ν
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I(ν) := ∬ log
1

|z − ζ |
dν(ζ )dν(z) = ∫ Uν(z)dν(z)

ℳ
ν(ℂ) = 0 ⋄

ν(ℂ) = 0 I(ν) ≥ 0 I(ν) = 0
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L(z) := log
1

|z |

f (z) =
−1
2π ∬ L(z − w)Δ f (w)dudv

f ∈ C∞ w = u + iv
ν ≪ Leb ν

dν := h(z)d xdy
h ∈ C∞

∬ h(x)d xdy = 0

h ν
Uν := L * h ∈ C∞

|z |
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	 	 	 	 	 	 	 	 	 	 	 	 (3.16) 
	 and 

	 	 	 	 	     	 	 	 	 (3.17) 

	 by the same argument. For any  with compact support, one has 

 

	 where the last equality holds by (3.14), definition , and the  
	 fact that  and  both have compact support. Therefore, 

. 
	 Now, combining (3.16), (3.17), and Green’s theorem using in the last equality, 
	 we have 

 

	 This shows that  in this special case when  is an absolutely continu- 
	 ous signed measure. Moreover, if , then  and 

, 

	 hence , as desired. 
	 Case II: General case via mollification argument 
	 To derive the full Theorem 3.8 from the special case we apply a standard mol- 
	 lification argument. Let  be a signed measure not necessarily with a compact 	  
	 support. Let  be a compactly supported analytic function such that 

|Uν(z) | = (L * h)(z)

= ∬ log
1

|z − w |
h(w) du dv (Definition of convolution)

≤ ∬ log
|z |

|z − w |
|h(w) | du dv

≤
C

|z | ∬ |h(w) | du dv (Taylor expansion for large  |z | )

=
C′￼
|z |

(since h compactly supported and integrable)
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|z |2

f ∈ C∞

∬ ΔUν fd xdy = ∬ UνΔ fd xdy (Green's theorem and Fubini)

= − 2π∬ h fd xdy
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h f

ΔUν = − 2πh
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=
−1
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=
1
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	 	 (i)	  is radical, i.e., . 
	 	 (ii)	  is positive definite, i.e., . 

	 	 (iii)	  has Lebesgue integral , i.e., . 

	 Note that  is a probability density kernel. Set 
 

	 and let  be the absolutely continuous measure with density 

 

	 (since  and  are compactly supported, so is their convolution). Then for 
	 all continuous function , 

	 	 	 	 	   ,	 	 	 	 (3.18) 

	 that is,  
. 

	 Furthermore,  has compact support and satisfies (3.15) and it is then  
	 the kernel for the absolutely continuous measure . Thus 

 

	 where 

 

	 and consequently 

. 

	 Now because  is assumed to be radical,  is also radical. Moreover, 
	 since  is superharmonic by definition, one has 
	 	 	 	 	  	 	 	 	 (3.19) 
	 by supermean inequality. Now, the lower semicontinuity (l.s.c.) of  viewed 
	 as a map to  gives 

 as  
	 by bounded convergence. Since  by assumption, one has 

 

	 for every . Therefore, without loss of generality, one may assume that  
	  is supported on . It follows from (3.13), (3.19), and classical 
	 Lebesgue’s dominated convergence theorem (LDCT) that 

 

	 and the positive definiteness is passed to  by equality. 
	  

K K(z) = K( |z | )
K K ≥ 0

K 1 ∫ Kd xdy = 1

K
Kε(z) := ε−2K( z

ε )
νε
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f
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∬ log
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	 Finally, suppose that  and write . One has 

	 	 	 	    		 	 	 (3.20) 

	 where the first relation holds by (3.16), (3.17), and Green’s theorem; the  
	 second relation holds since . 

	 We also have 

 uniformly in  

	 because all , , satisfying (3.15) and vanishing outsied a common  
	 compact set. Then by (3.20) and Lemma 3.9 below, one has 

. 

	 Let  with compact support. Then (3.18) in conjunction with Green’s 
	 theorem yields 

. 

	 This results in the desired result . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    The equation  
	 	 	 	 	        		 	 	 	 (3.21) 
is the usual Poisson’s equation. Before we prove the promised lemma to conclude the 
proof of Theorem 3.8, we use a remark to demonstrate the mollification argument. 
Remark 3.6: Mollification Argument 
	 Mollification argument is used to construct an absolutely continuous measure 
	 (with respect to Lebesgue measure, for example) with compact support from a 
	 signed measure that is not necessarily compactly supported. 
	 We start with given a signed measure . 
	 Step I: Define a Probability Density Kernel 
	 We start with defining the probability density kernel  that is  
	 	 (i)	 compactly supported and analytic. 
	 	 (ii)	  is radical, i.e., . 
	 	 (iii)	  is positive definite, i.e., . 

	 	 (iv)	  has Lebesgue integral , i.e., . 

	 Step II: Construct a Kernel that is uniformly bounded. 
	 In our proof, we are aiming to prove the absolute continuity with respect to the  
	 Lebesgue measure, so we set  

. 

	 In practice, by changing the normalizing terms, we can include other geometric 
	 measures as well. 
	 Step III: Construct absolutely continuous measure 
	 Convolute new kernel with given measure to get absolutely continuous  
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	 measures, that is, let  be the absolutely continuous measure with density 

. 

	 Step IV: Derive weak convergence and compactly support result. 
	 It can be shown that 

 

	 and by our design in the second step,  is compactly supported in 
. 

	 In particular, the mollification argument tells us that a signed measure is the 
	 weak limit of a sequence of compactly supported absolutely continuous signed 
	 measures.	  
Lemma 3.9: Bounded Log Potential with Vanishing Gradient Vanishes on Compacts 
	 Assume  satisfy 

	 (i)	  for some constant . 

	 (ii)	 . 
	 Then 

	 	 	 	           	 	 	 	 (3.22) 

	 for every compact set . 
Proof: 
	 Without loss of generality, we may assume that  for  
	 . Then 

 

	 Integrating over  when  is large compared to  (vice versa) gives 
	 the desired (3.22). 
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Index of Definitions: 
DP denotes Dirichlet problem	 	  
F.C.J.D. denotes finitely connected Jordan Domain 

1.1 
Harmonic Measure (for Set of Finite Union in Half Plane) 
Dirichlet Problem (over Half Plane) 
Harmonic Measure (for Measurable Set on Half Plane) 
Poisson Kernel (over Half Plane) 
Poisson Integral (over Half Plane) 
Harmonic Measure (for Set of Finite Union over Unit Disc) 
Poisson Integral (over Unit Disc) 
Poisson Kernel (over Unit Disc) 
Solution to the Dirichlet Problem over Unit Disc 

1.2 
Cone (over Unit Disc) 
Non-Tangential Limit (over Unit Disc) 
Non-Tangential Maximal Function (over Unit Disc) 
Solution to the Dirichlet Problem with Leb-a.e. Non-Tangential Limit 
Weak Type 1-1 
Hardy-Littlewood Maximal Function 

1.3 
Jordan Curve and Jordan Domain 
Solution to DP over Jordan Domain for Bounded Boundary Functions 
Harmonic Measure (over Jordan Domain) 

1.4 
Hyperbolic Distance (over Unit Disc) 
Hyperbolic Metric 
Koebe Function 
Hyperbolic Distance (over Simply Connected Domain) 
Quasi-Hyperbolic Distance 
Whitney Square 

1.5 
Pseudohyperbolic Metric (over Unit Disc) 
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Pseudohyperbolic Metric (over Simply Connected Domain) 

2.1 
Finitely Connected Jordan Domain 
Piecewise Continuous Function 
Harmonic Measure (over Finitely Connected Jordan Domain) 
Solution to DP over F.C.J.D. with Bounded Borel Boundary Data 

2.2 
Green Function with Pole (over Bounded Domain) 
Green Function with Pole (over Unbounded Domain) 
Green Function with Pole (under Conformal Mapping) 
Analytic Arc 
Jordan Analytic Curve 
Poisson Kernel (over Finitely Connected Jordan Domain) 

2.3 
Harmonic Conjugate (Conjugate Function) 
Alpha-Hölder Class and Alpha-Hölder Continuous Function 
Alpha-Hölder Norm 
Herglotz Integral of Alpha-Hölder Continuous Class 
k times Continuously Differentiable 
Zygmund Class 
Zygmund Norm and Zygmund Function 
Lipschitz Function, Class of Lipschitz Function 
Norm on Class of Lipschitz Function 

2.4 
Tangent of Arc 
Unit Tangent Vector of Arc 
Continuous Tangent of Arc 
Alpha-Hölder Class for Arc 

3.1 
Robin's Constant 
Logarithmic Capacity 
Green Function with Pole (over F.C.J.D.) 

3.2 
Logarithmic Potential 

3.3 
Finite Energy 
Energy Integral 
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