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1.1 Introduction to Topology 
    There are many terminologies named after the ‘topology-properties’ in the learning 
of math, such as closedness, openness, compactness, etc. Before our formal definition 
for a topological space, we here present a big picture for some key concepts we shall 
encounter: 
Topological Space: A topological space is a set equipped with a collection of subsets 
(open sets) that satisfy certain axioms. These open sets define the notion of 
"nearness" and help establish the structure of the space. 
Continuity: In topology, continuity refers to a mapping between two topological 
spaces that preserves the notion of closeness. A function is continuous if the preimage 
of an open set is open. 
Homeomorphism: A homeomorphism is a bijective mapping between two 
topological spaces that is continuous, with a continuous inverse. It essentially 
represents a one-to-one correspondence between two spaces that preserves their 
topological properties. 
Compactness: A topological space is compact if every open cover (a collection of 
open sets whose union covers the space) has a finite subcover. Compactness captures 
the idea of being "finite" or "bounded" in a topological sense. 
Connectedness: A space is connected if it cannot be divided into two disjoint 
nonempty open sets. Intuitively, it means that the space is not "broken" into separate 
parts. 
Metric Space: A metric space is a type of topological space where distances between 
points are defined using a metric (a function that satisfies certain properties). 
Euclidean spaces are examples of metric spaces. 
Topology vs. Geometry: While geometry focuses on distances, angles, and 
measurements, topology is concerned with more qualitative properties, like continuity 
and neighborhoods. Topology studies shapes and spaces up to continuous 
transformations. 
    Now we shall give a formal definition for the topological space, but before that, we 
shall introduce a terminology we have been using all the time without knowing its 
formal definition: 
Definition: metric 
	 A metric  on a set  is a function  such that: 
	 (i)	 	 	 	 	 (Symmetric) 
	 (ii)	  with equality 	 (Positive Homogeneous)	  
	 (iii)	 	 	 (Triangle Inequality) 
	 holds . 
    A metric, also known as a distance function, is a fundamental concept that quantifi-
es the distance or "closeness" between elements in a set. It provides a formal way to 
measure how far apart two points are from each other. Metrics are used in various 
mathematical contexts, including metric spaces, which are mathematical structures 
where distances between points are defined. 
Example 1.1: Euclidean metric 
	 We have used many and many times the distance function in the  space, 

d X d : X × X → [0,∞)
d(x, y) = d(y, x)
d(x, y) ≥ 0 ⇔ x = y
d(x, z) ≤ d(x, y) + d(y, z)
∀x, y, z ∈ X

ℝn
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	 the so-called Euclidean metric given by the formula: 

	 	 	 	 ,	 	 	 	 (1.1) 

	 which offers the magnitude of the distance between two points .	 || 
   For those who already familiar with the notion ‘norm’, we want to talk about is ve-
ry subtle difference: A norm is a generalization of a metric for vector spaces, which 
measures the "size" of vectors. While a metric measures distances between points, a 
norm measures the magnitude of vectors. 
   It is now natural to give the formal definition for metric space: 
Definition: Metric Space 
	 A metric space is a set  equipped with a metric . Metric spaces provide a  
	 framework to discuss concepts like continuity, convergence, compactness, and  
	 open/closed sets. Topology and analysis heavily rely on the notion of metric  
	 spaces. 
  In basic analysis books, we have already seen the open/closed balls, which are 
defined via interior points and limit points. Now we shall introduce the same termino-
logy but via the language of topology: 
Definition: open ball (in metric space) 
	 Let  be a metric space. For  an arbitrary point and  a constant, 
	 an open ball  (or ) centered at  of radius  is  
	 	    .		 (1.2) 
   In later discussion,  will automatically represent a metric space with set  
equipped with metric  well-defined. Moreover, the last equality in (1.2) holds by the 
symmetricity of metric. Furthermore, it shall make no confusion for closed balls in 
metric space being defined with the same approach: 
Definition: closed balls (in metric space) 
	 Let  be a metric space. For  an arbitrary point and  a constant, 
	 an open ball  (or ) centered at  of radius  is  
	 	    .		 (1.3) 
Lemma 1.1: 
	 Let  be a metric space, for  and .  is an open ball  
	 centered at  with radius . Then ,  such that . 
Proof: 
	 Since , .  
	 Then     
	 	 	  	 (Triangle Inequality) 
	 which means  by (1.2)	. Thus . Since  is  
	 arbitrarily chosen, we have the desired result . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Under the definition of open ball, we could therefore derive the definition for a su-
bset being open in a metric space: 
Definition: open set (in metric space) 

d(x, y) :=
n

∑
i=1

(xi − yi)2

x, y ∈ ℝn

X d

(X, d ) x ∈ X r > 0
Br(x) B(x, r) x r

Br(x) := {y ∈ X |d(x, y) < r} = {y ∈ X |d(y, x) < r}
(X, d ) X

d

(X, d ) x ∈ X r > 0
Br(x) B(x, r) x r

Br(x) := {y ∈ X |d(x, y) ≤ r} = {y ∈ X |d(y, x) ≤ r}

(X, d ) x ∈ X r > 0 Br(x)
x r ∀y ∈ Br(x) ∃ρ > 0 Bρ(y) ⊆ Br(x)

y ∈ Br(x) r > d(x, y) ⇒ ρ = r − d(x, y) > 0
z ∈ Bρ(y) ⇔ d(y, z) < ρ ⇒ d(y, z) < r − d(x, y)

⇒ r > d(y, z) + d(x, y) ≥ d(x, z)
z ∈ Br(x) z ∈ Bρ(y) ⇒ z ∈ Br(x) z

Bρ(y) ⊆ Br(x)
□
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	 Let  be a metric space, a subset  is said to be open if , 
	  such that . 
    Since the complement of an open set in the whole space is closed, we shall not give 
the definition of closed sets. 
Properties: open set in metric space 
	 Let  be a metric space, then 
	 (i)	  are open. 
	 (ii)	 If  are open in , then  is open in . 
	 (iii)	 If  are a collection of open sets in  with the index set  chosen  
	 	 arbitrarily, then  is also open. 

    Note that, the second properties is valid when such a intersection is done among fi-
nite many open sets. We may also express that, openness is ‘closed’ under finite 
intersections and arbitrary unions. 
Properties: closed sets in metric space 
	 Let  be a metric space, then 
	 (i)	  are closed. 
	 (ii)	 If  are closed in , then  is closed in . 
	 (iii)	 If  are a collection of closed sets in  with the index set  chosen  
	 	 arbitrarily, then  is also closed. 

    On the contrary, being closed is ‘closed’ under finite unions and arbitrary intersect-
ions. Moreover, observing that we have  being closed and open at the same time, 
this could be very counter-intuitive, but the fact is that being closed and being open 
are not mutually excluded! 
   We now offer a proof of property (ii) of open sets in metric spaces, the proof of 
others could be done with the similar approach: 
    Topology is usually define by the collection of open sets that could be found in a 
given “space”, using the above statements, we give the criterion for being a topology. 
Definition: Topology (on a set) 
	 A topology  on a set  is a collection of subsets of  such that 
	 (i)	 . 
	 (ii)	 Finite intersections of open sets are open: If  then . 
	 (iii)	 Arbitrary unions of open sets are open: If  is a collection of open 
	 	 sets such that  then . 

    In topology, the concept of power sets plays a significant role in defining the struc-
ture of open sets and capturing the properties of a topological space. The power set of 
a set is a collection of all possible subsets of that set, and it is sometimes used to 
define the topology on the set.  
Definition: Power sets 
	 Given a set , the power set of , denoted by , is the collection of all 	  
	 subsets of , including  and  itself, is given by . 
Remark: 

(X, d ) U ⊆ X ∀x ∈ U
∃r > 0 Br(x) ⊆ U

(X, d )
∅, X

U, V X U ∩ V X
{Uα}α∈I X I

⋃
α∈I

Uα

(X, d )
∅, X

U, V X U ∪ V X
{Uα}α∈I X I

⋂
α∈I

Uα

∅, X

T X X
∅, X ∈ T

U, V ∈ T U ∩ V ∈ T
{Uα}α∈I

Uα ∈ T ∀α ⋃
α∈I

Uα ∈ T

X X 𝒫(X )
X ∅ X 𝒫(X ) := {A |A ⊆ X}
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	 (i)	 A topology  over a set  satisfies . 
	 (ii)	 Elements of  are called open sets.  
    Moreover, the three conditions above are regarded as axioms; as an alternative, we 
could state, instead, with the terms of closed sets: 
Definition: Alternative defintion for Topology (on a set) 
	 A topology  on a set  is a collection of subsets of  such that 
	 (i)	 . 
	 (ii)	 If  are closed in , then  is closed in . 
	 (iii)	 If  are a collection of closed sets in  with the index set  chosen  
	 	 arbitrarily, then  is also closed. 

    Now we are able to introduce some familiar terminologies we have encountered in 
the basic analysis course: 
Definition: closed, neighbourhood 
	 Let  be a topological space.  
	 (i)	  is called closed when  is open. 
	 (ii)	  is called a neighbourhood of  if there is an open set   
	 	 such that . 
    The term "open sets" carries over from the idea of open intervals and continuity in 
real analysis. While the term might not immediately seem intuitive in more abstract 
spaces, it reflects the foundational concept that open sets capture the notion of 
closeness and neighborhoods, preserving the properties of continuity and 
convergence. 
    Still, if there is no confusion, we shall always use  to represent a topological 
space with a topology  over the set . 
    The definition of a topological space that is now standard was a long time in being 
formulated. Various mathematicians — Fréchet, Hausdorff, and others — proposed 
different definitions over a period of years during the first decades of the twentieth 
century, but it took quite a while before mathematicians settled on the one that 
seemed most suitable. They wanted, of course, a definition that was as broad as 
possible, so that it would include as special cases all the various examples that were 
useful in mathematics — Euclidean space, infinite-dimensional Euclidean space, and 
function spaces among them — but they also wanted the definition to be narrow 
enough that the standard theorems about these familiar spaces would hold for 
topological spaces in general. This is always the problem when one is trying to form-
ulate a new mathematical concept, to decide how general its definition should be. The 
definition finally settled on may seem a bit abstract, but as you work through the 
various ways of constructing topological spaces, you will get a better feeling for what 
the concept means. 
Example 1.2: Metric topology 
	 A metric  on a set  defines a topology  on ,  
	 such that .  is called the topology induced/defined by the metric . 
   As we see in Example 1.2, a metric induces a topology. Since the concept of a 
metric is closely connected to the idea of distance, and the metric topology captures 

T X T ⊆ 𝒫(X )
T

T X X
∅, X ∈ T

U, V X U ∪ V X
{Uα}α∈I X I

⋂
α∈I

Uα

(X, T )
A ⊂ X X ∖A
U ⊂ X x ∈ X V

x ∈ V ⊂ U

(X, T )
T X

d X Td X u ∈ Td ⇔ ∀x ∈ U ∃r > 0
Br(x) ⊆ U Td d
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the concept of "closeness" and provides a natural way to define open sets in a 
topological space. 
Definition: Metric topology 
	 Given a metric space . The metric topology induced by the metric  is: 
	 The open sets in the metric topology are the sets  such that for every point  
	 in  there exists a positive real number  such that the open ball  
	 , that is to say: 
	 	 	  is open   such that .  
    The metric topology is a fundamental example of a topological space induced by a 
metric. It provides a natural way to define open sets and preserve the notions of 
continuity, convergence, and closeness within a space. 
Example 1.3: Finite Complement Topology 
	 Let  be a set, let  be the collection of all subsets  of  such that  	 	
	 either is finite or is all of . Then  is a topology on , called the finite 	 	
	 complement topology. Let us now check that  is indeed a topology: 
	 (i)	  and  are in , since  is finite and  is all of  . 
	 (iii)	 If  is an indexed family of non-empty elements of  , to show that 
	 	  is in  is to show that: 
	 	 	 	 	 	 . 
	 	 The latter set is finite because each set  is finite. 
	 (ii)	 If  are non-empty elements of  , to show that  is  is to 	
	 	 show that: 

	 	 	 	 	          . 

	 	 The latter set is a finite union of finite sets and, therefore, finite.		 || 
   The finite complement topology is a specific type of topology defined on a set that 
involves the complements of finite subsets. It's an interesting example of a topology 
that highlights the interplay between open and closed sets. 
Definition: Finite Complement Topology 
	 Given a set , the finite complement topology on  is defined by considering  
	 the open sets to be those that are either the empty set  or have finite  
	 complements (i.e., their complements are finite or the entire space ): 
	 	 A subset  of  is open in the finite complement topology if 
	 	  or if  is finite or equal to  itself. 
Definition: standard topology on 	  
	 The standard topology on  is the topology induced by the Euclidean  

	 distance, i.e. . 

Example 1.4: Different metric may define the same topology 
	 We see that a metric could induce a topology, we now give a fact that different  
	 metric could provide the same topology!  

(X, d ) d
U x

U ε > 0
Bε(x) ⊆ U

U ⇔ ∀x ∈ X ∃ε > 0 Bϵ(x) ⊆ U

X Tf U X X ∖U
X Tf X

Tf
∅ X Tf X − X X − ∅ X

{Uα} Tf
∪ Uα Tf

X ∖∪Uα = ∪ (X ∖Uα)
X ∖Uα

U1, ⋯, Un Tf ∩ Ui Tf

X ∖
n

⋂
i=1

Ui =
n

⋃
i=1

(X ∖Ui)

X X
∅

X
U X

U = ∅ X ∖U X
ℝn

ℝn

d(x, y) = (
n

∑
i=1

(xi − yi)2)1
2
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	 Let  and . We have  
	 	 	 	 . 
	 (i)	 It is trivial that  is a metric. 
	 (ii)	 Open balls with respect to  are open squares. 
	 (iii)	 But open sets for this metric are exactly the same as for the Euclidean 		
	 	 one.	 	 	 	 	 	 	 	 	 	 	 || 
Example 1.5: Discrete topology and indiscrete topology 
	 Let  be a set, then the indiscrete topology  on  is defined to be . 
	 The discrete topology, on the other hand, is defined to be .	 || 
Remark: 
	 (i)	 For any topology  on , . 
	 (ii)	 For any topology  on , . 
	 (iii)	 For  any element of , . 
    Above we use the terminology , which is valid only if the topologies we are com-
paring are comparable, this naturally induces the following definition: 
Definition: comparable topology 
	 Suppose that  and  are two topologies on a given set . If , we say 		
	 that  is finer/larger/stronger than ; if  properly contains , i.e. , we  
	 say that  is strictly finer than . We also say that  is coarser/smaller/weaker 	
	 than , or strictly coarser, in these two respective situations. We say that  is  
	 comparable with  if either  or . 
Remark: 
	 Two topologies on  need not to be comparable!	 || 
Exercise 1.1: 
	 There is a topology on  that does not come from any metric. 
Proof: 
	 Consider .	  
	 [Claim]:  is a topology 
	 	 (i)	  by definition, . 
	 	 (ii)	 If  are open, without loss of generality, we may assume 
	 	 	 that they are all non-empty and both  and  are finite. 
	 	 	 Want To Show:  is finite 
	 	 	 	  which is finite union of 	 	
	 	 	 	 finite set which is finite  . 
	 	 (iii)	 ,  non-empty, then 
	 	 	  since finite intersection of finite set 

	 	 	 is also finite. 
	 Thus,  is a topology coming from no metric in . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Comment: 

X = ℝ2 d∞ : ℝ2 × ℝ2 → [0,∞)
d∞(x, y) := max{ |x1 − y1 | , |x2 − y2 |}

d∞
d∞

X Tmin X {∅, X}
Tmax = 𝒫(X )

T X Tmin ⊆ T
T X T ⊆ Tmax

x X {x} ∈ Tmax
⊆

T T′￼ X T′￼⊇ T
T′￼ T T′￼ T T′￼⊃ T

T′￼ T T
T′￼ T

T′￼ T′￼⊇ T T ⊇ T′￼

X

ℝ

T := {∅} ∪ {U ⊆ ℝ ℝ∖U is finite }
T

∅ ∈ T ℝ∖∅ ∈ T
U, V ∈ T

ℝ∖U ℝ∖V
ℝ∖(U ∩ V )

ℝ∖(U ∩ V ) = (ℝ∖U ) ∪ (ℝ∖V )
⇒ U ∩ V ∈ T

{Uα}α∈A ⊆ T {Uα}α∈A
ℝ∖ ⋃

α∈A

Uα = ⋂
α∈A

(ℝ∖Uα) ∈ T

T ℝ
□
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    When we define a new space, there are many features as well as properties fall into 
our interest. We need to identify the objects of this space (in this book, they are open 
sets or closed sets; in most literature, mathematicians prefer the former one), we need 
to see the relations between objects (such as binary relation, which attracts the most), 
as comparability makes sense, it is natural to see operations within objects (e.g. when 
studying numbers, we need to define addition; in topological terms, however, other 
than basic set operations, we also care about the extension and restriction). Moreover, 
we need to specify the generating objects. That is, when we have unlimited objects to 
study, we wish the existence of some small set of objects containing all the 
information, which is called basis, and there is an extension called subbasis, which is 
useful when we need to use even less objects to describe the basis. These summarize 
most features we care in a given space, when the number of spaces increases, it is 
important to see if there are possible transformations within them (for example, in 
topological sense, such a transformation is the continuous maps). Transformation 
itself could be as concrete as it can be. 
    To summarize, we shall concern with: 
	 (1)	 Objects of topological spaces, the construction and properties; 
	 (2)	 Relations among objects; 
	 (3)	 Operations among objects; 
	 (4)	 Generating Basis; 
	 (5)	 Transformations within spaces. 
	 (6)	 Properties and key features. 
The order may vary from case to case and the presence may also change. The order is 
not related to their importance. In (6) we do apply the terminologies of properties and 
features again, since in studying more concrete materials, we often care about the 
topological aspects and functional aspects; for the former one we usually study the 
openness, closedness, compactness, separability, etc. while the latter one offers 
treatments upon the transformations. Furthermore, do remember that even these 
properties and features share the same name in different areas (such as topology and 
functional space), their formal definition and behaviour may vary! This is beacuse 
these terms form a structure of the studying mathematical terms, but different terms 
share different building blocks. Therefore same definition may fail in different areas. 
Now let us go back to topology, we now start our discussion with respect to (4), the 
generating basis: 

1.2 Basis of Topology 
    For each of the examples in the preceding section, we were able to specify the top-
ology by describing the entire collection  of open sets. Usually this is too difficult. 
In most cases, one specifies instead a smaller collection of subsets of  and defines 
the topology in terms of that. 
Definition: Basis 
	 If  is a set, a basis for a topology on  is a collection  of subsets of  	 	
	 (called basis elements) such that 
	 (i)	 For each , there is at least one basis element  containing . 

T
X

X X ℬ X

x ∈ X B x
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	 (ii)	 If  belongs to the intersection of two basis elements  and , then 	 	
	 	 there is a basis element  containing  such that . 
    If  satisfies these two conditions, then we define the topology  generated by  
as follows: A subset  of  is said to be open in  (that is, to be an element of ) if 
for each , there is a basis element  such that  and . Note 
that each basis element is itself an element of . 
     Let us now check that the collection  generated by the basis  is indeed a topol-
ogy on , this description follows from James R. Munkres: 
[Claim]:  is a topology on . 
	 (i)	 If  is the empty set, it satisfies the defining condition of openness 	 	
	 	 vacuously. Likewise,  is in , since   some basis elements  
	 	  containing  and contained in . 
	 (ii)	 Now let us take an indexed family  where  is an arbitrary  
	 	 index set, countable or not, finite or not, of elements of  and we wish to 
	 	 arrive at the fact that  is indeed an element of . 

	 	 Given   such that . Since  is open,  a basis element 	
	 	  such that . Then  and , hence  is open. 
	 (iii)	 Lastly we take two elements  and  of  and we wish to show that  
	 	  belongs to  as well. Without loss of generality, let us assume  
	 	 that the intersection is not empty. Given , choose a basis 	 	
	 	  containing  such that ; choose also a basis element  
	 	  containing  such that . The second condition for a  
	 	 basis enables us to choose a basis  containing  such that  
	 	 , therefore,  belongs to  by definition. 
	 (iv)	 Finally, we generalize (iii) to the case of finite intersection  	
	 	 of elements of  also lives in . This fact is trivial for , hence by 	
	 	 induction, we suppose it is valid for  and prove it for : 
	 	 We have . By hypothesis the  
	 	 RHS belongs to ; by the result we just proved, taking the intersection 
	 	  as  in (iii) and  as , we conclude the result. 
	 	 	 	 	 	 	 	 	 	 	 	 	 || 
    Therefore, this definition is well-defined. Another way of describing the topology 
generated by a basis is given by the following lemma: 
Lemma 1.2: From Basis to Topology 
	 Let  be a set; let  be a basis for a topology  on . Then  equals to the 	 	
	 collection of all unions of elements of . 
Proof: 
	 To prove the statement is equivalent to prove that : 

	 “ ”: 
	 Given a collection of elements of , they are also elements of . Because 

x B1 B2
B3 x B3 ⊂ B1 ∩ B2

ℬ T ℬ
U X X T

x ∈ U B ∈ ℬ x ∈ B B ⊂ U
T

T ℬ
X

T X
U

X T ∀x ∈ X ∃
B ∈ ℬ x X

{Uα}α∈A A
T

U = ⋃
α∈A

Uα T

x ∈ U ∃α x ∈ Uα Uα ∃
B ∈ ℬ x ∈ B ⊂ Uα x ∈ B B ⊂ U U

U1 U2 T
U1 ∩ U2 T

x ∈ U1 ∩ U2
B1 ∈ ℬ x B1 ⊂ U1
B2 ∈ ℬ x B2 ⊂ U2

B3 x
B3 ⊂ U3 := U1 ∩ U2 U1 ∩ U2 T

U1 ∩ ⋯ ∩ Un
T T n = 1

n − 1 n
(U1 ∩ ⋯ ∩ Un) = (U1 ∩ ⋯ ∩ Un−1) ∩ Un

T
U1 ∩ ⋯ ∩ Un−1 U1 Un U2

X ℬ T X T
ℬ

⋃
B∈ℬ

B = T

⊆
ℬ T
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	  is a topology, their union is in . 
	 “ ”: 
	 Conversely, given , choose for each  an element  of  such that 
	 . Then , so  equals a union of elements of . 

	 	 	 	 	 	 	 	 	 	 	 	 	  
    This lemma states that every open set  in  can be expressed as a union of basis 
elements. This expression for  is not, however, unique. Thus the use of the term 
“basis” in topology differs drastically from its use in linear algebra, where the 
equation expressing a given vector as a linear combination of basis vectors is unique. 
    We have discussed so far how to go from a basis to the topology it generates, now 
we offer a technique where we could approach the reversed direction: 
Lemma 1.3: From Topology to Basis 
	 Let  be a topological space. Suppose that  is a collection of open sets of  	
	 such that for each open set  of  and each , there is an element  of  	
	 such that . Then  is a basis for the topology of . 
Proof: 
	 The proof is divided into two parts, in the first part, we must show that  is 	 	
	 indeed a basis, i.e. we need to prove that  satisfies the two conditions for  
	 being a basis. While in the second part, we have to show that the topology   
	 generated by  is a topology of . 
	 WTS I:  is a basis. 
	 (i)	 Given , since  is itself an open set, there is, by hypothesis an 	 	
	 	 element  such that . 
	 (ii)	 To check the second condition, without loss of generality, we may  
	 	 assume that . Let  be arbitrarily  
	 	 chosen. Since  and  is open then so is . Therefore, there 	 	
	 	 exists, by construction, an element  in  such that . 
	 WTS II: topology generated by  is a topology of . 
	 Let  be the collection of oepn sets of ; we want to prove that the topology   
	 generated by  equals to the topology .  
	 First, note that if  and if , then there is an element  such  
	 that . It follows that  belongs to the topology . Conversely, if  
	 belongs to the topology , then  equals a union of elements of , by the  
	 preceding lemma. Since each element of  belongs to  and  is assumed to  
	 be a topology, . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    We introduced the partial ordering in topological spaces, i.e. we denote  for 
two topologies  and  if  is smaller than . Now we shall introduce a criterion 
interms of the bases for determining this partial relationship: 
Lemma 1.4: From Basis to Comparison of Topologies 
	 Let  and  be bases for the topologies  and , respectively, on a set . 	 	
	 Then the following are equivalent: 

T T
⊇

U ∈ T x ∈ U Bx ℬ
x ∈ Bx ⊂ U U = ⋃

x∈U

Bx U ℬ

□
U X

U

X 𝒞 X
U X x ∈ U C 𝒞

x ∈ C ⊂ U 𝒞 X

𝒞
𝒞

T
𝒞 X

𝒞
x ∈ X X

C ∈ 𝒞 x ∈ C ⊂ X

C1 ∩ C2 ≠ ∅∀C1, C2 ∈ 𝒞 x ∈ C1 ∩ C2
C1 C2 C1 ∩ C2

C3 𝒞 x ∈ C3 ⊂ C1 ∩ C2
𝒞 X

T X T′￼
𝒞 T

U ∈ T x ∈ U C ∈ 𝒞
x ∈ C ⊂ U U T′￼ W

T′￼ W 𝒞
𝒞 T T

W ∈ T
□

T1 ⊆ T2
T1 T2 T1 T2

ℬ ℬ′￼ T T′￼ X

10



	 (i)	  is finer than . 
	 (ii)	  and each basis element  containing , there is a basis 	 	
	 	 element  such that . 
Proof: 
	 (ii)  (i): 
	 Let  be an element of  and . Since  generates   such 	 	
	 that . By (ii), there is an element  such that .  
	 Then , which means . 
	 (i)  (ii): 
	 We are given  and  with . Now  belongs to  by definition 
	 and  by (i); therefore, . Since  is generated by , there is an  
	 element  such that . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    While not as fundamental as a basis, a subbasis provides a more flexible starting 
point for constructing a topology by allowing unions and finite intersections of its 
elements. Subbases are particularly useful when dealing with more complex spaces or 
when generating a topology from multiple sources. 
Definition: subbasis 
	 A subbasis for a topology on a set  is a collection  of subsets of  such that  
	 the collection of all possible finite intersections of elements from  forms a  
	 basis for the topology on . That is, if  is a topological space. A subset   
	 of  is a subbasis of  if  is a basis  
	 of . 
Remark: 
	 A subbasis  for a topology on  is a collection of subsets of  whose union  
	 equals . The topology generated by the subbasis  is defined to be the  
	 collection  of all unions of finite intersections of elements of .	 	 || 

1.3 Continuous Mappings 
    For readers who are familiar with category theory, they may regard the topologies 
as objects and the continuous maps between them as morphisms; thus, it is necessary 
to introduce the terminology of continuous mapping. Before that, let us briefly recall 
what a category means: 
Definition: Category 
	 A category  consists of: 
	 (i)	 A collection of subjects . 
	 (ii)	 For each pair of objects , a collection of morphisms  
	 	 (it may be empty if ). We write  or  if . 

	 (iii)	 For each object , a morphism . 
	 (iv)	 For each triple of objects , a composiition map given by 
	 	 	  

T′￼ T
∀x ∈ X B ∈ ℬ x

B′￼∈ ℬ′￼ x ∈ B′￼⊂ B

⇒
U T x ∈ U ℬ T ⇒ B ∈ ℬ
x ∈ B ⊂ U B′￼∈ ℬ′￼ x ∈ B′￼⊂ B

x ∈ B′￼⊂ U U ∈ T′￼
⇒

x ∈ X B ∈ ℬ x ∈ B B T
T ⊂ T′￼ B ∈ T′￼ T′￼ ℬ′￼

B′￼∈ ℬ′￼ x ∈ B′￼⊂ B
□

X 𝒮 X
𝒮

X (X, T ) 𝒮
T T ℬ := {Si1 ∩ ⋯ ∩ sik k > 0,Si1, ⋯, Sik ∈ 𝒮}
T

𝒮 X X
X 𝒮

𝒯 𝒮

𝒞
𝒞0
a, b ∈ 𝒞0 Hom(a, b)

a ≠ b a f b b f a f ∈ Hom(a, b)

a ∈ 𝒞 Ida ∈ Hom(a, a)
a, b, c ∈ 𝒞0

∘ : Hom(b, c) × Hom(a, b) ⇀ Hom(a, c)

11



	 	 	 	         . 

Remark: 
	 These data are subject to two conditions: 
	 (1)	  and  we have . 
	 (2)	 The composition is associative, i.e.  we have that 
	 	 .	 	 	 	 	 	 	 	 || 
    A topological spaces and continuous mappings form a category known as the cate-
gory of topological spaces, often denoted as . In this category, the objects are the 
topological spaces, and the morphisms (arrows) between objects are the continuous 
mappings between those spaces. 
Definition: TOP 
	 We claim that the topological spaces along with the continuous mappings  
	 among them being a category, denoted as , defined by: 
	 (i)	 The objects of the category  are the topological spaces.  
	 (ii)	 Given two topological spaces  and , a morphism (arrow)  
	 	 from  into  in  is a continuous mapping . 
	 (iii)	 The composition of morphisms in  is defined as the usual  
	 	 composition of functions. If  and  are continuous  
	 	 mappings, then their composition  is also a continuous  
	 	 mapping. 
	 (iv)	 For each topological space , the identity morphism   
	 	 is the continuous mapping defined as the identity function on . 
Remark: 
	 As we mentioned above, the composition of morphisms is associative in ,  
	 i.e. , , and , .	 	 || 
    Recall that a function  is continuous at  if   such 
that  . A function  is said to be 
continuous if it is continuious . 
Definition: continuous maps (in metric spaces) 
	 Let  and  be two metrci spaces. A function  is 	 	 	
	 continuous at  if  such that  
	 . We say such an  is continuous if it is 
	 continuous at every point of . 
Lemma 1.5: 
	   . 
Proof: 
	 LHS holds    
	 . 
	 The other side is analogous. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Lemma 1.5 tells us that a map between metric spaces is continuous if and only if 
the preimage of open set is open. 

(c g b, b f a) ↦ c g∘f a

∀a, b ∈ 𝒞0 ∀f ∈ Hom(a, b) f ∘ Ida = f = Idb ∘ f
∀d h c g b f a

h ∘ (g ∘ f ) = (h ∘ g) ∘ f

TOP

TOP
TOP

(X, TX) (Y, TY)
X Y TOP f : (X, TX) → (Y, TY)

TOP
f : X → Y g : Y → Z

g ∘ f : X → Z

(X, TX) IdX : X → X
(X, TX)

TOP
f : X → Y g : Y → Z h : Z → W h ∘ (g ∘ f ) = (h ∘ g) ∘ f

f : ℝ → ℝ x0 ∈ ℝ ∀ε > 0 ∃δ > 0
∀x ∈ ℝ |x − x0 | < δ ⇒ | f (x) − f (x0) | < ε f : ℝ → ℝ

∀x0 ∈ ℝ

(X, dX) (Y, dY) f : X → Y
x0 ∈ X ∀ε > 0∃δ > 0

dX(x, x0) < δ ⇒ dY( f (x), f (x0)) < ε f
X

dX(x, x0) < δ ⇒ dY( f (x), f (x0)) < ϵ ⇔ Bδ(x) ⊆ f −1(Bϵ( f (x0))

⇔ x ∈ Bδ(x0) ⇒ f (x) ∈ Bδ( f (x0))
⇔ x ∈ Bδ(x0) ⇒ x ∈ f −1(Bε( f (x0))) ⇔ Bδ(x0) ⊆ f −1(Bε( f (x0)))

□
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Lemma 1.6: 
	 Let  and  be two metric spaces, a function  is continuous in the 	
	 sense of , i.e. , if and only if 
	  open with respect to the topology ,  is open in  with 	  
	 respect to . 
Proof:	  
	 “ ”: 
	 Suppose that  is open, if  then openness is guaranteed. 
	 Without loss of generality, we may assume that . Let , 
	 then . Since  is oepn, then  such that  due to  
	 continuity,  such that . Therefore, 
	  is open since  is chosen arbitrarily. 
	 “ ”: 
	 Suppose that  open,  is open. Choose  and , we 	 	
	 know that open balls are open sets, thus  is open in   
	  is oepn and   such that 
	 . By Lemma 1.5,   
	   is continuous at . Moreover, since  is chosen arbitrarily, we can  
	 therefore conclude that  is continuous at everywhere in its domain. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    One important consequence of Lemma 1.6 is that continuity does not depend on 
metric, it depends on the topology. More precisely, continuity of a function depends 
not only on  but also its domain and co-domain topologies. Furthermore, one may 
turn this lemma into the defintion of continuity, and it should not be very hard to see 
that this definition is equivalent to the open-set definition. We now offer the open-set 
perspective: 
Definition: continuous maps (open-set perspective) 
	 Let  and  be two topological spaces. A function  is  
	 continuous (with respect to  and ) if  open,  is open in . 
    We now give some important results on continuity. Before that, we need a termino-
logies taken from [6]. 
Remark: 
	 (i)	 The preimage of the intersection is the intersection of the preimages. 
	 (ii)	 The preimage of the union is the union of the preimages. 
	 (iii)	 The image of the union is the union of the images. 
	 (iv)	 The image of the intersection is a subset of the intersection of the  
	 	 images. 
	 Moreover, the preimage may not coincide with the inverse function. If certain  
	 special conditions are satisfied, then the inverse function exists and we use the  
	 same notation to denote that function.		 	 	 	 	 	 || 
Theorem 1.7: 
	 Let  and  be two topological spaces and let  be a  
	 function. Then the following statements are equivalent: 

(X, dX) (Y, dY) f
f : X → Y dX(x, x0) < δ ⇒ dY( f (x), f (x0)) < ε

∀U ⊆ Y TdY
f −1(U ) X

TdX

⇒
U ⊆ Y f −1(U ) = ∅

f −1(U ) ≠ ∅ x0 ∈ f −1(U )
f (x0) ∈ U U ∃ε > 0 Bε( f (x0)) ⊆ U

∃δ > 0 Bδ(x0) ⊆ f −1(Bε( f (x0))) ⊆ f −1(U )
f −1(U ) x0
⇐

∀U ⊆ Y f −1(U ) x0 ∈ X ε > 0
Bε( f (x0)) Y

⇒ f −1(Bε( f (x0))) x0 ∈ f −1(Bε( f (x0))) ⇒ ∃δ > 0
Bδ(x0) ⊆ f −1(Bε( f (x0))) dX(x, x0) < δ ⇒ dY( f (x), f (x0)) < ε
⇒ f x0 x0

f
□

f

(X, TX) (Y, TY) f : X → Y
TX TY ∀U ⊆ Y f −1(U ) X

(X, TX) (Y, TY) f : X → Y
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	 (i)	  is continuous; 
	 (ii)	 Inverse image of every basis element of  is open; 
	 (iii)	 Inverse image of every subbasis element of  is open. 
Proof: 
	 To prove the equivalent relations is to prove that (i)  (ii) and (ii)  (iii): 
	 (i)  (ii): 
	 Let  be continuous. Since every basis element of  is open, its inverse image  
	 is also open. 
	 (ii)  (i): 
	 To prove the inverse. Let  be a basis for  and let the inverse of every basis 
	 element  be open in , i.e. . Note that any open set   
	 can be, according to the definition, written as a union of the basis elements, i.e. 
	  hence , according to the above remark, we  

	 have  for some . Since the  

	 union of open sets is open hence  is open. 
	 (ii)  (iii): 
	 Since every subbasis element is in the basis it generates, inverse image of  
	 every subbasis elements of  is open in . 
	 (iii)  (ii): 
	 Let now  be subbasis of  which generates the basis . Let the inverse  
	 image of every subbasis element  be open in , i.e. . Since  
	 any basis element can be written as a finite intersection of subbasis elements,  

	 i.e.  and . Since finite intersection of open sets is  

	 open, hence  is open in . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Remark: 
	 Thus, to test the continuity of a function it suffices to check the openness of  
	 inverse images of elements of only a subset of , namely, its subbasis.	 || 
Theorem 1.8: 
	 Let  be a map where  and  are two topological spaces. 
	 Then the following statements are equivalent: 
	 (1)	  is continuous; 
	 (2)	 Inverse image of every closed set of  is closed in . 
	 (3)	 For each  and every neighborhood  of , there is a 	 	 	
	 	 neighborhood  of  such that .  
Proof:	 consult [6]. 
     It is natural to derive from the continuous maps to the isomorphism between topo-
logical spaces. The isomorphisms in topological spaces is called homeomorphism, the 
choice of another name other than isomorphism has a particular reason, for which, 

f
TY

TY

⇔ ⇔
⇒
f TY

⇒
ℬY TY

B ∈ ℬY X f −1(B) ∈ TX V ⊆ Y

V = ⋃
α∈A

Bα f −1(V ) = f −1( ⋃
α∈A

Bα)
f −1( ⋃

α∈A

Bα) = ⋃
α∈A

f −1(Bα) {B1, ⋯, B|A|} ⊆ ℬY

f −1(V )
⇒

Y X
⇒

𝒮Y Y ℬY
S ∈ 𝒮Y X f −1(S ) ∈ TX

B =
n

⋂
i=1

Si f −1(B) =
n

⋂
i=1

f −1(Si)

f −1(B) X
□

TY

f : X → Y (X, TX) (Y, TY)

f
Y X

x ∈ X V f (x)
U x f (U ) ⊆ V
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along with detailed description of homeomorphism, will be left to the discussion of 
product topology.  
Comment: 
    In real analysis, continuity is primarily concerned with functions between real nu-
mbers or subsets of the real line. In topology, continuity is a more general concept 
that applies to functions between topological spaces. This definition extends the real 
analysis definition to more abstract spaces. Continuous functions in topology pres-
erve the underlying topological structure and open sets. In functional analysis, 
continuity often deals with linear operators between vector spaces equipped with a 
suitable topology. This concept is crucial in studying the properties of linear transf-
ormations and their relationships with topological structures. 
    Though applications vary from case to case, the definition is quite the same, one 
may recall the  langauge in basic analysis course to describe the continuity, or 
consult the continuity we just defined in this section. In either case, the most impor-
tant information by admitting continuity is that it captures the idea of smoothness, 
preservation of structure, and gradual change, making it a crucial tool for 
understanding mathematical relationships and their implications. 
    In the next few subsections, we shall introduce the product topology, the subspace 
topology, the order topology, the metric topology, the quotient topology. 

1.4 Product Topology 
    The product topology is a construction that allows us to define a topology on the 
Cartesian product of two or more topological spaces. It captures the idea of 
"coordinate-wise" openness and is a fundamental concept in topology, especially 
when studying products of spaces and their properties. 
    We would like to introduce the product of pairs of topological spaces  and 

, we would like a topology  on  so that the Universal Property holds: 
Definition: Universal Property 
	 Let  and  be two topological spaces. Consider two continuous  
	 maps  and , where  is the  
	 desired topology on the space . Then for any topological space  		
	 and any two continuous functions  
	 	 	         and . 
	 There exists a unique continuous function  such that 
	 	 	 	 	  and . 
    Now We start to construct such a topology. Denote . Then: 
	 	 	 	  open, , 
	 	 	 	  open, . 
Let now . Take . 
[Claim]:  is a subbasis of . 
	 Note that  by this construction. Now  and 		  
	 , one has 

ε − δ

(X, TX)
(Y, TY) T X × Y

(X, TX) (Y, TY)
pX : (X × Y, T ) → (X, TX) pY : (X × Y, T ) → (Y, TY) T

X × Y (Z, TZ)

fX : (Z, TZ) → (X, TX) FY : (Z, TZ) → (Y, TY)
f : Z → X × Y

pX ∘ f = fX pY ∘ f = fY
T = Tprod

∀U ⊆ X p−1
X (U ) = U × Y ∈ T

∀V ⊆ X p−1
Y (V ) = X × V ∈ T

𝒮 := {p−1
X (U ) U ∈ TX} ∪ {p−1

Y (V ) V ∈ TY} T = T𝒮

𝒮 Tprod
∪ 𝒮 = X × Y ∀U1, U2 ∈ TX

V1, V2 ∈ TY
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	 	 , for . 
	 Then  is a subbasis of . 

Moreover, we could obtain the basis  for  being 
open in  and , respectively. 
[Claim]: Universal Property holds 
	 Let now  be a topological space. Consider the continuous functions: 
	 	 	  and . 
	 We obain the unique function  such that . 
	 Moreover,  
	 . 
	 Therefore,  is unique and continuous, as we desired. 
Question: 
	 How arbitrary is ? That is, can we choose a different  such that  
	  and  being continuous  
	 and the Universal Property fails to be false? 
Answer: 
	 This , in fact, is unique. 
	 [Claim]:  
	 	 “ ”: 
	 	 Since we want  and  to be continuous, then the subbasis 
	 	 . Thus . 
	 	 “ ”: 
	 	 The universal property of  tells us that if we take 
	 	 , take  and . Then 
	 	  is continuous, and . That is 	
	 	 to say, the identity mapping gives us different , a contradiction.  
	 	 Therefore ,   . 
    Now we offer the formal definition for the product topology: 
Definition: product topology 
	 Let  and  be two topological spaces. The product topology on  
	  is the topology having as basis the collection  of all sets of the form 
	 , where  is an open set of  and  is an open set of . 
Remark: 
	 Note that the collection  is not a topology on .	 	 	 	 || 
Theorem 1.9: Basis for Product Topology 
	 If  is a basis for the topology of  and  is a basis for the topology of . 	 	
	 Then the collection  is a basis for the topology  
	 of . 
Proof: 
	 We apply Lemma 1.3. Given an open set  of  and a point  of , 
	 by definition of the product topology there is a basis element  such that 

p−1
X (Ui) ∩ p−1

Y (Vi) = (Ui × Y ) ∩ (X × Vi) = Ui ∩ Vi i = 1,2
𝒮 Tprod

ℬ = {U × V U ∈ X, V ∈ Y} U, V
X Y

(Z, TZ)
fX : (Z, TZ) → (X, TX) fY : (Z, TZ) → (Y, TY)

f : Z → X × Y f (z) = (fX(z), fY(z))

f −1(U × V ) = {z ∈ Z (fX(z), fY(z)) ∈ U × V} = f −1
X (U ) ∩ f −1

Y (V ) ∈ TZ

f

T T′￼
pX : (X × Y, T′￼) → (X, TX) pY : (X × Y, T′￼) → (Y, TY)

T
T = T′￼

⊆
pX pY

𝒮 = {p−1
X (U ) U ∈ TX} ∩ {p−1

Y (V ) V ∈ TY} ∈ T′￼ T𝒮 ⊆ T′￼
⊇

((X × Y, T′￼), pX, pY)
(Z, TZ) = (X × Y, T𝒮) fX = pX fY = pY
f : (X × Y, T ) → (X × Y, T′￼) f (x, y) = (x, y)

T
∀W ∈ T′￼ f −1(W ) = W ∈ T ⇒ T′￼⊆ T

(X, TX) (Y, TY)
X × Y ℬ
U × V U X V Y

ℬ X × Y

ℬ X 𝒞 Y
𝒟 := {B × C |B ∈ ℬ, C ∈ 𝒞}

X × Y

W X × Y x × y W
U × V
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	 . Because  and  are bases for  and , respectively, we 
	 can choose an element  of  such that , and an element  of  
	 such that . Then . Thus the collection  meets 
	 all the requirements for applying Lemma 1.3, result follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Similarly, since we have introduced the product topology, we want to study its bas-
is and subbasis as we did to the basic topology. It is sometimes useful to express the 
product topology in terms of subbasis. To this end, we first introduce certain funct-
ions called projections: 
Definition: projection function 
	 Let  be defined by the equation  and let  
	  be defined by the equation . The maps  and  		
	 are called the projections of  onto its first and second factors,  
	 respectively. 
Theorem 1.10: Subbasis for Product Topology 
	 The collection  is a  
	 subbasis for the product topology on . 
Proof: 
	 Let  denote the product topology on  and let  be the topology  
	 generated by .  We wish to show that . 
	 “ ”: 
	 Since every element of  belongs to , so do arbitrary unions 
	 of finite intersections of elements of  implies . 
	 “ ”: 
	 Conversely, every basis element  for the topology  is a finite  
	 intersection of elements of  since . Therefore, 
	 . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   The product topology is the finest (largest) topology that makes all projection maps 
continuous. This means that it is the strongest topology that fits the "coordinate-wise" 
openness criterion. It is also used to define and study continuous mappings between 
product spaces. A mapping between product spaces is continuous if and only if each 
of its component mappings is continuous. 
Definition: homeomorphism	  
	 A continuous map  is a homeomorphism if there exists a  
	 continuous function  such that  and  
	 where  and . With  and . 
Remark: 
	 Every homeomorphisms are open and closed maps. Moreover, any  
	 homeomorphism is a continuous bijection, but a continuous bijection may not 	
	 have a continuous inverse. Now we give a counter-example:	 	 	 || 
Example 1.5: Continuous bijection may not have a continuous inverse 
	 Let  with subspace topology, let  

x × y ∈ U × V ⊂ W ℬ 𝒞 X Y
B ℬ x ∈ B ⊂ U C 𝒞

y ∈ C ⊂ V x × y ∈ B × C ⊂ W 𝒟

□

π1 : X × Y → X π1(x, y) = x
π2 : X × Y → Y π2(x, y) = y π1 π2

X × Y

S = {π−1
1 (U ) |U open in X} ∪ {π−1

2 (V ) |V open in Y}
X × Y

T X × Y T′￼
𝒮 T = T′￼

⊇
𝒮 T

𝒮 T′￼⊆ T
⊆

U × V T
𝒮 U × V = π−1

1 (U ) ∩ π−1
2 (V )

U × V ∈ T′￼⇒ T ⊆ T′￼
□

f : (X, TX) → (Y, TY)
g : (Y, TY) → (X, TX) g ∘ f = IdX f ∘ g = IdY

IdX : X → X IdY : Y → Y IdX(x) = x IdY(y) = y

X = [0,2π) ⊆ ℝ
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	 with subspace topology. Then the mapping  for  
	  is continuous. (Check it!) However, the inverse function, 
	 which tries to map points on the unit circle back to angles, is not continuous.  
	 This is because, for points close to  (where the angle wraps around),  
	 small perturbations in  lead to large changes in the angle.	 	 	 || 
Question: 
	 What does it mean when we say that two topological spaces are the same? 
Definition: homeomorphic topological spaces 
	 We say two topological spaces  and  are homeomorphic (the same) if there  
	 exists a homeomorphism . 
Lemma 1.11: 
	 Let  and  be two topological spaces. Suppose that  is a  
	 topological space together with two continuous maps: 
	 	 	 	 	  and  
	 so that for any topological space  and any two continuous mappings 
	 	 	 	 	    and . 
	 There exists a unique continuous function  such that 
	 	 	 	 	    and . 
	 Then  is homeomorphic to . 
Proof: 
	 Left as an exercise (hint: Universal Property).	 	 	 	 	  
    We are now exposed to enough materials for the product topology between the top-
ological spaces  and ; in fact, this could be extended to arbitrary prod-
ucts. 
    Let  be a collection of sets indexed by an arbitrary index set  (countable 
or not, finite or not). That is, we have a function  defined by . 
There then exists a set, namely the product , together with a collection of maps 

, so that for an arbitrarily chosen set  and a family of maps 

, there exists a unique function  such that  

holds  (  behaves the same as , its employment here is to aviod ambiguity). 
Exercise 1.4: Cartesian Product 
	 Let . Then there exist two sets  such that the product is 
	 	  

	 	 	  , 
	 where  denotes the cartesian product. 
Proof: 
	 This result is trivial but the proof is not.  

Y = S1 = {(x, y) ∈ ℝ2 |x2 + y2 = 1}
f : [0,2π) → S1

f (θ ) = (cos θ, sin θ )

1 and 0
S1

X Y
f : X → Y

(X, TX) (Y, TY) (W, TW)

gX : W → X gY : W → Y
(Z, TZ)

fX : Z → X fY : Z → Y
f : Z → W

gX ∘ f = fX gY ∘ f = fY
(W, TW) (X × Y, Tprod)

□

(X, TX) (Y, TY)

{Xα}α∈A A
f : A → Xα f (α) = Xα

∏
α∈A

Xα

{pα : ∏
β∈A

Xβ → Xα}α∈A Z

{ fα : Z → Xα}α∈A f : Z → ∏
α∈A

Xα pβ ∘ f = fβ

∀β ∈ A β α

A := {1,2} X1 and X2

∏
α∈A

Xα = {g : {1,2} → X1 ∪ X2 such that g(1) ∈ X1, g(2) ∈ X2}
= {(g(1), g(2)) g(1) ∈ X1, g(2) ∈ X2} = X1 × X2

X1 × X2
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	 We set . We define 

	  by  since . Given now 

	 , we may define  by . 

	 Then,  . 
	 Next we shall prove the existence, which follows: 
	 If  is another function such that , then  and  

	 , one has , which implies that 
	  hence uniqueness follows and the result. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    This exercise tells us that the cartesian product is unique. The next exercise, with 
proof left empty, shows that the reverse is also valid: 
Exercise 1.5: 
	 Let  be a set and consider the collection of topological spaces indexed by 	 	
	 elements of  defined by . Then there is a topological space 
	  together with a family  so that for any 
	 topological spaces  and their corresponding family of continuous  
	 mappings, there exists a unique contunuous map  such  
	 that . Moreover,  is unique up to a homeomorphism. 
Notation: 
	 The usual notation for  is . 

    One may notice in Exercise 1.5, we did say the variation of  is unique up to a ho-
meomorphism, recall that the term “homeomorphism”, is often replaced by 
“isomoprhism”, our usage here is to aviod ambiguity: Just like the continuous 
functions in topological spaces inherit the same properties as continuous maps in 
other mathematical structures, the isomophisms, which is a structure-preserving 
bijection between objects. In the context of topological spaces, however, the term 
"isomorphism" is typically not used directly because it can be too rigid. A topological 
isomorphism would imply a bijective map that preserves not only open sets but also 
other topological properties (like compactness, connectedness, etc.), which may not 
always be a meaningful or interesting concept. 
    Instead, the concept of a homeomorphism is introduced here, which focuses on pr-
eserving the topology's key properties while allowing for more flexibility and gener-
alization. Homeomorphisms enable us to study topological spaces in a way that 
respects their topological structure while potentially allowing for deformations or 
changes that do not alter the topological properties. 
   So far, we have introduced most of the important concepts in topological spaces. 
When we define a space, it is important to talk about its elements and the maps 
between its elements, there are many other important terminologies we would like to 

∏
α∈A

Xα = {g : A → ⋃
α∈A

Xα gα := g(α) ∈ Xα ∀α ∈ A}
pβ : ∏

α∈A

Xα → Xβ pβ(g) = g(β ) A
gα

⋃
α∈A

Xα
pβ Xβ

{ fα : Z → Xα}α∈A f : Z → ∏
α∈A

Xα f (Z ) = (fα(Z ))α∈A

pβ(f (z)) = fβ(z)∀z ∈ Z ⇒pβ ∘ f = f (β ) = fβ

h : Z → ∏
α∈A

Zα pβ ∘ h = fα ∀z ∈ Z

∀β h(z)β = (pβ ∘ h)(z) = fβ(z) = (f (z))β
h(z) = f (z)∀z

□

A
A {(Xα, Tα)}α∈A

(W, TW) {pα : (W, TW) → (Xα, Tα)}α∈A
(Z, TZ)

f : (Z, TZ) → (Xα, Tα)
pα ∘ f = fα ∀α W

(W, TW) ( ∏
α∈A

Xα, Tprod)
W
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explore, but lack of tools, we often wish to learn information from the maps, that is 
why the continuity and differentibility of a function is so important in analysis. But 
still, there are some other concepts we can discuss without heavy machinery, which 
are often called the topological properties, which are fundamental characteristics of 
topological spaces that capture the behavior and structure of the spaces under 
consideration. These properties are often studied in topology to classify, compare, and 
analyze different types of spaces. For example, openness, closedness, compactness, 
separability, etc, are key features we would like to use in further exploration. 
    Let us now pause a while and discuss the methodology we mentioned in the above 
paragraph. 
Algorithm 1.1: Defining Mathematical Spaces	  
	 Defining a new space in mathematics involves a systematic approach that  

	 combines creativity, rigor, and clear communication. Whether you're 	 	 	
	 introducing a new topological space, metric space, vector space, or any other  
	 mathematical structure, here's a general methodology to consider: 
	 I. Motivation and Inspiration: 
	 Clearly identify the motivation for defining the new space. What problem are  
	 you trying to address? What concepts or structures does this space generalize  
	 or capture? Look for inspiration from existing mathematical spaces, objects, or  
	 structures that have relevant properties or behaviors. 
	 II. Defining the Set (Object): 
	 Begin by defining the underlying set of the new space. Determine what kind of  
	 elements the set should contain based on the desired properties of the space.  
	 Specify any constraints, conditions, or requirements on the elements that  
	 belong to the set. 
	 III. Defining Operations and Relations: 
	 If applicable, define any operations (addition, multiplication, etc.) that should  
	 be defined on the elements of the set. These operations should align with the  
	 properties you want the space to have. Define any relevant relations  
	 (equivalence, order, etc.) that help establish the structure of the space. 
	 IV. Topology and Open Sets (if relevant): 
	 If defining a topological space, specify the topology on the set. This involves  
	 determining the collection of open sets that satisfy the desired topological  
	 properties. If the space has a metric, define the metric function that measures  
	 distances between elements. 
	 V. Properties and Axioms: 
	 List the key properties, axioms, or characteristics that you want the space to  
	 possess. Ensure that these properties align with the motivation and desired  
	 behaviors of the new space. 
	 VI. Examples and Counterexamples: 
	 Provide examples of elements and subsets in the space that illustrate its key  
	 properties. Consider providing counterexamples that highlight the limitations  
	 or boundary cases of the space's properties. 
	 VII. Connections to Existing Concepts: 
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	 Establish connections between your new space and existing mathematical  
	 concepts. This can help others understand the context and significance of the  
	 new space. 
	 	 	 	 	 	 	 	 	 	 	 	 	 || 
    We wish our discussion of the topology follows this step clear enough. Now let us 
continue our discussion in product topology. Since this is an introductory book on 
topics of topology, we do not want to include too many advanced materials even in 
basic category theory. So we shall close this subsection with an example: 
Example 1.6: Box Topology 
	 There is another “natural” topology on  called the box topology, namely, 

	 , defined by . This is apparantly a  

	 product topology different from , concidence occur when  is finite. 
	 If  is not finite, then . Note that since , then the 

	 maps  are continuous. However, the universal  
	 property fails for , hence it is not a “good” topology.		 	 	 || 

1.5 The Subspace Topology 
    With now enough tools and notions, we can get to the discussion of subspace topo-
logies. The subspace topology is an essential concept in topology that allows us to 
study subsets of topological spaces while inheriting the topology from the original 
space. It provides a way to understand the topology of a subset in terms of the 
topology of the larger space. 
Definition: Subspace Topology 
	 Let  be a topological space. If , then  is a  
	 topology on , called the subspace topology. 
    In other words, the open sets in the subspace topology are the intersections of open 
sets in the original space  with the subset . 
   We care about the basis for subspace topology too. In fact, the new basis is taken 
the same way as we take the subspace topology, this is the result of the following le-
mma: 
Lemma 1.12: 
	 If  is a basis for the topology of  then the collection  
	  is a basis for the subspace topology on . 
Proof: 
	 Given  open in  and given , we can choose an element   
	 such that . Then . Then by Lemma 1.3 that  
	 is a basis for the subspace topology on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    When dealing with a space  and a subspace , one needs to be careful when one 
uses the term “open set”. Does one mean an element of the topology of  or an 
element of the topology on ? We make the following definition: 

∏
α∈A

Xα

Tbox Tbox := {∏
α∈A

Uα Uα ⊆ Xα are open}
Tprod A

A Tbox ⊋ Tprod Tbox ⊇ Tprod
pβ : (∏Xα, Tbox) → (Xβ, Tβ)

Tbox

(X, T ) Y ⊆ X TY := {Y ∩ U |U ∈ T}
Y

X Y

ℬ X
ℬY = {B ∩ Y |B ∈ ℬ} Y

U X y ∈ U ∩ Y B ∈ ℬ
y ∈ B ⊂ U y ∈ B ∩ Y ⊂ U ∩ Y ℬY

Y
□

X Y
Y

X
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Notations: 
	 If  is a subspace of , we say that a set  is open in  (or open relative to )  
	 if it belongs to the topology of ; this implies in particular that it is a subset of  
	 . We say that  is open in  if it belongs to the topology of . 
    There is a special situation in which every open set in  is also open in . 
Lemma 1.13: 
	 Let  be a subspace of . If  is open in  and  is open in , then  is also  
	 open in . 
Proof: 
	 Since  is open in ,  for some open set  open in . Since  and  
	 are both open in , then so is . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    The properties that characterize the subspace topology are more important than the 
definition above. In his notes [4] in Fall 2014, John Terilla offered two characteriz-
ations of the subspace topology. The following two characterizations are drawn from 
his lecture notes: The first one characterizes that the subspace topology is the coarsest 
topology on  for which the inclusion map  is continuous. The second one 
is a universal property that characterizes the subspace topology on  by characteri-
zing which functions into  are continuous. We shall use one lemma to conclude thes-
e results: 
Theorem 1.14: 
	 Let  be a topological space and let  be a subset. We claim that 
	  is a topology on . Moreover, 
	  is the smallest topology on , and the inclusion  is 	continuous. 
Proof: 
	 We first prove that  under this setting is indeed a topology on , that means 
	 we need to check the three conditions for being a topology: 
	 (i)	  by definition. Similarly, . 
	 (ii)	 For arbitrarily chosen open sets , there exists  and   
	 	 being open such that  and . Moreover, one has 
	 	  since both  and 
	 	  are open in . 
	 (iii)	 Similarly, if  is an arbitrarily chosen collection of open sets in 	
	 	  then . 

	 Now we know that  is indeed a topology on . It remains to check the  
	 behaviour of the inclusion mapping : 
	 First, let  be any other topology such that  being continuous. 
	 Let now  be an open set, then by definition of  one has  
	 for some open set , but then  hence . 
	 Result follows from the uniqueness. 
	 	 	 	 	 	 	 	 	 	 	 	 	  

Y X U Y Y
Y

Y U X X
Y X

Y X U Y Y X U
X

U Y U = Y ∩ V V X Y V
X Y ∩ V

□

Y i : Y → X
Y

Y

(X, dX) Y ⊆ X
TY := {U ⊆ Y ∃Ũ ⊆ X open with U = Ũ ∩ Y} Y
TY Y i : Y ↪ X

TY Y

Y = X ∩ Y ∈ TY ∅ = ∅ ∩ Y ∈ TY

U, V ∈ TY Ũ Ṽ ⊆ X
U = Ũ ∩ Y V = Ṽ ∩ Y

(U ∩ V )∖((Ũ ∩ Y ) ∩ (Ṽ ∩ Y )) = (Ũ ∩ Ṽ ) ∩ Y ∈ TY Ũ
Ṽ X

{Uα}α∈A
TY ⋃

α∈A

Uα ∈ TY

TY Y
i : Y ↪ X

T′￼ i : Y ↪ X
U ∈ TY TY U = Ũ ∩ Y

Ũ ⊆ X Ũ ∩ Y = i−1(Û ) ∈ T′￼ TY = T′￼

□
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    This type of result follows from [2], and the proof adapts no materials from categ-
ory theory. As we promised, let us dive deep into its result and interprete it: 
   In order to describe the first characterization, let us illustrate a general fact: Let 

 be a topological space and let  be any open set inside. Conside the function: 
	 	 	 	 	 	   . 
It makes no sense to ask if  is continuous unless  is equipped with a topology. There 
do exist topologies on the set  such that  is continuous. If  is the intersection of all 
topologies on  for which  being continuous, then  will be the coarsest topology for 
which  being continuous. Note that  has a simple explicit description as 	 	 	  

	 	 	 	     . 
This leads to the following alternative definition of the subspace topology: 
Definition: Subspace Topology (alternative definition) 
	 Let  be a topological space and let  be any subset of . The  
	 subspace topology on  is defined to be the coarsest topology on  for which 
	 the canonical inclusion  is continuous. 
Remark:  
	 There is an astonishing result: the coarsest topology on , having the  
	 function  being continuous, may not be a subset of ! Here is why: 
	 Since  is injective,  is isomorphic as a set to its image ; and the set  
	 with the subspace topology determined by the injection  is  
	 homeomorphic to the set  with the subspace topology determined by 	
	 the inclusion . If  is not injective, then the topology  is not  
	 referred to as the subspace topology.	 	 	 	 	 	 	 || 
    We pause a moment to see this important result, notice that this terminology could 
be very useful in the construction of weak topologies. For example, suppose that  is 
a set without any structure and let  is a collection of topological spaces. We 
are given a collection of maps  such that ,  and we wish 
to construct a topology on  such that all the maps  are continuous. In 
practice, we wish to use as less open sets as possible to build such a topology. This is 
the strategy in constructing a weak topology, which provides a way to study converg-
ence and continuity in functional space when the original space is too small to 
contain the limit points. Detailed description could be found in [5]. 
   There is a principle in mathematics that if one can understand the morphisms in a 
category, then one can understand the objects. Without making this principle more pr-
ecise now, let us give an illustration:  
   Suppose that you want to understand a topological space . One approach is 
to study the continuous functions  or  where  is another 
topological space. Now, the subspace topology has an important universal property 
which characterizes precisely which functions  are continuous for all 
topological spaces . This property completely determines the subspace topo-
logy on , which is the second characterization of subspace topology: 
Universal Property for the Subspace Topology: 

(X, TX) S
f : S → X

f S
S f Tf

S f Tf
f Tf

Tf := {f −1(U ) U ⊆ X being open}

(X, TX) S ⊆ X X
S S

f : S ↪ X

S
f X

f S f (S ) ⊆ X S
f : S → X

f (S ) ⊆ X
i : f (S ) ⊆ X f Tf

X
{Yα}α∈A

{φα}α∈A ∀α ∈ A φα : X → Yα
X {φα}α∈A

(X, TX)
f : Z → X f : X → Z (Z, TZ)

f : Z → Y
(Z, TZ)

Y
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	 For every topological space  and every function ,  is  
	 continuous if and only if  is continuous, where  is the  
	 natural inclusion. 
   One should think of the universal property stated above as a property that may be 
attributed to a topology on . At this point, one may think that some topologies have 
this properties and some do not. Furthermore, the subspace topology is the only 
topology on  with this property! The proof of this observation may involve too 
much heavy machinery from category theory, hence we shall not present it here, for 
those who are interested in may consul [4]. 

1.6 Order Topology 
   Relation is one of the most important features of mathematical objects. In order to 
offer a better understanding of the order topology, we adapt some background termin-
ologies from [7]. Before that, we will give the following notations for the common 
number systems: 
Notations: Common Number Systems 
	 (i)	 The natural number is given by . Note that  is not 	 	
	 	 always an element of . 
	 (ii)	 The integers . 
	 (iii)	 The rational numbers . 

Definition: Relation 
	 Let  be a set and let  with . An -ary relation  on  is a subset 
	 , where  is the cartesian product. Given , we  
	 say that  holds for  if , and otherwise we say  does not hold for . 
  If , we call  a unary relation; if , we call  a binary relation; and if

, we call  a ternary relation. In most scenarios, we consider  as a binary rela-
tion. Moreover, sometimes when  and  has the binary relation , we may say , 
but this does not necessarily mean , with  when the binary relation is 
said to be reflexive. This leads to the necessity in defining the features of a given 
binary relation: 
Definition: features of binary relation 
	 Let  be a binary relation on a set . Then we define the followings: 
	 (1)	  is reflexive if , . 
	 (2)	  is irreflexive if , . 
	 (3)	  is symmetric if , . 
	 (4)	  is antisymmetric if , . 
	 In the above, (1) and (2), (3) and (4) are dual to each other, respectively. 
	 (5)	  is transitive if , . 
	 (6)	  is total if , either  or . 
	 (7)	  is trichotomy if , exactly one of , , or  
	 	  is valid. 
    For the most part, our examples come from the following classes of algebraic stru-
ctures: 

(Z, TZ) f : Z → Y f
i ∘ f : Z → X i : Y → X

Y

Y

ℕ := {0,1,2,⋯} 0
ℕ

ℤ = {⋯, − 2, − 1,0,1,2,⋯}
ℚ = {m

n
|m, n ∈ ℤ and n ≠ 0}

A n ∈ ℕ n ≥ 1 n R A
R ⊆ An An a = ⟨a0, ⋯, an−1⟩ ∈ An

R a a ∈ R R a
n = 1 R n = 2 R

n = 3 R R
a b R aRb
bRa aRb ⇔ bRa

R A
R ∀a ∈ A ⟨a, a⟩ ∈ R
R ∀a ∈ A ⟨a, a⟩ ∉ R
R ∀a, b ∈ A ⟨a, b⟩ ∈ R ⇒ ⟨b, a⟩ ∈ R
R ∀a, b ∈ A ⟨a, b⟩ ∈ R ⇏ ⟨b, a⟩ ∈ R

R ∀a, b, c ∈ A ⟨a, b⟩ ∈ R ∧ ⟨b, c⟩ ∈ R ⇒ ⟨a, c⟩ ∈ R
R ∀a, b ∈ A ⟨a, b⟩ ∈ R ⟨b, a⟩ ∈ R
R ∀a, b ∈ A a = b ⟨a, b⟩ ∈ R
⟨b, a⟩ ∈ R
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Definition: Equivalence Relation 
	 An equivalene relation is a pair  such that  is a set and  is a binary  
	 relation on  which is reflexive, symmetric, and transitive. That is, a relation 
	  on a set  satisfies, : 
	 (i)	 .	 	 	 (reflexive) 
	 (ii)	 .	 	 (Symmetric) 
	 (iii) .	 (Transitive) 
Definition: Equivalence Class 
	 Given an equivalence relation  on a set  and an element , the  
	 equivalence class of  in , denoted by , is defined to be the set of all  
	 elements in  that is equivalent to ; namely, . 
Definition: Preorder 
	 A preorder on a set  is a binary relation  such that it is reflexive and  
	 transitive. 
Definition: Partial Order (Partially ordered set, or Poset) 
	 A partial order is a pair  such that  is a set and  is a binary relation 
	 on  which is reflexive, antisymmetric, and transitive. 
Definition: Ordered Sets 
	 An ordered set is a set  equipped with a binary relation  that satisfies certain  
	 properties: 
	 (i)	 . 	 	 (Comparability, or, Total Order) 
	 (ii)	 .	 (Transitivity) 
	 (iii)	 .	 (Antisymmetricity) 
Definition: linear order 
	 A linear order is a pair  such that  is a set and  is a binary relation 
	 on  which is reflexive, antisymmetric, transitive, and total. 
Remark: 
	 Thus, a linear order is a partial order which is total.		 	 	 	 ||	  
Definition: strict linear order 
	 Similarly, we could define the strict linear order with the only difference being  
	  being replaced by , which is irreflexive, transitive, and trichotomy.	 	      
    We will also use the following terminologies for functions: 
Definition: Injective, Surjective, and Bijective 
	 Let  and  be two sets and let  be a function. Then the range of  
	 is the set .  
	 We say that  is one-to-one (or injective) if . That is 
	 to say, . 
	 We say that  is onto  (or surjecitve) if . That is, if ,  
	  such that . 
	 Moreover, we say that  is one-to-one and onto (or bijective) if it is both  
	 injective and surjective. 
    The order topology is a concept in topology that arises from the order structure of a 
set. It's a way of defining a topology on a totally ordered set that captures the order 

(E, ∼ ) E ∼
E

∼ E ∀a, b, c ∈ E
a ∼ a
a ∼ b ⇒ b ∼ a

a ∼ b ∧ b ∼ c ⇒ a ∼ c

∼ X x ∈ X
x X [x]

X x [x] := {y ∈ X |y ∼ x}

X ≤

(P, ≤P ) P ≤P
P

X ≤

∀x, y ∈ X, x ≤ y or y ≤ x
∀x, y, z ∈ X, x ≤ y and y ≤ z ⇒ x ≤ z
∀x, y ∈ X, x ≤ y and y ≤ x ⇒ x = y

(L, ≤L ) L ≤L
L

≤L <L

A B f : A → B f
range( f ) := {b ∈ B ∃a ∈ A such that f (a) = b}

f f (a1) ≠ f (a2)∀a1 ≠ a2 ∈ A
b ∈ range( f ) ⇒ ∃!a ∈ A such that f (a) = b
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∃a ∈ A f (a) = b

f

25



relationships between elements. The order topology is particularly useful when study-
ing ordered sets and their continuity properties. 
Notations: 
	 Let  be a linear order, and let . We define the following notions: 
	 (i)	 . 
	 (ii)	 . 
	 (iii)	 . 
	 (iv)	 . 
Definition: Order Topology 
	 Let  be a linear order with at least two elements. Define the set 
	 	 	 . 
    	 Then  is a subbasis on , and the topology generated by it is called the order  
	 topology on . 
   This essentially (but not precisely) means that the order topology on  is the one 
generated by the basis of open intervals, in the sense described above, since 

, . Therefoer,  is in the basis 
generated by . 
Example 1.7: Order Topology 
	 (i)	 The order topology on  is the same as the usual topology. We  
	 	 already know this since the usual topology is generated by the basis of  
	 	 open intervals.	 	 	 	 	 	  
	 (ii)	 The order topology on  is the same as its subspace topology 	 	
	 	 inherited from the usual topology on . This is also easy to see, but not 	
	 	 trivial, since, e.g.  is an open set in the subspace topology  
	 	 inherited from the usual topology on , but is not a basic open interval 	
	 	 in the order topology on . It is, of course, a union of basic open 	 	
	 	 intervals. 
	 (iii)	 The order topology on  is also the same as its subspace topology 	
	 	 inherited from the usual topology on , which is to say that it is discrete. 
	 	 Indeed, for example, we have . 
Definition: Order Topology (Alternative) 
	 Let  be a set with a simple order relation; assume that  has more than one  
	 element. Let  be the collection of all sets of the following types: 
	 (i)	 All open intervals  in . 
	 (ii)	 All intervals of the form , where  is the smallest element (if any) 	
	 	 of . 
	 (iii)	 All intervals of the form , where  is the largest element (if any) of 	
	 	 .	  
	 Then the collection  is a basis for a topology on , which is called the order  
	 topology. 
    It is easy to see the difference between these two definitions, the first one is establi-
shed by the subbasis while the second one is generated by basis.  
Definition: Rays 

(L, ≤ ) a, b ∈ L
(a, ∞) = {x ∈ L |a < x}
(−∞, b) = {x ∈ L |x < b}
(a, b) = {x ∈ L |a < x < b}
(a, b] = {x ∈ L |a < x ≤ b}

(L, ≤ )
𝒮 := {(−∞, b) |b ∈ L} ∪ {(a, ∞) |a ∈ L}

𝒮 L
L

L

∀a, b ∈ L ∧ a < b (a, b) = (−∞, b) ∩ (a, ∞) (a, b)
𝒮

(ℝ, ≤ )

(ℚ, ≤ )
ℝ

(−π, π) ∩ ℚ
ℝ

ℚ

(ℕ, ≤ )
ℝ

{7} = (6,8)

X X
ℬ

(a, b) X
[a, b) a

X
(a, b] b

X
ℬ X
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	  and  are called open rays while  and  are  
	 called closed rays. 
Theorem 1.15: 
	 Let  be a set with a simple order relation. The open rays form a subbasis for  
	 the order topology  on . 
Comment: 
   The order topology reflects the order relationships in the ordered set. Open interv-
als correspond to open sets in the topology, and their unions and intersections capture 
intervals of elements in the order. More literature on topics of orders could be access-
ed via [8], the readers are also encouraged to view materials in [1]. 

1.7 Quotient Topology 
   The motivation behind the quotient topology arises from the need to study spaces 
that are formed by identifying or "gluing" certain points together in a way that 
respects the original topology. The quotient topology provides a way to study the 
resulting space in a manner that captures the relationships between points that have 
been identified as equivalent. 
    In various mathematical contexts, it's common to want to treat certain points as be-
ing the same or equivalent for the purpose of analysis. For example, in geometry, one 
might want to consider a square where points along its boundary are treated as 
equivalent to form a topological circle. The quotient topology allows one to study the 
circle while keeping track of the underlying square's topology. 
Definition: Quotient Set 
	 The quotient set is the set of all equivalence classes of  with respect to  
	 the equivalence relation . In other words, each element of is itself an  
	 equivalence class of elements in . Therefore, . 
   Given an equivalence relation  on a set , we have the quotient set . There is 
an canonical map which is surjective. More specifically, 
	 	 	 	  such that . 
Let us now generalize this description and generalize it into the term quotient maps: 
Definition: quotient map 
	 A quotient map is a function that assigns each element of  to  
	 its equivalence class in the quotient set . It respects the equivalence  
	 relation, meaning that . Hence  is surjective. 
   When we say that a function is "constant on an equivalence class," it means that the 
function takes the same value for all elements within that equivalence class. In the 
context of equivalence relations and quotient sets, if two elements are related by the 
equivalence relation, they belong to the same equivalence class. Therefore, a function 
being constant on an equivalence class means that it assigns the same value to all 
elements in that class. That is to say, . 
    Now let us move to the discussion of the universal property of the quotient maps: 
Universal Property of Quotient Map: 
	 For all set  ,  which is constant on the equivalent classes of  lie 
	 on  if  . Then there exists a unique  given by 

(a, + ∞) (−∞, a) [a, + ∞) (−∞, b]

X
TX X

X / ∼ X
∼ X / ∼

X X / ∼:= {[x] |x ∈ X}
∼ X X / ∼

q : X → X / ∼ x ↦ [x]

p : X → X / ∼ X
X / ∼

x ∼ y ⇒ p(x) = p(y) p

x ∼ y ⇒ f (x) = f (y)

Y ∀f : X → Y ∼
f (x) = f (x′￼) x ∼ x′￼ f : X / ∼ → Y
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	 . That is to say, . 
Example 1.8:  
	 Let . Define the equivalence relation . Then 
	  by sending , which is constant on equivalence  
	 classes   such that .	 	 	 || 
Lemma 1.16: 
	 Let  be a topological space and denote  as an equivalence relation on  
	 . Let  be the quotient map. There exists a topology ,  
	 which denotes the quotient topology, so that  is 
	 continuous, and so that for any topological spaces  and any continuous 
	 map , which is constant on the equivalence classes of , 
	 there exists a unique continuous map  so that  
	 . 
Proof: 
	 Define the quotient topology . We first 
	 check that  is indeed a topology: 
	 (i)	  and , hence . 
	 (ii)	 If  , then  and  are both open by definition, 
	 	 then  is also open  . 
	 (iii)	 Let  be a collection of open sets. Then under the map	  
	 	 , which is open in , hence . 

	 Next we prove that the Universal Property does hold: 
	 Suppose that  is continuous and constant on the  
	 equivalence classes of , the uniqueness is guaranteed by the surjectivity; it 		
	 left us to prove the existence: 
	 If there exists a unique map  such that , we need to check 
	 the continuity of . Given , since  
	   which is open, hence result follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    We can turn Lemma 1.16 into a definition of the quotient topology, which uses the 
notion of quotient maps to construct a topology on a set. 
Definition: Quotient Topology 
	 Let  be a topological space, and let  be an equivalence relation on . 
	 The quotient space  is the set of equivalence classes of  under . The 		
	 quotient topology on  is defined in a way that makes the canonical  
	 projection continuous. That is,  is open if and only if 
	  is open in . 
    In topology, the fiber of a function is a concept that helps us understand how a fun-
ction behaves locally with respect to its target space. The notion of a fiber is partic-
ularly important when dealing with continuous maps between topological spaces. 

f (p[x]) ≅ f ([x]) = f (x) f = f ∘ p

X = ℝ x ∼ x′￼⇔ x − x′￼∈ ℤ
f : ℝ → ℂ x ↦ e2πix =: f (x)

⇒ ∃!f : ℝ / ∼ → ℂ f ([x]) = e2πix = f (x)

(X, TX) ∼
X q : X → X / ∼ Tquot

q : (X, TX) → (X / ∼ , Tquot)
(Z, TZ)

f : (X, TX) → (Z, TZ) ∼
f : (X / ∼ , Tquot) → (Z, TZ)

f ∘ q = f

Tquot := {U ⊆ X / ∼ q−1(U ) open }
Tquot

q−1(∅) = ∅ q−1(X / ∼ ) = X ∅, X ∈ Tquot
U, V ∈ Tquot q−1(U ) q−1(V )

q−1(U ∩ V ) = q−1(U ) ∩ q−1(V ) ⇒ U ∩ V ∈ Tquot
{Uα}α∈A ⊆ Tquot

q−1( ⋃
α∈A

Uα) = ⋃
α∈A

q−1(Uα) X ⋃
α∈A

Uα ∈ Tquot

f : (X, TX) → (Z, TZ)
X

f : X / ∼ → Z f ∘ q = f
f V ∈ TZ

q−1(( f )−1(V )) = ( f ∘ g)−1(V ) = f −1(V )
□

(X, TX) ∼ X
X / ∼ X ∼

X / ∼
p : X → X / ∼ U ⊆ X / ∼

p−1(U ) X

28



Definition: Fiber 
	 A fiber of a function  is a set of the form  for some  
	 . Namely, it is the set . 
Remark: 
	 If such an  is continuous, then the fiber  inherits a topology from . It’s  
	 a subset of  with the topology induced by .	 	 	 	 	 || 
    Fibers are used to describe the inverse images of points in the target space. They 
help in understanding which points in the domain map to a given point in the codo-
main. Moreover, note that the preimage and the inverse of the same function could be 
very different. Consider a function , the preimage of a set  under  is the 
set of all elements in the domain  that map to elements in , is denoted by  

. Even we use the same notation as the inverse function, 
it is important to see that an inverse function is bijective while the preimage function 
may not be, therefore it is possible for the fibre to be an empty set. 
Example 1.9: Fiber 
	 Let  and the fiber  
	 	 .	 	 || 
Remark:     
	 In general, the fibers are a function  that are equivalent classes of   
	 defined by . Hence, fiber indicates equivalent classes in  
	 general.	 	 	 	 	 	 	 	 	 	 	 || 
    Now we state a result using the fiber to find the homeomorphic space of a given 
quotient topology. 
Lemma 1.17: 
	 Let  be a continuous and surjective map and let  be an 
	 equivalence relation on  defined by . Assume  is the 
	 largest topology on  making  continuous, i.e. ,  is open  
	 implies the openness of . Then  is homeomorphic to . 
Proof: 
	 We first prove that  is a continuous bijection: Since  is constant on the 	 	
	 equivalence classes, then there exists a unique continuous map  
	  such that . If  is injective,  
	  implies that  hence , 	 	 	
	 therefore,  is a continuous bijection.  
	 It remains to prove that  is continuous. 
	 Given open, since , then  is open if and  
	 only if  is open in . That is, , since , then 
	 	 . 
	 Since  is continuous and  is open in . Then by assumption, on ,  
	  is open in , hence  is continuous  is the  
	 desired homeomorphism.		 	  
	 	 	 	 	 	 	 	 	 	 	 	 	  
Example 1.10: Homeomorphism on  

f : (X, TX) → (Y, TY) f −1(y)
y ∈ Y {x ∈ X | f (x) = y}

f f −1(y) X
X X

f : X → Y B f
X B

f −1(B) = {x ∈ X | f (x) ∈ B}

q : X → X / ∼
q−1([x]) = {x′￼∈ X | [x′￼] = [x]} = {x′￼∈ X |x ∼ x′￼} = [x]

f : X → Y ∼
x ∼ x′￼⇔ f (x) = f (x′￼)

f : (X, TX) → (Y, TY) ∼
X x ∼ x′￼⇔ f (x) = f (x′￼) T′￼

Y f ∀U ⊆ Y f −1(U )
U (Y, T′￼) (X / ∼ , Tquot)

f f

f : (X / ∼ , Tquot) → (Y, T′￼) f ([x]) = f (x) f
f ([x]) = f ([x′￼]) f (x) = f (x′￼) x = x′￼⇒ [x] = [x′￼]

f
h := ( f )−1 : (Y, T′￼) → (X / ∼ , Tquot)

U ⊆ X / ∼ h−1(U ) = f (U ) h−1(U ) ⊆ Y
f −1(h−1(U )) X f −1( f (U )) q ∘ f = f

f −1( f (U )) = ( f ∘ q)−1( f (U )) = q−1(( f )−1( f (U )) = q−1(U )
q q−1(U ) X T′￼

h−1(U ) = f (U ) Y h := ( f )−1 ⇒ f

□
ℝ2 / ∼
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	 Consider  is the standard topology,  under the map . 
	 Then for all , , which is open in  hence  is open. 
	 Therefore, the quotient space , where , is  
	 homeomorphic to  and the map  is a homeomorphism.	 || 
    We have already noted that the subspaces do not behave well: if  is a qu-
otient map and  is a subspace of , then the map  obtained by 
restircting  need not to be a quotient map. One has, however, the following theorem: 
Theorem 1.18: Quotient Map and Subspace 
	 Let  be a quotient map; let  be a subspace of  that is saturated  
	 with respect to ; let  be the map obtained by restricting . Then 
	 (i)	 If  is either open or closed in , then  is a quotient map. 
	 (ii)	 If  is either an open map or a closed map, then  is a quotient map. 
Proof: 
	 Step I: 
	 We verify the following two equations: 
	 	 	 	  if ; 
	 	 	         if . 
	 To chcek the first equation, we note that since  and  is saturated,  
	  is contained in . It follows that both  and  equal all  
	 points of  that are mapped by  into . To check the second equation, we note 
	 that for any two subsets  and  of , we have the inclusion 
	 	 	 	 	 . 
	 To prove the reverse inclusion, suppose , for  and  
	 . Since  is saturated,  contains the set , so that in particular  
	  contains . Then , where . 
	 Step II: 
	 Now suppose that  is open or  is open. Given the subset  of , we  
	 assume that  is open in  and show that  is open in . 
	 Suppose first that  is open. Since  is open in  and  is open in , the 
	 set  is open in . Since , the latter set is open in , so  
	 that  is open in  because  is a quotient map. In particular,  is open in . 
	 Now suppose that  is open. Since  and  is open in ,  
	 we have  for some set  open in . Now   
	 since  is surjective; then . The set 
	  is open in  because  is an open map; hence  is open in . 
	 Step III: 
	 The proof when  or  is closed is obtained by replacing the term “open” by  
	 the term “closed” throughout Step II. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Now we consider other concepts introduced previously. Composites of maps beha-
ve nicely; it is easy to check that the composite of two quotient maps is a quotient 
map; this fact follows from the equation 
	 	 	 	      .	 	 	 (1.4) 

ℝ2 f : ℝ2 → ℝ (x, y) ↦ x
U ⊆ ℝ f −1(U ) = U × ℝ ℝ2 U

ℝ2 / ∼ (x, y) ∼ (x′￼, y′￼) ⇔ x = x′￼
ℝ f ([x, y]) = f (x)

p : X → Y
A X q : A → p(A)

p

p : X → Y A X
p q : A → p(A) p

A X q
p q

q−1(V ) = p−1(V ) V ⊆ p(A)
p(U ∩ A) = p(U ) ∩ p(A) U ⊆ X

V ⊆ p(A) A
p−1(V ) A p−1(V ) q−1(V )

A p V
U A X

p(U ∩ A) ⊆ p(U ) ∩ p(A)
y = p(u) = p(a) u ∈ U

a ∈ A A A p−1(p(a))
A u y = p(u) u ∈ U ∩ A

A p V p(A)
q−1(V ) A V p(A)

A q−1(V ) A A X
q−1(V ) X q−1(V ) = p−1(V ) X
V Y p V p(A)

p q−1(V ) = p−1(V ) q−1(V ) A
p−1(V ) = U ∩ A U X p(p−1(V )) = V

p V = p(p−1(V )) = p(U ∩ A) = p(U ) ∩ p(A)
p(U ) Y p V p(A)

A p

□

p−1(q−1(U )) = (p ∘ q)−1(U )

30



On the other hand, products of maps do not behave well; the Cartesian product of two 
quotient maps need not to be a quotient map. One needs further conditions on either 
the maps or the spaces in order for this statement to be true. One such, a condition on 
the spaces, is called local compactness, which we shall study later. Another, a condi-
tion on the maps, is the condition that both the maps  and  be open maps. In that 
case, it is easy to see that  is also an open map, so it is a quotient map. 

1.8 Openness, Closedness, and Limitedness 
    Recall in basic analysis course, we have encountered the terminologies called limit 
points, closedness, and closure. All of them could offer a perspective corresponding 
to the convergence of a sequence; in particular, Cauchy sequence, where the converg-
ence of all Cauchy sequences lead to completeness. In this subsection, we shall dive 
deeper in the treatment of closed sets, closures, and limit poins. These lead naturally 
to consideration of a certain axiom for topological spaces called the Hausdorff axiom. 
Moreover, after this subsection, we will be equipped with enough background for the 
study of not only the separation properties but also the compactness as well as 
connectedness. 
Definition: Neighbourhood 
	 A neighbourhood of a point  in a topological space  is a subset  such  
	 that there exists an open set such that  with .  
Proposition 1.19: Neightbourhood and Open Sets 
	 A subset  of a topological space  is open if and only if  is a neighbourhood 
	 of every points . 
Proof: 
	 If  is open and , then  is an open neighbourhood of . Suppose that  
	  is a subset, then  is a neighbourhood of every . Then ,  
	 there exists an open set  such that , hence  
	      is open, 

	 	 	 	 	 	 	 	 	 	 	 	 	  
Definition: Limit Points 
	 Let  be a topological space and let  be a subset, a point  is called 
	 a limit point of  if for all neighbourhood  of , . 
Definition: Interior	  
	 Let  be a topological space and let  be a subset, then the interior  
	 of , denoted by , is the largest open set that contains . 
Remark: 
	 (i)	 . 

	 (ii)	  is open . 
	 (iii)	 It may happen that . For example, if  and . Then  
	 	 , , the interval  containing irrationals  
	 	 implies  . 
Definition: Direct Set 

p q
p × q

x X N ⊆ X
U ⊆ X x ∈ U ⊆ N

U X U
x ∈ U

U x ∈ U U x
U ⊆ X U x ∈ U ∀x ∈ U

VX x ∈ VX ⊆ U
U = ⋃

x∈U

{x} ⊆x∈U VX ⊆ U ⇒ U = ⋃
x∈U

{x} = ⋃
x∈U

VX ⇒ U

□

X A ⊆ X x ∈ X
A N x N ∩ (A∖{x}) ≠ ∅

(X, TX) A ⊆ X
A A∘ A

A∘ := ⋃
U⊆A open

U ⊆ A

A ⊆ X ⇔ A = A∘

A∘ = ∅ X = ℝ A = ℚ
∀x ∈ ℚ ∀ε > 0 (x − ε, x + ε)

(x − ε, x + ε) ⊊ ℚ ⇒ ℚ∘ = ∅
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	 A directed set is a set  with a preorder  such that ,  
	 such that  and . 
Example 1.11: Directed Sets 
	  is a directed set. 
	 Let  be a topological space, let  be a point. Let  
	 . Define  on  by inverse  
	 inclusion: . Given ,  and 
	  hence  is a directed set.	 	 	 	 	 	 || 
    Recall in calculus, the convergence is built up by the accumulation performance of 
a sequence. In topology, there is also such a sequence, made up, however, by the open 
sets, this is the reason we introduced relations and directed sets. Such a sequence, 
which is fundamental in our understanding of the convergence and the continuity, is 
called “nets”. 
   In topology, a net is a generalization of sequences that provides a way to analyze 
convergence and continuity in topological spaces that might not be first-countable, as 
well as to study properties such as compactness and closure. Nets offer a broader 
framework for understanding the behavior of points in a topological space, particu-
larly when sequences may not be sufficient. 
Definition: Net 
	 A net in a topological space  is a function   by sending , 
	 where  is a directed set. We denote that  by . 
    Observation of this definition tells us that a net is a function generalizes the conce-
pt of sequences, allowing indexing by any directed set, making them applicable in 
more general topological spaces. 
Definition: Convergence of Net 
	 A net  in a topological space  converges to  if and only if for all 
	 neighbourhood  of ,  such that . If , we say 
	  is a limit point of . A net  is convergent if it has a limit. 
    Recall that the closure of a set is a fundamental concept that characterizes the poin-
ts that are "close" to the set. The closure of a set includes the set itself along with its 
limit points, providing a way to describe the extent to which the set fills its surrou-
nding space. The closure is an important tool for analyzing the behavior of sets within 
a given topological space. Loosely speaking, the closure of  is the smallest 
closed set  contains . Now we introduce the relationships between closures and 
interiors: 
Definition: Closure 
	 If  is a topological space,  is a subset, the closure  of  is the smallest  
	 closed set that contains . 
Lemma 1.20: Existence and Uniqueness 
	 The closure  of a subset  of a topological space  exists and is unique. 
Proof: 
	 Let . Then (i)  is closed. (ii) By construction, . 

Λ < ∀λ1, λ2 ∈ Λ ∃λ3 ∈ Λ
λ1 < λ3 λ2 < λ3

(ℕ, ≤ )
X x ∈ X

Λ := {N ⊆ X |N is a neighbourhood of x} < Λ
N1 < N2 ⇔ N1 ⊇ N2 N1, N2 ∈ Λ N1 ⊇ N1 ∩ N2

N2 ⊇ N1 ∩ N2 Λ

X x : Λ → X λ ↦ x
Λ x : Λ → X {xλ}λ∈Λ

(xλ)λ∈Λ X y ∈ X
W y ∃λ0 ∈ Λ λ0 < λ ⇒ xλ ∈ W xλ → y

y (xλ)λ∈Λ (xλ)λ∈Λ

A ⊆ X
A A

X A ⊆ X A A
A

A A X

A := ⋂
C⊆X closed,A⊆C

C A A ⊆ A
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	 (iii)  where  is closed implies . (  denotes  

	 	 the set containing all limit points) 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Definition: Closed 
	   is closed. 
Proposition 1.21: 
	 Let  be a topological space and  is a subset. Then . In  
	 particular,  for all neighbourhood  of  . 
Proof: 
	  there is a neighbourhood  of  such that . 
	 [Claim]:  neighbourhood  of  such that . 
	 	 “ ”: 
	 	  is open in . Say  is a neighbourhood  
	 	 of  since . 
	 	 “ ”: 
	 	 Suppose that there exists a neighbourhood  of  such that .  
	 	 Then there exists an open set  such that .  
	 	 Hence  but , thus .	 
	 By [Claim], it suffices to show that then  by definition. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Hausdorff space is a fundamental concept in topology that captures a strong separ-
ation property within a topological space. Named after the mathematician Felix Haus-
dorff, this property ensures that distinct points in the space can be separated by disjo-
int open neighborhoods. Limits of sequences or nets in a Hausdorff space are unique. 
If a sequence or net converges to a point, then it can only converge to that particular 
point. 
Definition: Hausdorff space 
	 A topological space  is called Hausdorff  if  such that ,  
	 there exist open sets  and  such that  and  and . 
Example 1.12: Hausdorff space 
	 (i)	 Any metric space  is Hausdorff. Since  with ,  
	 	  then Hausdorff.	 
	 (ii)	 Let  and , this is not  
	 	 Hausdorff. 
    Now we give one of the most important results derived from Hausdorff: 
Proposition 1.22: 
	 In Hausdorff space, limits of sequences when exist then unique. 
Proof:	  
	 Suppose that  is Hausdorff, consider two points ,  is a sequence 
	 with  and . 
	 [Claim]: . 
	 	 If  there exists an open neighbourhood  of  and  of  such 

C′￼⊇ A C′￼ A = ⋂
C⊆X closed,A⊆C

C ⊆ C′￼ C′￼

□

A = A ⇔ A

X A ⊆ X A = A ∪ A′￼
x ∈ A ⇔ N x N ∩ A ≠ ∅

x ∉ A ∪ A′￼⇔ N x N ∩ A = ∅
x ∉ A ⇔ ∃ N x N ∩ A = ∅

⇒
x ∉ A ⇒ x ∈ (A )c ⇒ X ∖A = N X N

x x ∈ N ⇒ ∅ = N ∩ A ⊇ N ∩ A
⇐

N x N ∩ A = ∅
U ⊆ X x ∈ U ⊆ N

A ⊆ X ∖U ⇒ A ⊆ X ∖U ⇒ U ∩ A = ∅ x ∈ U x ∉ A
x ∉ A′￼∪ A x ∉ A

□

X (T2) ∀x, y ∈ X x ≠ y
U V x ∈ U y ∈ V U ∩ V = ∅

(X, d ) ∀x, y ∈ X x ≠ y
d(x, y) > 0 B r

2
(x) ∩ B r

2
(y) = ∅ ⇒

X := {a, b, c} T := {∅, X, {a, b}, {a, c}, {b}}

X y, z ∈ X {xn}
xn → y xn → z

y = z
y ≠ z ⇒ U y V z
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	 	 that . Since  there exists  such that  
	 	 . Since  then  . Then  	
	 	 hence contradiction. 
	 Therefore,  and uniqueness follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Proposition 1.23: 
	 For any topological space , for any subset , we have 
	 (i)	 . 
	 (ii)	 . 
Proof: 
	 Recall that a subset  is open  is open.  
	  

	          . 
	 Similarly,  

	 	 	     . 

	 	 	 	 	 	 	 	 	 	 	 	 	  
Proposition 1.24: 
	 Let  be a topological space, let  be subsets, we have 
	 (i)	  and . 
	 (ii)	 , . 
	 (iii)	 . 
	 (iv)	 . 
Proof: Elementary. 
Remark: 
	 (i)	 Consider  and  hence  
	 	 . But . In general,  
	 	 , equality may not happen. 
	 (ii)	 Since  and , .  and .	  
	 	 So  and the inclusion may be strict.	 	 	 	 || 
Definition: Boundary 
	 Let  be a topological space and  is a subset. The boundary (or frontier) 
	 of  is the set . 
Example 1.13: Boundary 
	 (i)	 Consider  and . Then  
	 	 	 . 
	 (ii)	 Consider again  but . Then . 
Proposition 1.25: 
	 Let  be a topological space and let  be a subset. Then 
	 (i)	 . 

U ∩ V = ∅ xn → y N ∈ ℕ
xn ∈ U ∀n > N U ∩ V = ∅ xn ∉ V ∀n > N xn ↛ z

y = z
□

(X, TX) A ⊆ X
X ∖A∘ = X ∖A
X ∖A = (X ∖A)∘

U ⊆ X ⇔ Uc

X ∖A∘ = X ∖( ⋃
U⊆A,U open

U ) = ⋂
X∖A⊆X∖U,U open 

(X ∖U ) = ⋂
C⊆X closed,C⊇(X∖A)

= X ∖A
X ∖A = X ∖ ⋂

A⊆C closed
C = ⋃

X∖A⊇X∖C,X∖C open
(X ∖C )

= ⋃
U open,U⊆X∖A

U = (X ∖A)∘

□

(X, TX) A, B ⊆ X
A ⊆ B ⇒ A∘ ⊆ B∘ A ⊆ B
(A ) = A (A∘)∘ = A∘

A ∪ B = A ∪ B
(A ∩ B)∘ = A∘ ∩ B∘

(0,1), (1,2) ⊆ ℝ (0,1) ∩ (1,2) = ∅
[(0,1) ∩ (1,2)] = ∅ (0,1) ∩ (1,2) = {1}
A ∩ B ⊆ A ∩ B

ℚ ⊆ ℝ ℚ ⊆ ℝ (ℚ)∘ = ℝ∘ = ℝ ℚ∘ = ∅ ℚ∘ = ∅
A∘ ⊆ (A )∘

X A ⊆ X
A ∂A := A ∩ X ∖A

X = ℝ A = (0,1)
∂A = (0,1) ∩ ℝ∖(0,1) = [0,1] ∩ (ℝ∖(0,1)) = {0,1}

X = ℝ A = ℚ ∂ℚ = ℚ ∩ ℝ∖ℚ = ℝ ∩ ℝ = ℝ

X A ⊆ X
A = A ∪ ∂A
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	 (ii)	 . 
	 (iii)	 . 
Proof: 
	 (i): 
	 . 
	 (ii): 
	  
	           since . 
	 (iii): 
	 By Proposition 1.23 we have . Since  
	 	 	 	 	 . 
	 By (i), 	 	 	    
	 	 	 	 	   . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    In topology, a neighborhood basis (or local basis) at a point in a topological space 
provides a systematic way to describe the open sets around that point. It is a colle-
ction of open sets that serve as building blocks for the neighborhoods of the point. A 
neighborhood basis is crucial for understanding the local structure of a topological 
space, analyzing convergence, and defining continuity. 
Definition: Neighbourhood Basis 
	 A neighborhood basis  of a point  where  is a topological space is a  
	 collection of neighborhood of  so that for all neighbourhood , there exists 
	  such that . 
Example 1.14: Neighbourhood Basis 
	 Let  and a point , set , wher  
	  is an open ball. We claim that  is a  
	 neighbourhood basis of , If  is a neighbourhood of , then there exists 
	 an  such that . Moreover, there exists an  such that  
	 . Then  as we desire.	 	 	 	 || 
  Not all topological spaces have a countable neighborhood basis at every point. 
However, first-countable spaces are those where each point has a countable 
neighborhood basis. For example  is first countable according to the following 
definition: 
Definition: First Countable 
	 A topological space  is said to be first countable if every point  has a  
	 countable neighbourhood basis. 
    In a first-countable space, sequences and nets can be characterized more easily. Co-
nvergence of sequences can be described using neighborhoods from the local basis. 
However, this may not be valid in general topologies: 
Proposition 1.26: 
	 Let  be a first countable topological space. Consider a subset  and a  
	 point . Then there exists a sequence  with . 

Proof: 

A∘ = A∖∂A
X = A∘ ∪ ∂A ∪ (X ∖A)∘

A ∪ ∂A = A ∪ (A ∩ (X ∖A)) = (A ∪ A ) ∩ (A ∪ (X ∖A)) = A ∩ X = A

A∖∂A = A∖(A ∩ (X ∖A)) = (A∖A ) ∪ (A∖(X ∖A)) = ∅ ∪ (A ∩ (X ∖(X ∖A)))
= ∅ ∪ (A ∩ A∘) = A∘ X ∖B = (X ∖B)∘

(X ∖A)∘ = X ∖A
X = A ∪ (X ∖A ) = A ∪ (X ∖A)∘

= (A ∪ ∂A) ∪ (X ∖A)∘ = (A∖∂A) ∪ ∂A ∪ (X ∖A)∘

= A∘ ∪ ∂A ∪ (X ∖A)∘

□

ℬx x ∈ X X
x W

B ∈ ℬx x ∈ B ⊆ W

X = ℝn x ∈ ℝn ℬx := {Br(x) |r ∈ ℚ+}
Br(x) := {y ∈ X |d(x, y) < r} ℬx

X N x ∈ ℝn

R > 0 BR(x) ⊆ N r ∈ ℚ+

0 < r ≤ R x ∈ Br(x) ⊆ BR(x) ⊆ N

ℝn

X x ∈ X

X A ⊆ X
y ∈ A {xn}n ⊆ A xn

n→∞ y
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	 Let  be a countable neighbourhood basis of . By replacing  (if  
	 necessary) by , we may assume that .. Since 
	  and  is a neighbourhood of , then . Pick ,  
	 since , let  be a neighbourhood of , since  is a 	  
	 neighbourhood basis, there exists  such that , then for  
	 one has . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Remark: 
	 Note that this result does not apply to general topologies. For example, it fails  
	 when applying to box topology .	 	 	 	 	 	 	 || 
    Now let us introduce the convergence results of nets: 
Proposition 1.27:	  
	 Let  be a topological space. Consider a subset  and a point . Then  
	  in  such that . 
Proof: 
	 “ ”: 
	 Suppose that there exists a net  in  such that . Then for any  
	 neighbourhood  of , by definition,    
	 since ,  hence by Proposition 1.21 . 
	 “ ”: 
	 Left as exercise (Hint: apply Proposition 1.21).	  
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Nets provide a way to define continuity for functions between topological spaces, 
even in cases where sequences might not suffice. 
Proposition 1.28: 
	 Let  be a function between topological spaces  and . Then 
	  is continuous if and only if for all net  in  with  then  
	 . 
Proof: 
	 “ ”: 
	 Suppose  is continuous,  is a net, . Let  be a neighbourhood of 
	  in , since  is continuous,  is a neighbourhood of  since . 
	 There exists  such that   with   
	 with . Hence . 
	 “ ”: 
	 Left as exercise. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Proposition 1.29: 
	 A topological space  is Hausdorff  limits of nets in  are unique. 
Proof: Exercise. 
Proposition 1.30: 
	 A topological space  is Hausdorff  the diagonal  

{Ni}∞
i=0 y Ni

N1 ∩ N2 ∩ ⋯ ∩ Ni N0 ⊇ N1 ⊇ ⋯
y ∈ A Ni y Ni ∩ A ≠ ∅ xi ∈ Ni ∩ A

Ni ⊇ Nk ∀k ≥ i W y {Ni}
i ∈ ℕ y ∈ Ni ⊆ W k ≥ i

xk ∈ Nk ⊆ Ni ⊆ W ⇒ xn → y
□

Tbox

X A ⊆ X y
y ∈ A ⇔ ∃(xλ)λ∈Λ A xλ → y

⇐
(xλ)λ∈Λ A xλ → y

W y W ∩ {xλ |λ ∈ Λ} ≠ ∅ ⇒ W ∩ A ≠ ∅
∀λ ∈ Λ xλ ∈ A y ∈ A

⇒

□

f : X → Y X Y
f (xλ)λ∈Λ X xλ → w
f (xλ) → f (w)

⇒
f (xλ)λ∈Λ xλ → w U

f (w) Y f f −1(U ) w xλ → w
λ0 ∈ Λ xλ ∈ f −1(U ) ∀λ λ0 < λ ⇒ f (xλ) ∈ U ∀λ

λ0 < λ f (xλ) → f (w)
⇐

□

X ⇔ X

X ⇔
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	  is closed in  where  has product  
	 topology. 
Proof: 
	 For  such that  . 
	  is closed  is open  exists 
	 open neighbourhood  of  such that   exists  
	  open subsets such that  and  
	  is Hausdorff. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Recall in analysis we have the terminology “compact”, for which we admit any co-
nvergent sequence has a convergent subsequence. It is natural to ask the properties 
for the “subnet” even we have not formally introduced the compactness. 
    Before that we need introduce another term called “cofinal”. In topology, the term 
"cofinal" refers to a relationship between two directed sets. This concept is used 
primarily in the context of nets, which are generalized sequences that provide a way 
to study convergence and continuity in topological spaces. Cofinality captures the 
idea of one directed set being "larger" than another in a specific sense. 
Definition: Cofinal 
	 Given two directed sets  and , where   is a function that preserves  
	 the order of the sets, we say that  is cofinal in  if   such that 
	 . 
    When dealing with nets, cofinal subsets of the directed set are used to construct su-
bnets that capture specific convergence patterns of the original net. Moreover, in the 
context of compactness, a directed set is cofinal in another if the net indexed by the 
latter directed set is used to construct a convergent subnet of the net indexed by the 
former directed set. 
Example 1.15: Cofinal 
	 Consider  and . The function  defined by 
	  makes  cofinal in . Every natural number  has an associated  
	 even number  that is greater than or equal to .	 	 	 	 	 || 
Definition: Subnet 
	 Given a net  and a cofinal subset  of the directed set , the  
	 composition  is called a subnet of , where  is a  
	 function that preserves the order of  and is cofinal. 
Definition: Convergence of Subnet 
	 A subnet  of the net  is said to converge to a point  if 
	 for every neighborhood  of  there exists an index  such that for all  
	  . 
Proposition 1.31: 
	 Let  be a net on a topological space  that converges to . Then  
	 any subset  of , . 
Proof: 
	 Let  be a neighbourhood of , since  then  such that for 

Δx := {(x, y) ∈ X × X |x = y} X × X X × X

x, y ∈ X x ≠ y ⇔ (x, y) ∉ Δx
Δx ⊆ X × X ⇔ X × X ∖Δx ⇔ ∀(x, y) ∈ (X × X ∖Δx)

W (x, y) W ∩ Δx = ∅ ⇔
U ⊆ X, V ⊆ X (x, y) ∈ U × V U × V ∩ Δx = ∅
⇔ U ∩ V = ∅ ⇔ X

□

A B f : A → B
B A ∀a ∈ A ∃b ∈ B

f (b) ≥ a

A = ℕ B = {2n |n ∈ ℕ} f : A → B
f (n) = 2n B A n

2n n

f : A → X B A
f ∘ g : B → X f g : B → A

B

g : B → X f : A → X x ∈ X
U x b0 ∈ B

b ≥ b0 g(b) ∈ U

(xλ)λ∈Λ X w ∈ X
(xφ(μ))μ∈B (xλ) xφ(μ) → w

N w xλ → w ∃λ0 ∈ Λ
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	 , . Since  is cofinal, there exists  such that . 
	 Then  with  one has ; therefore, , and 
	  by definition. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Comment: 
    A subnet retains the convergence properties of the original net. If the original net  
converges to a point  then any subnet  also converges to . Moreover, convergence 
of subnets provides a tool for characterizing the convergence of the original net 
without necessarily considering all the elements of the original directed set. 
Furthermore, even not mentioned here, compactness of a topological space can often 
be characterized by the convergence of certain types of subnets of a net. 

1.9 Compactness and Convergence 
    Compactness is a fundamental concept in topology that captures the idea of “close-
ness" and "boundedness" in a topological space. A compact space is a space where 
every open cover has a finite subcover, meaning that it's possible to select a finite 
number of open sets from the cover that still cover the entire space. 
Definition: Cover and Subcover 
	 Let  be a topological space, a collection  is a cover of  if and only 
	 if .  is an open cover if it is a cover and each  is open  

	 (we can define closed by the same way), a subcover of a cover  is a  
	 subcollection  for some . 
Example 1.16: Cover and Subcover 
	 Let  be a metric space, then  is a cover of  and if 
	 we let , then this is a subcover.	 	 	 	 || 
Definition: Compact 
	 A topological space  is compact if every open cover of  has a finite  
	 subcover. That is, given an open cover ,  such that for  

	  one has , which is the subcover. 

Remark: 
	 (i)	 If  is compact, then every net in  has a convergent subnet. 
	 (ii)	  is compact   is closed and bounded. This does not hold in 		
	 	 general spaces.	 	 	 	 	 	 	 	 	 	
	 (iii)	 Tychonoffs Theorem tells us that a product of compact spaces is 	 	
	 	 compact.	 	 	 	 	 	 	 	 	 	 || 
Proposition 1.32: 
	 Let  be a topological space and let  be a subspace.  
	 Then  is compact  for all collection  of sets open in , with 	  
	  of sets open in , with , there exists  such that 

λ0 < λ xλ ∈ ℕ φ μ0 λ0 < φ(μ0)
∀μ ∈ B μ0 < μ φ(μ0) < φ(μ) μ0 < μ

λ0 < φ(μ0) < φ(μ) ⇒ φ(μ) ∈ N
□

f
x g x

X {Uα}α∈A X
X = ⋃

α∈A

Uα {Uα}α∈A Uα

{Uα}α∈A
{Uβ}β∈B B ⊆ A

(X, d ) {Br(x) |x ∈ X, r ≥ 0} X
{Br(x) |x ∈ X, r ∈ ℚ+}

X X
{Uα}α∈A ∃k ∈ ℕ

α1, ⋯, αk ∈ A X =
k

⋃
i=1

Ui

X X
K ⊆ ℝn ⇔ K

X Y ⊆ X
Y ⇔ {Uα}α∈A X

Y ⊆ ⋃
α∈A

Uα X Y ⊆ ⋃
α∈A

Uα k ∈ ℕ
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	 for  one has . 

Proof: 
	 “ ”: 
	 Suppose that  is compact, then  is an open cover of .  
	 Since  is compact, there exists  such that for  one has 

	 . 

	 “ ”: 
	 Let  be an open cover of , by the definition of subspace topology,  
	 there exists  open such that   
	 . By definition, there exist  such that  

	   .	  

Lemma 1.33: 
	 Images of compact spaces under continuous maps are compact. 
Proof: 
	 Let  be a compact topological space and consider  being continuous  
	 for  another topological space. 
	 [Claim]:  is compact. 
	 	 This is to show that given any collection  of sets open in  with 

	 	 , there exist  such that . Since  	

	 	 is continuous,  is open and ,  is a 	 	

	 	 collection of open sets and . Since  is compact there 	

	 	 exist  such that . Therefore, 

	 	 . According to Proposition 1.32,  is compact. 

	 	 	 	 	 	 	 	 	 	 	 	 	  
Lemma 1.34: 
	 A closed subset of a compact space is compact. 
Proof: 
	 Suppose that  is compact, take a closed subset .  is a collection 
	 of open sets in , such that . Then  is an open  

	 cover of    such that for  one has  

α1, ⋯, αk Y ⊆
k

⋃
i=1

Uαi

⇒
Y {Vα := Uα ∩ Y}α∈A Y

Y k ∈ ℕ α1, ⋯, αk

Y = Vα1
∪ ⋯ ∪ Vαk

⇒ Y ⊆
k

⋃
i=1

Uαi

⇐
{Vα}α∈A Y

Uα ⊆ X Vα = Y ∩ Uα ∀α ∈ A
⇒ Y = ⋃

α∈A

Vα ⊆ ⋃
α∈A

Uα α1, ⋯, αn

Y ⊆ Uα1
∪ ⋯ ∪ Uαk

⇒ Y = Y ∩ (
k

⋃
i=1

Uαi) = (Y ∩ Uα1
) ∪ ⋯ ∪ (Y ∩ Uαk

) □

X f : X → Y
Y

f (X ) ⊆ Y
{Uα}α∈A Y

f (X ) ⊆ ⋃
α∈A

Uα Uα1
, ⋯, Uαk

f (X ) ⊆
k

⋃
i=1

Uαi
f

Uα f (X ) ⊆ ⋃
α∈A

Uα { f −1(Uα)}α∈A

X = ⋃
α∈A

f −1(Uα) X

α1, ⋯, αk X = f −1(Uα1
) ∪ ⋯ ∪ f −1(Uαk

)

f (X ) ⊆
k

⋃
i=1

f −1(Uαi
) f (X )

□

X K ⊆ X {Uα}α∈A
X K ⊆ ⋃

α∈A

Uα {Uα}α∈A ∪ {X ∖K}

X ⇒ ∃k ∈ ℕ Uα1
, ⋯, Uαk
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	   , thus  is compact  
	 by Proposition 1.32. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Lemma 1.35: 
	 A compact subset of a Hausdorff space is closed. 
Proof: 
	 Let  be Hausdorff and let  be a compact subset. 
	 [Claim]: , there exists an open set  such that . 
	 	 , i.e. . Since  is Hausdorff, then , there  
	 	 exist open neighbourhoods  of  ,  of , such that . 
	 	 Since  is a collection of sets open in  with . Since  

	 	 is compact,  and  such that . Let 		
	 	 now  and . 
	 	 [Claim]: .	  
	 	 	  and result follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Lemma 1.36: 
	 Let  be a compact topological space and  be a Hausdorff topological space. 
	 Let  be a continuous map. If  is a bijection, then it is a  
	 homeomorphism. 
Proof: 
	 [Claim]:  being continuous. 
	 	 For all  closed subsets,  is closed in . But  
	 	 since  is compact and  is closed hence  is compact by Lemma 1.34. 
	 	 Since  is continuous,  is also compact by Lemma 1.33. Because  
	 	 is Hausdorff, then by Lemma 1.35  is closed. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    The Bolzano-Weierstrass theorem is a fundamental result in real analysis that guar-
antees the existence of convergent subsequences in bounded sequences. It is named 
after mathematicians Bernard Bolzano and Karl Weierstrass. The theorem plays a 
crucial role in understanding the behavior of sequences and is a key building block in 
the study of limits, continuity, and compactness. 
Theorem 1.37: Bolzano-Weierstrass Theorem 
	 Every bounded sequence of real numbers has a convergent subsequence. 
Corollary 1.37.1: 
	  is compact. 
Proof: 
	 Suppose not, then there exists a collection of open subsets of , namely, 
	 , so that  but no finite collection of  covers .  

	 Then there is no  such that for  one has  

X = Uα1
∪ ⋯ ∪ Uαk

∪ (X ∖K ) ⇒ K ⊆ Uα1
∪ Uα2

∪ ⋯ ∪ Uαk
K

□

X K ⊆ X
∀x ∈ X ∖K U x ∈ U

U ⊆ X ∖K U ∩ K = ∅ X ∀k ∈ K
Uk x Vk k Uk ∩ Vk = ∅

{Vk}k∈K X K ⊆ ⋃
k∈K

Vk K

∃n ∈ ℕ Vk1
, ⋯, Vkn

K ⊆ Vk1
∪ ⋯ ∪ Vkn

U = Uk1
∩ ⋯ ∩ Ukn

U ∩ [Vk1
∩ ⋯ ∩ Vkn] ⊆ Uk

U ∩ [Vk1
∪ ⋯ ∪ Vkn] = ∅

U ∩ Vi ⊆ Uki
∩ Vki

= ∅∀i ∈ ℕ ∩ [1,n]
□

X Y
f : X → Y f

g := f −1 : Y → X
C ⊆ X g−1(C ) Y g−1(C ) = f (C )

X C C
f f (C ) Y

f (C )
□

[0,1]

ℝ
{Uα}α∈A [0,1] = ⋃

α∈A

Uα Uα [0,1]

n ∈ ℕ α1, ⋯, αn ∈ A
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	  which means neither  nor  has a finite cover 

	 constructed by . Name the interval that cannot be covered by finitely many 	
	 , , now divide  into two that each of them cannot be covered 	
	 by , . Then . Consider 

	 ,  implies that 

	  exists and  exists. Since  as , one has 

	 . Thus , i.e.   such 	

	 that . Since  is open there exists  such that  
	 and since both ,  converges to  we conclude that there exists an  such 		
	 that  , then this is a finite  
	 cover, hence a contradiction, so  is compact as we desired. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    We have introduced the product topology before. Now let us build some connecti-
ons between the compactness and the product. The Tube Lemma is an important 
result in topology, particularly in the study of topological vector spaces. It provides a 
powerful tool for establishing the existence of neighborhoods around subsets of a 
topological vector space that are contained within specified open sets. 
Lemma 1.38: Tube Lemma	  
	 Let  and  be two topological spaces with  compact. Let  be a point 		
	 and  is an open subset. Consider , then there exists an  
	 open neighbourhood  of  in  such that . 
Proof: 
	   an open neighbourhood  of ,  of  such that . 
	 Consider  an open cover of  since  is compact. Then there exists an 
	  such that for  we have . Let now  
	 . Then  

	 	 . 

	 	 	 	 	 	 	 	 	 	 	 	 	  
    The Tube Lemma is widely used in functional analysis, where it helps establish co-
ntinuity properties of linear mappings and analyze the behavior of functions defined 
on topological vector spaces. It is also crucial in proving various results related to 
topological vector spaces, such as the properties of normed spaces and Banach 
spaces. 
Corollary 1.38.1: 
	 A product of two compact spaces is compact. 
Proof: 
	 Let  be two compact spaces. Let  be an open cover of  so 
	 ,  is compact and the map defined by   

[0,1] ⊆ Uα1
∪ ⋯ ∪ Uαn

[0,
1
2

] [
1
2

,1]

Uα
Uα [a1, b1] [a1, b1]

[a2, b2] ⋯ [0,1] ⊇ [a1, b1] ⊇ [a2, b2] ⊇ ⋯ ⊇ [an, bn] ⊇ ⋯

|bn − an | =
1
2n

0 ≤ a1 ≤ a2 ≤ ⋯ ≤ an ≤ ⋯ ≤ bn ≤ ⋯ ≤ b1

lim
n→∞

an lim
n→∞

bn |bn − an | → 0 n → ∞

lim
n→∞

an = lim
n→∞

bn = C ∈ ℝ 0 ≤ C ≤ 1 C ∈ [0,1] ⇒ ∃β ∈ A

C ∈ Uβ Uβ ε > 0 (C − ε, C + ε) ⊆ Uβ
an bn C N

(aN, bN) ⊆ (C − ε, C + ε) ⊆ Uβ ⇒ [aN, bN] ⊆ Uβ
[0,1]

□

X Y Y x ∈ X
U ⊆ X × Y {x0} × Y ⊆ U

V x0 X V × Y ⊆ U

∀y ∈ Y ∃ Vy x0 Wy y Vy × Wy ⊆ U
{Wy}y∈Y Y Y

n ∈ ℕ y1, ⋯, yn ∈ Y Y = Wy1
∪ ⋯ ∪ Wyn

V = Vy1
∪ ⋯ ∪ Vyn

V × Y ⊆ V ×
n

⋃
i=1

Wyi
⊆ (Vy1

× Wy1
) ∪ ⋯ ∪ (Vyn

× Wyn
) ⊆ U

□

X, Y {Uα}α∈A X × Y
∀x ∈ X {x} × Y ⊆ X × Y Y → X × Y
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	 sending  to  is continuous. Therefore , where  
	 (  depends on ), such that  and  
	 . Then by Tube Lemma, there exists an open  
	 neighbourhood  of  such that .  is an 

	 open cover of ,  such that . Then , let , 

	 we have  . 

	 	 	 	 	 	 	 	 	 	 	 	 	  
Corollary 1.38.2: 
	 If  are compact spaces, then  is also compact. In 
	 particular,  is compact.  
Proof: Follows from induction.  
Remak: 
	 If  are such that . Then  is 

	 compact because  and  

	 	 	 , 
	 which is a continuous surjection. In fact it is a bijection, therefore it is 		 	
	 homeomorphism.	 	 	 	 	 	 	 	 	 	 || 
    Compactness in topology is also a fundamental concept that captures the essence 
of boundedness and finiteness in a topological space. Recall that a subset  is 
said to be bounded if  such that . Note that  
	 	 	 	 	 . 
Definition: Bounded 
	 Let  be a topological space and let  be a subset. Then  is said to be  
	 bounded in  if there exists an open set  such that . 
    This definition captures the idea that a bounded subset can be completely contained 
within some open set of the topological space. However, this definition is more 
abstract compared to the concrete notion of boundedness in metric spaces, where 
distances between points are involved. Keep in mind that the definition might vary 
depending on the specific context or type of topological space you are dealing with. 
   Now let us build up the connection between compactness and boundedness as we 
promised. 
Theorem 1.39: 
	 A subset  is compact   is closed and bounded. 
Proof: 
	 “ ”: 
	 Since  is Hausdorff, then any compact subset is closed. Consider  

	 for , then  such that  

y (x, y) ∀x ∈ X ∃n ∈ ℕ n = n(x)
n x α1(x)⋯, αn(x) ∈ A

{x} × Y ⊆ Uα1(x) ∪ ⋯ ∪ Uαn(x)
Vx x Vx × Y ⊆ Uα1(x) ∪ ⋯ ∪ Uαn(x) {Vx}x∈X

X ∃x1, ⋯, xk ∈ X X =
k

⋃
n=1

Vxn
∀i ni = n(xi)

Vxi
× Y ⊆

ni

⋃
j=1

Uαj(xi) ⇒ X × Y =
k

⋃
i=1

Vxi
× Y ⊆

k

⋃
i=1

ni

⋃
j=1

Uαj(xi)

□

X1, ⋯, Xn X1 × X2 × ⋯ × Xn
[0,1]n

□

a1, ⋯, an, b1, ⋯, bn ∈ ℝ ai < bi [a1, b1] × ⋯[an, bn]

F : [0,1]n →
n

∏
i=1

[ai, bi]

F(t1, ⋯, tn) = ((a1 + t1(b1 − a1)), (a2 + t2(b2 − a2)), ⋯)

X ⊆ ℝn

∃R > 0 X ⊆ BR(0)
BR(0) ⊆ (−R, R)n ⊆ [−R, R]n

X A ⊆ X A
X U A ⊆ U

K ⊆ ℝn ⇔ K

⇒
ℝn

Ui = Bi(0), i = 1,2,3,⋯
∞

⋃
i=1

Ui = ℝn ⇒ ∃i1, ⋯, ik
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	 . Let now . Then  
	 is bounded. 
	 “ ”: 
	 Suppose that  is closed and bounded, since  is bounded then  such 	
	 that  is compact. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Remark: 
	 In general, compact subsets need not to be closed.	 	 	 	 	 || 
Corollary 1.39.1: 
	 A compact subspace of a metric space is bounded. 
Proof: Exercise. 
Lemma 1.40: 
	 Let  be a compact topological space and let  be a continuous 	 	
	 function. Then there exist  such that . 
	 (Such  might not be unique.) 
Proof: 
	 Since  is continuous,  is compact, hence closed and bounded. Since 
	 it is bounded,  both exist. Since  is closed, there is an  

	  such that , similarly, . 

	 	 	 	 	 	 	 	 	 	 	 	 	  
Lemma 1.41: 
	  is compact   of closed subsets with   such 
	 that . Then . 

Proof: 
	  is compact  Any oepn cover  has finite subcover. 
	 	 	   Any collection  of open sets with no finite subcover 
	 	 	       is not a cover of . 
	 	 	   Any collection  of open sets, , 	 	 	
	 	 	      , . 
	 	 	   . 

	 	 	   For all collection  of open sets and   
	 	 	      , . 
	 	 	   , i.e.  

	 	 	 . 

	 	 	   For all collection  of closed sets , ,  
	 	 	       . 

K ⊆ Ui1 ∪ ⋯ ∪ Uik m := max{i1, ⋯, ik} K ⊆ Um = Bm(0) ⇒ K

⇐
K K ∃R > 0

K ⊆ [−R, R]n ⇒ K
□

X f : X → ℝ
a, b ∈ X f (a) ≤ f (x) ≤ f (b)∀x ∈ X

a, b

f f (X ) = ℝ
inf
x∈X

f (x), sup
x∈X

f (x) f (X )

a ∈ X f (a) = inf
x∈X

f (x) f (b) = sup
x∈X

f (x)

□

X ⇔ ∀{Cα}α∈A Cα1
∩ ⋯ ∩ Cαk

≠ ∅ ∀k
α1, ⋯, αk ∈ A ⋂

α∈A

Cα ≠ ∅

X ⇔ {Uα}α∈A
⇔ {Uα}α∈A

X
⇔ {U|alpha}α∈A ∀n

∀α1, ⋯, αn ∈ A X ≠ Uα1
∪ ⋯ ∪ Uαn

⇒ X ≠ ⋃
α∈A

Uα

⇔ {Uα}α∈A ∀n
∀α1, ⋯, αn ∈ A X ∖(Uα1

∪ ⋯ ∪ Uαn
) ≠ ∅

⇒ X ∖ ⋃
α∈A

Uα ≠ ∅ (X ∖Uα1
) ∩ ⋯ ∩ (X ∖Uαn

) ≠ ∅

⇔ ⋃
α∈A

(X ∖Uα) ≠ ∅

⇔ {Cα}α∈A ∀n ∀α1, ⋯, αn ∈ A
Cα1

∩ ⋯ ∩ Cαn
≠ ∅
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	 	 	   . 

	 	 	 	 	 	 	 	 	 	 	 	 	  
   The finite intersection property is a fundamental concept in topology that serves as 
a criterion for compactness and plays a crucial role in characterizing certain 
properties of topological spaces. It provides a way to ensure the existence of common 
points among finitely many open sets in a topological space. 
    The motivation behind the finite intersection property lies in capturing the compac-
tness and convergence properties of subsets within a topological space. It helps us 
understand how open sets can "overlap" in a way that guarantees the existence of 
points shared by finitely many sets. This concept becomes particularly powerful when 
considering compactness and sequential compactness, as well as when proving 
certain limit and convergence properties. 
Definition: Finite Intersection Property (F.I.P.) 
	 A collection of subsets  of a set  has finite intersection property 
	 if for all finite subset , . 
Lemma 1.43: 
	  is compact  For any collection  of closed subsets of  with finite 	
	 intersection property, . 

Definition: Limit Point 
	 Let  be a net in a space topological , a point  is said to be a limit  
	 point (or cluster point, accumulation point) of this net if for all neighbourhood 
	  of  and  there exists  such that  and . 
Example 1.17: 
	 Let  and consider  for . Then one can check that 
	  and  are limit points in this case.	 	 	 	 	 || 
Proposition 1.44: 
	 A point  be a limit point of a net    there exists a subnet  
	 that converges to . 
Proof: 
	 “ ”: 
	 Suppose  is a cluster point of , let  be the pairs defined by 
	 	 . 
	 Order  by  and . Define now a map 
	  by .  is order preserving. 
	 [Claim]:  is cofinal. 
	 	 Since  is a limit point of , then  and for all 	 	 	
	 	 neighbourhood  of , there exists  such that  and , 
	 	 i.e. , and  hence  is cofinal. Moreover, 
	 	  is a subnet of . 

⇒ ⋂
α∈A

Cα ≠ ∅

□

{Cα}α∈A X
{α1, ⋯αn} ⊆ A Cα1

∩ ⋯ ∩ Cαn
≠ ∅

X ⇔ {Cα}α∈A X

⋂
α∈A

Cα ≠ ∅

(xλ)λ∈Λ X p ∈ X

W p ∀λ0 ∈ Λ λ ∈ Λ λ0 < λ xλ ∈ W

X = ℝ Xn := (−1)n n ∈ ℕ
p = 1 p = − 1

p ∈ X (xλ)λ∈Λ ⇔ (xλμ
)μ∈M

p

⇒
p (xλ)λ∈Λ M

M := {(λ, W ) |λ ∈ Λ, W is neighbourhood of p with xλ ∈ W}
M (λ, w) < (λ′￼, w′￼) ⇔ (λ < λ′￼) (W ⊇ W′￼)

φ : M → Λ φ(λ, W ) = λ φ
φ

p (xλ)λ∈Λ ∀λ0 ∈ Λ
W p λ ∈ Λ λ0 < λ xλ ∈ W

(λ, W ) ∈ M λ0 < λ = φ(λ, W ) φ
(xφ(λ,W ))(λ,W )∈M (xλ)λ∈Λ
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	 Since  is a limit point of , for all neighbourhood  of ,  with 	
	 , for any  with  since  and  
	 . Hence  with ,   . 
	 “ ”: 
	 Suppose that  is a subnet of  and . 
	 [Claim]:  is the limit point of . 
	 	 Let  be a neighbourhood of , , we need to show that there 	 	
	 	 exists a  such that  and . Since  there exists 
	 	  such that if  then . Since  is a subnet of 
	 	  then  such that , since  is directed,  	
	 	 such that  and . Then  and  since	  
	 	 . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Proposition 1.45: 
	 A topological space  is compact  Any net  in  has a cluster point, 
	 i.e. each of them has a convergent subnet  Every sequence has a convergent 	
	 subsequence. 
Notation: 
	 Given a net  and , the -tail of the net . 
  In order to prove Proposition 1.45, we now make an observation: For any net 

, the set  of tails has Finite Intersection Property (F.I.P.). This is 
because   such that     

. We now proceed to the proof. 

Proof of Proposition 1.45: 
	 “ ”: 
	 Suppose that  is a net in a compact space . Consider  with 	 	
	 F.I.P. Since  is compact then , pick , for any 	 	 	

	 neighbourhood  of , ,  hence  such that  	
	 and , i.e.  is a limit point of . 
	 “ ”: 
	 Suppose that every net in  has a cluster point, let  be the collection of closed 
	 subsets of  with F.I.P., we need to show that the intersection . 

	 Consider that  is the set of finite intersections of elements of , i.e. 
	 	 	 	 . 
	 Since  has F.I.P. so does . Direct  by the reverse inclusion, i.e. 
	 	 	 	 	     . 
	  is now a directed set, ,  and . 

p (xλ)λ∈Λ W p ∃λ1 ∈ Λ
xλ1

∈ W μ = (λ, U ) ∈ M (λ1, W ) < (λ, U ) λ1 < λ
xλ ∈ U ⊆ W ∀μ ∈ M (λ1, W ) < μ xλμ

∈ W ⇒ xλμ
→ p

⇐
(xλμ

)μ∈M (xλ)λ∈Λ xλμ
→ p

p (xλ)λ∈Λ
W p λ0 < λ

λ ∈ Λ λ1 < λ xλ ∈ W xλμ → p
μ0 ∈ M μ0 < μ λλμ

∈ W (xλμ
)μ∈M

(xλ)λ∈Λ ∃μ1 ∈ W λ0 < λmu1
λ ∃λ2 ∈ M

μ0 < μ2 μ1 < μ2 λ0 ≤ λμ1
≤ λμ2

xλμ2
∈ W

μ1 < μ2
□

X ⇔ (xλ)λ∈Λ X
⇔

(xλ)λ∈Λ λ0 ∈ Λ λ0 Tλ0
:= {xλ |λ0 < λ}

(xλ)λ∈Λ {Tλ}λ∈Λ
∀λ1, ⋯, λk ∈ Λ ∃μ ∈ Λ λi < λμ ∀i ⇒ Tλi

⊇ Tλμ
∀i ⇒

μ

⋂
i=1

Tλi
⊇ Tμ ≠ ∅

⇒
(xλ)λ∈Λ X {Tλ}λ∈Λ

X ⋂
λ∈Λ

Tλ ≠ ∅ p ∈ ⋂
λ∈Λ

Tλ

W p ∀λ ∈ Λ W ∩ Tλ ≠ ∅ ∃λ ∈ Λ λ < λ′￼
xλ′￼∈ W p (xλ)λ∈Λ

⇐
X 𝒞

X ⋂
C∈𝒞

C ≠ ∅

𝒢 𝒞
𝒢 := {C1 ∩ ⋯ ∩ Cn |C1, ⋯, Cn ∈ 𝒞, n ∈ ℕ}

𝒞 𝒢 𝒢
G1 < G2 ⇔ G1 ⊆ G2

𝒢 ∀G1, G2 ∈ 𝒢 G1 < G1 ∩ G2 G2 < G1 ∩ G2
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	  non-empty, choose , we get a net , this net has a limit 
	 point called . Then for any neighbourhood  of , ,  with 
	 , i.e. , and . . Therefore, 
	   . 

	 	 	 	 	 	 	 	 	 	 	 	 	  
    Before we proved that the finite product of compact topological spaces is still com-
pact, now we extend this to arbitrary product, which is the result of Tychonoff 
theorem, also known as the Tychonoff's product theorem, is a fundamental result in 
topology that characterizes the compactness of the Cartesian product of an arbitrary 
collection of topological spaces. 
Theorem 1.46: Tychonoff’s Theorem 
	 For any collection of compact topological spaces  the product  

	 is also compact. 
Remark: 
	 The surprising fact is that this theorem is related, actually, equivalent to 
	 the axiom of choice. This equivalence is known as the Tychonoff's  
	 Theorem-Axiom of Choice Equivalence.Tychonoff’s Theorem is equivalent to  
	 the axiom of choice.	 	 	 	 	 	 	 	 	 || 
Axiom of Choice: 
	 Let  be a collection of nonempty sets indexed by a nonempty  
	 index set . Then there is a function  such that  one has 

	 . 
   The essence of the axiom is the assertion that one can choose exactly one element 
from each non-empty set in a collection of sets. The function  is called a "choice 
function" or “selector." The Axiom of Choice has various equivalent formulations and 
versions, such as Zorn's Lemma and the Well-Ordering Principle. We now state 
another equivalent form of it, but we need some terminologies. 
Definition: Comparable 
	 Two elements , where  is a set and  is a partial order (we  
	 sometimes call  a poset) are called comparable if either  or . 
	 If they are not comparable then they are called incomparable. 
Definition: Chain 
	 A subset  where  is a poset with partial order  is called a chain if  
	 every pair of elements of  are comparable. 
    So in the poset , the whole partial order is a chain. In  with the divisibility 
relation, the set  is a chain, but the set of all odd numbers, for example, 
is not. 
    Zorn's Lemma is a fundamental result in set theory that provides a tool for establi-
shing the existence of maximal elements in partially ordered sets (posets). 
Lemma 1.47: Zorn’s Lemma 
	 Every non-empty partially ordered set (poset) in which every chain (totally  

∀G ∈ 𝒢 xG ∈ G (xG)G∈𝒢
p W p ∀G ∈ 𝒢 ∃G′￼∈ 𝒢

G < G′￼ G ⊇ G′￼ xG′￼∈ W G ∩ W ⊇ G′￼∩ W ∋ xG′￼
G ∩ W ≠ ∅ ⇒ p ∈ G = G ⇒ p ∈ ⋂

G∈𝒢

G ⊆ ⋂
C∈𝒞

C ⇒ ⋂
C∈𝒞

C ≠ ∅

□

{Xα}α∈A ∏
α∈A

Xα

ℱ := {Uα}α∈A
A f : A → ⋃

α∈A

Uα ∀α ∈ A

f (α) ∈ Uα

f

p, q ∈ (X, ≤ ) X ≤
(X, ≤ ) p ≤ q q ≤ p

A ⊆ X X ≤
A

(ℝ, ≤ ) ℕ
{7,72,73, ⋯}
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	 ordered subset) has an upper bound contains at least one maximal element. 
    Now we proceed to the proof of  Tychonoff’s Theorem: 
Proof of Theorem 1.46: 
	 Suppose that  is a collection of closed subsets  with  

	 Finite Intersection Property.  
	 [Claim]: . 

	 	 Let . Suppose that 

	 	  is a chain in , we argue that . 

	 	 [Claim]: . 

	 	 	 (i)	 Since    . 

	 	 	 (ii)	 Each  has F.I.P., If , since  

	 	 	 	 is a chain, then there exists  such that . 
	 	 	 	 Moreover, since  has F.I.P.  while  
	 	 	 	   has F.I.P. result follows. 

	 Now we may apply Zorn’s Lemma, since by our construction,  has a  
	 maximal element, namely, . Then consider the projection: 
	 	 	 	 	 	 . 

	 Since  has F.I.P.  has F.I.P. where  . Now we denote 

	  to be a collection of closed sets with F.I.P., where, trivially, 

	 	 	 	 	 	 . 

	 Since  is compact   . Choose now  for  

	 arbitrarily chosen . One obtains that . 

	 [Claim]: . 

	 	 For each , consider a neighbourhood  of  in . Since  
	 	 . Then    has F.I.P. 
	 	 therefore  by maximality of . Since  
	 	 we obtain . Let  be a neighbourhood of  in 
	 	 , since  is a subbasis of the  

𝒞 := {Ci}i∈I X = ∏
α∈A

Xα

⋂
i∈I

Ci ≠ ∅

ℱ := {B ⊆ 𝒫(X ) B ⊇ C ∀C ∈ 𝒞 and B F.I.P.}
{Bj}j∈J ℱ ⋃

j∈J

Bj ∈ ℱ

⋃
j∈J

Bj ∈ ℱ

C ⊆ Bj ∀j ∈ J ⇒ C ⊆ ⋃
j∈J

Bj ∀C ∈ 𝒞

Bj {B1, B2, ⋯, Bk} ⊆ ⋃
j∈J

Bj {Bj}j∈J

s ∈ J Bj1, ⋯, Bjk ⊆ Bs
Bs B1 ∩ ⋯ ∩ Bk ∈ Bs

B1 ∩ ⋯ ∩ Bk ⊆ ⋃
j∈J

BJ ⇒ ⋃
j∈J

Bj

ℱ
D

Πβ : ∏
α∈A

Xα → Xβ

D Πβ(D) Πβ ⊆ 𝒫(Xβ) ∀β

{Πβ(B) B ∈ D}
Πβ =:{Πβ(B) B ∈ D}

Xβ ⇒ ⋂
B∈D

Πβ(B) ≠ ∅ bα ∈ ⋂
B∈D

Πα(B)

α b = (bα)α∈A ∈ ∏
α∈A

Xα = X

b ∈ ⋂
i∈I

Ci

α Nα bα Xα bα ∈ Πα(B)
∀B ∈ D Nα ∩ Πα(B) ≠ ∅∀α ∀β ⇒ D ∪ {Πα−1(Nα)}α∈A

D ∪ {Π−1
α (Nα)}α∈A = D D Ci ∈ D ∀i

Ci ∩ Πα−1(Nα) ≠ ∅∀i ∀α U b

∏
α∈A

Xα {Πα−1(Uα) α ∈ A, Uα ⊆ Xα open}
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	 	  on . There exists  such that for  we have 
	 	     . 
	 	 But  since by our choice each  is being closed. Therefore  
	 	    

	 Together with two claims we finally conclude that  is compact as 	
	 we desired. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    This is a rather normal proof of Tychonoff Theorem using Zorn’s Lemma. In fact, 
there are other approach to obtain the same result; in [10], Étienne Matheron offered 
two other approaches, for one of them using the categorical tools. Readers who are 
interested in this aspect may consult his article.  
    We shall close our first chapter by the discussion of convergent sequences as well 
as the completion of Cauchy seqeunces. First recall the definition we saw in a basic 
analysis course: 
Definition: Cauchy sequence 
	 A sequence  in a metric space  is said to be Cauchy if it satisfies 
	  such that if , then . 
Definition: Complete Metric Space 
	 A metric space  is said to be complete if every Cauchy sequence has a  
	 limit inside it. 
Example 1.18: Complete Metric Space 
	 (i)	  with the standard metric  is complete.	 	 	
	 (ii)	  is homeomorphic to . For example,  is 		

	 	 homeomorphic. But  is not complete. 

    Not that the second sub-example above states a very important feature of comple-
teness: Homeomorphisms do not always preserve the completeness of metric spaces. 
A homeomorphism, by definition, preserves topological properties, including 
convergence properties. However, the preservation of convergence properties, such as 
the convergence of sequences or nets, does not necessarily imply the preservation of 
completeness, as completeness is a specific property related to metric spaces. 
    It is natural to ask, since completeness is excluded from the structure, what features 
or properties, in or not in the structure, the homemomorphism preserve? It is trivial to 
see that open sets are indeed preserved, as well as continuous functions. One anti-
intuition fact is that homeomorphism does also preserve the convergence, as we 
specified above, this is because the convergence is a part of the structure of 
topologies while the completeness is a part of the structure of the metric spaces. 
Moreover, the topological properties such as compactness, connectedness, and 
separability, are also preserved by homeomoprhisms. Furthermore, as we shall see 
later on, the topological invariants and the topological-induced properties, are also 
preserved under homemomorphisms. 

Tprod X k ∈ ℕ α1, ⋯, αk ∈ A
b ∈ Π−1

α1
(Uα1

) ∩ ⋯ ∩ Π−1
αk

(Uαk
) ⊆ U ⇒ Ci ∩ U ≠ ∅ ∀i ⇒ b ∈ Ci ∀i

Ci = Ci Ci
b ∈ Ci ∀i ⇒ b ∈ ⋂

i∈I

Ci ≠ ∅

(ΠXα
, Tprod)

□

{xn}n∈ℕ (X, d )
∀ε > 0∃N ∈ ℕ n, m ≥ N d(xn, xm) < ε

(X, d )

ℝ d(x, y) := |x − y |
(−

π
2

,
π
2

) ℝ tan : (−
π
2

,
π
2

) → ℝ

(−
π
2

,
π
2

)
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    In topology, a subset of a metric space is said to be totally bounded if, intuitively, it 
can be "covered" by finitely many small balls (open balls) of a given radius. Totally 
bounded sets are an important concept in understanding the compactness and 
convergence properties of metric spaces. 
Definition: Totally Bounded 
	 A metric space  is said to be totally bounded if   such that 

	 for  we have . 

Theorem 1.47: 
	 Let  be a metric space, then the followings are equivalent: 
	 (i)	  is compact. 
	 (ii)	 Every sequence in  has a convergent subsequence. 
	 (iii)	  is complete and totally bounded. 
Proof: 
	 (i)  (ii): 
	 Suppose that  is compact and  is a sequence with no convergent 	
	 subsequence. Then  there exists a neighbourhood  of  such that  
	  only for finitely many choice of . Let  be a collection of open  
	 covers of . Since  is compact, it has a finite subcover   has only  
	 finitely many terms, but this is impossible, hence contradiction. 
	 (ii)  (iii): 
	 This part of the proof is divided into two parts: In the first part we prove the  
	 completeness and in the second part we prove the boundedness. 
	 Step I: Completeness. 
	 Since  is Cauchy, by assumption, there exists a convergent  
	 subsequence  such that . Since  is Cauchy, then   
	 as well by its definition. 
	 Step II: Boundedness. 
	 Suppose there exists  such that  cannot be covered by finitely many  

	 -balls. Then  such that  is  

	 not empty. Therefore  such that . We get 

	 a sequence  such that    has no  
	 convergent subsequences, a contradiction. 
	 (iii)  (i): 
	 Let  be an open cover of . Suppose it has not finite subcover. Since  
	 by assumption  is totally bounded then it can be covered by finitely many  
	 balls with radius . Then  such that  cannot be covered by 	  

	 finitely many ’s. There is a cover of  by finitely many balls with .  

(X, d ) ∀ε > 0 ∃n ∈ ℕ

x1, ⋯, xn ∈ X X =
n

⋃
i=1

Bε(x)

(X, d )
(X, Td)

X
X

⇒
(X, Td) {xn}n∈ℕ

∀y ∈ X Uy y
xn ∈ Uy n {Uy}y∈X

X X ⇒ {xn}n∈ℕ

⇒

{xn}n∈ℕ
{xnk

}k∈ℕ xnk
→ y {xn}n∈ℕ xn → y

ε > 0 X ε

{∃x1 such that X ∖Bε(x1) ≠ ∅
∃x2 such that X ∖Bε(x2) ≠ ∅

X ∖(Bε(x1) ∪ Bε(x2))

∃xn ∈ X ∖
n−1

⋃
i=1

Bε(xi) X ∖
n

⋃
i=1

Bε(xi) ≠ ∅

{xn}n∈ℕ d(xn, xi) ≥ ε ∀i < n ⇒ {xn}n∈ℕ

⇒
{Uα}α∈A X

X
1 ∃x0 ∈ X B1(x0)

Uα X r =
1
2
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	 Then there exists a ball  which cannot be covered by finitely many 's 
	 and . We get a sequence of balls: 
	 	 	 	 	 , 
	 so that  and no ball can be covered by finitely many  

	 ’s. Moreover, , thus 

	 	 	 	  

	 	 	 	                   

	 	 	 	 	        . 

	 Consequently,  is cauchy by (iii). Since  is complete by assumption, 
	  for some   such that  and  such that  

	 . Since  there exist  such that  and   

	 therefore  which is a finite subcover, contradiction. 
	 	 	 	 	 	 	 	 	 	 	 	 	  

1.10 Connectedness 
    Connectedness is an important concept in topology that describes the property of a 
topological space being "unbroken" or "not easily divided into separate pieces." A 
topological space is considered connected if it cannot be separated into two disjoint 
nonempty open sets. In other words, a space is connected if it forms a single, 
continuous piece without any gaps or breaks. 
Definition: Connected 
	 Let  be a topological space. A separation of  is a pair  of disjoint  
	 nonempty open subsets of  whose union is . The space  is said to be 	 	
	 connected if there does not exist a separation of . 
    Connectedness is obviously a topological property since it is formulated entirely in 
terms of the collection of open sets of . Said differently, if  is connected so is any 
space homeomorphic to  since homeomorphisms are designed to preserve the 
topological structure. Another way of formulating the definition of connectedness is 
the following statement: 

A space  is connected  the only subsets of  that are  
both open and closed in  are the empty set and  itself. 

    For a subspace  of a topological space , there is another useful way to formulate 
the definition of connectedness: 
Lemma 1.48:  
	 If  is a subspace of , a separation of  is a pair of disjoint nonempty sets   
	 and  whose union is , neither of which contains a limit point of the other. 	 	
	 The space  is connected if there exists no separation of . 

B1
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(x1) ∩ B1(x0) ≠ ∅
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{xn}n∈ℕ X
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    Since connectedness is defined to be violation of separation between disjoint non-
empty open subsets. It is natural to ask, is it possible for a non-connected space 
having connected subspace? This question could also be viewed as “how can we 
coonstruct spaces that are connected?”. We shall now prove several results that tell us 
how to form new connected spaces from the given ones. 
Lemma 1.49:	  

	 Let  be a topological space and consider two non-empty open subsets  
	  such that . If  is a connected subspace of  then  
	 lies entirely within either  or . 
Proof: 
	 Since  and  are both open in , the sets  and  are open in .  
	 These two sets are disjoint and their union is ; if they were both non-empty, 	
	 they would constitute a separation of . Therefore, one of them is empty. 	 	
	 Hence  must lie entirely in either  or . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Theorem 1.50: 
	 The union of a collection of connected subspaces of  that have a point in  
	 common is connected. 
Proof: 
	 Let  be a collection of connected subspaces of a space ; let  be a point  
	 of . We prove that the space  is connected. Suppose that  

	  is a separation of . The point  is in one of the sets  or ; 	 	
	 without loss of generality, we may assume that . Since ’s are  
	 connected, each of them must lie entirely in either  or  by Lemma 1.49, 
	 and it cannot lie in  since it contains the point  of . Therefore  holds 
	 true for every , so that , contradicting the fact that  is non-empty. 

	 	 	 	 	 	 	 	 	 	 	 	 	  
    There is also a “squeeze-theorem-like” property for connectedness which is very 
useful when we can squeeze the set we wish to prove its connectedness by two 
connected sets. Note that we admit the fact that the closure of connected sets is also 
connected. However, note also that the interior of connected space may fail to be 
connected. 
Theorem 1.51: 
	 Let  be a connected subspace of . If  then  is also connected. 
Proof: 
	 Let  be connected and let . Suppose that  is a  
	 separation of . By Lemma 1.49,  must lie entirely in either  or ; without  
	 loss of generality, we may assume that . Then  and since  and  	
	 are disjoint, it follows that  cannot intersect . This contradicts the fact that  
	 is a non-empty subset of . 
	 	 	 	 	 	 	 	 	 	 	 	 	  

X
C, D ⊆ X X = C ∪ D Y X Y

C D

C D X C ∩ Y D ∩ Y Y
Y
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Y C D

□
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⋂
α

Aα Y := ⋃
α
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p ∈ C Aα

C D
D p C Aα ⊆ C

α ⋃
α
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□

A X A ⊆ B ⊆ A B

A A ⊆ B ⊆ A B = C ∪ D
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    We said before that the topological property is preserved under homeomorphisms, 
we now prove that continuous map also preserve the connectedness: 
Theorem 1.52: 
	 The image of a connected space under a continuous map is connected. 
Proof: Exercise. 
    Moreover, the connectedness is preserved under finite product. In fact, this can be 
generalized into arbitrary product without violating the connectedness. 
Theorem 1.53: 
	 A finite Cartesian product of connected spaces is also connected. 
Proof: Exercise. 

1.11 IVT, MVT, and UCT 
    In the study of Calculus, there are three basic theorems about continuous functions, 
and on these theorems the rest of calculus depends. They are the followings: 
	 (i)	 Intermediate Value Theorem (IVT): If  is continuous and 	
	 	 if  is a real number between  and , then there exists an element 	
	 	  such that . 
	 (ii)	 Maximum Value Theorem (MVT): If  is continuous then 	
	 	 there exists an element  such that . 
	 (iii)	 Uniform Continuity Theorem (UCT): If  is continuous, 		
	 	 then given , there exists  such that  for 
	 	 every pair of number  for which . 
  These theorems are used in a number of places. The IVT is used for instance in 
constructing inverse functions such as  and ; and the MVT is used for 
proving the IVT for derivatives, upon which the two fundamental theorems of calc-
ulus depend. The UCT is used, among other things, for proving that every continuous 
functions is integrable. 
  We have spoken of these three theorems as theorems about continuous functions. 
But they can also be considered as theorems about the closed intervals  of real 
numbers. The theorems depend not only on the continuity of the function  but also 
on properties of the topological spaces . 
  The property of the space  on which the IVT depends on the connectedness, 
and the property on which the other two depend on is the compactedness. We have so 
far introduced all of them so let us now talk about their applications to these 
fundamental theorems. 
   We now introduce a fact that the intervals and rays in  are connected and this co-
ncept should be already for familiar for those who are confortable with analysis. We 
prove it here again, in generalized form. It turns out that this fact does not depend on 
the algebraic properties of  but only on its order properties. To make this clear, we 
shall prove the theorem for an arbitrary ordered set that has the order properties of . 
Such a set is called linear continuum. 
Definition: Linear Continuum 
	 A simply ordered set  having more than one element is called a linear 	 	
	 continuum if: 

f : [a, b] → ℝ
r f (a) f (b)

c ∈ [a, b] f (c) = r
f : [a, b] → ℝ

c ∈ [a, b] f (x) ≤ f (c)∀x ∈ [a, b]
f : [a, b] → ℝ

ε > 0 δ > 0 | f (x1) − f (x2) | < ε
x1, x2 ∈ [a, b] |x1 − x2 | < δ

3 x arcsin x

[a, b]
f

[a, b]
[a, b]

ℝ

ℝ
ℝ

L
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	 (i)	  has the least upper bound property. 
	 (ii)	 If  there exists  such that . 
    The terms "linear continuum" and "continuum" are closely related, but they refer to 
slightly different concepts, particularly in the context of topology and real analysis. 
Let's explore the differences between these terms: 
Linear Continuum: 
	 A "linear continuum" refers to a specific type of topological space that is 	 	
	 ordered, connected, and densely ordered. In other words, it's a linearly ordered  
	 set (often the real numbers ) that forms a connected space, and between any  
	 two elements, there is another element. 
The properties of a linear continuum include: 
	 Ordered Set: 
	 The elements of a linear continuum can be arranged in a linear order (usually  
	 denoted by ) that is reflexive, transitive, and connected. 
	 Connectedness:  
	 A linear continuum is connected as a topological space. This means that  
	 there are no disjoint open sets that partition the space. 
	 Dense Ordering:  
	 Between any two distinct elements of a linear continuum, there is another 	 	
	 element. In other words, the space is densely ordered. 
The classical example of a linear continuum is the set of real numbers  equipped 
with the usual order and topology. As for continuum: 
Continuum: 
	 In a more general sense, "continuum" refers to a connected, unbroken space  
	 that does not have any gaps or jumps. It emphasizes the idea of a smooth,  
	 uninterrupted flow of points.  
The properties of a continuum include: 
	 Connectedness:  
	 A continuum is connected as a topological space, meaning that it cannot be  
	 partitioned into two disjoint nonempty open sets. 
	 Unbroken Flow:  
	 A continuum is a space where there are no "holes" or "gaps." It can be thought  
	 of as a space that is continuously connected without interruptions. 
Remark: 
	 In this broader sense, a linear continuum is a specific type of continuum that 	 
	 possesses additional properties related to linear ordering and density.	 	 || 
    Now we prove an important result of the linear continuum: 
Theorem 1.54: 
	 If  is a linear continuum in the order topology, then  is connected, and so are  
	 the intervals and rays in . 
Proof: 
	 Recall that a subspace  of  is said to be convex if for every pair of points  
	  with , the entire interval  of points of  lies in . We prove 
	 that if  is a convex subspace of , then  is connected. 

L
x < y z x < z < y

ℝ

≤

ℝ

L L
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a, b ∈ Y a < b [a, b] L Y

Y L Y
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	 So suppose that  is the union of the disjoint nonempty sets  and , each of 	
	 which is open in . Choose  and ; suppose for convenience that 		
	 . The interval  of points of  is connected in . Hence  is the  
	 union of the disjoint sets 
	 	 	 	  and , 
	 each of which is open in  in the sense of subspace topology, which is the 	
	 same as the order topology (see Remark below). The sets  and  are  
	 nonempty because  and . Thus,  and  constitute a separation  
	 of . 
	 Let now . We show that  belongs to neither  nor , which 	 	
	 contradicts the fact that  is the union of  and .	  
	 Case I: . 
	 Suppose . Then  so either  or . In either case, it  
	 follows from the fact that  is open in  that there is some interval of the  
	 form  contained in : If , we have a contradiction at once, for  is a 
	 smaller upper bound on  than . If , we note that  does not  
	 intersect  since  is an upper bound of . Therefore  
	 does not intersect . Again, since  is a smaller upper bound on  than ,  
	 contradiction. 
	 Case II: . 
	 Suppose now . Then  so either  or . Because  is 
	 open in , there must be some interval of the form  contained in .  
	 According to the definition of the linear continuum, we can choose a point  
	  satisfying , still, a contradiction since this implies . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Remark: 
	 A key result we used in the proof is that the order topology and the subspace  
	 topology coincide when the subset under consideration is itself a convex subset  
	 of the ordered space.	 	 	 	 	 	 	 	 	 || 
Corollary 1.54.1: 
	 The real line  is connected and so are the intervals and rays in . 
    As an application, we shall prove the intermediate value theorem (IVT) as we pro-
mised. 
Theorem 1.55: Intermediate Value Theorem (IVT) 
	 Let  be a continuous map where  is a connected space and  is an 	
	 ordered set in the order topology. If  and  are two points of  and if  is a  
	 point of  lying between  and , then there exists a point  of  such  
	 that . 
Proof: 
	 Assume this is true. The sets  and  
	 are obviously disjoint and they are nonempty since one contains  while the  
	 other having  inside. Each is open in , being the intersection of an  
	 open ray in  with . If there were no point  of  such that , then  
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	  would be the union of the sets  and . Then  and  would constitute a  
	 separation of  and lead us to the contradiction since the connectedness is  
	 closed under the continuous mapping. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Connectedness of intervals in  gives rise to an especially useful criterion for sho-
wing that a space is connected; namely, the condition that every pair of points of  
can be joined by a path in . The following discussion of path connectedness and the 
relations between it and the connectedness follows from [22] and [23]. 
    We now turn to a closely related conception: the path connectedness. It is more int-
uitive, and, as we will see soon, can be extended to define “higher level conne-
ctedness” which is described by computable algebraic objects. 
Definition: Path and Loop 
	 Let  be a topological space and let  be two points. 
	 (i)	 A path from  to  is a continuous map  such that 	  
	 	 and . 
	 (ii)	 In the case , we will call the path a loop with base point . 
	 (iii)	 There is a special path/loop from  to : the constant path  defined by 
	 	  . 
Remark: 
	 So path is a continuous map, not just a “geometric curve”. Different  
	 parameterizations of the same “geometric pictures” will be regarded as  
	 different paths.	 	 	 	 	 	 	 	 	 	 || 
    Path-connectedness is a fundamental concept in topology that describes the degree 
to which points in a topological space can be connected by continuous curves or 
paths. A space is path-connected if you can find a continuous path between any two 
points in the space. Path-connectedness is a stronger notion than simple 
connectedness, as it not only ensures that the space is connected as a whole but also 
allows for a "path" between any two points. 
Definition: Path Connceted 
	 We say a topological space  is path-connected if any two points in  can be  
	 connected by a path. 
    It is easy to prove that path-conncetedness is stronger than connectedness: 
Proposition 1.56: 
	 If  is path-connected then  is connected. 
Proof: 
	 Suppose that  is path connected but not connected. Assume that there exist  
	 nonempty disjoint open sets  and  such that . Take a point   
	 and a point  and a path  from  to . Then ,  
	 which makes the union of non-empty disjoint open sets, which contradicts with  
	 the connectedness of . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    We now introduce some results from the compactness and derive the desired Extre-
me Value Theorem (EVT) as well as the Uniform Continuity Theorem (UCT) and 
then talk a bit of the Lebesgue number lemma. 
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Results: 
	 (i)	 Let  be a simply ordered set having the least upper bound property. In 	
	 	 the order topology, each closed interval in  is compact. 
	 	 	 	 	 	 	 	 	 	 ([1], Theorem 27.1)	  
	 (ii)	 Every closed interval in  is compact.		 	 ([1], Corollary 27.2) 
    Now we prove the extreme value theorem of calculus, in suitably generalized form. 
One should note that the EVT is the special case of the following generalization occu-
rs even when  is closed interval in  and . 
Theorem 1.57: Extreme Value Theorem (EVT) 
	 Let  be continuous, where  is an ordered set in the order topology. If  
	  is compact, then   such that  . 
Proof: 
	 Since   is continuous and  is compact, the set  is compact. We show  
	 that  has a largest element  and a smallest element . Then since  and   
	 belong to , we must have  while . 
	 If  has no largest element then the collection  forms an 	 	
	 open covering of . Since  is compact, some finite subcollection  
	  covers . If  is the largest of the elements  
	 then  belongs to none of these sets, contradiction to the fact that they cover . 
	 A similar argument applies to the smallest elements, result follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Now we prove the uniform continuity theorem of Calculus. In the process, we are 
led to introduce a new notion that will prove to be surprisingly useful, that of a 
Lebesgue number for an open covering of a metric space. 
Definition: Diameter 
	 Let  be a metric space, let  be a subset. The diameter of  is  
	 defined to be , where  could be  
	 infinite. 
Lemma 1.58:   Number Lemma  
	 Let  be an open cover of a compact metric space . Then for 
	 some  so that for all subset  with  there exists an  
	 such that . 
Proof: 
	 Pick  then  for some . Then there exists   
	 such that , so we get an open cover , which is an 
	 open cover of .  
	 Since  is compact, there exists  such that for  one has 
	 . Let now . If  
	 with diam , then  for some . 
	 [Claim]: . 
	 	 Suppose , then ,  
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	 	 	            		 (since  and ) 
	 	 	 	  	 	 (By the choice of ) 
	 	 Therefore  as we claim. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    The Lebesgue Number Lemma is a fundamental result in topology that provides a 
useful tool for understanding the relationship between an open cover of a compact 
metric space and the existence of a "Lebesgue number," which is a positive number 
that ensures that any subset of the space with diameter less than the Lebesgue number 
can be fully contained in one of the open sets of the cover. 
   Note that in different literature we may see different treatments. For example, the 
version we adapt here comes from Eugene Lerman (see [2]). There are also other 
approachses, for instance, in [1], the approach is done by  
	 	 	 	 	 , 
where  is called the distance from  to . See also the treatment given by [24]. 
    Recall in basic analysis we knew the difference between being continuous and  bei-
ng uniform continuous.  
Definition: Uniform Contiuity 
	 A function  is said to be uniformly continuous if  
	  such that  one has: 
	 	 	 	 . 
Theorem 1.59: Uniform Continuity Theorem 
	 Let  be a continuous map where  is compact. Then  
	 is uniformly continuous. 
Proof: 
	 Given , take the open covering of  by balls  of radius . Let  be 

	 an open covering of  by the inverse images of these balls under . Choose  
	 to be the Lebesgue number for the covering . Then if  and  are two points 
	 of  such that  the two-point set  has diameter less than  
	 so that the image  lies in some open ball . Then  
	  as we desired. 
	 	 	 	 	 	 	 	 	 	 	 	 	  

1.12 Local Connectedness and Limit Point Compactness 
    We now generaliz the results we have proved so far. Both connectedness and com-
pactness are topological properties hence they are closed under continuos mappings. 
We also know that according to Tychonoff’s Theorem arbitrary product of compact 
spaces is also compact, since compactness implies connectedness, this means that the 
arbitrary product of connected spaces is connected, not disconnected. We used these 
terminologies to prove the IVT, EVT, and UCT and we saw how powerful these tools 
are. It is natural to ask what should we do when we try to prove IVT, for example, 
when we do not have the connectedness involved? This is where the locally connect-
edness, as well as the locally compactness come to our sight. 
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□

d(x, A) := inf{d(x, a) |a ∈ A}
d(x, A) x A

f : (X, dX) → (Y, dY) ∀ε > 0
∃δ > 0 ∀x0, x1 ∈ X

dX(x0, x1) < δ ⇒ dY( f (x0), f (x1)) < ε

f : (X, dX) → (Y, dY) (X, dX) f

ε > 0 Y B ε
2
(y)

ε
2

𝒜

X f δ
𝒜 x1 x2

X dX(x1, x2) < δ {x1, x2} δ
{ f (x1), f (x2)} B ε

2
(y)

dY( f (x1), f (x2)) < ε
□

57



    Locally connectedness is a property in topology that characterizes the "closeness" 
of points within a topological space. A space is locally connected if, intuitively, every 
point has a neighborhood that is connected. This property provides information about 
how the space is connected on a small scale, even if it might not be globally 
connected. 
    The idea to derive the local connectedness is: given an arbitrary space , there is 
anatural way to break it up into pieces that are connected (or path-connected). 
Definition: Components 
	 Given , define an equivalence relation on  by setting  if there is a  
	 connected subspace of  containing both  and . The equivalence classes are 	
	 called componenets (or the connected components) of . 
Property: (see [1], Theorem 25.1) 
	 The components of  are connected disjoint subspaces of  whose union is  	
	 such that each nonempty connected subspace of  intersects only one of them. 
Definition: Path Components 
	 We define another equivalence relation on the space  by defining  if  
	 there is a path in  from  to . The equivalence classes are called the path  
	 components of . 
Property: (see [1], Theorem 25.2) 
	 The path components of  are path-connected disjoint subspaces of  whose  
	 union is  such that each nonempty path-connected subspace of  intersects  
	 only one of them. 
Definition: Locally Connected 
	 A topological space  is said to be locally connected if  and for all 
	 open subsets  containing , there exists an open, connected set  such 
	 that . 
Definition: Locally Path Connected 
	 We say a topological space  is: 
	 (i)	 Locally Path Connected at  if for any open neighbourhood  of  
	 	 there exists an open neighbourhood  of  inside  which is path 	 	
	 	 connected. 
	 (ii)	 Locally Path Connected if it is locally path connected at any point. 
Theorem 1.60: Criterion for Locally Connected (see [1], Theorem 25.3) 
	 A topological space  is locally connected  for every open set , each 
	 component of  is open in . 
Theorem 1.60: Criterion for Locally Path Connected (see [1], Theorem 25.4) 
	 A topological space  is locally path connected  for every open set , 
	 each path component of  is open in . 
Theorem 1.61: Relations (see [1], Theorem 25.5) 
	 If  is a topological space, each path components of  lies in a component of 	  
	 . If  is locally path connected, then the components and the path  
	 components of  are the same. 
Proposition 1.62: Connected + Locally Path Connected  Path Connected	  
	 If  is a connected and locally path connected topological space. Then  is also 
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	 path connected. 
Proof: 
	 Fix a point . Consider the set 	 	 	  
	 	 	 	 . 
	 By locally path connectedness, we know if a point is in   a neighbourhood 	
	 of this point is in . If a point is in  then a neighbourhood of this point is in 	
	 . Therefore,  is both open and closed. Since  is connected then  
	 . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    From the above results, one can see that connectedness does not necessarily imply 
the locally connectedness, similar result applies to path connectedness and locally 
path connectedness. The reason is that they are different topological properties. 
    Instead of introducing the local compactness, which involve concrete background 
of the Hausdorff space, we now introduce the limit point compactness. The key 
difference between compactness and limit point compactness lies in the way they 
handle infinite sets. Compactness deals with open covers and their finite subcovers, 
while limit point compactness concerns the existence of limit points for infinite 
subsets. 
Definition: Limit Point Compact 
	 A topological space  is said to be limit point compact if every infinite subset  
	 of  has a limit point in  
Theorem 1.63: (see [1], Theorem 28.1) 
	 Compactness implies limit point compactness, but not conversely. 
    Now we introduce another version of compactness called sequential compactness 
which deals specifically with sequences of points in a space. A space is sequentially 
compact if every sequence of points in the space has a convergent subsequence 
whose limit lies within the space. Sequential compactness is a useful property in 
spaces where sequences play a significant role. 
Definition: Sequentially Compact 
	 A topological space  is said to be sequentially compact if every seqeunce of  
	 points in  has a convergent subsequence. 
Theorem 1.64: (see [1], Theorem 28.2) 
	 Let  be a metrizable space. Then the followings are equivalent: 
	 (i)	  is compact. 
	 (ii)	  is limit point compact. 
	 (iii)	  is sequentially compact. 
    The term “metrizable” is quite unfamiliar at this time since we have not yet introd-
uced it. The treatment of it will be given in the third chapter, where we zoom in to the 
discussion of the metric space and metric topology. 
    To close this chapter, we shall talk a bit of the local-to-global lemma. In the world 
of advanced mathematics, we are often interested in comparing the local properties of 
a space to its global properties. Connectedness is one of our most important tools in 
doing this. Often, it is easier to prove that a property holds in a neighborhood of each 
point than to prove that it holds for the entire space. If the space is connected, then 

x ∈ X
A = {y ∈ X |y can be connected by path to x}

A ⇒
A Ac

Ac A ≠ ∅ X
X = A

□

X
X X

X
X

X
X
X
X

59



using the following lemma, we can sometimes deduce that a property holds globally, 
simply from the fact that it holds in a neighborhood of every point. 
Lemma 1.65: Local-To-Global Lemma 
	 Let  be a connected topological space. Suppose that we have an equivalence  
	 relation  on  such that every point has a neighborhood of equivalent points.  
	 Then there is only one equivalence class, i.e., all points of  are equivalent. 
Proof: 
	 Let  be the partition of  into the equivalent classes . Thus,  is  

	 the disjoint union of the , and if  then . 
	 By assumption,  there exists an open set  such that  and every  
	 element of  is equivalent to ; i.e. . Thus, every equivalence class 
	  is open. 
	 Suppose now that there there is more than one equivalent class. Let  be  
	 an equivalence class, and . Then  form a separation,  

	 contradicting with the connectedness of . Hence the uniqueness holds. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Comment: 
    The "local-to-global" principle is a general approach used in topology where a glo-
bal property of a topological space is deduced from the local properties of its points. 
While the local-to-global principle can be applied to many local-to-global properties, 
it might not apply to all of them. It depends on the specific property and the nature of 
the space being considered.  
   The local-to-global principle can be applied to many properties that have a local 
character and are preserved under open sets. Examples of local-to-global properties 
include connectedness, path connectedness, and locally connectedness. 
    However, there are properties for which the local-to-global principle might not ap-
ply: 
Compactness and Limit Point Compactness:  
	 Compactness and limit point compactness are not local-to-global properties. A  
	 locally compact space does not necessarily imply global compactness, and a  
	 space where every point has a limit point does not necessarily imply limit point  
	 compactness.  
Separation Axioms:  
	 Some separation axioms, such as regularity and normality have local-to-global  
	 properties, but others like  and  do not necessarily follow this principle. 
Completeness:  
	 Completeness, as seen in metric spaces, is a global property that depends on  
	 the entire metric space and not just local neighborhoods. 

2.1 Separation Axioms 
    We have introduced compatibility in the previous chapter. In this chapter we shall 
deal with other topological properties such as connectedness and separability. The 
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order of their presence is only due to convenience. We shall now consider the 
separability. 
    A topological space is said to be separable if it contains a countable dense subset. A 
dense subset is one that is "closely packed" in the sense that every point in the space 
is either a part of the subset or a limit point of the subset. If a space is separable, it 
means that you can find a countable set that is "everywhere dense" in the space. The 
concept of separability is important because it measures how "rich" the space is in 
terms of having points that are "close" to each other. The overview over separability 
is mainly from [14]: 
Definition: Dense 
	 Let  be a metric space. For  a subset we say  is dense in  if . 
Remark: 
	 Recall that  where  is the set containing all the limit points of ,  
	 therefore, according to this definition, it follows that  is dense in   every 
	 open ball in  contains a point in . Moreover, by the sequential  
	 characterization of the closure, we can say that  is dense in    	 	
	 there exists a sequence  in  such that  in .	 	 	 || 
Definition: Separable 
	 Let  be a metric space (or a topological space). We say that  is separable  
	 when it has a finite or countable dense subset. 
Theorem 2.1:  
	 Let  be a metric space. Then the followings hold: 
	 (i)	 If  is separable then there is a finite or countable basis for the metric 		
	 	 topology on . 
	 (ii)	 If every infinite subset of  has a limit point then  is separable. 
	 (iii)	 If  is separable then every subspace of  is separable. 
Proof: Consult [14]. 
    In order not to deviate from our main goal, which is the discussion of separability 
axioms, we shall close the discussion for now, with a statement on its stability under 
homeomorphisms. Before that we introduce a competitive definition for being dense: 
Definition: Dense (comparable definition) 
	 Let  be a topological space. The subset  is said to be dense in  if 
	 the intersection of every nonempty open set with  is nonempty, i.e.  
	  holds true . 
Theorem 2.2: Separability is closed under Homeomorphisms 
	 Let  and  be two topological spaces and let  be a  
	 homeomorphism. If  is separable then so is . 
Proof: 
	 Since  is separable there exists a subset  that is both countable and 	 	
	 dense. That is, for all open sets  we have that . 
	 [Claim]:  is a countable and dense subset of . 
	 	 Since  is surjective and  is a countable subset of  we see that  is 	
	 	 a countable subset of . Now let  be an open subset of , since  is 	 	
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	 	 continuous we have that  is open in  and since  is dense in . 	
	 	 Therefore we have . Hence, 
	 	 	 , , . 
	 	 Since  is chosen arbitrarily,  is a countable and dense subset of . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Separation axioms, also known as separation properties, are fundamental concepts 
in topology that describe how well distinct points and closed sets can be separated 
from each other within a topological space. These axioms characterize the “separa-
teness" and "closeness" of points and sets, which is crucial for understanding the stru-
cture of topological spaces. 
   It may be bit confusing to claim the fact that the separability and the separation 
axioms indeed are not the same: They refer to different aspects of the properties of 
topological spaces: 
Separability: 
	 Separability is a property of a topological space that relates to the existence of  
	 a dense subset with a specific cardinality. A topological space X is said to be  
	 separable if there exists a countable dense subset in X. This means that there is  
	 a countable set of points that are "dense" in the sense that every point in the  
	 space is either in this set or is a limit point of this set. In other words, one can  
	 approximate any point in the space arbitrarily closely using elements from the  
	 countable dense subset. 
Separation Axioms: 
	 Separation axioms, on the other hand, are a set of properties that define how  
	 well-behaved the open sets of a topological space are in relation to each other  
	 and to the points in the space. These axioms provide information about how  
	 "separated" or "disconnected" different parts of the space are from each other. 
    The materials we use to cover the separation axioms are from [9], [10], [11], [12], 
[13], and mainly results from [14]. 
Definition:  (Kolmogorov) 
	 For any two distinct points, there exists an open set containing one of the  
	 points but not the other. That is to say, a topological space  is  if  	
	 with , there is an open set containing one and only one of  or . 
Example 2.1:  
	 Let  and consider the topology  on .	 || 
    We make a comment taken from [17], where a relationship between topological sp-
aces and their Kolmogorov quotients are concerned.  
Comment: [17] 
    Every topological space has a Kolmogorov quotient that is obtained by identifying 
topologically indistinguishable points, that is, points that are contained in exactly the 
same open sets. This means that there is no sequence of operations on an open sets 
that would give a set  such that  but  for . Nothing topologically 
important to the space  is lost in identifying these points. 
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    The resulting space is -space: a space where all points are topologically distingu-
ishable. Most topological spaces we concern are . In a  space, every point serves 
a purpose! 
    However, there are situations where it is inconvenient if a space is . Such a situa-
tion occurs when one is interested in refinements of the topology: the more points 
there are in , the more choices there are for refinements. The same is true for 
subspaces, though the loss here is not so dramatic, still, if one is interested in the 
specific points of the space, one might not wish to clump them together in equiva-
lence classes. 
Definition:  (Fréchet) 
	 For any two distinct points, there exist disjoint open sets containing each of the 
	 points. That is to say, a topological space is  if  such that , 		
	 there exist open neighbourhoods  of  and  of  such that  and  
	 . 
Example 2.2:  
	 Let  be a set and let  be a cofinite topology (where singletons are closed).  
	 Cofinite topology is defined by declaring a subset of  to be open if and only if  
	 its complement in  is either finite or the whole set . If , consider the  
	 neighbourhoods  and .	 	 	 	 	 || 
Proposition 2.3: Criterion for  
	 A topological space  is  ,  is closed. 
Proof: 
	 “ ”: 
	 Suppose that  is . Then for  and  such that  there exists 
	 an open neighbourhood  of  such that .  therefoer  

	  is closed. 
	 “ ”: 
	 Suppose singletons are closed, for  such that  and let  
	 , easily see . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    We now give some comments on  space, which are from [18], [19], [20]. For rea-
ders interested in this topic we highly recommend [20] for further readings. 
Moreover, there are many open problems listed in [18]. 
Comment: 
    In topology, the  separation axiom (also known as the Fréchet-Urysohn property) 
is a fundamental property that characterizes the degree of separation between points 
in a topological space. A topological space is said to satisfy the  axiom if, for any 
two distinct points in the space, there exist open sets containing each point but not the 
other. In other words, the points in the space can be separated by disjoint open sets. 
    A  space is stronger than a  space (a space satisfying the Kolmogorov proper-
ty). In a  space, not only can distinct points be distinguished by open sets, but they 
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⇐
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can also be separated by disjoint open sets. Many common topological spaces, 
including the Euclidean topology on , metric spaces, and discrete spaces, satisfy 
the  axiom. 
    The  axiom is often used as a basic requirement when proving various properties 
in topology. For instance, the uniqueness of limits in topological spaces is a consequ-
ence of the  property. Moreover, as we proved in Proposition 2.3, The property 
is preserved under homeomorphisms. If two spaces are homeomorphic and one of 
them satisfies the  axiom, the other will also satisfy it. 
    A product of  spaces is again a  space. This is an important property when dea-
ling with products of topological spaces. However, this may fail to be true when the 
amount of products we consider is infinity. In the case of infinite products, specifica-
lly uncountably infinite products, some additional conditions or restrictions might be 
needed to ensure that the product remains Fréchet. This is due to the potential 
subtleties that arise in dealing with uncountable collections of open sets and closed 
sets in the product topology. In some cases, extra assumptions or restrictions, such as 
the Axiom of Choice or specific properties of the spaces involved, might be required 
to ensure the validity of the statement for infinite products. 
    An equivalent statement for a space  to be Fréchet (or Fréchet-Urysohn) if when-
ever  is in the closure of a set , there is a sequence of points  in  which conve-
rge to . In a letter written to Gary Gruenhage, F. Galvin asked the follow-ing qeust-
ion: If  are such that  is Fréchet for all , must  be 

Fréchet? Y. Tanaka has asked the same question. Gary Gruenhage’s paper [21] offers 
a construction, assuming Martin’s Axiom (MA), a Fréchet space  such that  is 
Fréchet for all  but  is not Fréchet, where the space  is countable and has 
only one non-isolated point. 
Definition:  (Hausdorff) 
	 For any two distinct points, there exist disjoint open sets containing each of the  
	 points. That is to say, a topological space  is  if  such that , 	  
	 there exists an open neighbourhood  of ,  of , such that . 
    It is natural to ask that why is , , and Hausdorff space are often mentioned, wi-
th Hausdorff seems to be the only “famous” one? One possible reason is that the 
Hausdorff separation axiom aligns well with our geometric and intuitive understa-
nding of "closeness." When points can be separated by disjoint open sets, it reflects 
the idea that distinct points can be "strictly distinguished" from each other based on 
open neighborhoods. 
Remark: ([1] Theorem 31.2) 
	 A subspace of a Hausdorff space is Hausdorff and a product of Hausdorff space 
	 is Hausdorff.	 	 	 	 	 	 	 	 	 	 || 
Definition:  (regular) 
	 Given a closed set and a point not in that set, there exist disjoint open sets  
	 containing the closed set and the point. That is to say, a topological space  
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	 is regular if for all points  and for all closed subsets , there exist 	
	 open sets  with  such that  and . 
Propotion 2.4: Criterion for  
	 A topological space  is    is  and open sets separate points and closed  
	 sets. 
   As Proposition 2.4 implies, there are implications between all  and 

, which we shall introduce later. Our treatment with separation axioms concern 
with the most common ones, , , and some others will not be considered 
throughout these notes. However, the as there are a rational number between  and , 
there is a  between  and  as an intermediate, which we shall deal with later. 
Remark: ([1] Theorem 31.2) 
	 A subspace of a regular space is regular and a product of regular spaces is  
	 regular.	 	 	 	 	 	 	 	 	 	 	 || 
Comment: 
    The  separation axiom is a property in topology that characterizes a certain level 
of "closeness" between points and closed sets in a topological space. The axiom is 
a stronger separation property than both the  and  axioms. A  space is also  
(Hausdorff),  (Fréchet), and . A  space generalizes the  (Hausdorff) property 
by ensuring that points and closed sets can be separated, rather than just distinct 
points.  
    Moreover, The  property captures an important aspect of continuity. In a  spa-
ce, you can separate a point from a closed set using disjoint open neighborhoods, 
which is a fundamental requirement for various continuity-related concepts. 
Furthermore, The  property is preserved under continuous maps. If  is  and 

 is a continuous map, where  is another topological space, then  is also 
. Notwithstanding, the product of two  spaces is , this can be extended to finite 

product, however, the arbitrary product of  spaces is not necessarily a  space. 
While finite products of  spaces are guaranteed to be , the situation changes when 
dealing with an arbitrary (possibly uncountable) product of  spaces. 
    The counterexample lies in the realm of set theory and the cardinality of the produ-
ct. When dealing with an arbitrary product, issues related to the size of the product 
index set can arise. In particular, if the index set is too large (uncountably large), the 
product might not satisfy the  separation axiom. 
Example 2.3: Arbitrary product of  may not be . 
	 This can be illustrated using the product topology and considering an  
	 uncountable product of the Sorgenfrey line, which is a well-known example of  
	 a  space. In this case, when you take an uncountable product (for instance,  
	 the product over the real numbers), issues related to the size of the index set  
	 can lead to counterexamples where the product is not .	 	 	 	 || 
    It's worth noting that set-theoretic issues and cardinality considerations play a role 
in such counterexamples. When dealing with arbitrary products of spaces, especially 
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when the index set is uncountable, extra assumptions or conditions might be needed 
to ensure that the product retains certain topological properties. 
Definition:  (Normal) 
	 Given two disjoint closed sets, there exist disjoint open sets containing each of  
	 the closed sets. That is to say, for any two closed subsets  with  
	 , there exist open sets  and  with  such that  	
	 and . 
Proposition 2.5: Criterion for  
	 A topological space  is    is  and any two disjoint closed sets can be  
	 separated by open sets. 
Comment: 
    The  separation axiom, also known as the normal space axiom, is a property in 
topology that characterizes a higher level of separation between disjoint closed sets in 
a topological space. The  axiom is stronger than both the  and  (Hausdorff) 
axioms. A  space is also , , , and . Moreover, the  property is important 
for applications in functional analysis, measure theory, and other areas of 
mathematics that involve working with spaces with "enough separation.” Further-
more, the  property is preserved under continuous maps. 
    The arbitrary (finite or infinite) product of  spaces is still a  space. Unlike the 
situation with  spaces, where infinite products might not satisfy the  property, the 

 property is well-behaved with respect to products. This is a significant result 
known as the Tychonoff theorem, which we shall introduce later. 

2.2 Relations between Separation Axioms 
    We have offered criterions for and  with the corr-esponding description in 
Proposition 2.3, Proposition 2.4, and Proposition 2.5, res-pectively. Now we 
present a criterion for the missing . 
Proposition 2.6: Criterion for  (Hausdorff) 
	 Let  be a topological space.  
	 Then  is  (Hausdorrf) The diagonal  is closed  
	 in . 
Proof: 
	 “ ”: 
	 ,  implies that there exist open sets  and  such that , , 	
	 while . This can be modified into the form: there exists  in 
	  such that  
	 	 	 	  and . 
	 This means that every point in  has an open neighborhood entirely contained  
	 in the complement. Therefore,  is open and by the open-closed duality  is 	
	 open. 
	 “ ”: 
	 Assume now that  is closed in , we wish to show  is Hausdorff. 
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⇐
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	 Let  be such that . Consider the open set  in .  
	 Obviously . Since  is closed, there exist open sets  and   
	 such that  and . If there exists , 		
	 then , contradiction. Therefore  is Hausdorff. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Relations between Separation Axioms: [11] 
	 We can also study the relations between these axioms. Obviously we have: 
	 (i)	 . 
	 (ii)	 , , . 
	 Note that we also have 
	 (iii)	 , ,  with counterexample . 
	 (iv)	 , ,  with counterexample  with 	 	  
	 	 . 
	 (v)	 ,  with counterexample  where  is generated by 	
	 	 the basis . In this topology, closed subsets and 
	 	 open subsets are the same.	  
	 (vi)	 ,  with counterexample  where  is generated by 	
	 	 the subbasis .  is closed but it cannot be 	
	 	 separated from . 
	 (v)	  with counterexample being the Sorgenfrey plane  
	 	 , one may consult [1] in Section 31, 	
	 	 Page 152. 
Proposition 2.7:   Criterion 	 
	 A  (Hausdorff) space  is  (Regular) , there exists an open  
	 neighbourhood  of  containing a closed neighbourhood, i.e., there exists 
	 an open set  such that . 
Proof: 
	 “ ”: 
	 Suppose now  is regular. Take , let  be a neighbourhood of . Then 		
	 there exists an open set  such that . Since  is open, then  
	  is closed and . Since  is regular, there exist open  
	 neighbourhoods  of ,  of , such that . Consequently 	 
	 , since , one has . Therefore,  
	  is the desired closed neighbourhood of . 
	 “ ”: 
	 Suppose now ,  is a closed subset and , then  is an open 
	 neighobourhood of . By assumption there exists a closed neighbourhood  of 	
	  with . Since  is an neighbourhood of , there exists an open  
	 neighbourhood  of  with . Set  to be an openset, then one 	
	 has . Since  and , one has  
	 . 
	  	 	 	 	 	 	 	 	 	 	 	 	  

x, y ∈ X x ≠ y U := X ∖{y} X
(x, y) ∉ Δ Δ Vx Vy

(x, y) ∈ Vx × Vy Vx × Vy ∩ Δ = ∅ z ∈ Vx ∩ Vy
(z, z) ∈ (Vx × Vy) ∩ Δ (X, TX)

□

T2 ⇒ T1
T1 + T3 ⇒ T2 T1 + T4 ⇒ T2 T1 + T4 ⇒ T3

T1 ⇏ T2 T1 ⇏ T3 T1 ⇏ T4 (ℝ, Tcofinite)
T4 ⇏ T3 T4 ⇏ T2 T4 ⇏ T1 (ℝ, T )
T := {(−∞, a) |a ∈ ℝ}
T3 ⇏ T2 T3 ⇏ T1 (ℝ, T ) T

ℬ := {[n, n + 1) |n ∈ ℤ}

T2 ⇏ T3 T2 ⇏ T4 (ℝ, T ) T
𝒮 := {(a, b) |a, b ∈ ℚ} ∪ ℚ ℚc

{0}
T3 ⇏ T4
(ℝ, Tsorgenfrey) × (ℝ, Tsorgenfrey)

T2 + ⇒ T3
T2 X T3 ⇔ ∀x ∈ X

N x
V x ∈ V ⊆ V ⊆ N

⇒
X x ∈ X N x

V x ∈ V ⊆ N V
C := X ∖V x ∉ C X

W C U x U ∩ W = ∅
U ⊆ X ∖W C ⊆ W U ⊆ X ∖W ⊆ X ∖C = V ⊆ N
X ∖W x
⇐

x ∈ X C ⊆ X x ∉ C X ∖C
x N

x N ⊆ X ∖C N x
U x U ⊆ N V := X ∖N

V = X ∖N ⊇ X ∖(X ∖C ) = C U ⊆ N V = X ∖N
U ∩ V = ∅

□
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Lemma 2.8: Compact  
	 Compact Hausdorff space is regular. 
Proof: 
	 Let  be a compact Hausdorff space and consider a point , a closed  
	 subset  such that .  there exists an open neighbourhood  	
	 of  and  of  such that  by Hausdorff. Since  is compact,  
	  is an open cover of . Moreover, since  is closed it is compact since  
	 it has bounded neighbourhoods. Therefore there exists  such that for the  
	 points  satisfying , let   
	 then  with  and . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Theorem 2.9: Compact  
	 Compact Hausdorff space is normal. 
Proof: 
	 Suppose that  is compact Hausdorff and let  be closed subsets such  
	 that . By Lemma 2.8  there exist open sets ,  
	  such that . Then  is an open cover of .  
	 Therefore there exists an  with  such that  
	 . Let now , then   
	 with  while . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    We talk about the properties of the normal spaces to close this subsection. Normali-
ty, may not behave well as its name suggested. However, most of the spaces we are 
familiar with are . It importance comes from the fact that the results one can prove 
under the hypothesis of normality are central to much of topology. The Urysohn 
metrization theorem and the Tietze extension theorem are two such results, which we 
shall deal with later. 
Properties: of Normal 
	 (i)	 Every regular space with a countable basis is normal.	  
	 	 	 	 	 	 	 	 	 	 ([1], Theorem 32.1) 
	 (ii)	 Every metrizable space is normal.	 	 	 ([1], Theorem 32.2) 
	 (iii)	 Every compact Hausdorff space is normal.	 	 (Theorem 2.9) 
	 (iv)	 Every well-ordered set  is normal in the order topology. 
	 	 	 	 	 	 	 	 	 	 ([1], Theorem 32.4) 

2.3 Countability Axioms 
    In order to obtain more relationships between separation axioms, we need to intro-
duce more materials such as the countability axioms. One may see an elegant 
introduction in [29], there are some very good lecture notes corresponding to this 
topic, one may also consult [27] and [28]. For a thouroughly treatment, one may also 
review the 31st section of [1]. First recall the definition of first countable we offered 
in 1.8. 
Definition: First Countable ( ) 
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□
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	 A topological space  is said to be first countable if every point  has a  
	 countable neighbourhood basis. 
Remark: 
	 If  is first countable, then for each point one can choose a countable  
	 neighbourhood base  satisfying , since if one has a 	 
	 countable neighbourhood basis  at , then one can take  
	 	 	    .	 	 	 || 
    A first-countable topological space is a space in which every point has a countable 
neighborhood basis. This means that for each point in the space, there exists a 
countable collection of open sets that form a basis for the neighborhoods of that 
point. The concept of a first-countable space is important in topology as it leads to 
some convenient properties related to sequences, limits, and continuity. 
    We shall introduce four basic countability properties, they are (1) The first counta-
ble axiom, (2) The second countable axiom, and (3) The Lindelöf condition. They are 
denoted as  space,  space, and  space, respectively. We first introduce some 
results of . 
Theorem 2.10:  and Convergence 
	 Let  be a topological space, then 
	 (i)	 Let  be a subset. If there is a sequence of points of  converging 	
	 	 to , then ; the converse holds if  is . 
	 (ii)	 Let . If  is continuous, then for every convergent sequences  
	 	  in , the sequence . The converse holds if  is . 
Proposition 2.11:  and Compactness 
	 Suppose that the topological space  is . If  is also Hausdorff, then a subset 
	  is limit point compact  it is sequentially compact.	  
Example 2.4: -space 
	 (i)	 Any metric space is  since one can take . 
	 (ii)	 The set of real numbers  equipped with the standard Euclidean  
	 	 topology is a first-countable space.  the collection of open  
	 	 intervals with rational endpoints centered at  forms a countable  
	 	 neighborhood basis. 
	 (iii)	 The discrete topology on any set  is first-countable. Each singleton set 
	 	  is an open set, and these singleton sets form a countable  
	 	 neighborhood basis at each point. 
    First-countable spaces have a nice property when it comes to sequences and their 
limits. If a space is first-countable, then every limit of a sequence can be described 
using the countable neighborhood basis of the limit point. This is particularly useful 
in metric spaces where sequences play a crucial role. As we see above, a sequentially 
compact space, where every sequence has a convergent subsequence, is always first-
countable. However, the reverse is not necessarily true; a first-countable space is not 
necessarily sequentially compact. Moreoever, in a first-countable space, a function is 
continuous at a point if and only if the limit of the function at that point coincides 
with the value of the function at that point. Furthermore, all metric spaces are first-
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countable. This is because, in metric spaces, the open balls centered at a point with 
rational radii form a countable neighborhood basis. 
    Now we move to the discussion on the second countable axiom, namely . A sec-
ond countable topological space is a space that possesses a countable basis for its top-
ology. This means that the space has a collection of open sets that is both sufficient to 
generate the entire topology and countable in size. The concept of second countability 
is important in topology as it leads to some useful properties related to compactness, 
separability, and metrizability. 
Definition: Second Countable ( ) 
	 If a topological space  is said to be second countable if it has a countable  
	 basis. 
Remark: 
	 Obviously any second contable space is also first countable. But the converse  
	 is not true, for example, the discrete topology is first countable but not second  
	 countable. Moreover, one need to note that the second countable axiom, being  
	 stronger than the first countable axiom, sometimes is so strong that not even 		
	 every metric space satisfies this property.	 	 	 	 	 	 || 
    Second-countable spaces have some convenient properties related to compactness. 
For instance, every compact subset of a second-countable space is itself second-
countable. A second-countable space is always separable, meaning that it contains a 
countable dense subset. This is because the countable basis can be used to construct a 
countable dense subset. As we shall introduce later, all metric spaces are second-
countable. The collection of open balls with rational radii centered at all points of the 
space forms a countable basis. 
    Recall the definition of total boundedness: 
Definition: Totally Bounded 
	 A metric space  is said to be totally bounded if   such that 

	 for  we have . 

Proposition 2.12: 
	 Any totally bounded metric space is . 
Proof: 
	 Suppose that  is a totally bounded metric space. By definition, for any  

	 , one can form a finite  - net, i.e. there exists finitely many points,  

	 namely  such that . 

	 [Claim]:  is a countable basis. 
	 	 Take any open subset  and an arbitrary point . Then there exists 
	 	 a  such that  by openness. Now choose  and  
	 	  such that 
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	 	 	 	 	       and . 

	 	 It follows immediately that 
	 	 	 	 	 , 
	 	 therefore the countable family  is a basis. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Corollary 2.12.1: 
	 Any compact metric space is . 
Theorem 2.13: 
	 Let a topological space  be . Then  is separable and first countable. 
    Before we proceed to the proof of Theorem 2.13, we need a property for the dense 
subsets. 
Lemma 2.14: 
	 Let  be a subset and let  be a basis of open sets not containing . 	 	
	 Then  is dense . 
Proof: 
	 “ ”: 
	 Suppose that  but . Then  is contained in the closed set  
	 , which implies that , hence not dense, contradiction. 
	 “ ”: 
	 Let  be an arbitrary point and let  be a neighbourhood of  in . Then 	
	 there is a  such that . Since , it follows that  
	 , therefore  which implies . Result follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Proof of Theorem 2.13: 
	 Let  be a countable basis. We may assume that . For each , 		
	 choose . Then by Lemma 2.14,  is a countable dense 	 	
	 subset of , so  is separable. 
	 For each , the family  is a countable neighbourhood  
	 basis at . Therefore the first countable axiom follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Remark: 
	 Note that the reverse may not always be valid. A famous example is done by  
	 the Sorgenfrey line, this is a concept we try to aviod in the first chapter, in  
	 order for a detailed description we shall offer below.	 	 	 	 || 
    The Sorgenfrey line and the Sorgenfrey space are topological spaces that have uni-
que properties and are often used as counterexamples in topology to illustrate conce-
pts that might not hold in more familiar spaces like the real numbers with the standa-
rd Euclidean topology. 
    The lower limit topology is the topology generated by the set of all open intervals 
in the real numbers. The lower limit topology is denoted by . The standard example 
of the lower limit topology is the real line, which is called the Sorgenfrey line. 
Sorgenfrey Line: 

1
n

<
ε
2

d(x, xn,i) <
1
n

B1
n
(xn,i) ⊆ B2

n
(x) ⊆ Bε(x) ⊆ U

ℬ
□

A2

X A2 X

D ⊆ X ℬ ∅
D ⇔ ∀B ∈ ℬ, B ∩ D ≠ ∅

⇒
B ∈ ℬ B ∩ D = ∅ D

X ∖B D ≠ X
⇐

x ∈ X N x X
B ∈ ℬ x ∈ B ⊆ N B ∩ D ≠ ∅

N ∩ D ≠ ∅ x ∈ D X = D
□

ℬ ∅ ∉ ℬ B ∈ ℬ
xB ∈ B {xB |B ∈ ℬ}

X X
x ∈ X {B ∈ ℬ |x ∈ B}
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	 The Sorgenfrey line, denoted by , is a topological space where the open sets  
	 are generated by half-open intervals of the form  for . In other 		
	 words, the basis for the topology consists of half-open intervals. This topology  
	 is also known as the lower-limit topology. 
Properties: 
	 The Sorgenfrey line has some interesting properties: 
	 (i)	 It is separable and second-countable. 
	 (ii)	 It is not a normal space. 
	 (iii)	 The space is connected, path-connected, and locally connected. 
Sorgenfrey Space: 
	 The Sorgenfrey space, denoted by , is a two-dimensional analog of the  
	 Sorgenfrey line. It is defined by taking the product of two copies of the  
	 Sorgenfrey line, with the basis for the topology consisting of sets of the form 
	  with . Sorgenfrey space share the same properties  
	 (i), (ii), and (iii) of Sorgenfrey line, but it does not have all the properties of  
	 Sorgenfrey line. 
    Let us now return to the remark of Theorem 2.13, we claimed that the reverse, i.e. 
a separable  space may not be , we now offer a counterexample. 
Example 2.5: Separable  space may not be  (see [30]) 
	 The Sorgenfrey line, also know as  equipped with lower limit topology. In  
	 ,  is still a dense set, and each point  has a countable local base of sets of  

	 the form  for , but the space is not second countable. 

	 In the Sorgenfrey space, namely, , the situation is even worse:  is a  
	 dense subset, so it’s separable, and as a product of two first countable spaces it  
	 is certainly first countable, but the reverse diagonal,  is  
	 an uncountable closed discrete set. It’s easy to see that no space with an  
	 uncountable closed discrete subset can be second countable.	 	 	 || 
    We now state an important behaviour of  and  spaces, which is very useful wh-
en we consider the subspace or the product of the  (resp. ) spaces. 
Theorem 2.15: 
	 (i)	 A subspace of  space is , a countable product of  space is . 
	 (ii)	 A subspace of  space is , a countable product of  space is . 
Proof: (see [1], Theorem 30.2). 
Corollary 2.15.1: 
	 A subspace of a separable space is separable, a countable product of a  
	 separable space is also separable. 
Proof: (see [30], Theorem 3.4). 
    Moreover, we state a fact that any second countable topological space is separable. 
This could be easily derived from the following proposition: 
Proposition 2.16: 
	 Any second countable topological space has a countable dense subset. 
Proof: 
	 Let  be a countable basis of the topology . For each , choose  
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	 a point  and let . Then  is a countable subset in .  
	 [Claim]: . 
	 	 In fact,  and any open neighbourhood  of , there exists an  		
	 	 such that . In particular,  therefore . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Remark: 
	   separable but separable .	 	 	 	 	 	 	 || 
Example 2.6: separable but not  space 
	 Again, this counterexample is done by the Sorgenfrey line, the separability of 
	  follows from the fact that . To see that  is not , we let 
	  be any basis of . Then  there exists an open set  such that 
	 	 	 	 	 , 
	 which implies that . As a consequence, for any , we have  
	 . So  is not a countable family.	 	 	 	 	 	 || 
    However, in some cases, the converse is true: 
Proposition 2.17: 
	 A metric space is   it is separable. 
Proof: (see [27], Proposition 1.13). 
Remark: 
	 Separability is a very useful concept in functional analysis. It is used to prove 	
	 certain compactness results. Another well-known result is: 
	 	 A Hilbert space  is separable  it has a countable orthogonal basis. 
	 From this fact one can easily construct a non-separable Hilbert spaces.		 || 
Theorem 2.18: 
	 Suppose that  has a countable basis. Then the following statements are valid: 
	 (i)	 Every open covering of  contains a countable subcollection covering . 
	 (ii)	 There exists a countable subset of  that is dense in . 
Proof: 
	 Let  be a countable basis for . 
	 (i): 
	 Let  be an open covering of . For each positive integer  for which it is  
	 posible, choose an element  of  containing the basis element . The  
	 collection  of the sets  is countable, since it is indexed with a subset  of 
	 the positive integers. Furthermore, it covers . Given a point , we can  
	 choose an element  containing . Since  is open there exists a basis  
	 element  such that . Because  lies in an element of , the  
	 index  belongs to the set , so  is defined; since  contains , it contains 	
	 . Thus  is a the desired countable subcollection of . 
	 (ii): 
	 From each nonempty basis element , choose a point . Let  be the set  
	 consisting of the points . Then  is dense in : Given any point  of , every 
	 basis element containing  intersects , therefore , denseness follows.		  
	 	 	 	 	 	 	 	 	 	 	 	 	  

xn ∈ Un A = {xn} A X
A = X

∀x ∈ X U x n
x ∈ Un ⊆ U U ∩ A ≠ ∅ A = X

□

A2 ⇒ ⇏ A2
A2

(ℝ, ℝℓ) ℚ = ℝ (ℝ, ℝℓ) A2
ℬ ℝℓ ∀x ∈ ℝ Bx ∈ ℬ

x ∈ Bx ⊆ [x, x + 1)
x = inf Bx x ≠ y

Bx ≠ By ℬ

A2 ⇔

ℋ ⇔

X
X X

X X

{Bn} X

𝒜 X n
An 𝒜 Bn

𝒜′￼n An J
X x ∈ X

A ∈ 𝒜 x A
Bn x ∈ Bn ⊆ A Bn 𝒜

n J An An Bn
x 𝒜′￼ 𝒜

Bn xn D
xn D X x X

x D x ∈ D
□
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   Two properties listed in the above theorem are sometimes taken as an alternative 
countability axioms. 
Definition: Lindelöf (  
	 A topological space  is said to be  if every open cover of  has a countable  
	 subcover. In other words, for any collection of open sets that covers the space,  
	 you can select a countable subset of those sets that still covers the entire space. 
    Weaker in general than , each of these properties is equivalent to  when the sp-
ace is metrizable (we will see this later). They are less important than the second 
countability axiom but one should be aware of its existance for it is sometimes useful. 
For example, to show that a space  has a countable dense subset than it is to show 
that  has a countable basis. 
    The Lindelöf property is a topological property that ensures a certain level of “co-
mpactness” or "coverage" by open sets in a space. It is a countability axiom that 
imposes a limitation on the open covers of a space. It ensures that no matter how 
"large" or "uncountable" the open cover might be, you can still find a countable subc-
ollection that covers the entire space. Moreover, compact spaces are Lindelöf, but the 
reverse is not necessarily true. Every compact space has a finite subcover, which is 
also a countable subcover. Therefore, compact spaces satisfy the Lindelöf property. 
However, there exist Lindelöf spaces that are not compact. Furthermore, every 
sequentially compact space is Lindelöf, but the reverse is not necessarily true. Seque-
ntial compactness is a stronger condition than the Lindelöf property. 

2.4 Urysohn’s Lemma 
    The Urysohn Lemma is a fundamental result in topology that provides a powerful 
tool for constructing continuous functions that separate points and sets in topological 
spaces. It is a key ingredient in proving various properties of topological spaces, 
especially in the context of normal spaces and in establishing metrization theorems. 
Definition: Completely Regular 
	 A topological space is said to be completely regular if  and for all 	 	
	 closed subsets  with , there exists a real-valued continuous  
	 function  such that  and , i.e. . 
    A completely regular topological space is a type of topological space that extends 
the notion of regularity by allowing the separation of points from closed sets by 
continuous functions.  
Theorem 2.19: 
	 A subspace of a completely regular space is completely regular. An arbitrary 		
	 product of completely regular spaces is completely regular. 
Proof: 
	 Let  be a completely regular space and let  be a subspace of . Let  	
	 and let  be a closed subset such that . Now let , then 
	 . Since  is completely regular it follows that one can choose a  
	 continuous function, namely,  such that  and  
	 . The restriction of  is the desired continuous function on . 

A3)
X A3 X

A2 A2

X
X

∀x ∈ X
C ⊆ X x ∉ C

f : X → [0,1] f (0) = 0 f |C = 1 f (c) = 1∀c ∈ C

X Y X x0 ∈ Y
A ⊆ Y x0 ∉ A A = A ∩ Y

x0 ∉ A X
f : X → [0,1] f (x0) = 1

f (A ) = {0} f |Y Y
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	 Let now  be a product of completely regular spaces where  is an  

	 arbitrary index set (i.e. countable or not, finite or not). Let  be a point 	
	 of  and let  be a closed set of  disjoint from . Choose a basis element  
	  containing  that does not intersect ; then  except for finitely 
	 many , say . Given , choose a continuous function 
	 	 	 	 	 	  
	 be such that  and . Let now , where 
	  denotes the projection. Then  maps  continuously into  and vanishes 	
	 outsied . Then the product 
	 	 	 	 	  
	 is the desired continuous function on , for it equals to  at  and vanishes 	 	
	 outside . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Remark: 
	 Every completely regular space is regular, but not all regular spaces are  
	 completely regular. The completely regular property is stronger than regularity. 
	 However, the completely regular space is not necessarily normal, a 	 	 	
	 counterexample could be viewed in [31].	 	 	 	 	 	 || 
Definition:  space (Tychonoff) 
	 A topological space  is said to be Tychonoff ( ) if it is Hausdorff and  
	 completely regular. 
   Tychonoff spaces play a significant role in continuity and function theory. The Ur-
ysohn Lemma, which allows the construction of continuous functions that separate 
points and sets, holds in Tychonoff spaces. 
    We now prove two claims corresponding to the relationship between  and : 
Theorem 2.20: 
	 A Tychonoff space is regular, i.e. . 
Proof: 
	 Given  and a closed subset  with . There exists a function  

	  such that  and . Let  and 

	 , result follows. 

	 	 	 	 	 	 	 	 	 	 	 	 	  
Lemma 2.21: Urysohn’s Lemma ( ) 
	 Let  be a normal space and let  be two closed subsets such that  
	 . Then there exists a continuous function  such that 
	  and . That is to say, every normal space is Tychonoff. 
Lemma 2.22: 

X := ∏
α∈A

Xα A

b := (bα)
X A X b

∏Uα b A Uα = Xα

α α = α1, ⋯, αn i = 1,⋯, n
fi : Xαi

→ [0,1]
fi(bαi

) = 1 fi(X ∖Uαi
) = {0} φi(x) = fi(παi

(x))
παi

φi X ℝ
π−1

αi
(Uαi

)
f (x) = φ1(x) ⋅ φ2(x) ⋅ ⋯ ⋅ φn(x))

X 1 b

∏Uα

□

T3 1
2

X T3 1
2

T3 1
2

T3

T3 1
2

⇒ T3

x ∈ X C ⊆ X x ∉ C

f : X → [0,1] f |C = 1 f (x) = 0 U := f −1([0,
1
2

]) ∋ x

V := f −1((
1
2

,1]) ⊇ C

□
T4 ⇒ T3 1

2

X A, B ⊆ X
A ∩ B = ∅ f : x → [0,1]
f |A = 0 f |B = 1
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	 Suppose  is normal. Let  be a closed subset of  and  be an open subset of  
	  such that . Then there exists an open set  such that . 
Proof: 
	 Since  is open then  is closed. Since  then . 	 	
	 Assume  is normal, then there exist open sets  with  and 	  
	  such that . Then . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Proof of Lemma 2.21:  
	 The proof of Urysohn’s lemma is divided into three steps: 
	 Step I:  
	 Inductively construct open sets  where  so that 
	 	 	        . 
	 Since , then by Lemma 2.22, there exists an open set  such 	
	 that  
	 	 	 	 	 .	 	 (Base case) 
	 Since . Then there exists a bijection 2

	 	 	 	 	 	  

	 such that  and . 
	 Now we proceed to the inductive step: 
	 Suppose that  have been defined. We now construct . 
	 Let  such that  and let  such that  
	 . 
	 (i)	 Since , we have . 
	 (ii)	 By Lemma 2.22, there exists an open set  such that  
	 	 . 
	 Step II: 
	 Define the function  piecewisely  

	 	 	 .	 

	 By our construction,  and  if . We wish to show 	
	 that  vanishes everywhere ouside  and  is continuous. For any subset   
	 such that  exists and ,  
	 	 	 	 , 
	 	 	 	 . 
	 Therefore, 

X A X U
X A ⊆ U V A ⊆ V ⊆ V ⊆ U

U X ∖U A ⊆ U (X ∖U ) ∩ A = ∅
X V, V′￼⊆ X A ⊆ V

X ∖U ⊆ V′￼ V ∩ V′￼= ∅ V ⊆ X ∖V′￼⊆ X ∖(X ∖U ) = U
□

Ur ⊆ X r ∈ ℚ ∩ [0,1]
r < s < 1 ⇒ A ⊆ Ur ⊆ Ur ⊆ Us ⊆ Us ⊆ X ∖B

A ⊆ X ∖B =: U1 U0

A ⊆ U0 ⊆ U0 ⊆ U1 ⊆ X ∖B
ℚ ∩ [0,1] ∈ ℵ0

r : {0,1,2,⋯} → ℚ ∩ [0,1]
        n ↦ rn

r0 = 0 r1 = 1

U0 := Ur0
, Ur1

, ⋯, Urn
Urn+1

rl := min{ri}i∈[0,n] rl < rn+1 rm := max{ri}i∈[0,1]
rm > rn+1

0 = r0 < ⋯ < rl < rn+1 < rm < ⋯r1 = 1 Url
⊆ Urm

Urn+1

Url
⊆ Urn+1

⊆ Urn+1
⊆ Urm

f : X → [0,1]

f (x) :=
1, if x ∈ X ∖U1 =: B

inf {r ∈ ℚ ∩ [0,1] x ∈ Ur},  if x ∈ U1

f (x) ∈ [0,1]∀x f (x) = 1 x ∈ B
f B f Z ⊆ ℝ

inf Z ∀a, b ∈ ℝ
inf Z < a ⇔ ∃r ∈ ℤ such that r < a
b < inf Z ⇔ ∃r′￼∉ Z such that b < r′￼

 The symbol  (read as "aleph-null") represents the cardinality of the set of natural numbers , 2

which is the smallest infinity in the hierarchy of infinite cardinal numbers introduced by the 
mathematician Georg Cantor.

ℵ0 ℕ
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	 (i)	 .	 (2.1) 
	 (ii)	 .	 (2.2) 
	 Since , , now it left us to prove the continuity of . 
	 Step III: 
	 Note that  is a subbasis for a  
	 topology on . To show that  is continuous is to show that the preimage of  
	 the elements of the subbasis are open, i.e.  and  are open. 
	 [Claim]:  is open. 
	 	 Pick   (2.1)	  
	 	 	 	 	                     which is open. 

	 	 Thus,  is open. 

	 [Claim]:  is open. 
	 	 Similarly, 	 
	 	 	 	 	          	 (2.2) 
	 	 	 	 	           
	 	 	 	 	           

	 	 	 	 	           which is open. 

	 Continuity follows from two claims, result follows thereafter. 
	 	 	 	 	 	 	 	 	 	 	 	 	  

2.5 Urysohn’s Metrization Theorem 
    Our goal of this subsection is to arrive at the following result: 
	 	 	  Completely Regular  Metrizable	.	 	 (2.3) 
This is the famous result called Urysohn’s Metrization Theorem, which is a fundame-
ntal result in topology that provides a condition under which a topological space can 
be metrized, meaning that its topology can be induced by a metric (distance function). 
The theorem is named after the Russian mathematician Pavel Urysohn and is a signi-
ficant contribution to the study of topological spaces and their properties. 
Definition: Metrizable 
	 A topological space  is said to be metrizable if there exists a metric  on  
	  such that . 
    In topology, an embedding is a way to represent one topological space within anot-
her in a manner that preserves certain properties and relationships. An embedding es-
sentially allows us to view a space as a subset of another space while maintaining its 
topological structure. This concept is fundamental in understanding the relationships 
and properties between different spaces. 
Definition: Embedding 
	 A continuous map  is called an embedding if  is a  
	 homeomorphism where  is given a subspace topology. 

f (x) = inf{r |x ∈ Ur} < a ⇔ ∃r such that x ∈ Ur, r < a
f (x) = inf{r |x ∈ Ur} > b ⇔ ∃r′￼ such that x ∉ Ur′￼, r′￼> b
A ⊆ U0 f (x) = 0∀x ∈ A f

𝒮 := {[0,a) a ∈ [0,1]} ∪ {(b,1] b ∈ [0,1]}
[0,1] f

f −1([0,a)) f −1((b,1])
f −1([0,a))

x ∈ f −1([0,a))⇔ f (x) < a ⇔ ∃r such that r < a and x ∈ Ur
⇔ x ∈ ⋃

r<a

Ur

⋃
r<a

Ur = f −1([0,a))

f −1((b,1])
x ∈ f −1((b,1]) ⇔ b < f (x)

⇔ ∃r′￼ with b < r′￼ and x ∉ Ur′￼
⇔ ∃s > b such that x ∉ Us
⇔ x ∈ ⋃

s>b

(X ∖Us)

⇒ f −1((b,1]) = ⋃
s>b

(X ∖Us)

□

A2 + T1+ ⇒

(X, TX) d
X Td = TX

f : X → Y f : X → f (X )
f (X )
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Remark: 
	 (i)	 An embedding is a way to map one space into another while preserving 	
	 	 the topological properties. The topology on the embedded space is the  
	 	 same as the subspace topology induced by the larger space. 
	 (ii)	 The simplest form of embedding is the inclusion map.	 	 	 || 
Example 2.6: Embedding 
	 (i)	 The continuous mapping  by sending  to  is an 	 	
	 	 embedding. 
	 (ii)	 The continuous mapping  by sending  to  is NOT an  
	 	 embedding.	 	 	 	 	 	 	 	 	 	 || 
Lemma 2.23: 
	 The space  with product topology is metrizable. 
Proof: 
	 Since . Given tw sequences  in , 
	 define a function 

	 	 	 	 	 . 

	 It is not hard to see that such a  is a metric. Let now  denote the 	 	 	
	 corresponding topology generated from the metric . 
	 [Claim]: . 
	 	 That is,  is a homeomorphism. 
	 	 “ ”: 
	 	 Consider the projections  such that . 

	 	 Fix  and , if  then 

	 	 	 	  

	 	 	 	 	 	     

	 	 	 	 	 	     

	 	 	 	 	 	    . 

	 	 Therefore such a function  is continuous. An immediate consequence is 
	 	 that  is continuous. That is to say,  
	 	 ,  . 
	 	 “ ”: 
	 	 Suppose that  is an open set. Then , where  is a sequence 
	 	 then there exists an  such that . There exists  such 	

	 	 that . Consider 

f : ℝ → ℝ2 x (x,0)

g : [0,2π) → ℂ θ eiθ

[0,1]ℕ

[0,1]ℕ := {(xn)n∈ℕ xn ∈ [0,1]} (xn), (yn) [0,1]ℕ

d(x, y) :=
∞

∑
n=1

1
2n

xn − yn

d Td
d

Td = Tprod
Id : ([0,1]ℕ, Td) → ([0,1]ℕ, Tprod)

Tprod ⊆ Td

pj : [0,1]ℕ → [0,1] pj(x) = xj

j ∀ε > 0 d(x, y) <
1
2 j

⋅ ε

| pj(x) − pj(y) | = |xj − yj |

= 2j ⋅
1
2 j

⋅ |xj − yj |

≤ 2j ⋅
∞

∑
n=1

1
2n

|xn − yn |

= 2j ⋅ d(x, y) < 2j ⋅
1
2 j

⋅ ε = ε

pj
Id : ([0,1]ℕ, Td) → ([0,1]ℕ, Tprod)

∀V ∈ Tprod V = Id−1(V ) ∈ Td ⇒ Tprod ⊆ Td

Td ⊆ Tprod
V ∈ Td ∀x ∈ V x

ε > 0 Bε(x) ⊆ V N ∈ ℕ
1
2N

<
ε
2
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	 	 	 	 . 

	 	 ,  

	 	 	 	       

	 	 	 	       . 

	 	 Thus,  therefore  is open in  . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Lemma 2.24: 
	 Suppose that  is , and  is a collection of continuous  
	 functions that separate points and closed sets, i.e. if  and  closed  
	 subsets with such that , there exists an  suc that  and .  
	 Then there is a function  such that   
	 is an embedding. 
Proof: 
	 Recall in the proof of Lemma 2.23 we built projections  		
	 such that , which are continuous and for all  and for all  
	 the mapping  is continuous   are  
	 continuous.  
	 Now, setting  implies that  is continuous.  
	 Suppose that  with  since  is closed and , there then  
	 exists an  such that  and . (In  singletons are closed.) 
	 Therefore we have  which means  is injective. 
	 [Claim]:  is closed. 
	 	 Let  be a closed subset,  be a point such that  is a limit 	
	 	 point of . Then  for some  and there exists a net 
	 	  in  such that . If , then there is an  
	 	  such that  and . 
	 	  , 	 	 	
	 	 contradcition. Therefore  and  which means 	 	
	 	  is closed and then result follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Lemma 2.25: 
	 Suppose  is a topological space which is completely regular and . Then 	 	
	 there exists a countable family of functions  that separates 
	 points and closed sets. 
Proof: 
	 Suppose  is a closed subset and  is a point such that . Then  
	  is a continuous function such that  and . We may  

U := {y ∈ [0,1]ℕ |xj − yj | <
ε
2

 for j = 1,⋯, N}
∀y ∈ U d(x, y) =

N

∑
n=1

1
2n

|xn − yn | +
∞

∑
n=N+1

1
2n

|xn − yn |

≤
ε
2

⋅
N

∑
n=1

1
2n

+
1
2N

⋅
∞

∑
n=1

1
2n

<
ε
2

⋅ 1 +
ε
2

⋅ 1 = ε

U ⊆ Bε(x) ⊆ V V Tprod ⇒ Td ⊆ Tprod
□

X T1 { fα : X → [0,1]}α∈A
x ∈ X C ⊆ X

x ∉ C α fα(x) = 1 fα |C ≡ 0
F : X → [0,1]A F(x) = ( fα(x))α∈A ∈ [0,1]A

pα : [0,1]A → [0,1]
pα((xβ)β∈A) = xα Y G

Y → [0,1]A ⇔ ∀α, pα ∘ G : Y → [0,1]

pα ∘ F = fα ∀α F : X → [0,1]A

x, y ∈ X x ≠ y {y} x ∉ {y}
α fα(y) = 0 fα(x) = 1 T1

F(x) ≠ F(y) F
F : X → F(X )
C ⊆ X z ∈ F(x) z

F(C ) z = f −1(y) y ∈ X
(xλ)λ∈Λ C F(xλ) → z = F(y) y ∉ C
α ∈ A fα |C ≡ 0 fα(y) = 1
⇒ fα(xλ) = 0∀λ ∈ Λ ⇒ fα(xλ) ↛ fα(y) ⇒ F(xλ) ↛ F(y) = z

y ∈ C z = F(y) ∈ F(C )
F(C )

□

X A2
{ fα : X → [0,1]}α∈A

C ⊆ X x ∈ X x ∉ C
f : X → [0,1] f (x) = 1 f |C = 0
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	 assume that  on a neighbourhood of . 
	 Since  is , there exists a countable basis, namely , for the topology on .  
	 Suppose  with , consider the following set: 
	 	 	 .	 	 (2.4) 
	 If this set is nonempty, choose one and exactly one function from the set. We 	
	 get a countable set of continuous function and we shall denote this set as 
	  where  so that it is countable. 	  
	 [Claim]:The collection  separate points and closed sets. 
	 	 Suppose  is a closed subset and  is a point. Since  
	 	 is a basis and  is open, there exists a  such that 	  
	 	 . Since  is assumed to be completely regular, it follows  
	 	 that there is a function  such that  and . 
	 	 We may assume  on a neighbourhood of . There exists  	 	
	 	 such that  and . Since  is continuous, , since  
	 	  then . Therefore we have (2.4) . Hence   
	 	 and the corresponding  such that   and . Then it  
	 	 follows that  and , as we desired. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Theorem 2.26: Urysohn’s Metrization Theorem 
	 Let  be a , , and completely regular space, then  is metrizable. 
Proof: 
	 According to Lemma 2.25, there exists a countable collection  
	   of continuous functions that separate points and closed  
	 sets. We may assume that , then by Lemma 2.24,  
	 	 	 	 ,  
	 is an embedding and since  is metrizable by Lemma 2.23, and  is an  
	 embedding therefore  is metrizable. 
	 	 	 	 	 	 	 	 	 	 	 	 	  

2.6 Tietze Extension Theorem 
  Before our discussion of Tietze Extension, we prove some results derived from 
Urysohn’s Metrization Theorem. 
Theorem 2.27: 
	   space is metrizable. 
    Recall that according to Urysohn’s Lemma, being normal implies completely regu-
larity; therefore, to prove Theorem 2.27 is equivalent to prove the following: 
Theorem 2.28: 
	   space is . 
    Before the proof, recall the definition of Lindelöf space: A topological space is said 
to be Lindelöf if every open cover has a countable subcover. 
Lemma 2.29: Lindelöf’s Lemma 

f ≡ 1 x
X A2 𝒮 X

U, V ∈ 𝒮 U ⊆ V
{f : X → [0,1] continuous f |U = 1, f |X∖V = 0}

{ fα : X → [0,1]}α∈A A ⊆ 𝒮 × 𝒮
{ fα}α∈A

C ⊆ X x ∈ X ∖C 𝒮
X ∖C V ∈ 𝒮

x ∈ V ⊆ X ∖C X
g : X → [0,1] g(x) = 1 g |X∖V = 0

g ≡ 1 x U ∈ 𝒮
x ∈ U g |U ≡ 1 g g |U ≡ 1

g |X∖V = 0 U ⊆ V ≠ ∅ ∃α ∈ A
fα fα |U ≡ 1 fα |X∖V ≡ 0

fα(x) = 1 fα |C ≡ 0
□

X T1 A2 X

{ fα : X → [0,1]}α∈A
A = ℕ

F : X → [0,1]ℕ F(x) = ( fα(x))α∈A
[0,1]ℕ F

X
□

A2 T3

A2 T3 T4
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	 Lindelöf. 
Proof: 
	 Suppose that  is . Let  be a countable basis for the topology on . 
	 Let  be an open cover of . Then,  
	 (i)	  and  such that . 
	 (ii)	 Let . 
	 According to (i),  is a countable open cover of . , choose  	 	
	 such that . Then  is a countable subcover. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Proof of Theorem 2.28: 
	 Assume that  is  . Let  be two closed subsets such that 		 	  
	 . Since  is regular,  with , there exist open sets  		
	 and  such that  while  with . Therefore  
	  hence  since  is closed . 
	 Now, let  be an open cover of . Since  is , according to  
	 Lemma 2.29,  is Lindelöf, thus this cover has a countable subcover, i.e. 
	  is countable. Then  is an open cover and  
	  . Similarly, there exists an open cover  of  with 	  
	 . 
	 Note that if  is open in  and  is a closed subset in . Then  
	  is open. Let , by the above argument,  is  
	 open; with the same fashion, , so on and so forth, and this  
	 fashion terminates at . Similarly, set ,  

	 , so on and so forth, and this fashion again terminates at 
	 . 

	 Let now  and  where both of them are open sets. Since  

	  and  then . Similarly,  is an open set and  

	 . It left us to argue that  and then we are done. 
	 [Claim]: . 
	 	 Suppose not, then   for  
	 	 some . We may assume that . Since  
	 	 	  and , 
	 	  implies that , contradiction. 
	 Therefore,  is empty and result follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    The Tietze Extension Theorem is a fundamental result in topology that deals with 
extending continuous functions defined on a closed subset of a topological space to 

A2 ⇒

X A2 {Bn}n∈ℕ X
{Uα}α∈A X

∀x ∈ X ∃n(x) ∈ ℕ α(x) ∈ A x ∈ Bn(x) ⊆ Uα(x)
ℬ := {Bn |∃α ∈ A with Bn ⊆ Uα}

ℬ X ∀B ∈ ℬ α(B)
B ⊆ Uα(B) {Uα(B)}B∈ℬ

□

X T3 A2 A, B ⊆ X
A ∩ B = ∅ X ∀x ∈ X x ∉ B Ux

U′￼x x ∈ Ux B ⊆ U′￼x Ux ∩ U′￼x = ∅
Ux ⊆ X ∖U′￼x Ux ⊆ X ∖U′￼x X ∖U′￼x ⇒ Ux ∩ B = ∅

{Uα}α∈A ∪ {X ∖A} X X A2
X

{Un}n∈ℕ ∪ {X ∖A} {Un}n∈ℕ
Un ∩ B = ∅ ∀n ∈ ℕ {Vn}n∈ℕ B
Vn ∩ A = ∅

W X C X
W ∖C = W ∩ (X ∖C ) G1 := U1∖V1 G1

G2 := U2∖(V1 ∪ V2)
Gn := Un∖(⋃

n≥1

V1) H1 := V1∖U1

H2 := V1∖(U1 ∪ U2)
Hn := Vn∖(⋃

n≥1

Un)

G :=
∞

⋃
i=1

Gi H :=
∞

⋃
j=1

Hi

Vk ∩ A = ∅
∞

⋃
n=1

Un ⊇ A G ⊇ A H

H ⊇ B G ∩ H = ∅
G ∩ H = ∅

G ∩ H ≠ ∅ ⇒ ∃z ∈ G ∩ H ⇒ z ∈ Gn ∩ Hm
n, m ∈ ℕ n ≥ m
Hm := Vm∖(U1 ∪ ⋯ ∪ Um) Gn := Un∖(V1 ∪ ⋯ ∪ Vn)

n ≥ m Gn ∩ Hm = ∅
G ∩ H

□
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continuous functions defined on the entire space. This theorem has important 
applications in various areas of mathematics, including analysis, functional analysis, 
and topology. The theorem is named after the German mathematician Heinrich 
Tietze, who proved this result in the early 20th century. 
Theorem 2.30: Tietze Extension Theorem 
	 Suppose that  is a normal topological space. Let  be a closed subset and 
	 let  be a continuous mapping. Then there exists a continuous  
	 function , which is an extension of  such that . 
    The Tietze Extension Theorem guarantees that a continuous function defined on a 
closed subset  of a normal space  can be extended to a continuous function defined 
on the entire space . 
Remark: 
	 (i)	 If  is not closed, then this theorem fails to be true. 
	 (ii)	 One can use this theorem to prove that Moore’s plane is not normal. 
Example 2.7: Counterexample 
	 Consider the real line  with the standard topology. Let  and define  

	 a function  with . 

	 The function  is continuous on  and it's a valid candidate for extension to  
	 the entire real line. However, if we try to extend  we run into problems near , 
	 where the value of the function goes to infinity.	  
	 If we attempt to extend  to a continuous function on the entire real line, we  
	 would need to define  as . However, this limit doesn't exist in the  

	 real numbers.	 	 	 	 	 	 	 	 	 	 || 
    This is why the closed subset condition in the Tietze Extension Theorem is crucial. 
The theorem relies on the properties of closed subsets and the normality of the space 
to ensure that an extension exists and is continuous. Removing the closed subset 
condition can lead to situations where extensions are not possible or cannot be 
guaranteed to be continuous. 
    Now we proceed to the proof of Tietze Extension. 
Definition: Uniform Convergence 
	 Let  be a topological space and let  be a metric spaec. A sequence of  
	 functions  is said to be uniformly convergent to  if 	  
	   such that if  then . 
Lemma 2.31: 
	 Suppose that  is a topological space and let  be a metric sapce. IF  
	 , a sequence of continuous functions, converges uniformly to  
	 , then  is also continuous. 
Proof: 
	 We need to show that: 
	 	  there exists an open neighbourhood  of  such that 
	 	 . 
	 Since  uniformly, there exists  such that ,  

X F ⊆ X
f : F → [0,1]

f̃ : X → [0,1] f f̃ |F = f

A X
X

F

ℝ A := (0,1)

f : A → ℝ f (x) =
1
x

f (0,1)
f 0

f
f (0) lim

x→0
f (x)

X (Y, d )
{ fn : X → Y}n∈ℕ f : X → Y

∀ε > 0 ∃N ∈ ℕ n ≥ N d( f (x), fn(x)) < ε ∀x ∈ X

X (Y, d )
{ fn : X → Y}
f : X → Y f

∀x0 ∈ X ∀ε > 0 U x0
x ∈ U ⇒ d( f (x), f (x0)) < ε
fn → f N ∈ ℕ ∀n ≥ N
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	 . Since  is continuous at , there exists a  

	 neighbourhood  of  such that if  then . Therefore, 

	 ,  
	 	 	 	        . 

	 	 	 	 	 	 	 	 	 	 	 	 	  
Proof of Theorem 2.30: 
	 Without loss of generality, we may assume that  and . 

	 Let  and . By this construction, both  and  

	 are nonempty closed subsets in  with   is closed in . 

	 According to Urysohn’s Lemma,  continuous with  	

	 and . Then , , . 

	 Let , then  is continuous and  by construction. 

	 Now repeat this fashion by replacing  with : there exists   

	 continuous such that , if  and if  

	 . Let  with . 

	 Continue this fashion, we finally terminate at a continuous function  with 

	  and there exists  such that , 

	 , . Now 

	 let  with  and ,  

	 thus,  converges uniformly on  therefore it is continuous. 

	 Then, , , , ,  
	 . If we add all these equalities, we obtain 
	 	 	 	 , 

	 , , thus,  is the  

	 desired extension of  and we are done.	  
	 	 	 	 	 	 	 	 	 	 	 	 	  
    We now use Tietze’s Extension Theorem to show that Moore/Nemyski’s plane  is 
not normal. 

d( fn(x), f (x)) <
ε
3

∀x ∈ X fN x0

U x0 x ∈ U d( f (x), fN(x0)) <
ε
3

∀x ∈ U d( f (x0), f (x)) ≤ d( f (x0), fN(x0)) + d( fN(x0), f (x)) + d( fN(x), f (x))
<

ε
3

+
ε
3

+
ε
3

= ϵ

□

0 = inf
x∈F

f (x) 1 = sup
x∈F

f (x)

A := f −1([0,
1
3

]) B := f −1([
2
3

,1]) A B

F A ∩ B = ∅ ⇒ A, B X

∃g1 : X → [0,
1
3

] g1 |A ≡ 0

g1 |B ≡
1
3

∀x ∈ F f (x) ≤
1
3

⇒ g1(x) = 0 f (x) ≥
2
3

⇒ g1(x) =
1
3

f1 := f − g1 |F f1 0 ≤ f1(x) ≤
2
3

f1 f g2 : X → [0,
1
3

×
2
3

]

∀x ∈ F f1(x) ≤
1
3

⋅
2
3

⇒ g2(x) = 0

f1(x) ≥
1
3

⋅
2
3

⇒ g2(x) =
1
3

⋅
2
3

f2 := f1 − g2 |F 0 ≤ f2(x) ≤
1
3

⋅
2
3

fn
fn : X → [0,(

2
3

)n] gn+1 : X → [0,
1
3

⋅ (
2
3

)n] ∀x ∈ F

fn(x) ≤
1
3

⋅ (
2
3

)n ⇒ gn+1(x) = 0 fn(x) ≥
2
3

⋅ (
2
3

)n ⇒ gn+1(x) =
1
3

⋅ (
2
3

)n

fn+1 = fn − gn+1 |F fn+1 ∈ [0,
2
3

⋅ (
2
3

)n+1] 0 ≤ gn(x) ≤
1
3

⋅ (
2
3

)n−1

g(x) =
∞

∑
n=1

gn(x) X

∀x ∈ F f (x) − g1(x) = f1(x) f1(x) − g2(x) = f2(x) ⋯
fn−1(x) − gn(x) = fn(x)

f (x) − (g1(x) + ⋯ + gn(x)) = fn(x)

∀n ∈ ℕ 0 = lim
n→∞

fn(x) = f (x) −
∞

∑
n=1

gn(x) = f (x) − g(x) g(x)

f (x)
□

X
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    The Moore Plane is an example of a topological space that demonstrates the count-
erintuitive properties that can arise in topology. It is named after the American mathe-
matician Robert Lee Moore. The Moore Plane is a famous example of a topological 
space that is connected and completely regular (or Tychonoff), yet it is not normal. 
This highlights the fact that normality is a stronger separation property than mere 
complete regularity. 
    The following version of the definition of Moore plane follows from [32], with det-
ailed treatment available in both [33] and [34]: 
Definition: Moore Plane 
	 If  is the closed upper half-plane , then a topology 	
	 may be defined on  by taking a local basis, namely,  as follows: 
	 (i)	 Elements of the local basis at points  with  are the open discs 
	 	 in the plane which are small enough to be included by . 
	 (ii)	 Elements of the local basis with the form  are defined to be the 	
	 	 set  where  is an open disc in the uppre half-plane which is 	 	
	 	 tangent to -axis at the point . 
	 That is to say, the local basis is given by 

	      . 

	 Thus the subspace topology inherited by  is the same as the 	
	 subspace topology inherited from the standard topology of the Euclidean 	 	
	 space. 
    The Moore Plane is connected, meaning that it cannot be partitioned into two disjo-
int nonempty open sets. The Moore Plane is completely regular, which means that for 
any closed set  and a point  there exists a continuous function  
such that  and . The most remarkable property of the Moore 
Plane is that it is not a normal space. This means that there exist disjoint closed sets 
that cannot be separated by disjoint open sets. In other words, normality fails in the 
Moore Plane. 
[Claim]: The Moore/Nemyski’s plane  is not normal. 
	 Define any continuous function . We  
	 now introduce a notation which is often used in mathematics, especially in 	  
	 functional analysis and PDE. We use  to denote the collection of all  
	 the continuous functions . 
	 Since  is closed in  if  is normal (In particular,  is a discrete topology).  
	 Then any function  extends to a continuous function, namely, 
	 . On the other hand, consider the set given by 
	 	 	 	 . 
	 Then  and  is countable. If  are two continuous  
	 functions such that . Therefore, 
	 	 	 	 , 

Γ Γ := {(x, y) ∈ ℝ2 |y ≥ 0}
Γ B(p, q)

(x, y) y > 0
Γ

p = (x,0)
{p} ∪ A A

x p

{Uε(p, q) = {(x, y) | (x − p)2 + (y − q)2 < ε2} ε > 0}, q > 0

{Vε(p) := {(p,0)} ∪ {(x, y) | (x − p)2 + (y − ε)2 < ε2} ε > 0}q = 0

Γ∖{(x,0) |x ∈ ℝ}

A x ∉ A f : ℝ2 → [0,1]
f (x) = 0 f (y) = 1∀y ∈ A

X
f : L := {(x, y) ∈ ℝ2 |y = 0} → [0,1]

C(L, [0,1])
f : L → [0,1]

L X X L
f : L → [0,1]

f̃ : X → [0,1]
R := {(x, y) ∈ X |x, y are rational}

R = X R f, g : X → [0,1]
f |R = g |R ⇒ f = g
C(X, [0,1] ≤ [0,1]R ≤ [0,1]ℕ
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	 but this is impossible since this is equivalent to say . 
Remark: 
	 One important fact we used is that every functions from the discrete topologies 
	 are automatically continuous.	 	 	 	 	 	 	 	 || 

3.1 Metric Space 
    A metric space is a fundamental concept in mathematics, particularly in the field of 
analysis and topology. It provides a way to define and understand notions of distance, 
convergence, continuity, and other important properties within a given set. 
   We have introduced the notion of metric and the open ball in metric spaces, recall 
we used  to denote the open ball; in some literature 
people use  or  and sometimes call it -ball or ball of radius  around  
in . 
Definition: Subspace of Metric Space 
	 Let  be a metric space. A subspace of  is a subset  with the metric 
	 obtained by restricting the one on  to . 
Example 3.1:  
	 We can view the set of rational numbers  as a subspace of  with the 	 	
	 standard Euclidean metric . Note the following: the ball of 
	 radius  in  around  is the interval , but the ball of radius  
	  in  is .	 	 	 	 	 	 	 	 || 
Definition: Bounded 
	 A subset  of a metric space  is said to be bounded if there exists a  
	 positive  and a point  such that . 
    Boundedness can also apply to functions defined on metric spaces. 
Definition: Bounded (functions) 
	 A function  is said to be bounded if there exists a real number 
	  such that  . 
   Understanding boundedness is crucial for various reasons: It's a key concept in the 
study of compactness: A subset of a metric space is compact if and only if it's both 
closed and bounded. It affects the behavior of sequences and functions: Boundedness 
can impact the existence of limits, convergence, and continuity. 
   In many metric spaces, boundedness and compactness are closely related. A subset 
of  is compact if and only if it's closed and bounded. This connection highlights the 
role of boundedness in understanding the compactness of subsets. 
    Recall the notion of convergent sequences in a metric space, we assumed its uniqu-
eness	 in the previous discussion, now we prove it is valid. 
Proposition 3.1: 
	 In any metric space, limits of convergent sequences are unique. 
Proof: 
	 Suppose that  is a metric space and that the sequence  in   
	 converges to  and . Let .  
	 Since , there exists an index  such that  for . 

[0,1]ℝ ≤ [0,1]ℕ

Br(x) := {y ∈ X |d(x, y) < r}
B(r, x) B(x, r) r r x

X

(X, d ) X Y ⊆ X
X Y

ℚ ℝ
d(x, y) := |x − y |

1 ℝ r ∈ ℚ (r − 1,r + 1)
1 ℚ (r − 1,r + 1) ∩ ℚ

U (X, d )
r > 0 x ∈ X U ⊆ Br(x)

f : (X, d ) → ℝ
N ∈ ℝ | f (x) | ≤ M ∀x ∈ X

ℝ

(X, d ) {xn}n∈ℕ X
x y ε > 0

xn → x N1 ∈ ℕ d(xn, x) <
ε
2

n ≥ N1
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	 Similarly, if  there exists an  such that  for . 

	 Take . Then both inequalities above hold, and so the triangle 
	 inequality yields . 

	 Since  is chosen arbitrarily, let , then . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   Recall that we did not build up the same argument for the “nets” in the topological 
space, this is because: In general, the limit of a convergent net in a topological space 
is not necessarily unique. Unlike sequences in metric spaces, where limits are unique, 
nets can have multiple accumulation points in a topological space. This is because 
nets are more general than sequences and can capture more intricate convergence 
patterns. 
    In a non-Hausdorff topological space (where distinct points might not have disjoint 
open neighborhoods), a net can converge to multiple points. This is because there 
may be overlapping neighborhoods of different points. Even in Hausdorff spaces, a 
net can have multiple limit points, meaning that it converges to more than one point. 
Remark: 
	 It's important to note that in some cases, topological properties such as  
	 Hausdorffness or compactness can ensure unique convergence. For example, in  
	 a compact Hausdorff space, the convergence of nets is unique.	 	 	 || 
Proposition 3.2: 
	 A convergent sequence in a metric space is bounded. 
Proof: 
	 Let  be a convergent sequence in  such that . Since  	  
	 there exists  such that  for . Thus the terms in the  
	 sequence for  are contained in . 
	 Now we relax the condition on , i.e. we enlarge the radius to include all the  
	 elements of the sequence . To that end, set  
	 . Take the open ball to be  yields  
	 the boundedness, result follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Proposition 3.3: 
	 If  is a sequence such that  then , . 
Proof: 
	 Let . Since . Let  then  such that 
	 ,  
	 	 	 	 . 
	 Similarly we can achieve the lower bound: 
	 	 	 . 
	 For  one has . Therefore, 
	 	 	 . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Corollary 3.3.1: 

xn → y N2 ∈ ℕ d(xn, y) <
ε
2

n ≥ N2

N := max{N1, N2}
d(x, y) ≤ d(x, xN) + d(xN, y) <

ε
2

+
ε
2

= ε

ε ε ↓ 0 d(x, y) = 0 ⇒ x = y
□

{xn}n∈ℕ X xn → x xn → x
N ∈ ℕ d(xn, x) < 1 n ≥ N

n ≥ N B1(x)
xn

{xn}n∈ℕ
r := 1 + max{d(x1, x), ⋯, d(xN, x),1} Br(x)

□

{xn}n∈ℕ xn → x ∀y ∈ Y d(xn, y) → d(x, y)

y ∈ X xn → x ⇒ d(xn, x) → 0 ε > 0 ∃N ∈ ℕ
∀n ≥ N

d(xn, y) ≤ d(xn, x) + d(x, y) < ε + d(x, y)

d(x, y) ≤ d(x, xn) + d(xn, y) ⇒ d(x, y) − d(xn, x) ≤ d(xn, y)
n ≥ N d(x, y) − ε < d(xn, y)

d(x, y) − ε < d(xn, y) < d(x, y) + ε ⇒ |d(xn − y) − d(x, y) | < ε
□
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	 Let  and  then . 
    Therefore it is natural to introduce the notion of boundedness, which we should 
derive after Propositio 3.2. 
Definition: Bounded Sequence 
	 A sequence  in  is said to be bounded if there exists a  and a 
	  such that . 
Remark: 
	 Similarly, we can derive a competitive definition for a subset to be bounded in  
	 a metric space: A subset  is said to be bounded if there exists a  		
	 and a  such that .	 	 	 	 	 	 || 
Definition: Cauchy sequence 
	 A sequence  in  is said to be a Cauchy sequence if  
	  such that , . 
Proposition 3.4: 
	 Every convergent sequence is a Cauchy sequence. 
Proof: 
	 Let  and let . Then there exists an  such that   
	 . Hence, ,  

	 	 	 .	  

	 	 	 	 	 	 	 	 	 	 	 	 	  
    A Cauchy complete metric space, often referred to as a complete metric space or 
just a complete space, is an important concept in the field of analysis and topology. It 
captures the idea of "completeness" of a metric space, which relates to the conve-
rgence of Cauchy sequences. 
Definition: Cauchy Complete 
	 A metric space  is said to be Cauchy complete if every Cauchy sequences 
	 are convergent. 
Definition: Subsequence 
	 A subsequence of a sequence  in a metric space is a sequence  
	  consisting of terms of the sequence  with . 
    The final condition simply means that the terms in the subsequence are arranged in 
the same way as in the original sequence. 
    The limit of a subsequence, if it exists, is unique. This is consistent with the uniqu-
eness of limits for sequences in metric spaces. Moreover, the limit of the subsequence 
coincides with the limit of the original sequence. But one should always bear in mind 
that a subsequence can diverge even if the original sequence converges. 
Proposition 3.5: 
	 Let  be a convergent sequence in a metric space. Then any subsequence 
	 converges to the same limit. 
Proof: 
	 Suppose  in  and  is a subsequence. Choose . Since   

xn → x yn → y d(xn, yn) → d(x, y)

{xn} (X, d ) p ∈ X
B ∈ ℝ d(xn, p) ≤ B ∀n ∈ ℕ

A ⊆ X p ∈ X
B ∈ ℝ d(x, p) ≤ B ∀x ∈ A

{xn}n∈ℕ (X, d ) ∀ε > 0
∃N ∈ ℕ ∀n, m ≥ N d(xn − xm) ≤ ε

xn → x ε > 0 N ∀n ≥ N
d(xn, x) <

ε
2

∀n, m ≥ N

d(xn, xm) ≤ d(xn, x) + d(xm, x) <
ε
2

+
ε
2

= ε

□

(X, d )

{xn}n∈ℕ
{xnk

}n,k∈ℕ {xn}n∈ℕ nk > nk′￼⇔ k > k′￼

{xn}n∈ℕ

xn → x X {xnk
} ε > 0 xn → x

87



	 there exists  such that . Choose  large 	 	
	 enough so that  for  then  and result follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Remark: 
	 This proposition also implies that every subsequence of a convergent sequence 
	 is convergent.	 	 	 	 	 	 	 	 	 	 || 
Example 3.2: Singletons are closed 
	 Let  be a metric sapce and . We now argue that  is a closed set 
	 in . That is to say, according to the definition of openness,  there 

	 is an open ball such that . Let , if  then  

	 , contradiction, therefore .	 	 	 || 
Remark: 
	 Similarly, one can prove that any finite subset of a metric sapce is closed.	 || 
Proposition 3.6: Convergence Criterion 
	 Let  be a sequence in . Then  is convergent , all but 	
	 finitely many terms in  are in . 
Proof: 
	 “ ”: 
	 Given  and   such that , . Therefore,  
	 . .  
	 “ ”: 
	 For the other direction, fix an arbitrary  and consider the open interval 
	 . Given that all but finitely many terms in  are in the interval, 
	 it follows that  such that ,  therefore  is convergent. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Theorem 3.7:	 	 	  
	 Let  be a sequence in a metric space . Then  is convergent to   
	 for every neighbourhood of , all but finitely many terms in  are not in the  
	 neighbourhood of . 
Remark: 
	 It is not hard to derive that every closed set has the property that every  
	 convergent sequence converges in the set.	 	 	 	 	 	 || 
   Recall the notion of continuous in metric space: a function  is 
said to be continuous if  such that  
	 	 	 	 . 
  In metric spaces, continuity is defined using the metric structure to capture the 
notion of "closeness." Topological spaces generalize the concept of metric spaces by 
considering open sets instead of distances. In a topological space, a function is 
considered continuous if it preserves open sets. The relationship between continuity 
in metric spaces and continuity in topological spaces is as follows: 

N1 ∈ ℕ d(xn, x) < ε ∀n ≥ N1 N ∈ ℕ
nk ≥ N1 k ≥ N d(xnk

, x) < ε
□

(X, d ) x ∈ X {x}
X ∀y ∈ X ∖{x}

Ur(y) ∌ x r :=
d(x, y)

2
x ∈ Br(y)

d(x, y) < r < d(x, y) Br(y) ⊆ X ∖{x}

{xn} (X, d ) {xn} ⇔ ∀ε > 0
{xn} (x − ε, x + ε)

⇒
xn → x ε > 0 ∃N ∀n ≥ N |xn − x | < ε

∀n ≥ N xn ∈ (x − ε, x + ε)
⇐

ε > 0
(x − ε, x + ε) {xn}

∃M ∀n ≥ M xn ∈ Bε(x) xn
□

{xn} (X, d ) xn x ⇔
x {xn}

x

f : (X, dX) → (Y, dY)
∀x ∈ X, ∀ε < 0∃δ > 0

dX(x, y) ≤ δ ⇒ dY( f (x), f (y)) ≤ ε
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	 Every continuous function in a metric space is also continuous in the 	 	 	
	 associated topological space. The topology induced by the metric defines open 	
	 sets, and a function that preserves distances also preserves open sets. 
   In general, not every continuous function in a topological space can be equipped 
with a metric such that it remains continuous. This is because the metric topology is a 
specific case of the general topological structure and might not capture all possible 
continuous functions in the topological space. 

3.2 Compact Metric Space 
    Let us first talk about the compactness in the space  since most of the materials 
are familiar. Recall the notion , which represents the collection of all continuous 
function over the field . 
Definition: Support 
	 The support of a function  is the set . 
   Note that in general, the support of a function is taken to be . 
Different from the one in , the support of a function is defined as the closure of the 
set of points where the function is nonzero to capture both the nonzero points and the 
points where the function approaches zero in a continuous manner. 
Definition: Sequentially Compact 
	 Let  be a metric space. A set  is said to be sequentially compact if 
	 every sequence in  has a convergent subsequence in . 
Definition: Topologically Compact 
	 Let  be a metric space. A set  is said to be topologically compact if 
	 every open cover of  has a finite subcover. 
Notaion: 
	 In some literature, the authors may use  to denote that  is a compact  
	 subset of . 
Example 3.3: 
	 (i)	  is not a compact subset of . 
	 (ii)	  is not compact or sequentially compact in . 
	 (iii)	  is compact subset of . 
    We now introduce some important result along without proof. Then we will discuss 
more general situations in metric spaces. 
Theorem 3.8: 
	 Compact sets in  are closed and bounded. 
Lemma 3.9: 
	 A compact set in a metric space  is closed and bounded. 
    Is the converse also true? The answer is, in general, the converse does not hold. In 
fact, if this metric space is , then there is a theorem called Heine-Borel tells us the 
converse is true. However, in general metric spaces, the Heine-Borel theorem doesn't 
necessarily hold, so closed bounded sets are not guaranteed to be compact. 
Theorem 3.10: Heine-Borel 
	 Let  be a subset of . Then  is compact   is closed and bounded. 
Proof: 

ℝn

C(ℝ)
ℝ

f ∈ C(ℝ) {x ∈ ℝ | f (x) ≠ 0}
{x ∈ ℝ | f (x) ≠ 0}

ℝ

(X, d ) A ⊆ X
A A

(X, d ) A ⊆ X
A

A ⋐ X A
X

ℝ ℝ
(0,1] ℝ
[0,1] ℝ

ℝ

(X, d )

ℝ

K ℝ K ⇔ K
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	 We konw that compact implies closed and bounded according to Theorem 3.8. 
	 We thus need to prove the other direction. Let  be a closed and bounded  
	 subset of . Then, given  is bounded,  is contained in some closed interval, 
	 namely , which we have shown to be compact. Hence is a closed subset 
	 of a compact set, therefore compactness of  follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    At this point, one may wonder why we mention the idea of sequential compactness, 
and how this actually relates to the idea of topological compactness. Firstly, recall the 
Bolzano-Weierstrass Theorem, which is a powerful result that guarantees the existe-
nce of a convergent subsequence for any bounded sequence of real numbers. 
Theorem 3.11: Bolzano-Weierstrass 
	 Every bounded sequenece in  has a convergent subsequence. 
Lemma 3.12: 
	 Consider  such that  is closed and bounded. Then  is sequentially  
	 compact. 
Proof: 
	 Let  be a sequence in . Then  is bouded as  is bounded, and thus by 
	 Bolzano-Weierstrass, there exists a convergent subsequence of . Then use  
	 the fact that  is closed and every sequence in  has a convergent subsequence, 
	 then the result follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    In fact, the converse of Lemma 3.12 is also true. 
Theorem 3.13: Bolzano-Weierstrass 
	 Let  be a subset of . Then  is sequentially compact   is closed and  
	 bounded. 
Proof: 
	 We have shown the  direction. Let  be a sequentially compact subset of . 
	 Let  be a sequence in  that converges to  in . Then every subsequence  
	 of  converges to . Therefore , since  is chosen arbitrarily,   
	 contains all the limit points, hence closed. 
	 Suppose  is not bounded, then there exists a sequence  in  such that  
	  as . Then every subsequence of  is unbounded and  
	 diverges, thus  has no convergent subsequence, contradiction. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Remark: 
	 In fact, one can generalize the result of Theorem 3.13 into .	 	 	 || 
Corollary 3.13.1: 
	 Given ,  is sequentially compact   is topological compact. 
    We now know that a set in  is sequentially compact  it is topologically compa-
ct, this is true by showing  
	       sequentially compact  closed and bounded  topologically compact, 
where the last “ ” uses the Heine-Borel Theorem. However, as the previous remark 
shows, we do not have Heine-Borel in the general metric spaces. Then the question 
arises: is sequentially compact equivalent to topologically compact in metric spaces? 
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The answer is yes. To prove this, recall we proved Lebesgue Number Lemma in 
Lemma 1.58. 
   The Lebesgue Number Lemma states that for any open cover of a compact metric 
space, there exists a positive real number (the Lebesgue number) such that every 
subset of the metric space with diameter less than the Lebesgue number can be 
completely covered by a single set from the open cover. 
    Now we introduce the concept called totally bounded, which extends this concept 
to metric spaces in general, whether they are compact or not. It ensures that the entire 
space can be covered by small subsets (open balls or open sets) with diameters less 
than a given positive number. 
Definition: Totally bounded 
	 A metric space  is totally bounded if  there exist   
	 such that  is an open cover of . 
Properties: 
	 (i)	 Totally bounded spaces are always bounded (since the diameter of any  
	 	 subset in the cover is limited). 
	 (ii)	 Totally boundedness is a crucial concept when defining completeness  
	 	 and compactness in metric spaces.	 	 	  
Lemma 3.14: 
	 If a metric space  is sequentially compact then it is totally bounded. 
Proof: 
	 Assume that  is sequentially compact and not totally bounded. Then there  
	 exists an  such that  cannot be covered by a collection of open sets of 
	 finitely many -balls. Hence ,   
	 and so on. Then  and  has no convergent subsequence  
	 as otherwise it would be Cauchy, contradiction. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Theorem 3.15: 
	 A metric space  is (topologically) compact  it is sequentially compact. 
Proof: 
	 “ ”: 
	 Let  be sequentially compact and let  be an open cover of . By the  
	 Lebesgue number lemma(Lemma 1.58), there exists an  such that  
	 ,  for some . Now by Lemma 3.14,  is totally  
	 bounded. Hence there exist  such that 
	 	 	 	 	 . 
	 However, ,  for some . Thus  is a  
	 finite subcover for . Since  is chosen arbitrarily, compactness follows. 
	 “ ”: 
	 Assume that there exists a sequence  in  with no convergent  
	 subsequence. Notice that no term in the sequence can appear infinitelymany  
	 times, as otherwisethere would be a trivial subsequence of . Hence, we  
	 may assume, without loss of generality, that . Since for every   
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	 there exists an  such that  contains no other terms in the sequence. 
	 If not, there would again be a convergent subsequence, hence for all , there  
	 exists an open ball  centered at  such that  for all . 
	 Now consider .  is open since  is  
	 closed (it contains all of its limit points). Hence  is an open  
	 cover of . However, this open cover has no finite subcover as any finite  
	 collection of the cover fail to include infinitely many terms from the sequence  
	 , contradiction. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Recall that for  and  two metric spaces, a continuous function , then 
for all open subset ,  is also open in . 
Theorem 3.16: 
	 Let  and  be metric spaces and  be a continuous map. If  is a  
	 compact subset then  is also compact. 
Proof: 
	 Let  be an open cover of . Then define  which is open 
	 by the continuity of . Therefore  is an open cover of . Hence there  
	 exists a finite subcover  of  as  is compact. Thus  
	  is a finite subcover. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Corollary 3.16.1: 
	 Let  be a metric space and  be a compact subset. Then given a  
	 continuous function ,  obtains a maximum and minimum finite  
	 value on . 
Remark: 
	 Sometimes in particular we want to study bounded continuous functions, and  
	 this corollary gives us a nice property: Given a compact metric space , every 
	 continuous function  is bounded.	 	 	 	 	 	 	 || 
    Now we state another useful result to end this subsection. 
Theorem 3.17: 
	 Given a metric space , the followings are equivalent: 
	 (i)	  is compact. 
	 (ii)	  is sequentially compact. 
	 (iii)	  is Cauchy complete and totally bounded. 
	 (iv)	 Every collection of closed subsets of  with F.I.P. has a non-empty  
	 	 intersection. 
Proof: One may consult [42]. 

3.3 Complete Metric Spaces 
    Recall that in the last subsection introduced the notion of Cauchy complete metric 
spaces. We remarked before that the completeness is a property in metric space rather 
than a topological one, however, there are still a number of theorems involving 
complete metric spaces that are topological. 
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    Completeness is a fundamental concept in the theory of metric spaces, serving as a 
generalization of the idea of convergence. A metric space is complete if every Cauchy 
sequence in the space converges to a point within the space itself. Completeness 
captures the idea of "filling in the gaps" in a metric space, ensuring that no points are 
missing from the space even when considering sequences that come arbitrarily close 
to each other. 
Definition: Complete (of metric spaces) 
	 A metric space  is said to be complete if every Cauchy sequence in   
	 converges in . 
    Any convergence sequence in  is necessarily a Cauchy sequence, of course; com-
pleteness requires that the converse hold. Note that a closed subset  of a complete 
metric space  is necessarily complete in the restricted metric. For a Cauchy seq-
uence in  is also a Cauchy sequence in , hence it converges in . Because  is a 
closed subset of , the limit must lie in . Now we introduce the first completeness 
criterion: 
Lemma 3.18: 
	 A metric space  is complete if every Cauchy sequence in  has a  
	 convergent subsequence. 
Proof: 
	 Let  be a Cauchy sequence in . We show that if  has a  
	 subsequence  that converges to a point , then the sequence  itself 
	 converges to . Given , first choose  large enough such that  
	  . Then choose an integer  large enough such that  

	  . Then we have the desired inequality: 

	 	 	 	 . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Remark: 
	 The Euclidean space  is complete in the Euclidean metric .	 	 	 || 
    Now we deal with the product space . Before that, we need a lemma about seq-
uences in a product space. 
Lemma 3.19: 
	 Let  be a product space  and let  be a squence of points of . 
	 Then   . 
Proof: 
	 “ ”: 
	 Since the projection mapping  is continuous, it preserves the  
	 convergent sequences. 
	 “ ”: 
	 Suppose that  . Let  be a basis element for  that  
	 contains . For each  for which  does not equal to the entire space ,  
	 choose  so that . Let  be the largest of the numbers  
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	 , then , one has , result follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Theorem 3.20: 
	 There is a metric for the product space  relative to which  is complete. 
Proof: 
	 Let  be the standard bounded metric on . Let   
	 be the metric on  defined by 
	 	 	 	 	 . 
	 Then  induces the product topology on ; we verify that  is complete  
	 under . 
	 [Claim]:  is complete under . 
	 	 Let  be a Cauchy sequence in , since 
	 	 	 	 	 	 . 
	 	 We see that for fixed  the sequence  is a Cauchy sequence in   
	 	 hence the convergence is for certain, namely, say . Then the sequence 
	 	  converges to the point  of . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Remark: the space  
	 For those who are not familiar with the choice of notion “ ” and the notion  
	 “ ”, we now give the clarification: 
	  represents the infinite Cartesian product of real number spaces. Each  
	 element of  is an infinite sequence of real numbers. The topology on  is  
	 typically given by the product topology, where open sets are generated by  
	 cylinders (sets of sequences that agree with a given finite sequence at the first   
	 terms). Moreover,   is a very large space with specific properties. It is not  
	 locally compact, not separable, and not metrizable under its product topology.|| 
   Although both the product spaces  and  have metrics relative to which they 
are complete, one cannot hope to prove the same result for the product space  in 
general, since  is not even metrizable if  is uncountable. There is, however, 
another topology on the set , the one given by the “uniform metric”. Relative to 
this metric,  is complete. ( .) 
    The uniform metric, also known as the supremum metric or the  metric, is a 
way of measuring the distance between functions in a function space. It is commonly 
used in the context of spaces of bounded functions. The uniform metric defines 
convergence and distance based on the supremum (least upper bound) of the 
pointwise differences between functions. 
Definition: Uniform Metric 
	 Given a set  and a space of functions  defined on ,  the uniform metric  
	 defined on  is given by: For two functions ,  
	 	 	 	 	 . 

	 In other words, the distance between two functions is the supremum  
	 (maximum) of the absolute differences between their values at each point in  
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	 the domain. 
   We now talk more on the uniform metric as well as the so-called “uniform topolo-
gy”. The following discussion is a work of [44]: 
    The uniform topology on  is the metric topology induced by the uniform metric. 
The uniform topology is finer than the pointwise topology but coarser than the 
compact-open topology. Moreover, the uniform topology provides a framework for 
discussing concepts related to uniform convergence and uniform continuity of 
functions. Now we introduce the first result on this topic, that the product topology 
on  is weaker than the uniform topology on . 
Theorem 3.21: 
	 If  is a set and  is a metric space, then the uniform topology on  is  
	 finer than the product topology on . 
Proof: 
	 If , let  be a basic open set in the product topology with  

	 . Thus, there is a finite subset  such that if  then . 
	 If , then since  is an open subset of  with the metric topology and  
	 , there is some  such that . Let . If  

	  then  and hence , which  
	 implies that . Therefore, if  then , i.e.   
	 . If  then  and  thereafter. Therefore, if  
	  then , i.e. . It follows that the uniform topology  
	 on  is finer than the product topology on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    The following theorem shows that if we take the product of a complete metric spa-
ce with itself, then the uniform metric on this product space is complete. 
Theorem 3.22: 
	 If  is a set and  is a complete metric space, then  with the uniform  
	 metric  is a complete metric space. 
Proof: 
	 It is straightforward to check that  being a complete metric space implies  
	 that  is a complete metric space (recall ). Let  
	   be a Cauchy sequence in : if  then there is some  such that  
	  one has . Thus, if , there is some  such that  
	  and  then . Thus if  then 
	  is a Cauchy sequence in , which therefore converges to some  
	 , and thus . If  and , then	  
	 	 	  
	 	 	 	 	     
	 	 	 	 	    . 
	 As the LHS does not depend on  and , one gets that if  
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	  and  then . Therefore, if  then  
	 . This means that  converges to  in the uniform metric, showing 
	 that  is a complete metric space as we desire. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Now let us generalize somewhat, and consider the set  where  is a topological 
space rather than merely a set. Of course, this has no effect on what has gone so far; 
the topology of  is irrelevant when considering the set of all functions . 
But suppose that we consider the subset  of  consisting of all continuous 
functions . It turns out that if  is complete, this subset is also complete in 
the uniform metric. The same holds for the set  of all bounded functions 

. (A function  is said to be bounded if its image  is a bounded subset 
of the metric space ). 
Theorem 3.23: 
	 Let  be a topological space and let  be a metric space. The set   
	 of continuous functions is closed in  under the uniform metric. So is the set 
	  of bounded functions. Therefore, if  is complete, these spaces are  
	 complete in the uniform metric. 
Proof: Consult [1], Theorem 43.6. 
    Now we arrive at the most important result of this subsection. We will offer a result 
declaring the existence of an isometric between a metric space and a complete metric 
space. 
Theorem 3.24: 
	 Let  be a metric space. There is an isometric imbedding of  into a  
	 complete metric space. 
Proof: Consult [1], Theorem 43.7. 
    We introduced the notion “isometric” in the above theorem, which is a type of ma-
pping between metric spaces that preserves the distances between points. Intuitively, 
an isometry is a function that doesn't distort the geometric shape of the space it 
operates on. Isometries are used to study the preservation of geometric properties un-
der certain transformations. 
Definition: Isometry 
	 Let  and  be two metric spaces. A function  is said to be  
	 an isometry if . 
   Isometries are distance-preserving, meaning they preserve the metric structure of t-
he spaces they operate on. Moreover, Isometries are injective (one-to-one) since dist-
inct points in  must map to distinct points in to preserve distances. However, isome-
tries need not be surjective (onto).  
Remark: 
	 There are two types of isometry: 
	 (i) Isometric Embedding 
	 	 An isometry  that is also a surjective map is called an 		 	
	 	 isometric embedding. It essentially preserves the entire geometric  
	 	 structure of  within . 
	 (ii) Isometric Isomorphism 
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	 	 If an isometry  is both injective and surjective, it is called an  
	 	 isometric isomorphism. Isometric isomorphisms establish a bijective  
	 	 correspondence between the two spaces while preserving distances.	 || 
    Hence we can give an important remark corresponding to Theorem 3.24. 
Remark: of Theorem 3.24. 
	  The isometry between a metric space and its completion is unique up to  
	 isomorphism. This property is known as the universal property of the  
	 completion of a metric space.	 	 	 	 	 	 	 	 || 
Definition: Completion 
	 Let  be a metric space. If  is an isometric imbedding of  into  
	 a complete metric space , then the subspace  of  is a complete metric  
	 space. It is called the completion of . 
    We now give two important results to conclude this subsection. In fact, in the follo-
wing theorem, one may use the notion of  as an alternative defintion for the 
completion. 
Theorem 3.25: 
	 Every metric space  with fixed metric has a unique metric space  (with  
	 respect to the metric) such that: 
	 (i)	 . 
	 (ii)	 The metric on  restricts to the metric on . 
	 (iii)	  is Cauchy complete, and the closure of  is . 
    The proof of this theorem relies on the following lemma: 
Lemma 3.26: 
	 For any metric space , the space of all bounded continuous functions denoted  
	 as  is a metric  

	 space with the uniform metric . In fact, it is Cauchy complete. 
Proof: 
	 We start by mapping  to a subset of . Choose a point  and  
	 consider the map 
	 	 	 	 . 
	 Notice that this map is bijective and 
	 	 	 . 

	 This means that the map is isometric and what this allows us to do is view  as 
	 a subset of . 
	 Now we consider the closure of . Recall that a closed subset of a complete 	
	 metric	 space is complete itself, so the closure of , denoted by , is Cauchy  
	 complete. By the isometry this implies that there exists the completion of the  
	 metric space . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Comment: 
    Completing a metric space is a fundamental concept in the study of metric spaces. 
The completion of a metric space involves constructing a larger metric space that 
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includes the original space as a dense subspace while ensuring that all Cauchy 
sequences in the original space converge within the completion. This process is used 
to address the issue of incomplete metric spaces and to create a space where all 
Cauchy sequences have limits.  
Completion Process: 
	 Given an incomplete metric space , the completion of  to  is: 
	 Dense Embedding:  
	 	 There exists an isometric embedding  such that  is dense  
	 	 in . 
	 Cauchy Sequence Convergence: 
	 	 For any Cauchy sequence , the sequence converges in  to a limit  
	 	 that also belongs to . 
    To the author’s own perspective, using  to represent the completion of the original 
metric space  could cause confusion. That is, is it true that the completion of the 
metric space is equivalent to taking the closure of the original space? The answer is 
NO, the completion of a metric space is not equivalent to taking the closure of the 
original space. The completion process involves more than just taking the closure. 
   While both concepts involve considering limits, they address different issues: The 
completion of a metric space is about ensuring that all Cauchy sequences have limits 
by introducing new elements to the space. Taking the closure of a set is about consid-
ering the limit points of the set itself, ensuring that no limit points are "missing" from 
the set. 
    In summary, the completion of a metric space and taking the closure of a set are 
distinct concepts that serve different purposes. The completion process is about 
creating a larger space to accommodate all Cauchy sequence limits, while taking the 
closure focuses on the limit points of a given set within the same space. 

3.4 Metric Topology 
    It might be ambiguous for beginners to think about the exact differences between 
metric spaces and topological spaces at the first sight. We have introduced one impor-
tant difference between these two concepts: that is, with convergence being part of 
the topological properties, the completeness, however, is not a topological property, 
but a metric space property.  
    The construction of topology, as we see in the first chapter, depends on the constru-
ction of open sets, and the open sets cannot be identified without the notion of metric. 
These two concepts have been entwined so far, in fact, the topological spaces are 
“bigger” than the metric spaces since metric spaces are special types of topological 
spaces. 
    In this subsection, we first offer the formal definition of the metric topology, which 
should be very familiar to you already, then we proceed to the discussion of metriza-
bility, which, again, we have proved in Urysohn’s Metrization Lemma, the next 
goal of this subsection is the discussion in boundedness, and we argue that the stand-
ard bounded metric induces the same topology as the original metric does. Then we 
shall enclose this section by discussion about some results derived from the metriz-
ability. 
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Definition: Metric Topology 
	 Let  be a metric space, then the collection  of open balls  
	  with the radius  is a basis for a topology 
	 on  called the metric topology induced by the metric . 
  Every metric spaces automatically induce a topology, however, as we noted in the 
first chapter, there are topologies coming from no metric. Loosely speaking, the topo-
logical spaces are “bigger” than the metric spaces, but this does not necessarily mean 
that the topological spaces are more complicated than metric spaces. They are derived 
and studied due to different purposes: 
Topological Spaces: 
	 Topological spaces are more general than metric spaces. They define  
	 open sets and neighborhoods without relying on a specific notion of distance  
	 (as in metrics). This generality allows them to capture a broader range of  
	 mathematical objects and phenomena. Moreover, topological spaces provide an  
	 abstract framework for studying continuity, convergence, and connectedness.  
	 Furthermore, in topological spaces, the topology can be very complicated,  
	 leading to exotic topological properties like non-metrizability, non-Hausdorff  
	 spaces, and non-separability. This complexity can make the study of certain  
	 topological spaces challenging. 
Metric Spaces: 
	 Metric spaces are more specific than topological spaces because they rely on a  
	 metric, which defines a notion of distance between points. This added structure  
	 makes them suitable for studying concepts related to distance, convergence, 	 
	 and continuity. Moreover, metric spaces have a uniform structure due to the  
	 metric, which can simplify proofs and calculations. For example, in a metric  
	 space, one can use concepts like open balls to analyze neighborhoods and 	 	
	 limits. 
Remark: 
	 Metric topology provides a specific and well-defined connection between the  
	 concepts of distance, convergence, continuity, and open sets in the context of  
	 topological spaces. The metric structure gives rise to a particular topology,  
	 which is often referred to as the "metric topology."		 	 	 	 || 
   As we see, there are some topologies equipped with no metric structures. Therefo-
re, the motivation behind studying metrizability in topology is rooted in the desire to 
understand the relationship between topological spaces and metric spaces, and to 
determine which topological spaces can be endowed with a metric structure. We have 
proved the Urysohn’s Metrization Theorem, now we give a formal definition of 
being metrizable: 
Definition: Metrizable 
	 If  is a topological spcae, then  is said to be metrizable if there exists a  
	 metric  on the set  that induces the topology on . In particular, a metric  
	 space is a metrizable space  together with a specific metric  that gives the  
	 topology of . 
   We have introduced the convergence, which is a metric space property, now we sha-
ll introduce another one, which might be surprising, that the boundedness of a set is 
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not a topological property, but a metric space property, for it depends on the particular 
metric  that is used for . 
Definition: Bounded 
	 Let  be a metric space with metric . A subset  of  is said to be  
	 bounded if there is some number  such that  
	 	 	 	 	  . 
Theorem 3.27: Standard Bounded Metric 
	 Let  be a metric space. Define  by the equation given by 
	 	 	 	 	 . 
	 Then  is a metric that induces the same topology as . Then  is called the  
	 standard bounded metric corresponding to . 
Proof:	  
	 Checking the first two conditions for a metric is trivial. Let us check the  
	 triangle inequality: 
	 	 	 	 	 . 
	 If now either  or , then the RHS is at least , then it holds  
	 since the LHS is at most . It remains to consider the case in which   
	 and . 
	 In this case, we have 
	 	 	 	 . 
	 Now we note that in any metric space, the collection of -balls with   
	 forms a basis for the metric topology, for every basis element containing   
	 contains such an -ball centered at . It follows that  and  induce the same  
	 topology on , since the collections of -balls under these two metrics  
	 coincide. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Now we offer a criterion in telling what metric topology is finer than the other: 
Lemma 3.28: 
	 Let  and  be two metrics defined on the set ; let  and  be the topologies 
	 they induce, respectively. Then  is finer than      
	 such that 
	 	 	 	 	 	 . 
Proof: 
	 “ ”: 
	 Suppose  is finer than . Given the basis element  for , there is a  
	 basis element  for the topology  such that . Within  one 
	 can find a ball  centered at . 
	 “ ”: 
	 Conversely, suppose the RHS holds. Given a basis element  of  containing , 
	 we can find within  a ball  centered at . By the given condition, there 
	 is a  such that , result follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  

dX X

(X, dX) dX A X
M

d(x1, x2) ≤ M ∀x1, x2 ∈ X

(X, dX) d : X × X → ℝ
d(x, y) := min{d(x, y),1}

d d d
d

d(x, z) ≤ d(x, y) + d(y, z)
d(x, y) ≥ 1 d(y, z) ≥ 1 1

1 d(x, y) < 1
d(y, z) < 1

d(x, z) ≤ d(x, y) + d(y, z) ≤ d(x, y) + d(y, z)
ε ε < 1

x
ε x d d

X ε

□

d d′￼ X T T′￼
T′￼ T ⇔ ∀x ∈ X ∀ε > 0∃δ > 0

Bd′￼(x, δ ) ⊆ Bd(x, ε)

⇒
T T′￼ Bd(x, ε) T

B′￼ T′￼ x ∈ B′￼⊆ Bd(x, ε) B′￼
Bd′￼(x, δ ) x

⇐
B T x

B Bd(x, ε) x
δ Bd′￼(x, δ ) ⊆ Bd(x, ε)

□
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   Subspaces of metric spaces behave the same way one would expect; if  is a subsp-
ace of the topological space  and  is a metric for , then the restriction of  to 

 is a metric for the topology of .  
   About order topologies there is nothing to say; some are metrizable (  and ) and 
others are not. 
  The Hausdorff axiom is satisfied by every metric topology. If  are distinct 

points of the metric space , let , then the triangle inequality impl-

ies that  and  are disjoint. 
  We now state and prove some results by assuming a topological space to be also 
metrizable. 
Lemma 3.29: The Sequence Lemma 
	 Let  be a topological space; let  be a subset. If there is a sequence of  
	 points of  converging to , then ; the converse holds if  is metrizable. 
Proof: 
	 Suppose that such a sequence is  where . Then every  
	 neighbourhood  contains a point of , so . Conversely, suppose that  
	 is metrizable and . Let  be a metric for the topology of . For each  

	 positive integer , take the neighbourhood  of radius  of , and  

	 choose  to be a point of its intersection with . We assert that the sequence  
	 converges to . Any open set  containing  contains an -ball ; if we 

	 choose  so that  then  contains . 

	 	 	 	 	 	 	 	 	 	 	 	 	  
Theorem 3.30: 
	 Let  be a function. If  is continuous then every convergent sequence 
	  in , the sequence  converges to . The converse holds if  is  
	 metrizable. 
Proof: 
	 Assume that  is continuous. Given , we wish to show that . 
	 Let  be a neighbourhood of . Then  is a neighbourhood of , and so 
	 there is an  such that . Then  . 
	 Conversely, assume that the convergent sequence condition is satisfied. Let   
	 be a subset of . We wish to show that .  
	 [Claim]: . 
	 	 If , then there is a sequence  of points of  converging to  by  
	 	 Lemma 3.29. By assumption, the sequence . Since  
	 	 , by Lemma 3.29 again, . Hence  as 
	 	 we desired. 
	 	 	 	 	 	 	 	 	 	 	 	 	  

3.5 Compactification 

A
X dX X d

A × A A
ℤ+ ℝ

x ≠ y

(X, dX) ε :=
1
2

d(x, y)

BdX
(x, ε) BdX

(y, ε)

X A ⊆ X
A x x ∈ A X

xn → x xn ∈ A
Ux A x ∈ A X

x ∈ A d X

n BdX
(x,

1
n

)
1
n

x

xn A xn
x U x ε BdX

(x, ε)

N
1
N

< ε U xi ∀i ≥ N

□

f : X → Y f
xn → x X f (xn) f (x) X

f xn → x f (xn) → f (x)
V f (x) f −1(V ) x

N xn ∈ f −1(V )∀n ≥ N f (xn) ∈ V ∀n ≥ N
A

X f (A ) = f (A)
f (A ) ⊆ f (A)

x ∈ A xn A x
f (xn) → f (x)

f (xn) ∈ f (A) f (x) ∈ f (A) f (A ) ⊆ f (A)

□
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    Recall that a topological space is said to be locally compact if every point has a co-
mpact neighbourhood. 
Lemma 3.31: 
	 Let  be a locally compact Hausdorff space (L.C.H.) and  is a point.  
	 Then for all neighbourhood  of , there is a compact neighbourhood  of  
	 with . 
Proof: 
	 Since  is locally compact, there exists a compact neighbourhood  of , thus 
	 there exists an open neighbourhood  of  with .  
	 Let , since  is Hausdorff and  is compact,  is closed. Therefore 
	     is compact. Moreover, since  is compact  
	 and Hausdorff, it is automatically regular, thus  is also regular. 
	 Regular spaces have neighbourhood bases of closed sets. There exists a  
	 compact neighbourhood  of  in  which is closed in , with  
	 	 	 	 	 	 , 
	 since  is compact, then  is also compact. 
	 [Claim]:  is a compact neighbourhood of  in . 
	 	 Since  is a neighbourhood of  in , there exists an open subset  
	 	  such that . Since  is open in , there exsists an open 
	 	 subset   such that  (subspace topology). ,  
	 	 , since  is open in  and  
	 	 , then  is a compact neighbourhood of  in . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Corollary 3.31.1: 
	 Let  be a locally compact Hausdorff (L.C.H.) space. Then  and for all 
	 neighbourhood  of , there exists an open neighbourhood  of  with   
	 and  is compact. 
Theorem 3.32: 
	 A locally compact Hausdorff (L.C.H.) space is completely regular. 
Corollary 3.32.1: 
	 An  L.C.H. space  is normal and metrizable. 
Proof: 
	 According to Theorem 3.32,  is completely regular, hence regular. Thus  is  
	 regular and second countable by assumption, hence  is normal. Then by  
	 Urysohn’s Metrization Theorem,  is metrizable. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Compact spaces have nice properties and when we are given a non-compact space, 
it is naturally to ask can we make this space compact so that the tools we apply to the 
compact spaces fail to be false. This leads to the following definitinon called comp-
actification. 
Definition: Compactification 
	 A compactification of a space  is an embedding  so that	  
	 (i)	  is compact. 
	 (ii)	  is dense in , i.e. . 

X x ∈ X
U x N x

N ⊆ U

X C x
V x V ⊆ C

W = V ∩ U X C C
W := V ∩ U ⊆ C ⇒ W ⊆ C ⇒ W X

W

N x W W
x ∈ N ⊆ W ⊆ W

W N
N x X

N x W
T ⊆ W x ∈ T ⊆ U T W

O ⊆ X T = W ∩ O x ∈ N ⊆ W
x ∈ W ∩ O ⊆ W ∩ O = T ⊆ N W ∩ O X
x ∈ W ∩ O N x X

□

X ∀x ∈ X
U x V x V ⊆ U

V

A2 X

X X
X

X
□

X f : X → Y
Y
f (X ) Y f (X ) = Y
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Definition: One-Point Compactification 
	 A compactification  is said to be a one-point compactification if  
	  is a single point. 
    Recall the definition of embedding: 
Definition: Embedding 
	 A continuous map  is called an embedding if  is a  
	 homeomorphism where  is given a subspace topology. 
    We now prove two lemmas which in turn prove that the definition of the compacti-
fication is well-defined. 
Lemma 3.33: “ ” 
	 Let  be an embedding where  is a compact Hausdorff space and 
	  is a single point. Then  is L.C.H. 
Proof: 
	 Since  is a homeomorphism, we may, without loss of generality,  
	 assume that . Since  is Hausdorff then  is also Hausdorff (subspace of 	
	 Hausdorff is Hausdorff). Let . Then , there  
	 exists a compact neighbourhood of  in . Since  and , . 
	 Since  is Hausdorff, there exist open neighbourhoods  of  and  of  such 
	 that . Moreover, since  is open and  is closed and ,  
	 therefore, . Furthermore, since  is compact and 	 	  
	  is a closed subset thus  is compact. Taking  yields a compact  
	 neighbourhood of  in  and result follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Lemma 3.34: “ ” 
	 Let  be a L.C.H. space, there exists a compact Hausdorff space  and an  
	 embedding  such that  is a single point. 
	 If  is compact, then . If  is not compact, then  and 
	  is a compactification. 
Proof: 
	 Let us use the same notation as we did in the proof of Lemma 3.33, denote the  
	 single point . Let  and define 
	 	 . 
	 To make our lives easier, let us denote Type I set to be  and 
	 use Type II set to denote . 
	 [Claim]:  is a topology. 
	 	 (i)	  is open . Since  is compact  	 	 	
	 	 	 . 
	 	 (ii)	 If ,  then  is an open subset, 
	 	 	 so it is in . 
	 	 	 If  is open and , then  
	 	 	  is open in  hence in . 
	 	 	 If , then  
	 	 	  is compact hence  is  

f : X → Y
Y ∖ f (X )

f : X → Y f : X → f (X )
f (X )

⇒
f : X → Y Y

Y ∖ f (X ) X

f : X → Y
X ⊆ Y Y X

∞ := Y ∖ f (X ) = Y ∖X ∀x ∈ X
x X x ∈ X ∞ ∉ X x ≠ ∞

Y U x V ∞
U ∩ V = ∅ V Y ∖V U ⊆ Y ∖V

U ⊆ Y ∖V ⊆ Y ∖{∞} =: X Y
U ⊆ Y U N = U

x X
□

⇐
X X+

f : X → X+ X+∖ f (X )
X X+ ≅ X ∪ {∞} X f (X ) = X+

f : X → Y

Y ∖X =: ∞ X+ = X ∪ {∞}
T := {U ⊆ X |U open} ∪ {(X ∖C ) ∪ {∞} |C ⊆ X compact}

{U ⊆ X |U open}
{(X ∖C ) ∪ {∞} |C ⊆ X compact}

T
∅ ⊆ X ⇒ ∅ ∈ T ∅ ⊆ X ⇒
(X ∖∅) ∪ {∞} = X ∪ {∞} ∈ T

U, V ∈ T U, V ⊆ Type I set U ∩ V ⊆ X
T

U ⊆ X V := (X ∖C ) ∪ {∞}
U ∩ V = U ∩ (X ∖C ) X T

U1 := (X ∖C1) ∪ {∞}, U2 := (X ∖C2) ∪ {∞}
U1 ∩ U2 = (X ∖(C1 ∪ C2)) ∪ {∞} U1 ∩ U2
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	 	 	 compact and it follows that  and so is in . 
	 	 (iii)	 Suppose that  is a collection of open subsets of  and  
	 	 	  is a collection of compact subsets of . Then one has 
	 	 	 	 	  

	 	 	 	        

	 	 	 	        

	 	 	 	        is compact. 

	 	 	 Therefore  is Type II so in . The 	

	 	 	 other two situations hold analogously. 
	 Also,  is an embedding. 
	 [Claim]:  is Hausdorff. 
	 	 Suppose that  such that . We want to separate them by  
	 	 open sets. Since  is Hausdorff, we can choose  while . 
	 	 Since  is L.C.H. there exists an open neighbourhood  of  such that 
	 	  is compact in . Therefore,  is an neighbourhood of  
	 	 and . 
	 [Claim]:  is compact. 
	 	 Let  be an open cover of  then  such that . 
	 	 Therefore,  is compact and then  such that for  
	 	  one has  hence  
	 	 . 
	 Note that if  is compact, then  is open,  is also  
	 open and they disjoint. If  is not compact, then for all compact subsets  
	 one has . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    In fact, one can prove that the one point compactification of a non-compact L.C.H 
space is unique up to a unique homeomorphism. 
Lemma 3.35: Uniqueness 
	 If  and  are two one-point compactification, then there  
	 exists a unique homeomorphism  such that . 
Proof: 
	 Let  be the unique point of  and  be the unique point of . 
	 Since  and  are bijective then the only way to define such a  is by the  
	 following formula: 

U1 ∩ U2 ⊆  Type II set T
{Uα}α∈A X

{Cβ}β∈B X

( ⋃
α∈A

Uα) ⋃
β∈B

(X ∖Cβ) ∪ {∞}

= ⋃
α∈A

∪ (X ∖ ⋂
β∈B

Cβ) ∪ {∞}

= (X ∖( ⋂
β∈B

Cβ∖ ⋃
α∈A

Uα)) ∪ {∞}

= (⋂
β∈B

Cβ ∩ (X ∖ ⋃
α∈A

Uα))

(X ∖( ⋂
β∈B

Cβ∖ ⋃
α∈A

Uα)) ∪ {∞} T

X ⊆ X ∪ {∞}
X+

x, y ∈ X+ x ≠ y
X y = ∞ x ∈ X

X V x
V X (X ∖V ) ∪ {∞} ∞

V ∩ ((X ∖V ) ∪ {∞}) = ∅
X+

{Uα}α∈A X+ ∃β ∈ A ∞ ∈ Uβ
C := X+∖Uβ ⊆ X ∃n

α1, ⋯, αn ∈ A C ⊆ Uα1
∪ ⋯ ∪ Uαn

X+ = Uα1
∪ ⋯ ∪ Uαn

∪ Uβ
X X ∖X ∪ {∞} = {∞} ∈ T X

X C ⊆ X
X ∖C ≠ ∅ ⇒ X ∩ ((X ∖C ) ∪ {∞}) = X ∖C ≠ ∅ ⇒ ∞ ∈ X

□

f : X → Z g : X → Y
φ : Z → Y f = φ−1 ∘ g

z0 Z ∖ f (X ) y0 T ∖g(X )
f g φ
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	 	 	 	 . 

	 [Claim]:  is a homeomorphism. 
	 	 It suffices to show that for any open subsets ,  is open in . 
	 	 If ,  is open,  is open in  since  is  
	 	 continuous and  is open in  hence in . 
	 	 If  then , since  is closed in  and 
	 	  is compact then  is also compact in  and , since  and  	
	 	 are homeomorphism,  is closed in . But  
	 	 ,  is a bijection  is  
	 	 open in . Therefore  is open and by symmetry so is . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Definition: Proper Map 
	 A continuous map  between two topological spaces is said to be  
	 proper if for all compact subset ,  is also compact. 
   A proper map between topological spaces is a concept that captures a notion of 
“boundedness” or "compactness" of preimages under the map. Proper maps are 
particularly useful in topology and differential geometry. 
Theorem 3.36: Criterion for Proper 
	 A continuous map  between two L.C.H. spaces extends to a  
	 continuous map   is proper. 
Proof: 
	 We may assume that  and  where  and  
	 . 
	 “ ”: 
	 Suppose that  is continuous and  is compact. Then  	
	 is an open neighbourhood of   is closed in    is 	 	
	 closed in   . Since  
	  is closed in  and  is compact, it follows that  is compact in 	  
	  and hence in . 
	 “ ”: 
	 Suppose that  is proper. 
	 [Claim]:  open,  is open in . 
	 	 Case I: 
	 	   which is open in  since  
	 	 is continuous. But  is open in   is open in . 
	 	 Case II: 
	 	   is a compact subset of   is 	 	
	 	 compact since  is proper, where , it 	 	
	 	 follows that  is open in . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Corollary 3.36.1: 

φ(z) := {
y0,  if z = z0

g( f −1(z)),  if z ≠ z0,  i.e. z ∈ f (X )
φ

U ⊆ Z φ(U ) Y
U ⊆ f (X ) f −1(U ) g( f −1(U )) Y f −1

g( f −1(U )) g(X ) Y
U ⊈ f (X ) z0 ∈ U ⇒ Z ∖U ⊆ f (X ) Z ∖U Z

Z Z ∖U Z f (X ) f −1 g
g( f −1(Z ∖U )) Y

(g ∘ f −1)(Z ∖U ) = φ(Z ∖U ) = Y ∖φ(U ) φ ⇒ φ(U )
Y φ φ−1

□

f : X → Y
C ⊆ Y f −1(C )

f : X → Y
f + : X+ → Y+ ⇔ f

Y ⊆ Y+ X ⊆ X+ Y+ := Y ∪ {∞Y}
X+ := X ∪ {∞X}
⇒

f + : X+ → Y+ C ⊆ Y Y+∖C
∞Y ⇒ C Y+ ⇒ ( f +)−1(C )

X+ ⇒ ( f +)−1(C ) ∩ {∞X} = ∅ ⇒ ( f +)−1(C ) = f −1(C )
f −1(C ) X+ X+ f −1(C )
X+ X
⇐

f : X → Y
∀U ⊆ Y+ ( f +)−1(U ) X+

U ⊆ Y+∖{∞Y} = Y ⇒ ( f +)−1(U ) = f −1(U ) X f
X X+ ⇒ ( f +)−1(U ) X+

{∞Y} ⊆ U ⇒ Y+∖U Y ⇒ f −1(Y+∖U )
f f −1(Y+∖U ) = ( f +)−1(Y+∖U )

( f +)−1(U ) = X+∖( f +)−1(Y+∖U ) X+

□
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	 A proper map between two L.C.H. spaces is closed. 
   The proof is left as an exercise. Just to aviod ambiguity, the openness or closedness 
we used above for a function  means what types of sets it preserves. For example, if  
preserves open sets then we say  is open, vice versa. 

3.6 Metrizability and -Local Finiteness 
   In the previous subsections we introduced the concept of metrizability, which is 
done by the Urysohn’s Metrization Theorem, stating that a   completely regular  
(in fact, the conditions may vary from case to case, for example, in [58], the 
Urysohn’s Metrization Theorem admits   being sufficient, in our case however, 
the regularity is not weakened but strengthened, this is because the  condition is 
weakened to ) topological space is metrizable. In that theorem, while the regularity 
being a neces-sary condition, however, the countable basis ( ) is somewhat 
expendable. This subs-ection and the upcoming one focus on (i) weaken the  
condition and arrive at the same metrizability and (ii) extend this terminology into a 
bigger class, i.e. introduce the locally metrizability then discuss its properties as well 
as some important results. The following literature comes from [1], [2], [9], [39], and 
[44]. A more detailed treatment could be viewed via [57] and [58]. 
   We now introduce the first notion: Local finiteness, which focuses on the behavior 
of open sets near individual points. It does not impose global constraints on the entire 
space but instead looks at local neighborhoods of each point. 
Definition: Locally Finite 
	 A cover  of a space  is said to be locally finite if , there exists 
	 a neighbourhood  of  such that  for all but finitely many . 
   As we shall see later: Local finiteness is a more general property than paracompact-
ness. While every paracompact space is locally finite, there exist locally finite spaces 
that are not paracompact. Paracompactness imposes additional conditions related to 
open covers and their refinements. Moreover, local finiteness is related to but distinct 
from local compactness. Locally compact spaces have compact neighborhoods 
around each point, whereas locally finite spaces only require finite intersections of 
open sets near each point. 
Definition: Partition of Unity 
	 Let  be a finite indexed open covering of the space . An indexed 
	 family of continuous functions 
	 	 	 	 	  for , 
	 is said to be a partition of unity by  if 
	 (i)	  . 

	 (ii)	  . 

Definition: Refinement 
	 A cover  is a refinement of a cover  if  there exists a 
	  such that . 

f f
f

σ

T1 A2

A2 T3
T3

T1
A2

A2

{Uα}α∈A X ∀x ∈ X
N x N ∩ Uα = ∅ α ∈ A

{U1, ⋯, Un} X

fi : X → [0,1] i = 1,⋯, n
{Ui}

supp fi ⊆ Ui ∀i = 1,⋯, n
n

∑
i=1

fi(x) = 1 ∀x ∈ X

{Uα}α∈A {Vβ}β∈B ∀α ∈ A
β := β(α) ∈ B Uα ⊆ Vβ(α)
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 Paracompactness is intimately connected to the existence of partitions of unity, 
which are functions that assign non-negative values to open sets in a cover and sum 
up to 1 on the entire space.  
Definition: Paracompact 
	 A topological space  is said to be paracompact if  is Hausdorff and any open 
	 cover of  has a locally finite open refinement. 
   Yes, paracompactness is indeed a topological property. In the context of general 
topology, a property is considered "topological" if it is preserved under homeomor-
phisms, which are continuous bijections with continuous inverses between topolog-
ical spaces. Paracompactness is one such property. 
     Now we prove a useful result of the local finiteness. 
Lemma 3.37: 
	 Let  be a locally finite collection of subsets of . Then 
	 (a)	 Any subcollection of  is locally finite. 
	 (b)	 The collection  of the closures of the elements of  is 	 	
	 	 locally finite. 
	 (c)	 . 

Proof: 
	 Statement (a) is trivial. To prove (b), note that any open set  that intersects 		
	 the set  necessarily intersects . Therefore, if  is a neighbourhood of  that  
	 intersects only finitely many elements  of , then  can intersect at most the 	
	 same number of sets of the collection . (It might intersect fewer sets of , 	
	 since  and  can be equal even though  and  are not). 
	 To prove (c), let  denote the union of the elements of : . In  

	 general, ; we now proceed to the other direction, under the 		 	  

	 assumption of local finiteness. Let ; let  be a neighbourhood of  that  
	 intersects only finitely many elements of , say . We assert that   
	 belongs to one of the sets , , and hence belongs to the union. For  

	 otherwise, the set  would be a neighbourhood of  that intersects no 

	 element of  and hence does not intersect , contradiction to . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    If our goal is to use locally finite sets to help describe a given topology, obtain a pr-
operty that is weaker than second countable but stronger than first countable, and 
prove to metrizability of a topological space, then we would likely want locally finite 
collections of open sets that describe a basis; that is, we would like a locally finite 
basis of a topological space. However, given a metrizable topological space, it is 
unlikely that we will be able to find a locally finite basis since, as Example 6.4.3 
shows, the requisite of having arbitrary small neighbourhoods around each point is an 

X X
x

𝒜 X
𝒜

ℬ := {A}A∈𝒜 𝒜

⋃
A∈𝒜

A = ⋃
A∈𝒜

A

U
A A U x

A 𝒜 U
ℬ ℬ

A1 A2 A1 A2
Y 𝒜 ⋃

A∈𝒜

A =: Y

⋃
A∈𝒜

A ⊆ Y

x ∈ Y U x
𝒜 A1, ⋯, Ak x

A1 ⋯, Ak

U ∖(
k

⋃
i=1

Ai) x

𝒜 Y x ∈ Y
□
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immediate obstacle to having a locally finite basis. However, as we can consider balls 
of a fixed radius at a given time and as we only need to consider rational radii, the 
following is not out of reach.
Definition: -locally finite

A collection  of subsets of  is said to be -locally finite (countably locally 
finite) if  can be written as the countable union of collections , each of 
which is locally finite.

   As an example of obtaining a -finite refinement, we demonstrate the following 
lemma. Note this is the best analogue of ‘every open cover of a compact topological 
space has a finite subcover’ that we can possibly obtain for a metrizable topological 
space. Therefore, as compactness is such a nice property, we are perhaps on the right 
track to study metrizable topological spaces.
Lemma 3.38:

Let  be a metrizable space and let  be an open cover of . Then 
there exists an open refinement  of  that is -locally finite and covers 

.
Proof: Consult [58] Lemma 6.4.9.
   Using Lemma 3.38, we can actually prove that metrizable spaces have nice bases 
thereby showing that having a -locally finite basis is a requirement of being metriz-
able.
Corollary 3.38.1:

Every metrizable topological space has a -locally finite basis.
Proof: 

Let  be a metrizable topological space and let  be a metric that induces 

. For every , let . Since  is clearly an 

open cover of . Lemma 3.38 implies that there exists an open 
refinement  of  that is -locally finite and covers . Since  is a 

refinement of , notice that if  then  for some  

and thus . Let now .

[Claim]:  is a -locally finite basis of .
To see this, note  is clearly -locally finite being the countable union 
of -locally finite subset of . To see that  is a basis for , 
let  and  be chosen arbitrarily. Choose  such that 

. Since  covers , there exists  such that 

. Therefore, since , it must be the case that 

σ
𝒜 X σ

𝒜 𝒜n

σ

(X, TX) 𝒜 (X, TX)
𝒜′￼ 𝒜 σ

(X, TX)

σ

σ

(X, TX) d
TX n ∈ ℕ 𝒜n := {Bd(x,

1
n

) x ∈ X} 𝒜n

(X, TX)
ℬn 𝒜n σ (X, TX) ℬn

𝒜n B ∈ ℬn B ⊆ Bd(x,
1
n

) x ∈ X

diam(B) ≤
2
n

ℬ :=
∞

⋃
n=1

Bn

ℬ σ (X, TX)
ℬ σ

σ (X, TX) ℬ (X, TX)
x ∈ X ε > 0 n ∈ ℕ

1
n

<
ε
2

ℬn (X, TX) B ∈ ℬn ⊆ ℬ

x ∈ B diam(B) ≤
2
n
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. Therefore, since  and  were

chosen arbitrarily and since  induces , it follows that  is -locally
finite basis of  as we desire.

   As Corollary 3.38.1 shows that every metrizable topological space must have a 
-locally finite basis, it is natural to ask whether we can obtain a converese. Of course 
we must add the condition that the topological space under investigation is normal as 
every metrizable space is normal. However, as verifying a topological space is 
normal is often difficult, we desire to replace the assumption of being normal with 
being regular.
    Now we arrive at the second metrization theorem, also the main goal of this 
subsection. Recall in Urysohn’s Metr-ization Therorem we require the space to be 

 . The Nagata-Smirnov Metrization Theorem states that every regular 
topological space with a -locally finite basis is metrizable. To proceed, we begin by 
developing additional properties of regular topological spaces with -locally finite 
basis.
Lemma 3.39:

Let  be a regular topological space with a -locally finite basis. If 
, then there exists  such that

.

Proof:

By assumption there exists a basis  of  such that  where 

each  is a locally finite subset of . For each , define
.

Since clearly ,  is a locally finite subset of  . Thus
for each , let . Cleraly  . Furthermore, we

see that, according to Lemma 3.37, that 
 .

Therefore,

.

To see the inverse inclusion, let  be chosen arbitrarily. Since  is 
regular and  is its basis, there then exsits a  such that 

.

x ∈ B ⊆ Bd[x,
2
n

] ⊆ Bd(x, ε) x ∈ X ε > 0

d TX ℬ σ
(X, TX)

□
σ

A2 T1
σ

σ

(X, TX) σ
V ∈ TX {Un}∞

n=1 ⊆ TX

V =
∞

⋃
n=1

Un =
∞

⋃
n=1

Un

ℬ (X, TX) ℬ =
∞

⋃
n=1

ℬn

ℬn (X, TX) n ∈ ℕ
𝒜n := {B ∈ ℬn |B ⊆ V}

𝒜n ⊆ ℬn 𝒜n (X, TX) ∀n ∈ ℕ
n ∈ ℕ Un := ⋃

B∈𝒜n

B Un ∈ TX ∀n ∈ ℕ

Un ⊆ Un = ⋃
B∈𝒜n

B ⊆ V ∀n ∈ ℕ

∞

⋃
n=1

Un ⊆
∞

⋃
n=1

Un ⊆ V

x ∈ V (X, TX)
ℬ B ∈ ℬ

x ∈ B ⊆ B ⊆ V
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Hence  for some , so  for some , and thus 

. Therefore, as  chosen arbitrarily, the inverse inclusion holds.

Lemma 3.40: -locally finite 
Let  be a regular topological space with a -locally finite basis. Then 

 is normal.
Proof:

Let  and  be two arbitrary closed subsets of  such that . 
Since  and  are opens sets in , Lemma 3.39 tells us that there
exists ,  such that

 and .

By taking complements, we see that  is an open cover of  such that
 and  is an open cover of  such that 
. Now we have open covers for disjoint closed sets, our 

next goal is to let them be disjoint.
[Claim]: .

For every , let

 and .

Clearly  and  are collections of closed subsets of 

so that  and  are closed subsets of . 

Therefore, since  and  are collections of open subsets of
 and since  for all , we see that 
 and  are collections of open subsets of . Let now

 and ,

which are open subsets of . Notice that since  

 that . It follows that  hence 

. Furthermore, similar arguments allow . Suppose the
contrary that  so that there exists an . By 
definition of  and , there must exist  such that  and

, if , then  and  implies that 

, contradition. The other side will also lead to 

B ∈ 𝒜n n ∈ ℕ x ∈ Un n ∈ ℕ

x ∈
∞

⋃
n=1

Un x ∈ V

□
T3+σ ⇒ T4

(X, TX) σ
(X, TX)

A B (X, TX) A ∩ B = ∅
X ∖B X ∖A (X, TX)
{Un}∞

n=1 {Vn}∞
n=1 ⊆ TX

X ∖B =
∞

⋃
n=1

Un =
∞

⋃
n=1

Un X ∖A =
∞

⋃
n=1

Vn =
∞

⋃
n=1

Vn

{Un}∞
n=1 A

B ∩ Un = ∅∀n ∈ ℕ {Vn}∞
n=1 B

A ∩ Vn = ∅∀n ∈ ℕ

Un ∩ Vn = ∅∀n
n ∈ ℕ

U′￼n = Un∖(
n

⋃
k=1

Vk) V′￼n = Vn∖(
n

⋃
k=2

Uk)
{Un}n≥1 {Vn}n≥1 (X, TX)

{
n

⋃
k=1

Uk}n≥1 {
n

⋃
k=1

Vk}n≥1 (X, TX)

{Un}n≥1 {Vn}n≥1
(X, TX) D∖E = D ∩ (X ∖E ) D, E ⊆ X
{U′￼n}n≥1 {V′￼n}n≥1 (X, TX)

U =
∞

⋃
n=1

U′￼n V =
∞

⋃
n=1

V′￼n

(X, TX) Vn ∩ A = ∅

∀n ∈ ℕ U′￼n ∩ A = Un ∩ A A ⊆
∞

⋃
n=1

Un

A ⊆ U B ⊆ V
U ∩ V ≠ ∅ x ∈ U ∩ V
U V n, m ∈ ℕ x ∈ U′￼n

x ∈ V′￼m n ≥ m x ∈ V′￼m ⇒ x ∈ Vm x ∈ U′￼n

x ∈ Un∖(
n

⋃
k=1

Vk) ⊆ Un∖Vm
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a contradiction, therefore  as we desired.

   It is well-known that the second countability axiom is sufficient for a regular topol-
ogical space to be metrizable, but it is not necessary. That is, Metrizable 
but Metrizable  . For example, any discrete space X is metrizable, but if X 
consists of uncountably many points it does not have a countable basis. It is natural to 
ask if there exists a necessary and sufficient condition for a topological space to be 
metrizable.
    Eiichi Nagata, a Japanese mathematician, made significant contributions to metriz-
ation theory. In 1947, he proved a metrization theorem that extended Urysohn's theor-
em and addressed when a topological space is metrizable in terms of a base for the 
topology. This result is known as Nagata's Metrization Theorem. In 1953, Anatoly 
Smirnov, a Russian mathematician, improved and extended Nagata's theorem, 
providing a more general and widely applicable characterization of metrizable spaces. 
This result became known as the Nagata-Smirnov Metrization Theorem.
    Before we prove this theorem, we first introduce a notion called the  sets.
Definition:  Set

A subset  of a space  is said to be a  set in  if it equals to the intersection 
of a countable collection of open subsets of .

Example 3.4:  Sets
In a metric space , each closed set is a  set. Given , let  denote
the -neighbourhood of . If  is closed, one can check that  is 

the desired  set. ||
Lemma 3.41:

Let  be a regular topological space with a -locally finite basis. Then 
every closed subset of  is a  subset of .

Proof:
Let  be an arbitrary closed subset of . Since  is open, Lemma 
3.39 tells us that there exists  such that

.

For each , let . We claim that  thereby 

showing that  is a  set. Indeed this follows directly from the above set 
equality due to De Morgan’s Laws. Therefore, as  was arbitrary, every 
closed subset of  is .

Lemma 3.42:

U ∩ V = ∅
□

T3 + A2 ⇒
⇏ T3 + A2

Gδ
Gδ

A X Gδ X
X

Gδ
X Gδ A ⊆ X Uε(A)

ε A A A = ⋂
n∈ℤ+

U1
n
(A)

Gδ

(X, TX) σ
(X, TX) Gδ (X, TX)

F (X, TX) X ∖F
{Vn}i

n=1n f t y ⊆ TX

X ∖F =
∞

⋃
n=1

Vn =
∞

⋃
n=1

Vn

n ∈ ℕ Un := X ∖Vn ∈ T F =
∞

⋂
n=1

Un

F Gδ
F

(X, TX) Gδ
□
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Let  be a normal topological space and let  be a closed  subset of
. There exists an  such that   and 

 .
Proof: Consult [58], Lemma 6.5.4.
    Now we have enough tools to prove the main result of this subsection. 
Theorem 3.43: Nagata-Smirnov Metrization Theorem

A topological space  is metrizable  it is regular and has a -locally 
finite base.

   There exist several equivalent formulations of this theorem in the literature but are 
rather complicated. We do not present a proof here, the readers could consult [1] The-
orem 40.3, [58] Theorem 6.5.5, while [62] Theorem 3.2.1 provides a proof with the 
notion “perfectly normal”, in [59], Athanasios Andrikopoulos offers a new proof of 
the Nagata-Smirnov Metrization Theorem based n Rudin’s Proof of Stone’s result on 
paracompactness (see [65]). One may also consult the original work of Nagata [64], 
and an overview on Nagata’s contribution to theory of generalized metric spaces [60] 
is also considered helpful.
    It is a fact that Urysohn’s Metrization is “more popular” than Nagata-Smirnov Me-
trization Theorem and this is due to some historical reasons. We recommend [63] for 
readers who are interested in.
    We state a very helpful interpretation of the metrizability we have explored so far, 
perhaps we can make it an equivalent (in fact, loosely-defined) definition for a 
topological space being metrizable.
Definition: Metrizable

A metrizable space is a topological space that is homeomorphic to a metric 
space.

    Hence the exploration of the metrizability turns out to be, in some cases, finding 
the homeomorphisms between topological spaces and specific metric spaces. This is 
not an easier task than the methods we have introduced so far, but it offers a great 
insight for other possible approaches.

3.7 Metrizability and Paracompactness
   Of course the Nagata-Smirnov Metrization Theorem has one limitation in that 
one needs to verify that a topological space has a -locally finite basis, which is often 
not an easy task. As the idea of a -locally finite basis was motivated by trying to 
weaken second countability via an idea similar to compactness, in this subsection we 
will introduce a generalization of compactness called paracompactness. It turns out 
that paracompactness is particularly useful for applications in topology and differe-
ntial geometry. However, our only goal will be to relate paracompactness to the 
existence of the -locally finite bases.

(X, TX) A Gδ
(X, TX) f ∈ C(X, [0,1]) f (a) = 0 ∀a ∈ A
f (x) > 0 ∀a ∈ X ∖A

(X, TX) ⇔ σ

σ
σ

σ
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   On the other hand, the Nagata-Smirnov Metrization Theorem gives one set of 
necessary and sufficient conditions for metrizability of a space. The theorem we are 
going to prove, called Smirnov Metrization Theorem, offers another such set of cond-
itions. It is a corollary of the Nagata-Smirnov Metrization Theorem and was first 
proved by Smirnov. For detailed description and treatment one may consult [61], 
[62], [66], and [67].
    This subsection, the same as the previous one, is divided into two parts. In the first 
part we introduce the paracompactness and its properties as well as some results on it; 
in the second part, we shall state and prove the Smirnov Metrization Theorem. 
Definition: Paracompact
	 A topological space  is said to be paracompact if  is Hausdorff and any open 
	 cover of  has a locally finite open refinement. 
    Recall that paracompactness is indeed a topological property and it is related to the 
refinement we introduced in the previous subsection. Same as its motivation, 
compactness is a stronger property than paracompactness. Every compact space is 
paracompact, but not every paracompact space is compact. In other words, parac-
ompact spaces exhibit some of the desirable properties of compactness without being 
necessarily compact. Moreover, every metrizable space is paracompact. This means 
that in metric spaces (spaces that can be equipped with a metric), paracompactness is 
a general property that holds. However, paracompactness extends beyond metrizable 
spaces to a broader class of topological spaces. 
Theorem 3.44: Paracompactness

Every paracompact Hausdorff space is normal.
Proof:

The proof is somewhat similar to the proof that a compact Hausdorff space is 
normal.
Step I: First one proves regularity.
Let  be a point of  and let  be a closed set of  disjoint from . The 
Hausdorff condition enables us to choose, for each , an open set  
about  whose closure is disjoint from . Cover  by the open sets , along 
with the open set ; take a locally finite open refinement  that covers . 
Form the subcollection  of  consisting of every element of  that intersects 

. Then  covers . Furthermore, if  then  is disjoint from . For  
intersects , so it lies in some set , whose closure is disjoint from . Let 

.

Then  is an open set in  containing . Because  is locally finite, it follows
.

Therefore  is disjoint from . Thus regularity follows.
Step II: Derive Normality.

X X
x

T2+ ⇒ T4

a X B X a
b ∈ B Ub

b a X Ub
X ∖B 𝒞 X

𝒟 𝒞 𝒞
B 𝒟 B D ∈ 𝒟 D a D

B Ub a
V := ⋃

D∈𝒟

D

V X B 𝒟
V = ⋃

D∈𝒟

D

V a
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To prove the normality, one merely repeats the same argument, replacing  by 
the closed set  throughout and replacing the Hausdorff condition by 
regularity.

Theorem 3.45: 
Every closed subspace of a paracompact space is paracompact.

Proof:
Let  be a closed subspace of the paracompact space ; let  be a covering of 

 by sets open in . For each , choose an open set  of  such that 
. Cover  by the open sets , along with the open set . Let 

be a locally finite open refinement of this covering that covers . Then the 
collection  is the desired locally finite open refinement.

    Let us now turn to the motivation of using the idea of paracompactness to simplify-
ing  the task of finding -locally finite bases. In particular, our goal in a regular 
topological space is to relate paracompactness and the existence of a -locally finite 
bases.
Lemma 3.46:

Let  be a regular topological space. Then the following conditions on  are 
equivalent: Every open covering of  has a refinement that is:
(i) An open covering of  and -locally finite.
(ii) A covering of  and locally finite.
(iii) A closed covering of  and locally finite.
(iv) An open covering of  and locally finite.

Proof: Consult [1] Lemma 41.3 or [58] Lemma 6.6.6.
Theorem 3.47: 

Every Metrizable space is paracompact.
Proof:

Let  be a metrizable space. We already know from Lemma 3.38 that given an 
open covering  of , it has an open refinement that covers  and is -locally 
finite. The preceding lemma then implies that  has an open refinement that 
covers  and is locally finite.

Theorem 3.48:
Every regular Lindelöf space is paracompact.

Proof:
Let  be a regular Lindelöf space. Given an open covering  of , it has a 
countable subcollection that covers , this subcollection is automatically 

-locally finite. Then applying the preceding lemma shows that  has an open
refinement that covers  and is locally finite.

a
A

□

Y X 𝒜
Y Y A ∈ 𝒜 A′￼ X
A′￼∩ Y = A X A′￼ X ∖Y ℬ

X
𝒞 := {B ∩ Y |B ∈ ℬ}

□

σ
σ

X X
X

X σ
X

X
X

X
𝒜 X X σ

𝒜
X

□

X 𝒜 X
X

σ 𝒜
X
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   However, the product of two paracompact spaces need not be paracompact. A famo-
us conterexample could be viewed in[68].
   We now introduce another terminology and then introduce the Shrinking Lemma. 
Definition: -compact

A space  is said to be -compact if  is a union of countably many compact 
sets.

   Just like the -local finiteness, the notion -compactness is also a combination bet-
ween the countability and a familiar term compactness. The -compact spaces often 
have nice topological properties. For example, they are Lindelöf spaces (every open 
cover has a countable subcover) and paracompact spaces (every open cover has a 
locally finite open refinement). Moreover, just like the paracompactness, a compact 
space is automatically paracompact, and, yes, -compact. Now we build up bridges 
between -compactness and paracompactness.
Proposition 3.49:

A locally compact -compact topological space is paracompact.
Proof: Consult [69].
Remark:

Moreover, we can prove that a closed subset of a paracompact space is 
compact. ||

    Now we prove a useful lemma: The Shrinking Lemma, known as the shrinking cri-
terion, is an important result in topology, particularly in the context of proving parac-
ompactness. It's a tool used to show that given a certain collection of open sets, you 
can find a "shrunken" subcollection that retains certain properties.
Lemma 3.50: Shrinking Lemma

Suppose that  is paracompact and let  be an open cover. Then there
exists a locally finite open cover  with  . (  for some 

 is allowed).
Proof:

Since paracompact spaces are regular. Then , there exists an open
neighbourhood  of  such that . We get a collection of open cover:

.
Since  is paracompact,  has a locally finite open refinement, for each 

, we can choose an  such that , i.e. choose a function 
,

so that . , we define . 

Since . Since  is locally finite, it follows 
that 

□

σ
X σ X

σ σ
σ

σ
σ

σ

X {Uα}α∈A
{Vα}α∈A Vα ⊆ Uα ∀α Vα = ∅

α

∀α, ∀x ∈ Uα
O x O ⊆ Uα

𝒪 := {O ⊆ X open  |O ⊆ Uα for some α}
X 𝒪

W ∈ 𝒪 α W ⊆ Uα
f : W → A

W ⊆ Uf(W ) ∀α ∈ A Vα := ⋃
f(W )=α

W

{W | f (W ) = α} = ∅ ⇒ Vα = ∅ W
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.

Since   with . One has .
[Claim]:  is locally finite.

Choose a point . Since  is locally finite, there exists a 
neighbourhood  of  such that  for all but finitely many

. Let , then it is finite. Since 
 only for , result follows.

   Now we introduce the last metrization theorem in this chapter. Moreover, the conn-
ection between the Shrinking Lemma and the Smirnov Metrization Theorem lies 
in their roles in proving metrizability:
   In practice, when proving that a space is metrizable, you may start by showing that 
it is paracompact (often using tools like the Shrinking Lemma) and Hausdorff. Once 
these conditions are met, the Smirnov Metrization Theorem guarantees the existence 
of a metric that makes the space metrizable.
   The Nagata-Smirnov metrization theorem gives one set of necessary and sufficient 
conditions for metrizability of a space. The Smirnov’s Metrization Theorem, on the 
other hand, is a corollary of the Nagata-Smirnov Theorem and was first proved by 
Smirnov. Before that, we shall introduce a notion called local metrizability, which is a 
topological property of a space that means that every point in the space has a neighb-
ourhood that is homeomorphic to a metric space.
Definition: Locally Metrizable

A space  is locally metrizable if every point  of  has a neighbourhood 
that is metrizable in the subspace topology.

Theorem 3.51: Smirnov Metrization Theorem
A space  is metrizable  it is a paracompact Hausdorff space that is locally 
metrizable.

Proof:
“ ”:
Suppose that  is metrizable. Then  is locally metrizable and Hausdorff; it is 
also paracompact, by Theorem 3.47. 
“ ”:
Conversely, suppose that  is a paracompact Hausdorff space that is locally 
metrizable. We shall show that  has a basis that is -locally finite. Since  is
regular, it will then follow from the Nagata-Smirnov Theorem that  is 
metrizable.
Cover  by open sets that are metrizable; then choose a locally finite open 
refinement  of this covering that covers . Each element  of  is 
metrizable; let the function  be a metric that gives the 

Vα = ⋃
f(W )=α

Uα = ⋃
f(W )=α

Uα

W ⊆ Uα ∀W f (W ) = α Vα = Uα
{Vα}α∈A

x ∈ X W
N x N ∩ W = ∅

w ∈ W A′￼:= { f (W ) |N ∩ W ≠ ∅}
Vα ∩ W ≠ ∅ α ∈ A′￼

□

X x X U

X ⇔

⇒
X X

⇐
X

X σ X
X

X
𝒞 X C 𝒞

dC : C × C → ℝ
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topology of . Given , let  denote the set of all points  of  
such that . Being open in , the set  is also open in .
Given , let  be the covering of  by all these open balls of radius

; that is, let .
Let  be a locally finite open refinement of  that covers  (Here we use
paracompactness.) Let  be the union of the collections . Then  is 
-locally finite.
[Claim]:  is a basis for . Then our theorem follows.

Let  be a point of  and let  be a neighbourhood of . We seek to find 
an element  of  such that . Now  belongs to only finitely
many elements of , say to . Then  is a neighbourhood 
of  in the set , so there is an  such that 

.
Choose  so that . Because the collection  
covers , there must be an element  of  containing . Because 
refines , there must be an element  of , for some 

 and some , that contains . Because
,

the point  belongs to , so that  must be one of the sets . Say
. Since  has diameter at most , it follows that

.

    Smirnov Metrization Theorem is a fundamental result in topology that establishes a 
connection between metrizability and topological properties, providing a criterion for 
when a topological space can be equipped with a metric structure.
	  

4.1 Manifold Introduction 
   It may arise the consideration that since the Euclidean spaces possess so many good 
properties and behaviours, in practice, can we always treat our spaces as Euclidean? 
The question is no since not every spaces have such a behaved structure. Then a 
natural question is that how do we use the properties in Euclidean when we are not 
working on it? This motivates the invention of manifolds. In fact, the motivation for 
defining manifolds lies in the need to create a mathematical framework that can 
capture and describe the geometry and topology of spaces in a flexible and versatile 
way. Manifolds provide a bridge between local geometry, which can be understood 
using calculus and linear algebra, and global topology, which focuses on the broader 
properties of spaces. The following introduction of the manifolds is from [37], we 
only include the necessary parts in it in order to derive the embedding theorems; for 
those who are interested in manifolds, we recommend [35], [36], [37], and [38], 
where in the last one more concrete results and examples are offered. 
    Our desired construction should contain these features: 	  

C x ∈ C BC(x, ε) y C
dC(x, y) < ε C BC(x, ε) X

m ∈ ℤ+ 𝒜m X
1/m 𝒜m := {BC(x,1/m) |x ∈ C and C ∈ 𝒞}

𝒟m 𝒜m X
𝒟 𝒟m 𝒟 σ

𝒟 X
x X U x

D 𝒟 x ∈ D ⊆ U x
𝒞 C1, ⋯, Ck U ∩ Ci

x Ci εi > 0
BCi

(x, ε) ⊆ U ∩ Ci
m 2/m < min{ε1, ⋯, εk} 𝒟m

X D 𝒟m x 𝒟m
𝒜m BC(y,1/m) 𝒜m

C ∈ 𝒞 y ∈ C D
x ∈ D ⊆ BC(y,1/m)

x C C C1, ⋯, Ck
C := Ci BC(y,1/m) 2/m < εi

x ∈ D ⊆ BCi
(y,1/m) ⊆ BCi

(x, εi) ⊆ U
□

117



	 (i)	 Capture the idea that in the vicinity of any point on it, the space behaves 	
	 	 like a Euclidean space. 
	 (ii)	 Provide a framework for studying smooth and continuous 	 	 	
	 	 transformations between spaces. 
	 (iii)	 Allow us to classify and distinguish spaces based on their topological 		
	 	 properties. 
    To this end, we adapt the following definition of an -dimensional manifold met all 
the expectations: 
Definition: -dimensional Topological Manifold 
	 An -dimensional topological manifold is defined to be a   topological  
	 space, for which every point has an open neighbourhood homeomorphic to an 
	 open set in . 
    Loosely speaking, manifolds are the mathematical objects that are used to model 
the abstract shapes of “phisical spaces”. A -dimensional manifold is a topological 
space that locally looks like  as the definition. For example, the surface of the 
Earth looks locally flat, like a piece of the plane, but globally its topology is that of a 
sphere. The universe is modeled by a 3-dimensional manifold because locally it looks 
like a piece of , but its global topology might be more complicated. Space-time is a 
4-dimensional manifold. The space of possible positions of a ball rolling on a plane is 
a 5-dimensional manifold. 
    The last condition in the -dimensional topological manifold means that a topolog-
ical manifold looks locally like , as we desired. Therefore the following terminol-
ogy is used. 
Definition: -dimensional Chart 
	 Let  be a topological space. An -dimensional chart  on  consists of a  
	 homeomorphism  from an open set  to an open set . 	
	 The components of  are denoted by 
 	 	 	  where , for , 
	 and are called the local coordinates on  corresponding to the chart .  
	 The inverse map  is called a local parameterization of . 
Definition: Topological Atlas 
	 Let  be a topological space. An -dimensional topological atlas on  (or  
	 -atlas on ) consists of a collection of -dimensional charts  
	  covering , i.e. . 

   With this terminology, note that a Hausdorff, second countable topological space is 
an -dimensional topological manifold if and only if it admits an -dimensional 
topological atlas. 
    When we define a new space, it is important to know the isomorphisms on it. In to-
pological spaces, we define such an isomorphism as homeomorphism; in manifolds, 
we define such an isomorphism as “diffeomorphism”. 
Definition: Diffeomorphism 
	 A map  between open sets  is called a homeomorphism if 
	  is bijective and both  and  are smooth. 

n

n
n T2 A2

ℝn

d
ℝd

ℝ3

n
ℝn

n
M n (U, φ) M

φ : U → Ũ U ⊆ M Ũ ⊆ ℝn

φ
φ := (x1

φ, ⋯, xm
φ ), xi

φ : U → ℝ 1 ≤ i ≤ m
M (U, φ)

φ−1 : Ũ → U M

M m M C0

M m
𝒜 := {(Uα, φα)}α∈I M M = ⋃

α∈I

Uα

n n

f : U → V U, V ⊆ ℝn

f f f −1
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    We used the term “smooth”, in order to make this lecture note as self-contained as 
it can be, we now offer a brief review on the smoothness. 
    The smoothness of a function is a fundamental concept in calculus and analysis th-
at describes how nicely a function behaves with respect to its derivatives. Smoothness 
is often associated with the concept of continuity, but it goes further by considering 
higher-order derivatives. 
Definition: Smooth Function 
	 A function is considered smooth if it has derivatives of all orders (i.e., it is  
	 infinitely differentiable). 
Remark: 
	 (i)	 Smooth functions have derivatives at every point and exhibit no abrupt 	
	 	 changes in their behavior. 
	 (ii)	 The smoothness of a function is often indicated by the notation ,  
	 	 which represents the class of smooth functions. 
    	 (iii)	 Examples of smooth functions include polynomial functions,  
	 	 trigonometric functions, and exponential functions.		 	 	 || 
    This definition is important since it can be related to not only the concept of analyt-
ic functions, but also to the concept of curvature: Analytic functions are a subset of 
smooth functions that can be expressed as a convergent power series (An analytic 
function is smooth and can be approximated with high precision using Taylor series 
expansions.) In the context of curves, the smoothness of a curve is related to the 
curvature. A curve is smoother if its curvature varies more slowly along its length. 
    Let us now go back to the discussion of diffeomorphism. Note that (as in the case 
of homeomophisms) the condition that  be smooth is not automatically satisfied. 
The standard example of a smooth bijection which is not a diffeomorphism is given 
by: 
	 	 	 	 	 	 . 
    In a local chart a topological manifold is described as an open piece of . To dev-
elop analysis on manifolds, one needs to introduce derivatives and integration of 
functions, notions which, locally in charts, should coincide with those from multi-
variable calculus. However, a function that is differentiable in one chart may fail to 
be differentiable in the other chart. To circumvent this, on a smooth manifold one 
only works with mutually compatible charts. 
Definition: Compatible Charts 
	 Let  be a topological space. Let  and  be two -dimensional  
	 charts on . The map  is called the change 	
	 of coordinates map or the transition map between the two charts. The two  
	 charts are said to be compatible if the transition map is a diffeomorphism. 
Definition: Smooth Atlas ( -atlas) 
	 An -dimensional topological atlas  on an -dimensional topological  
	 manifold  is said to be an -dimensional smooth atlas ( -atlas) if every two 
	 charts in  are compatible. 
Example 4.1: -Atlases 

C∞

f −1

f : ℝ → ℝ, f (t) := t3

ℝn

M (U, φ) (V, ψ) n
M φ ∘ ψ−1 : ψ (U ∩ V ) → φ(U ∩ V )

C∞

n 𝒜 n
M n C∞

𝒜
C∞
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	 On  there is a smooth atlas with only one chart . 		 	
	 Another smooth atlas is the collection of all diffeomorphisms between 	 	
	 open subsets of : 
	 	 . 
	 In fact,  consists of all charts compatible with .	 	 	 || 
    We now introduce a relation on atlases and we will prove that such a relation is in 
fact an equivalence relation. 
Definition: Equivalence Relation 
	 Let  be an -dimensional topological manifold. Consider the following  
	 relation on -dimensional -atlases on 		  
	 	 	 	  is a -atlas. 
Proposition 4.1: 
	 The relation  is an equivalence relation on the set of -dimensional  
	 -atlases of . 
Proof: 
	 Reflexivity and symmetry of the relation  are obvious. We will check that  
	 transitivity also holds. Consider three -dimensional -atlases on :   
	 and  such that  and . We need to show that each pair of 	
	 the charts  and  are compatible, i.e. that the map 
	 	 	 	 		 	 (4.1) 
	 is a homeomorphism. This map is clearly a bijective, with inverse being: 
	 	 	 	 .	 	 (4.2) 
	 So, it suffices to show that: 
	 [Claim]: (4.1) and (4.2) are smooth.	  
	 	 Let . Since  is an atlas, there exists a chart  
	 	 such that . Since  and  it follows that the 	 	
	 	 following maps are diffeomorphisms: 
	 	 	 	 	 	 (4.3) 
	 	 and 
	 	 	 	 .	 	 (4.4) 
	 	 In particular, the restriction of their composition is a diffeomorphism: 
	 	 	 	 . 
	 	 Hence, (4.1) and (4.2) are smooth when restricted to the open  
	 	 neighbourhoods  and , respectively,  
	 	 of  and . 
	 Since  is chosen arbitrarily, result follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    In the context of topological manifolds, a maximal atlas is a concept related to the 
structure and smoothness of the manifold. A maximal atlas on a topological manifold 

 is an atlas that is maximal in the sense that it cannot be extended by adding more 
compatible charts. In other words, it's the largest collection of charts that can be 
defined on  such that they cover  and are compatible with each other. 
Definition: Maximal Atlas 

ℝn 𝒜 := {(ℝn, Idℝn)}

ℝn

ℬ := {(U, φ) : U, V ⊆ ℝn are open and φ : U → V diffeomorphism}
ℬ (ℝn, Idℝn)

M n
n C∞ M :

𝒜1 ∼ 𝒜2 ⇔ 𝒜1 ∪ 𝒜2 C∞

∼ n C∞

M

∼
n C∞ M 𝒜1, 𝒜2

𝒜3 𝒜1 ∼ 𝒜2 𝒜2 ∼ 𝒜3
(U1, φ1) ∈ 𝒜1 (U3, φ3) ∈ 𝒜3

φ1 ∘ φ3 : φ3(U1 ∩ U3) → φ1(U1 ∩ U3)

φ3 ∘ φ−1
1 : φ1(U1 ∩ U3) → φ3(U1 ∩ U3)

p ∈ U1 ∩ U3 𝒜2 (U2, φ2) ∈ 𝒜2
p ∈ U2 𝒜1 ∼ 𝒜2 𝒜2 ∼ 𝒜3

φ1 ∘ φ−1
2 : φ2(U1 ∩ U2) → φ1(U1 ∩ U2)

φ2 ∘ φ−1
3 : φ3(U2 ∩ U3) → φ2(U2 ∩ U3)

φ1 ∘ φ−1
3 : φ3(U1 ∩ U2 ∩ U3) → φ1(U1 ∩ U2 ∩ U3)

φ3(U1 ∩ U2 ∩ U3) φ1(U1 ∩ U2 ∩ U3)
φ3(p) φ1(p)

p
□

M

M M
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	 An -dimensional -atlas  on the topological manifold  is said to be  
	 maximal if  for any -dimensional -atlas  on . 
Proposition 4.2: 
	 Any equivalence class of smooth atlases has a unique maximal representative. 	
	 The maximal -atlas  equivalent to the -atlas  is given by 
	 	 	 . 
Proof: Consult [37]. 
Definition: Differentiable Structure (Smooth Structure) 
	 An -dimensional differentiable structure (or smooth structure) on a 	 	 	  
	 topological manifold  is an equivalence class of -dimensional -atlas on  
	 . Equivalently, by Proposition 4.2, a differentiable structure is the same as a  
	 maximal atalas on . 
    A smooth manifold is defined by its maximal smooth atlas, which is a maximal col-
lection of charts (diffeomorphisms) that make the manifold a smooth space. Every 
smooth manifold has a maximal smooth atlas, and this atlas uniquely defines the 
smooth structure of the manifold. 
Definition: Smooth Manifold 
	 An -dimensional smooth manifold is a topological manifold endowed with an 
	 -dimensional smooth structure. 
Remark: 
	 The axiom of being second countable insures that manifolds are not “too big”.  
	 Let us mention that there are examples of Hausdorff topological spaces,  
	 endowed with a smooth atlas, but which are not second countable. An easy  
	 example is the disjoint union of an uncountable collection of manifolds of the 	
	 same dimension; e.g. an uncountable collection of points with the discrete  
	 topology is not second countable, and has a 0-dimensional atlas.		 	 || 

4.2 Embedding Manifolds 
    Embedding of manifolds is a fundamental concept in differential geometry and to-
pology. It involves the inclusion of one manifold into another in a way that preserves 
certain topological and geometric properties. The most basic form of embedding is a 
topological embedding, where the map  is required to be a homeomorphism onto its 
image .  In this case,  is a topological manifold, and  serves as a topologi-
cal isomorphism between  and . This is the main discussion we shall hold in 
this subsection and the main resources could be found in [1] and [46]. In differential 
geometry, we often work with smooth manifolds and smooth embeddings. We shall 
not talk about this concept and we recommend [35], [37], [38], and [45]. 
   Recall that a 1-manifold is often called a curve, and a 2-manifold is called a surfa-
ce. We shall prove that if  is a compact manifold then  can be embedded into a 
finite-dimensional Euclidean space. The theorem holds without the assumption of 
compactness, but the proof is a good deal harder. 
    First we introduce some termnilogies. Recall that the support of  is defi-
ned to be the closure of the set . Thus if  lies outside the support of , 
there is some neighbourhood of  on which  vanishes. 

n C∞ 𝒜 M
𝒜 ∼ ℬ ⇒ ℬ ⊆ 𝒜 n C∞ ℬ M

C∞ 𝒜max C∞ 𝒜
𝒜max := {(U, φ) : A ∪ {(U, φ)} is a C∞ atlas}

n
M n C∞

M
M

n
n

f
f (M ) f (M ) f

M f (M )

X X

f : X → ℝ
f −1(ℝ∖{0}) x f
x f
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Definition: Partition of Unity 
	 Let  be a finite indexed open covering of the space . An indexed 
	 family of continuous functions 
	 	 	 	 	  for , 
	 is said to be a partition of unity by  if 
	 (i)	  . 

	 (ii)	  . 

Remark: Possible Connection to Probability Theory 
	 While there can be conceptual connections between partitions of unity and 	 	
	 probability, they are distinct mathematical concepts with their own formalisms 	
	 and applications. Partitions of unity are primarily used in topology and 	 	
	 geometry, while probability theory deals with uncertainty and randomness. The 
	 connection between the two arises in specific applications where smooth and 	
	 continuous functions play a role in probabilistic modeling or density 	 	 	
	 estimation.	 	 	 	 	 	 	 	 	 	 	 || 
Theorem 4.3: Existence of Finite Partitions of Unity 
	 Let  be a finite open covering of the normal space . Then there 
	 exists a partition of unity dominated by . 
Proof: Consult [1] Theorem 36.1. 
   We have now equipped with all the backgrounds of proving the main theorem of 
this chapter: 
Theorem 4.4: Embedding 
	 If  is a compact -manifold then  can be imbedded in  for some positive  
	 integer . 
Proof: 
	 Cover  by finitely many open sets , each of which may be  
	 embedded in . Choose embeddings  . Being compact and  
	 Hausdorff,  is normal. Let  be a partition of unity dominated by ; 	
	 let . For each , define a function  by the rule 

	 	 	 	 . 

	 The function  is well-defined since the two functions of  agree on the  
	 intersection of their domains, and  is continuous because its restrictions to the 
	 open sets  and  are continuous. Now define 
	 	 	 	 , 
	 where there are  times Cartesian product. By the rule, one has 
	 	 	 	 . 
	 Clearly  is continuous. 
	 [Claim]:  is an embedding 
	 	 It suffices to show that  is injective since  is compact. Suppose that 
	 	 . Then  and  . Suppose   

{U1, ⋯, Un} X

fi : X → [0,1] i = 1,⋯, n
{Ui}

supp fi ⊆ Ui ∀i = 1,⋯, n
n

∑
i=1

fi(x) = 1 ∀x ∈ X

{U1, ⋯, Un} X
{Ui}

X n X ℝN

N

X {U1, ⋯, Un}
ℝn gi : Ui → ℝn ∀i

X f1, ⋯, fn {Ui}
Ai := supp fi i = 1,⋯, n hi : X → ℝn

hi(x) := {fi(x) ⋅ gi(x),  for x ∈ Ui

0 := (0,⋯,0),  for x ∈ X ∖Ai
hi hi

hi
Ui X ∖Ai

F : X → (ℝ × ⋯ × ℝ × ℝ × ⋯ × ℝ)
2n

F(x) = ( f1(x), ⋯, fn(x), h1(x), ⋯, hn(x))
F

F
F X

F(x) = F(y) fi(x) = fi(y) hi(x) = hi(y) ∀i fi(x) > 0
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	 	 for some ,  also, so that . Then 
	 	 	 	 . 
	 	 Since , it follows that . But  is  
	 	 injective, so that  as we desire. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Let us now turn this into a definition: 
Definition: Embedded Manifold 
	 A subset  is called an -diensional embedded manifold in  if around 
	 every point in  there exists an open set  and there exists a  
	 homeomorphism  where  is open, such that 
	 	 	 	 	 . 
	 We will call a diffeomorphism  as above a chart adopted to . 
    We enclose this subsection via the introduction of Whitney’s Embedding Theorem. 
Whitney's Embedding Theorem, also known as the Whitney Embedding Theorem, is 
a fundamental result in differential topology. It was proved by the American mathe-
matician Hassler Whitney in 1936. This theorem is a significant milestone in the 
study of smooth manifolds and provides insights into their embedding in higher-
dimensional Euclidean spaces. The motivation behind Whitney's Embedding 
Theorem and the study of embedding smooth manifolds into higher-dimensional spa-
ces lies in the desire to understand the structure and properties of smooth manifolds. 
Theorem 4.5: Whitney’s Embedding Theorem 
	 Any -dimensional smooth manifold for  is diffeomorphic to an  
	 embedded manifold in , which is a closed subset. 
Proof: Consult [47]. 

5.1 Group Theory 
    In this subsection, we will offer fundamental concepts in group theory, which, for 
most of the readers, could be seen as a review session, therefore skipping this 
subsection will does no harm to further exploration.  
    We follow the general introduction of the group theory. Our description of the gen-
eral abstract algebra follows from [56] and [73], for comprehensive treatment on 
group theory one may consult [71], [72], and [75]. 
Definition: Group 
	 A group is a set , together with a binary operation, namely , such that 	 	
	 , one has 
	 (i)	  .	 	 	 	 	 (Closure) 
	 (ii)	  .	 	 	 (Associativity) 
	 (iii)	  such that .	 (Existence of Identity) 
	 (iv)	  s.t. . 	(Existence of Inverse) 
   Although group structure seems easily to establish, however, its structure is far fro-
m simple. An impotant reason is that we do not assume , . 
This is an algebraic property and any group  with this additional condition will 
be called an Abelian group: 
Definition: Abelian Group 

i fi(y) > 0 x, y ∈ Ui
fi(x) ⋅ gi(x) = hi(x) = hi(y) = fi(y) ⋅ gi(y)

fi(x) = fi(y) > 0 gi(x) = gi(y) gi : Ui → ℝn

x = y
□

M ⊆ ℝn n ℝn

M U ⊆ ℝn

f : U → V V ⊆ ℝn

f (M ∩ U ) = (ℝn × {0}) ∩ V
(U, f ) M

n n ≥ 1
ℝ2m

G *
∀a, b, c ∈ G

a * b ∈ G
a * (b * c) = (a * b) * c
∃i ∈ G a * i = a = i * a
∃a−1 ∈ G a * a−1 = i = a−1 * a

∀a, b ∈ G a * b = b * a
(G, * )
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	 A group  is said to be Abelian if , . 
    One of the original motivations for studying Abelian group, according to [74], was 
number theory, in particular the study of the Ideal Class Group of a number ring and 
the group of units  notably by C. F. Gauss. More generally, abelian groups 
arise naturally in terms of Cohomology Theories, which serve to distinguish (geome-
tric) objects by algebraic invariants. 
    Now we introduce a way in constructing a new group with existing ones, this is ca-
lled the direct product of groups. Distinct from the Cartesian product, this operation 
preserves the group structure. It provides a way to combine groups in a systematic 
and structured manner. 
Definition: Direct Product 
	 Let  and  be two groups. On the Cartesian product given by  
	 we deine an operation  via 
	 	   and . 
	 Under this operation, we call  the direct product of  and . 
    The Cartesian product is a set-theoretical concept used to create a set containing all 
possible ordered tuples formed by taking one element from each of the component 
sets. It's a way to describe the combinations of elements from different sets. The 
direct product, on the other hand, is a concept used in group theory to create a new 
group from existing groups. It involves defining a binary operation on ordered tuples 
of group elements to form a new group. 
   In summary, both Cartesian product and direct product involve combining elemen-
ts from multiple sets or groups, but they serve different purposes and have distinct 
mathematical structures. The Cartesian product focuses on forming sets of ordered 
tuples, while the direct product is used to create new groups with specific algebraic 
properties. 
   In the above context, we know another structural property called algebraic proper-
ty, since we introduced the topological properties before, now we talk about their 
difference: 
Topological Properties: 
	 These properties are concerned with the geometric and spatial aspects of  
	 mathematical spaces, particularly topological spaces. They describe how points  
	 are related to each other in terms of proximity, continuity, and connectedness.  
	 Examples of topological properties include openness, compactness, continuity,  
	 and connectedness. 
Algebraic Properties: 
	 These properties are concerned with the algebraic structure of mathematical 		
	 objects, such as groups, rings, fields, and vector spaces. Algebraic properties 	
	 describe how elements in these structures interact under algebraic operations 	
	 like addition, multiplication, and inverses. Examples of algebraic properties 		
	 include associativity, commutativity, the existence of inverses, and 	 	 	
	 distributivity. 
    In summary, topological properties and algebraic properties represent different asp-
ects of mathematical structures. Topological properties are concerned with spatial rel-
ationships and continuity, while algebraic properties focus on algebraic operations 

(G, * ) ∀a, b ∈ G a * b = b * a

(ℤ/nℤ)*

(G, * ) (H, ∘ ) G × H
⋄

(g1, h1) ⋄ (g2, h2) = (g1 * g2, h1 ∘ h2) ∀g1, g2 ∈ G ∀h1, h2 ∈ H
G × H G H
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and their behavior within specific algebraic structures. Both types of properties are 
essential for understanding different mathematical contexts and structures. 
    We admitted that the direct product between two groups is also a group, let us now 
prove this is well-defined. 
Theorem 5.1: 
	 The direct product of two groups is also a group. 
Proof: 
	 Let us adopt the same notation as in the definition. First we must check that 
	 Step I: Direct product is closed. 
	 Let  and , then  
	 	 	 	  
	 since  and , closure follows. 
	 Step II: Associativity. 
	 Let  and , then 
	 	  
	 	 	 	 	 	        
	 	 	 	 	 	        
	 	 	 	 	 	       . 
	 Step III: Existence of Identity 
	 Since  and  are groups. We may denote  and  to be their  
	 identity elements, respectively. Then  and , one has 
	 	 	 . 
	 The other side holds analogously. 
	 Step IV: Existence of Inverse. 
	 , similarly, we also have 
	 , existence of inverse follows thereafter. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
  In fact, Theorem 5.1 could be generalized into “The direct product of countable 
groups is still a group”. Moreover, this statement is still valid when one replaces the 
countable condition by arbitrary. Therefore, the direct product of arbitrarily many 
groups, countable or not, finite or not, is still a group. We may say that, as we explai-
ned before, the group structure is preserved under the operation of taking direct 
product. 
    We now state some theorems without proof. These theorems contribute to the fund-
amental properties of a group. Readers who are not familiar with them could consult 
[56]. 
Theorem 5.2: Uniqueness of Identity and Inverse 
	 Let  be a group. Then the identity  of  is unique, as well as the  
	 inverse  for arbitrary element . 
Theorem 5.3: Invariant under Permutations 
	 Let  be a group and let  be its elements. Then regardless of 
	 how the product  is bracket, the result equals  
	 	 	 	 	 .	 	 	 (5.1) 

g1, g2 ∈ G h1, h2 ∈ H
(g1, h1) ⋄ (g2, h2) = (g1 * g2, h1 ∘ h2) ∈ G × H

g1 * g2 ∈ G h1 ∘ h2 ∈ H

g1, g2, g3 ∈ G h1, h2, h3 ∈ H
((g1, h1) ⋄ (g2, h2)) ⋄ (g3, h3) = (g1 * g2, h1 ∘ h2) ⋄ (g3, h3)

= ((g1 * g2) * g3, (h1 ∘ h2) ∘ h3)
= (g1 * (g2 * g3), h1 ∘ (h2 ∘ h3))
= (g1, h1) ⋄ ((g2, h2) ⋄ (g3, h3))

(G, * ) (H, ∘ ) iG iH
∀g ∈ G ∀h ∈ H

(g, h) ⋄ (iG, iH) = (g * iG, h ∘ iH) = (g, h)

(g, h) ⋄ (g−1, h−1) = (g * g−1, h ∘ h−1) = (iG, iH)
(g−1, h−1) ⋄ (g, h) = (iG, iH)

□

(G, ∘ ) iG G
a−1 a ∈ G

(G, ∘ ) a1, ⋯, an ∈ G
a1a2⋯an

(⋯(((a1a2)a3)a4)⋯an−1)an
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Theorem 5.4: Inverse Operation	  
	 Let  be a group and let  be its elements. Then: 
	 (i)	 . 
	 (ii)	 . 
Theorem 5.5: Cancellation Law 
	 Let  be a group and let  be its elements. If either  or  
	 , then . 
   Like the treatment of the size of a set in set theory, we are also interested in the size 
of a given group. This motivates us to define the size of a group, namely, the order of 
a group. In practice, most groups share the same order are isomorphic with each 
other. 
Definition: Order 
	 If  is a group. Then the order of , denoted by , is the number of  
	 elements in the set . We say that  is a finite group if its order is finite;  
	 otherwise, we say  is an infinite group. 
   In fact, just like the relationship between the structure of a topology on a given set 

 and the set-theoretical structure of itself. We also concern the relationships between 
the structure of a group on  with the corresponding binary operation  and structure 
purely on . Loosely speaking, a simple set  has no structure, it is barely a collec-
tion of elements, endowed with either topological structure or algebraic structure, we 
are able to study the behaviour of its elements via the given operations. However, 
since these structures are endowed to the set , it is natural to ask if the underlying 
structure (if any) provides insights for additional possible structure like topological 
structures. This is a rather philosophical study in mathematics, one need to consider 
under what conditions the underlying system should possess so that the endowed 
structures could lead to no contradictions, e.g. the Russell’s Paradoxes, where the 
statement that there is no such a set contanining all the sets. Sometimes we call it 
descriptive set theory, where the study of the axiomatic systems matters (e.g. Axiom 
of Choice). We shall go through this special topic in the sixth chapter. 
    In order to derive one of our main topics in this section, we shall offer some impor-
tant results on the order of a given set, still, without proof. Readers could consult [56] 
for detailed descriptions. 
Theorem 5.6: Order Operation	  
	 Let  be a group and let  be its element. Pick . Then 
	 (i)	 . 
	 (ii)	 , and, in particular, 
	 (iii)	 . 
Definition: Cyclic Group 
	 Recall that in a given group , the power of  is defined to be  
	  where there are  many ’s being multiplied. In particular, 
	 note that . A group  is said to be cyclic if there exists an element  
	  such that ,  such that . In particular, we say 
	 that  is generated by , and denote . 

(G, ∘ ) a, b ∈ G
(a−1)−1 = a
(ab)−1 = b−1a−1

(G, ∘ ) a, b, c ∈ G ab = ac
ba = ca b = c

(G, ∘ ) G |G |
G G

G

A
A ∘

A A

A

(G, ∘ ) a ∈ G n, m ∈ ℤ
aman = am+n

(am)n = amn

a−n = (a−1)n

(G, ∘ ) a ∈ G
an := a ⋅ ⋯ ⋅ a n a

a0 = iG G
a ∈ G ∀b ∈ G ∃n ∈ ℤ an = b

G a G := ⟨a⟩
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   A very important reulst on cyclic group is that every cyclic groups is abelian, the 
proof is rather trivial. 
Theorem 5.7: 
	 Every cyclic groups is Abelian. 
    In the previous chapter, we studied the concept of subspace topology, which is the 
restriction of the original space but preserves all the topological structures. In the 
algebraic aspects, we wish the same behaviour to hold. 
Definition: Subgroup 
	 Let  be a group. Then a subset  is called a subgroup of  if  
	 is a group under the same operation, namely . In this case, we use  to  
	 denote that  is a subgroup of . Similarly as we did in the elementary set  
	 theory, if  we say that  is a proper subgroup of . 
Remark: 
	 Every group is a subgroup of itself, and  is a subgroup of every group.	 || 
    The isomorphisms between topological spaces that preserve the topological struct-
ures is called homeomorphism, in algebraic aspect, we have the another such a 
morphism, called simply the isomorphism, which preserve the algebraic structures. 
Definition: Homomorphism (Group Homomorphism) 
	 Let  and  be two groups. Then a group homomorphism (or, simply, 
	 a homomorphism) from  to  is a function  such that 
	 	 	 	  . 
	 In particular, if  and  then  is the identity homomorphism. 
Definition: Isomorphism 
	 A homomorphism  which is bijective is called an isomorphism.  
	 Two groups are said to be isomorphic if there exists an isomorphism between  
	 them. 
    We make two remarks here. First recall a question we asked when proposed the ho-
memorphism, when do we say that two topological spaces are the same? The answer 
is that if there exists a homeomorphism between them, this is the same thing we 
concern in group isomorphisms. Secondly do bear in mind that all homemorphisms 
are continuous bijection, but a continuous bijection may not be a homeomorphism; 
but in group isomorphisms, according to the definition, the inverse, however, holds. 
Moreover, one may notice that when we define a new mathematical object, we 
always consider build up a morphism to preserve the underlying structures, but such a 
morphism may behave differently. 
Definition: Endomorphism 
	 A homomorphism from a group to itself, e.g. , is called an 	 
	 endomorphism. 
Definition: Automorphism 
	 An endomorphism which is also an isomorphism is called an automorphism. 
    In topology, we did not assign special names for the mapping inside the same spac-
e. But in group theory, we do concern these mappings. This is because the different 
mathematical objects we are dealing with. In summary, group theory and topology 
have different objectives and deal with different mathematical structures. Group 

(G, ∘ ) H ⊆ G (G, ∘ ) H
∘ H ≤ G

H G
H < G H G

{i}

(G, ∘ ) (H, * )
G H α : G → H

α(g1g2) = α(g1)α(g2) ∀g1, g2 ∈ G
G = H α = IdG α

α : G → H

α : G → G
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theory focuses on algebraic structures and internal mappings (automorphisms) that 
preserve the algebraic properties of groups. Topology focuses on the topological 
properties of spaces and continuous mappings between different spaces. The concept 
of homeomorphisms in topology serves a similar role to automorphisms in group 
theory but within the context of topological spaces. 
Proposition 5.8: Homomorphisms are closed under composition 
	 Let , , and  be three groups. Let  and  
	  be two homomorphisms. Then the composition  is  
	 also a homomorphism. 
Proof: 
	 Let . Then . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    The kernel of a group homomorphism is a subgroup that captures the elements ma-
pping to the identity element in the target group. It plays a fundamental role in group 
theory, helping to detect homomorphisms, understand injectivity, and relate the 
domain and codomain groups through important theorems like the First Isomorphism 
Theorem. It is a valuable tool for studying the structure and relationships between 
groups. 
Definition: Kernel 
	 If  is a homomorphism. Then the kernel of  is defined to be the set 
	 	 	 	 	 . 
Theorem 5.9: 
	 Let  be a homomorphism and let  be an element. Then 
	 (i)	 ,	  
	 (ii)	 . 
Proof: Consult [56] Theorem 4.10. 
Definition: Center 
	 If  is a group. Then the center of , denoted by , is defined to be  
	 the set of elements in  that commute with everything in . That is to say, 
	 	 	 	 . 
Theorem 5.10: 
	 If  is a group, then  is a subgroup of . 
Proof:	  
	 Certainly   hence , existence of identity  
	 follows. If  and  ; thus , 	  
	 closure holds. Furthermore, if  and  . Inverting 
	 both sides yields   hence the existence of the  
	 inverse is valid, result follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Theorem 5.11: Subgroup Criterion 
	 Let  be a group and let  be a subset. Then  is a subgroup of   
	 (i)	 ; 
	 (ii)	 . 
Proof: Consult [56] Theorem 3.13. 

(G, ∘ ) (H, * ) (M, ⋄ ) α : G → H
β : H → M βα : G → M

x, y ∈ G βα(x ∘ y) = β(α(x) * α(y)) = βα(x) ⋄ βα(y)
□

α : G → H α
ker(α) := {g ∈ G |α(g) = iH}

α : G → H g ∈ G
α(iG) = iH
α(gn) = (α(g))n

(G, ∘ ) G Z(G)
G G

Z(G) := {z ∈ G |az = za ∀a ∈ G}

G Z(G) G

iGa = a = aiG ∀a ∈ G iG ∈ Z(G)
y, z ∈ Z(G) a ∈ G ⇒ yza = yaz = ayz yz ∈ Z(G)

z ∈ Z(G) a ∈ G ⇒ a−1z = za−1

z−1a = az−1 ⇒ z−1 ∈ Z(G)

□

G H ⊆ G H G ⇔
i ∈ H
ab−1 ∈ H ∀a, b ∈ H
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Theorem 5.12: Alternative Subgroup Criterion 
	 Let  be a group and let  be a finite subset of . Then   
	 (i)	 ; 
	 (ii)	 . 
Proof: Consult [56] Theorem 3.14. 
    We shall introduce cosets, normal subgroup, and quotient group to enclose this su-
bsection. 
Definition: Congruent Modulo 
	 Let  be a group and let  be a subgroup. If , then we say  is  
	 congruent to  modulo , and we denote it as  if  
	 (or, in the case of an additive group ). 
Lemma 5.13: Equivalence Relation 
	 Let  be a group and  be a subgroup. Then the congruence modulo  is an  
	 equivalence relation on . 
Proof:	  
	 To show the equivalence is to show the following: 
	 Step I: Reflexivity 
	 If , then , and therefore . 
	 Step II: Symmetry 
	 If  and , then  and therefore  
	  lies in  as well. But this means that . 
	 Step III: Transitivity 
	 Suppose that , where  and . Then 
	 . But in this case,  contains their product, .  
	 Thus, it follows that . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Lemma 5.14: Equivalence Class 
	 Let  be a group and let  be a subgroup. If , then its equivalence class 
	 with respect to congruence modulo  is the set . 
Proof: 
	 If , then , so , for some . Thus,  
	 , which is in our set. Conversely, if , for some , then  
	 , and therefore . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Definition: Left Coset 
	 Let  be a group,  and . Then the left coset of  with respect to   
	 is the set , which is denoted . (If the group operation is  
	 addition, then we will write .) 
   In summary, cosets are an important concept in group theory, providing a way to 
partition a group into sets that share certain properties. They are a foundational conc-
ept for understanding group structure, Lagrange's theorem, and the formation of fac-
tor groups, which are critical tools in group theory and its applications. 
Remark: 
	 Cosets provide a natural way to partition a group into distinct sets that share  

G H G H ≤ G ⇔
i ∈ H
ab ∈ H ∀a, b ∈ H

G H a, b ∈ G a
b H a ≡ b( mod H ) a−1b ∈ H

−a + b ∈ H

G H H
G

a ∈ G a−1a = i ∈ H a ≡ a( mod H )

a, b ∈ G a ≡ b( mod H ) a−1b ∈ H
(a−1b)−1 = b−1a H b ≡ a( mod H )

a, b, c ∈ G a ≡ b( mod H ) b ≡ c( mod H )
a−1b, b−1c ∈ H H a−1bb−1c = a−1c

a ≡ c( mod H )
□

G H a ∈ G
H {ah |h ∈ H}

a ≡ b( mod H ) a−1b ∈ H a−1b = h h ∈ H
b = ah b = ah h ∈ H
a−1b = h ∈ H a ≡ b( mod H )

□

G H ≤ G a ∈ G a H
{ah |h ∈ H} aH

a + H := {a + h |h ∈ H}
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	 certain properties. This partitioning helps organize the elements of the group  
	 based on their relationships with a given subgroup. 
Theorem 5.15: 
	 Let  be a group and  be a subgroup. Then the left cosets of  in  partition 	  
	 . In particular, 
	 (i)	 Each  is in exactly one left coset, namely ; 
	 (ii)	 If , then either  or . 
   Two points should be kept in mind here. First, left cosets are not subgroups! Reme-
mber, the left cosets partition , and therefore the identity can only be in one of them, 
namely, . The rest cannot possibly be subgroups. Second, as we have already 
seen, when we write , the element  is not unique. Indeed, since the left cosets are 
equivalence classes, we have  if and only if . 
  We can now prove our first big result on finite groups, due to Joseph-Louis 
Lagrange. 
Theorem 5.16: Lagrange’s Theorem 
	 Let  be a finite group and  a subgroup. Then  divides . 
Proof: 
	 We have already seen that  is partitioned into left cosets; in particular,  is  
	 the sum of the sizes of these cosets. But for any , .  
	 Now, if , with , then by the cancellation law, . 
	 Therefore,  consists of precisely  distinct elements. It now follows that  
	 the order of  is  multiplied by the number of left cosets. In particular,  
	  divides .		  
	 	 	 	 	 	 	 	 	 	 	 	 	  
Definition: Index 
	 Let  be a group and . Then the index of  in , denoted by , 
	 is the number of left cosets of  in . 
Corollary 5.16.1:  
	 If  is a finite group and  is a subgroup, then . 
Definition: Right Coset 
	 Let  be a group and . Then for any , the right coset of  with  
	 respect to  is . (If  is an additive group, then we write 
	 .) 
    If  is abelian, then there is no distinction between left and right cosets. In nonabe-
lian groups, right cosets also partition , but possibly in a different way. 
   Let  be a subgroup of . We would like to form a group whose elements are the 
left cosets . Unfortunately, not just any subgroup will suffice; we need an extra 
condition. This is where normal subgroups come in. Recall that if , then the 
left cosets of  do not necessarily coincide with the right cosets. We need to consider 
subgroups for which they do coincide. 
Definition: Normal Subgroup	  
	 Let  be a group and  a subgroup. We say that  is a normal subgroup of  if 
	  . 

G H H G
G

a ∈ G aH
a, b ∈ G aH = bH aH ∩ bH = ∅

G
iH = H

aH a
aH = bH a−1b ∈ H

G H |H | |G |

G |G |
a ∈ G aH = {ah |h ∈ H}

ah1 = ah2 h1, h2 ∈ H h1 = h2
aH |H |
G |H |

|H | |G |
□

G H ≤ G H G [G : H ]
H G

G H [G : H ] = |G | / |H |

G H ≤ G a ∈ G a
H Ha = {ha |h ∈ H} G

H + a = {h + a |h ∈ H}
G

G
H G

aH
H ≤ G

H

G N N G
aN = Na ∀a ∈ G
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    Remember, when we say that , we do not necessarily mean that  
. Indeed, we could have  for some different . 

Theorem 5.17: 
	 If  is a subgroup of  and . Then  is a subgroup of .  
	 Furthermore, . 
Proof: 
	 We have  and therefore . If  
	 , then  
	 , 
	 since . Finally, if , then  
	 , since . Thus,  is a subgroup of  
	 . Also, given the definition of , it is clear that we can only get one  
	 element for each element of . But if , then by cancellation,  
	 . Thus, it follows that . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Let us now introduce our last terminology in this subsection. The quotient groups, 
which are a powerful tool in group theory that allow us to simplify the study of group 
structure by partitioning a group into cosets of a normal subgroup and defining a 
group operation on these cosets. They have wide-ranging applications in 
understanding group properties, solving equations in groups, and classifying group 
actions, making them a central concept in abstract algebra. 
Definition: Quotient Group 
	 Let  be a group and  be a normal subgroup. Then the quotient group  is 	
	 the set of all left cosets , with , under the operation  
	 . 
    The fact that the quotient group is indeed a group needs to be proved: 
Theorem 5.18: 
	 If  is any group and  is a normal subgroup, then  is a group of order  
	 . 
Proof: Consult [56] Theorem 4.6. 
Theorem 5.19: 
	 Let  be a group and  be a normal subgroup. Then the subgroups of  are 
	 precisely of the form , where  is a subgroup of  containing .  
	 Furthermore,  is normal in    is normal in . 
    Here is one more rather neat fact about quotient groups: 
Theorem 5.20: 
	 Let  be any group. If  is cyclic, then  is abelian. 
Proof: 
	 Let  and suppose that . Take any . Then  
	  for some integer  and , for some integer . Thus,  
	  and  for some . But noting that powers of  commute 
	 with each other and elements of  commute with everything, we have  
	 . Thus,  is abelian. 

aN = Na an = na
∀n ∈ N an = n1a n1 ∈ N

H G a ∈ G a−1Ha G
|a−1Ha | = |H |

i ∈ H i = a−1ia ∈ a−1Ha
a−1h1a, a−1h2a ∈ a−1Ha
(a−1h1a)(a−1h2a) = a−1h1(aa−1)h2a = a−1h1ih2a = a−1h1h2a ∈ a−1Ha

h1h2 ∈ H a−1ha ∈ a−1Ha
(a−1ha)−1 = a−1h−1a ∈ a−1Ha h−1 ∈ H a−1Ha
G a−1Ha

H a−1h1a = a−1h2a
h1 = h2 |a−1Ha | = |H |

□

G N G /N
aN a ∈ G

(aN )(bN ) = abN

G N G /N
[G : N ]

G N G /N
H /N H G N

H /N G /N ⇔ H G

G G /Z(G) G

Z = Z(G) G /Z = ⟨aZ⟩ b, c ∈ G
bZ = aMZ m cZ = anZ n
b = amy c = anz y, z ∈ Z a

Z
bc = amyanz = anzamy = cb G
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5.2 Topological Group 
   In this subsection we offer a method of marrying algebraic and topological structu-
res. The materials are mainly from [72], [76], [77], [78], and [79]. Before we start, let 
us first introduce some group notations: 
   A group  is written multiplicatively if the binary operation of the group is written 

;  and called multiplication; the unique inverse is written  and 
the map ;  is called inversion; and the identity is written . Given 

, we write 
	 	 	  and . 
For  we define  inductively by 
	 	 	     and ; and . 
It will also be convenient to write  and  for , which 
aligns the usual notation for left and right cosets when  is a subgroup. This notation 
has effect that in general  and . 
   We first introduce the semitopological group, then the topologized group, and last-
ly the topological group. It follows that semitopological group is finer than topologi-
zed group and the topologized group is finer than topological group. 
Definition: Semitopological Group 
	 We call a triple  a semitopological group when  is a  
	 topological space and  is a group, and the group operation  
	  that maps  to  is continuous in each variable  
	 separately. When there is no ambiguity as to what the operation and topology 
	 are, we will simply use  to denote a semitopological group. 
   Note that the function  is continuous in the variable  when the fu-
nction  defined by  is continuous for all  in . Similarly,  is 
continuous in  when the function  defined by  is continuous 
for all  in . 
   For  to be a topological group we require  to satisfy all of the conditions for a 
semitopological group as well as two more requirements. The group operation needs 
to be continuous in both variables together and the inverse mapping given by 

 needs to be continuous. 
Remark: 
	 Any group with the discrete topology is both a topological group and a  
	 semitopological group.	 	 	 	 	 	 	 	 	 || 
Theorem 5.21: 
	 A locally compact Hausdorff semitopological group with a group operation  
	 that is continuous in both variables together is a topological group. 
Proof: Consult [79], Theorem 3.14. 
Connection: Semitopological Group and Topological Group 
    A semitopological group is a group equipped with a topology such that the group's 
multiplication operation is continuous with respect to that topology. In other words, 

□

G
G2 → G (x, y) ↦ xy x−1

G → G x ↦ x−1 1G
S, T ⊂ G

S−1 := {s−1 |s ∈ S} ST := {st |s ∈ S, t ∈ T}
n ∈ ℕ0 Sn

S0 := {1G} Sn+1 := SnS S−n := (S−1)n

xS := {x}S Sx := S{x} x ∈ G
S

SS−1 ≠ S0 S2 ≠ {s2 |s ∈ S}

(G, TG, ∘ ) (G, TG)
(G, ∘ )

∘ : G × G → G (x, y) x ∘ y

G
∘ : G × G → G x

gy0
: G → G x → x ∘ y0 y0 G ∘

y gx0
: G → G y → x0 ∘ y

x0 G
G G

x → x−1
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it's a topological space and a group in which the group's binary operation is a continu-
ous map. 
   A topological group, on the other hand, is a group equipped with a topology such 
that both the group's multiplication operation and the inverse operation are contin-
uous maps. In other words, it's a topological space and a group in which both multi-
plication and inversion are continuous. 
Similarities: 
   Both semitopological groups and topological groups combine the algebraic struct-
ure of a group (with operations like multiplication and inversion) with the topological 
structure of a topological space. Moreover, in both cases, the group's multiplication 
operation is required to be continuous with respect to the given topology. This 
ensures that group elements can be combined in a topologically coherent way. 
Difference: 
   The primary difference lies in the treatment of the inversion operation. In a semito-
pological group, only the group's multiplication operation is required to be contin-
uous, while the inversion operation may or may not be continuous. In contrast, in a 
topological group, both the multiplication and inversion operations must be contin-
uous. Also, a topological group imposes stronger topological conditions on its topol-
ogy than a semitopological group. Specifically, a topological group's topology must 
be a Hausdorff ( ) topology, which ensures the separation of points, while a semit-
opological group does not require this level of separation. 
  In summary, both semitopological groups and topological groups combine group 
theory with topology, but they differ in the continuity requirements placed on the 
group operations. Semitopological groups require only the multiplication operation to 
be continuous, while topological groups require both multiplication and inversion to 
be continuous. Topological groups impose a stronger topological structure by 
requiring a Hausdorff topology, while semitopological groups allow for more 
flexibility in the choice of topology. 
Definition: Topologized Group	 
	 A group  that is also a topological space is called a topologized group. 
   Without any additional assumptions these are no more than their constituent parts: a 
group and a topological space. When the group inversion  and the group oper-
ation  are both continuous, where  has the product topology, we say that  
is a topological group. 
Connection: Topologized Group and Semitopological Group 
   A topologized group is a group equipped with a topology in a way that the group 
operations (multiplication and inversion) are continuous with respect to this topology. 
   Both topologized groups and semitopological groups combine the algebraic structu-
re of a group (with operations like multiplication and inversion) with the topological 
structure of a topological space. Moreover, in both cases, the group multiplication is 
required to be continuous with respect to the given topology. This ensures that group 
elements can be combined in a topologically coherent way. 
Differences: 
    The main difference is in the treatment of the inversion operation. In a topologized 
group, both the multiplication and inversion operations are required to be continuous. 

T2

G

G → G
G2 → G G2 G
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In a semitopological group, only the multiplication operation needs to be continuous, 
and there's no continuity requirement for inversion. Also, semitopological groups are 
a more relaxed concept than topologized groups. While a semitopological group 
imposes a certain degree of topological structure on the group, it doesn't require as 
much topological regularity as a topologized group. Topologized groups are a stricter 
subclass of semitopological groups. 
    In summary, both topologized groups and semitopological groups blend group the-
ory and topology, but they differ in the strength of their continuity requirements. 
Topologized groups impose continuity conditions on both multiplication and 
inversion, while semitopological groups require continuity only for multiplication, 
allowing more flexibility in the topology of the group. 
Comment: 
    In general, semitopological group is finer than topologized group and the topologi-
zed group is finer than topological group. 
   A semitopological group is a more relaxed concept than a topologized group. In a 
semitopological group, continuity is required only for the group multiplication, while 
the inversion operation is not necessarily continuous. This provides more flexibility 
in the choice of topology. 
    A topologized group imposes a stricter topological structure than a semitopological 
group. In a topologized group, both the group multiplication and inversion must be 
continuous with respect to the chosen topology. This ensures a stronger level of 
topological regularity. 
    A topological group is a special case of a topologized group where the topology is 
required to be Hausdorff ( ) and both the group multiplication and inversion are 
continuous. Thus, a topological group imposes the strongest topological conditions 
among these concepts. 
    So, in terms of the strength of topological conditions imposed, the hierarchy gener-
ally goes from semitopological group (weakest requirements) to topologized group 

T2

134



(intermediate requirements) to topological group (strongest requirements). This hier-
archy reflects the level of topological structure imposed on the underlying group. 
    In fact, there are other approaches other than semitopological group or topologized 
group. 

	  

    One may consult [79] for a detailed description on these subjects as well as the int-
eractions among them. We now focus on the description of the topological group. As 
we mentioned before, this is the marriage between topological properties and the 
algebraic properties. Now let us state the formal definition of a topological group. 
Definition: Topological Group 
	 We say that  is a topological group if  is a group and   
	 is a topological space such that, writing  and  the  
	 multiplication map  and the inversion map  are  
	 continuous. 
Definition: Isomorphism 
	 If  and  are topological groups we say that   
	 is an isomorphism if it is a group isomorphism and a topological  
	 homeomorphism. 
   We pause a little bit to consider a question: In defining a topological group, which 
property we focus more? The topological property or the algebraic topology? In fact, 
both the topological properties and the algebraic properties are equally important and 
are given significant attention. The goal is to combine the algebraic structure of a 
group with the topological structure of a topological space in a way that respects both 
structures. 
Algebraic Property: 
	 The algebraic property of a group is fundamental and central in defining a 	 	
	 topological group. The underlying set must form a group, meaning it must  
	 satisfy the group axioms (closure, associativity, identity element, and inverses).  
	 This algebraic structure is non-negotiable and serves as the foundation of the  
	 topological group. 
Topological Property: 
	 Equally important is the topological property, which is the choice of topology  
	 on the group that respects the group's algebraic operations. The topology must  
	 be compatible with the group structure in a way that ensures the group  
	 operations (multiplication and inversion) are continuous functions. This  
	 compatibility between the group and the topology is crucial to defining a 	  
	 topological group. 
Hausdorff Property (part of topological property): 
	 In many cases, a Hausdorff ( ) topology is preferred for a topological group.  
	 The Hausdorff property ensures that points can be separated, which is desirable  
	 for a topological space. It helps in dealing with limits, continuity, and  

(G, × ,TG) (G, × ) (G, TG)
M(x, y) := x × y Jx := x−1

M : G2 → G J : G → G

(G, ×G ,TG) (H, ×H ,TH) θ : G → H

T2

135



	 convergence in a more convenient manner. 
Balance: 
	 The challenge in defining a topological group lies in finding the right balance  
	 between the algebraic structure and the topological structure. The topology  
	 should be chosen so that it respects the algebraic properties, yet it should be  
	 flexible enough to allow for continuous group operations. 
    In summary, the definition of a topological group places equal importance on both 
the algebraic and topological properties. The focus is on finding a topology that 
harmonizes with the group's algebraic structure, ensuring that group operations are 
continuous while maintaining the group axioms. The choice of topology, its 
compatibility with group operations, and whether it is a Hausdorff topology are all 
considered carefully to achieve this balance. 
Lemma 5.22: 
	 Let  be a topological group. Then 
	 (i)	  is open   is open. 
	 (ii)	  is a neighbourhood of    is a neighbourhood of . 
    Here and elsewhere we will use  to denote the unit of a multiplicative group and  
to denote the unit of an additive one. 
Theorem 5.23: Topological Group Criterion 
	 Suppose that  is a group and  is a topological space. Then  
	  is a topological group , writing  for the set of open  
	 neighbourhoods of , we have 
	 (i)	 Let . Then  . 
	 (ii)	 If  then there exists an  with . 
	 (iii)	 If  then there exists an  with . 
	 (iv)	 If  and  then there exists an  with . 
    From time to time it is useful to have neighbourhood bases with further properties: 
Lemma 5.24: 
	 If  is a topological group we can find a neighbourhood basis  for  
	  consisting of open sets  with . 
   It is easy to define topological subgroups and quotient groups along the lines given 
in the next lemma: 
Lemma 5.25: 
	 If  is a topological group and  is a subgroup of , if  is equipped  
	 with the standard subspace topology then it is a topological group. Moreover, if  
	  is a normal subgroup of  then  equipped with the standard quotient 		
	 space topology (formally, the finest topology on  which makes the map  
	  given by  continuous) is a topological group. 
    However, it is important to realise that, without further conditions quotient topolo-
gical groups may not behave well. 
Lemma 5.26: 
	 Let  be a topological group and  a subgroup of . Then 
	 (i)	 The (topological) closure  of  is a subgroup. 
	 (ii)	 If  is normal, so is . 

(G, × ,TG)
xU = {xu |u ∈ U} ⇔ U
V x ⇔ x−1V e

e 0

(G, × ) (G, TG)
(G, × ,TG) ⇔ 𝒩a

a
a ∈ G N ∈ 𝒩e ⇔ aN ∈ 𝒩a

N ∈ 𝒩e M ∈ 𝒩e M2 ⊆ N
N ∈ 𝒩e M ∈ 𝒩e M ⊆ N−1

N ∈ 𝒩e a ∈ G M ∈ 𝒩e M ⊆ aNa−1

(G, × ,TG) 𝒩e
e N N−1 = N

(G, × ,TG) H G H

H G G /H
G /H

G → G /H x → xH

(G, × ,TG) H G
H H

H H
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	 (iii)	 If  contains an open set then  is open. 
	 (iv)	 If  is open then  is closed. 
	 (v)	 If  is closed and of finite index in  then  is open. 
    Therefore, we have the implications to the topological properties of the given topo-
logical group, namely, the subspace topology criterion, the normal criterion, the oepn-
nes and the closedness criterion. We now claim two results without proof. 
Lemma 5.27: 
	 If  is a topological group then  is a closed normal subgroup. 
Lemma 5.28: 
	 Let  be a topological group. Then the followings are equivalent: 
	 (i)	  is closed. 
	 (ii)	  is . 
	 (iii)	  is . 
   For a detailed and propert treatment on topological groups one may consult [76], 
[77], [78], and [79]. 

5.3 Categories and Functors 
   The main ingredients for this subsection and the upcoming one are from [3], [50], 
[80], [81], and [82]. 
  Category theory has been around for about half a century now, invented in the 
1940’s by Eilenberg and MacLane. Eilenberg was an algebraic topologist and 
MacLane was an algebraist. They realized that they were doing the same calculations 
in different areas of mathematics, which led them to develop category theory. Cate-
gory theory is really about building bridges between different areas of mathematics. 
    Recall that we say a function  has its domain in  and we call  the cod-
omain of . We denote by  while . Recall the definition we 
made in the previous chapters. 
Definition: Category 
	 A category  consists of: 
	 (i)	 A collection  of objects of . 
	 (ii)	 , a collection of morphisms between them, namely , 	 	
	 	 the collection of all morphisms, sometimes we denote  the  
	 	 collection of all morphisms in  connecting  and . 
	 (iii)	 An operation  from pairs of morphisms to objects as  
	 	 long as they are composable. We write  or  for . 

Remark: 
	 These data is subject to two axioms: 
	 (i)	 ,  such that  or , one has the  
	 	 identity morphism  such that . 
	 (ii)	 The composition “ ” is associative, i.e.  that are  
	 	 composable, one has .	 	 	 	 || 
    In the above statement, we used the term “composable”, this is defined as: 
Definition: Composable 

H H
H H
H G H

(G, × ,TG) I := {iG}

(G, × ,TG)
{iG}
G T2
G T0

f : A → B A B
f dom( f ) := A cod( f ) := B

𝒞
𝒞0 𝒞

∀a, b ∈ 𝒞0 𝒞1
Hom𝒞(a, b)

𝒞 a b
∘ : ( f, g) → f ∘ g

A f B f : A → B f ∈ 𝒞1

∀a, b ∈ 𝒞0 ∀f ∈ 𝒞1 f : a → b f : b → a
i i ∘ f = f = f ∘ i
∘ ∀f, g, h ∈ 𝒞1

(h ∘ g) ∘ f = h ∘ ( f ∘ g)
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	 Two morphisms  are said to be composable if , or  
	 the other way around.  
Remark: 
	 If  are composable, then they must have a composition .  
	 Moreover, every object  has an identity morphism .	 	 	 	 || 
Example 5.1: Categories 
	 (i)	 Set, where the objects are sets and the morphisms are functions. 
	 (ii)	 Topology, where the objects are topological spaces and the 	 	
	 	 morphisms are continuous maps. 
	 (iii)	 LCH, where the objects are locally compact Hausdorff spaces and 	
	 	 the morphisms are proper maps.	 	 	 	 	 	 || 
Definition: Small Category 
	 Since we do not require  or  to be sets, we call our cateogry  a small 		
	 category when they are sets. 
Theorem 5.29: The Duality Principal 
	 If  is a valid statement about categories, so is the statement  obtained by  
	 reversing all the morphisms. 
   Therefore, the category  obtained reversing all the direction of morphisms in  
is also a category. Furthermore, the duality principal tells us that every categorical 
concepts, theorems, definitions, and proofs have a dual conterpart obtained by 
reversing all the morphisms. 
Definition: Opposite Category 
	 Let  be a category, then the opposite category  is defined by setting  
	  and , . That is,  
	  in , one has  in . Given  in , we  

	 have  in . We define . 

Definition: Equivalence Relation on  
	 In general, an equivalence relation  on  is called a congruence if: 
	 (i)	 . 
	 (ii)	  for all  such that the composition is 	
	 	 valid. 
Remark: 
	 There is a category  with the same objects as  but -equivalence  
	 classes as morphisms.	 	 	 	 	 	 	 	 	 || 
Definition: Isomorphism 
	 The morphism  from  to  ( ) in a category  is said to be an  

	 isomorphism if there is a  such that  and . 
Example 5.2: 
	 If Set, then an isomorphism  is an invertible map. 
	 If Topology, then an isomorphism is a homeomorphism.	 	 	 || 
Definition: Terminal 

f, g ∈ 𝒞1 dom( f ) = cod(g)

f, g ∈ 𝒞1 f ∘ g
a ia

𝒞 :=
𝒞 :=

𝒞 :=

𝒞0 𝒞1 𝒞

φ φ−1

𝒞op 𝒞

𝒞 𝒞op
(𝒞op)0 := 𝒞0 ∀a, b ∈ 𝒞 Hom𝒞op(b, a) := Hom𝒞(a, b)
∀f : a → b 𝒞 f op : b → a 𝒞op a f b g c 𝒞

c gop
b f op

a 𝒞op ( f op ∘ gop) := (g ∘ f )op

𝒞1
∼ 𝒞1

f ∼ g ⇒ dom( f ) = dom(g) and cod( f ) = cod(g)
f ∼ g ⇒ f h ∼ gh and k f ∼ kg h, k

𝒞/ ∼ 𝒞 ∼

f a b a f b 𝒞

g ∈ 𝒞1 g ∘ f = ia f ∘ g = ib

𝒞 := f : a → b
𝒞 :=
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	 An object  in a category  is a terminal if for all object  in , there exists a  
	 unique morphism . 
Example 5.3: Terminal 
	 (i)	 Set has terminal objects, any one element category  is terminal since 
	 	 for any set ,  such that . 
	 (ii)	 Group has terminal objects, in the category Group of groups and  
	 	 homomorphisms, one element groups  is a terminal. Since for all 	 	
	 	 group   such that . 
	 Note that not all categories have terminal objects.	 	 	 	 	 || 
Proposition 5.30: Uniqueness 
	 Two terminal objects  are “uniquely” isomorphic. 
Proof: 
	 Since  is a terminal then . Similarly . Applying  
	 definition of terminal again yields a unique morphism in  but 
	  so this morphism has to be . Since  one has 
	 . Similarly,  so . Therefore  and  are  
	 isomorphic. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Definition: Initial 
	 An object  in a category  is said to be an initial if . 

    In later description, if there are no ambiguities, we shall denote  to state the 
fact that an object . Similar to the uniqueness of the terminal objects, initial 
objects are also “uniquely” isomorphic. This is a direct result of Theorem 5.29, in 
fact, we can even state that an object  is a terminal  it is an initial in . 
Example 5.4: Initial 
	 (i)	 In the category Set, the empty set is initial since for all set  there exists  
	 	 a unique function , which is the empty function. 
	 (ii)	 In the category Group, the one element group  is initial since for all  
	 	 group  there exists a unique homomorphism  such that  
	 	 , which is the identity element in . 
	 (iii)	 In the category , the zero vector space  is initial since for all  
	 	 vector space  there exists a unique linear map  such that 
	 	 .	 	 	 	 	 	 	 	 	 	 || 
    When we introduce a new space, it is natural to ask if there is a mapping between 
the elements inside. 
Definition: Morphisms between Categories 
	 A functor  from a category  to a category  is a pair of functions, namely, 
	  and  such that the followings hold: 
	 (i)	 So that , ,  

	 	 . 
	 (ii)	 , . 

t 𝒞 a 𝒞
f : a → t

{ ⋅ }
X ∃!f : X → { ⋅ } f (x) = ⋅ ∀x ∈ X

{i}
G ∃!f : G → {i} f (g) = i ∀g ∈ G

t1, t2 ∈ 𝒞

t1 ∃!g : t2 → t1 ∃!h : t1 → t2
Hom𝒞(t1, t2)

it1 ∈ Hom𝒞(t1, t1) it1 g ∘ h : t1 → t1
g ∘ h = it1 h ∘ g : t2 → t2 h ∘ g = it2 f g

□

i 𝒞 ∀a ∈ 𝒞0 ∃!i f a

a ∈ 𝒞
a ∈ 𝒞0

a ∈ 𝒞 ⇔ 𝒞op

X
φ : ∅ → X

{i}
G φ : {i} → G

φ(i) = iG G
Vectℝ {0}

V T : {0} → V
T(0) = 0⃗

F 𝒞 𝒟
F0 : 𝒞0 → 𝒟0 F1 : 𝒞1 → 𝒟1

∀a, b ∈ 𝒞 ∀a f b ∈ Hom𝒞(a, b)

F1( f ) ∈ Hom𝒟(F0(a), F0(b))
∀a ∈ 𝒞 F1(ia) = iF0(a)

139



	 (iii)	  preserves compositions, i.e. , . 

Example 5.5: Forgetful Functors 
	 We have the forgetful/underlying set functor  which forgets 	
	 the group structure: which forgets the group structure for a group ,  is 	
	 the set of elements of . Given a homomorphism between the groups: 
	 	 	 , such that . 
	 The  is the corresponding function.	 	 	 	 	 	 || 

6.1 Paradoxes and Axioms 
    In 1873, the German mathematician Georg Cantor discovered that the set of alge-
braic reals is countable. A few weeks later he was able to demonstrate that the set of 
all real numbers is uncountable. A new mathematical discipline was born: set theory. 
In the course of the next two decades, Cantor developed the fundamental concepts of 
this new discipline; the concepts of equipotent sets, order-isomorphic structures, 
cardinals and ordinals are all due to him. 
    Generally speaking, set theory is the study of collections of objects. This view was 
expressed by Cantor in his famous definition of a set: 
 	 “By a ‘set’ we mean any collection  into a whole of definite, distinct objects  
	  (which are called the ‘elements’ of ) of our perception or of our thought.” 
    If an element  belongs to a set , we write . It is also quite common to 
say in this case that  is a member of , and to refer to  as the membership 
relation. As we shall see, all relevant facts about sets can be expressed in terms of the 
membership relation. 
    The career of set theory has been impressive. In the first half of the 20th century, 
the new fields of set-theoretic topology, theory of real functions, and functional 
analysis evolved. Each of these disciplines is strongly rooted in set theory, albeit not 
exclusively. Even more importantly, set theory can be regarded as the foundation of 
all mathematics. It is possible to interpret the other branches of mathematics as the 
study of sets. This seems at first glance to be an implausible claim. For most people 
the real number  is just a single object, perhaps a point on the real line, but 
certainly not a collection of other objects. 
    To solve this ambiguity, we shall present compelling evidence for the possibility of 
founding all of mathematics on set theory. But why bother? Many mathematicians, 
especially those of the more applied persuation, never use even such basic set-
theoretic tools as arithmetic of infinite ordinals in their research. Would it be more 
reasonable to study set theory just as a separate discipline, rather than trying to fit all 
other disciplines into a set-theoretic straightjacket? Or, if the topologiests really 
cannot live without the straightjacket, shouldn’t at least the applied areas be spared? 
    This suggestion misses the point on two counts. First, it is one thing to claim that 
set theory could in principle serve as a foundation for all of mathematics, including, 
say, differentail equations; and it is quite another thing to seriously propose that the 
Navier-Stokes equations should be expressed in the language of set theory. Second, 
there is a definite advantage to having a single framework for the separate 
subdisciplines of mathematics. Different branches of mathematics build on each 

F1 ∀a f b g c F1(g ∘ f ) = F1(g) ∘ F1( f )

U : Group → Set
G U(G)

G
φ : G → H U(φ) : U(G) → U(H )

U(φ)

M
m M

m M m ∈ M
m M ∈

2
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other. Analytic functions are heavily used in number theory, for example. If each 
branch of mathematics had its own separate foundations, each use of a theorem from 
another subfield might raise foundational issues. The existence of a common, albeit at 
times clumsy, framework makes such mathematical cross-breeding entirely 
unproblematic. It is exactly the existence of the established common framework that 
allows most practioners to just do mathematics and to leave all foundational issues to 
the specialists: set theorists, logicians, and philosophers. 
    The suggestion “to spare at least the applied areas from the straightjacket of set 
theory” may sound funny, but it expresses a belief that is held in earnest by many 
mathematicians and science administrators: that one can draw a clear dividing line 
between applied and pure mathematics. Even those who do not share this view tend 
to think that there are clear-cut instances of belonging to the realm of either the pure 
or the applied. Any yet, the distance between the most applied and the most abstract 
may be surprisingly short. Consider probability theory. This is as applied a field as 
any. To a mathematician, it is just the study of probability measures. Theses are 
functions defined on certain -fields of sets, for instance on the Lebesgue measurable 
subsets of the unit interval. Once this framework for doing probability theory has 
been established, it is very natural to ask whether there exists a probability function 
defined on all subsets of the unit interval so that, as in the case of the familiar 
Lebesgue measure, each individual point has probability zero. This is one of the 
deepest and most perplexing problems in set theory. Not only is it unsolved; there are 
indications that it may even be unsolvable in a very strong sense. 
    Let us consider a hypothetical unsolved problem. Since this will be our substitute 
for a real problem, let us call it the Virtual Problem. Let us assume that the problem 
is to prove or refute the Virtual Conjecture. How would you like this: 
Theorem 6.1: Virtual Conjecture  
	 The Virtual Problem is unsolvable. 
    Well, if you have been working hard on the Virtual Problem without many luck, 
Theorem 6.1 may be a consolation prize. But could one possibly prove a theorem 
like Theorem 6.1? Yes and no. Intuitively speaking, if all of mathematics can be 
formulized in set theory, then also all modes of mathematical reasoning can be 
formalized. Thus, “the collected reasonings of all mathematicians of all times” 
become a mathematical object, and can be studied like any other mathematical object. 
It may be possible to prove that neither a proof nor a refutation of the Virtual 
Conjecture is among “the collected reasonings of all mathematicians of all times.” 
Does this constitute a proof of Theorem 6.1? Almost. The assumption that all 
mathematics can be formalized in set theory is an act of belief that does not lend itself 
to mathematical scrutiny. While we can be reasonably sure that set theory 
encompasses essentially all correct mathematical arguments that have been used by 

σ

141



mathematicians up to this point in history , there is always the somewhat remote 3

possibility that eventually somebody will discover an immediately recognizable 
mathematical truth that transcends set theory. Thus, if it can be established that 
neither a proof nor a refutation of the Virtual Conjecture is among “the collected 
reasonings of all mathematicians of all times,” something like the follwoing theorem 
will have been proved: 
Theorem 6.2: 
	 The Virtual Conjecture is unsolvable, unless currently used foundations of 	  
	 mathematics are changed. 
    Over the last three decades, set theorists have proved hundreds of theorems like 
Theorem 6.2. Such theorems are called independence results. The Virtual 
Conjecture does not have to be a strictly set-theoretical statement. It may be a 
problem in topology, algebra, functional analysis, or measure theory. 
    On the other hand, the foundations of mathematics have remained remarkably 
stable. Most mathematicians accept the axiomatic version ZFC  of set theory as a 4

reasonably good foundation of mathematics and see little reason to exchange it for 
something else . Thus, evidence is accumulating that many problems in set theory 5

and related fields may be unsolvable in an absolute sense. However, if they are, we 
can never be entirely sure of this. 
    Set theory not only serves mathematics by providing a foundation and allowing 
one to delineate the limits of the knowable. It also is good mathematics. Set-theoretic 
theorems and techniques can be used in many other branches of mathematics much in 
the same way as linear algebra is used in differential equations. This is true not only 
for the concepts and methods known already to Cantor, but also for more recent 
results like Zorn’s Lemma, the Erdös-Rado Theorem, or the Pressing Down Lemma. 
    The history of set theory has not always been a smooth ride. In fact, the start was 
rather bumpy. While some mathematicians embraced set theory eagerly, others were 
openly hostile. For example, David Hilbert said in 1925 that no one shall be able to 
drive us from the paradise that Cantor created for us. Henri Poincar  said in 1908 that é

 Of course, this becomes immediately a false statement if the deliberately vague term “set 3

theory” is replaced by a formal incarnation of it, like ZFC. In this case, the “immediately 
recognizable mathematical truth that transcends ZFC” could be the assertion that ZFC is 
consistent. However, if the Virtual Conjecture is something like the Continuum Hypothesis, then 
the intuitive picture drawn here will do for a reasonably accurate first approximation of the notion 
of an independence result.

 The letters stand for Zermelo and Fraenkel, who developed the system, and for one of the 4

axioms, called the Axiom of Choice.

 Not all mathematicians share this view. Mathematics can be developed in other frameworks. 5

Some of these are brands of set theory similar to the version ZFC discussed in this text; others 
are entirely different approaches. In this book, we concentrate almost exclusively on a 
presentation of ZFC. (The only exceptions are occasional discussions of set theory without the 
Axiom of Choice.) We are far from claiming superiority of ZFC over alternative foundations of 
mathematics. For whatever reason, it won the competition. It does a desent job; so let us stick to 
it. It should be pointed out through that, to the best of our knowledge, none of the competitors of 
ZFC resolves the question of truth or falsity of any statement whose independence of ZFC has 
been established by the method of forcing.
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future generations will look at set theory as a sickness, from which mathematicians 
will have recovered. 
    The power of the set concept lies in the possibility of treating collections of infin-
itely many objects  as a single entity . Many contemporaries of Cantor felt uneasy 
about this approach. The question as to whether infinity actually exists, or is just an 
abstraction, a remote possibility that can be considered and approximated, but never 
attained, is as old as philosophy itself. For the Greek philosopher Plato, infinity was 
as real  as any finite object. His disciple Aristotle took the opposite stand: Infinity 6

exists only as a potential that is never actually attained. The chasm between the 
Platonist and the Aristotelian approaches has permeated philosophical thought ever 
since. In essence, Cantor’s treatment of infinity followed Plato, whereas his 
opponents espoused Aristotelian thinking. 
    To the authors’s philosophy, it is hard for us to define the supremacy and assign 
this terminology to either one of them. Platonist or Aristotelian, whatever we 
mathematicians choose to trust, or, more precisely, whatever axiomatic system we 
choose to use, will finaly in some days in the future, fails to convey the importance as 
it did before. That is to say, if we have to give a definition of better axiomatic system, 
we need to accept that this definition will not last forever. To this end, the author 
shares Platonist’s view of infinity, that the forever will arrive, the infinity could be 
attain in an abstract way, that is, it is an idea dependent to the time. However, 
Bertrand Russel discovered that Cantor’s definition of a set leads to a contradiction. 
    Let us say that an object  has property , if  is a set, but  is not an element of 
itself, which will be denoted by . Let us collect all objects  with property  
into a set . Does  have property ? The question is no and this is the well-known 
Russell’s Paradox. 
Theorem 6.3: Russell’s Paradox: 
	 The assumption that the collection of all sets leads to a contradiction. 
Pf: 
	 Suppose that the collection  of all sets is a set, let 	 	 	 	  
	 	 	 	 , 
	 for example, . Since  is a set by assumption, then  is also a set, which  
	 means that , therefore . But by our construction we have ,  
	 contradiction. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Can one resolve Russell’s Paradox, or do we have to accept it as a refutation of 
set theory? Of course it can be resolved; otherwise this book would not exist. Let us 
forget the terminologies in Theorem 6.3 for a moment and observe the statement 
above it. As one may notice, we forgot to check whether  is a set. Property  has 
two clauses. If  is a set, then  has property  ; but if  is not a set, 
then  does not have property . In this latter case, the paradox would disappear. 
    But is  a set? Let us consider Cantor’s definition. In the spirit of his theory, colle-
ctions of definite, distinct objects of our thought are sets.  satisfies the criterion of 
distinctness, since its members are distinguished from its nonmembers by a certain 

m M

x 𝒫 x x
x ∉ x x 𝒫

M M 𝒫

𝒮
A := {x |x ∈ 𝒮, such that x ∉ x}

∅ ∉ A 𝒮 A
A ∈ 𝒮 A ∈ A A ∉ A

□

M 𝒫
M M 𝒫 ⇔ M ∉ M M

M 𝒫
M

M

 In a sense, infinity was even more real for Plato than the finite objects of our perception.6
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property. Thus, Cantor’s definition implies that  is a set, and we get Russell’s 
Paradox. 
    We have seen that Russell’s Paradox disappears if  is not a set. We have also seen 
that Cantor’s definition implies that  is a set. Is there perhaps something wrong 
with Cantor’s definition? 
    To see its flaw, let us reexamine the process by which the set  of our example w-
as constructed.  was the collection of certain definite objects of our thought, 
distinguished by a property . But how “definite” are these objects? If  might or 
might not be one of those, isn’t  a bit indefinite? So, maybe, we should disqualify 

 as a possible element of  on the grounds of its indefiniteness? 
    Nevertheless, admitting the modification leads us to a similar paradox; this time 
with the added clause of some vaguely understood “definiteness” in the defining 
property of . 
    But perhaps Cantor’s definition could be salvaged by giving a precise meaning to 
the word “definite?” Think of the elements of a set as building blocks, and the 
formation of a set as assembling these building blocks into a whole. It is reasonable 
to require that at the moment a given set  is being formed, all its building blocks 
must have already attained their final shape; in this sense they should be “definite.” 
Let us call this stance the architect’s view of set theory. It stipulates that although it 
is possible to contemplate all sets at once, each set has to be formed at some moment 
in an abstract “time,” and at that moment, all its building blocks must already have 
been available in their final shape . Also, once a set is formed, one should be able to 7

use it as a building block of other sets. 
    This view solves Russell’s Paradox in an unexpected way:  is not a set, because 
it could never have been established! At no moment in set-theoretic time do all the 
building blocks for the construction of  exist. 
    How can architect’s view of set theory be expressed with sufficient mathematical 
precision? The approach concentrates not on what sets are, but on how sets are being 
formed. At the beginning of set-theoretic time, the only set that can be formed is the 
empty set, since no previous building blocks exist. Once this set is formed, it can be 
used as a building block for further sets. The modern alternative to Cantor’s 
definition is to describe precisely by which operations new sets can be built from 
existing ones, and then to apply these operations successively to the empty sets. 
    Can we get all sets in this way? Perhaps not, but we can construct a universe of 
sets rich enough to encompass all known mathematics. This will do for starters. 
    The architect’s view of set theory can be formalized by axioms, similar to the 
way in which our space intuitions were formalized by Euclid more than two thousand 
years ago. The axiom system ZFC that will be studied in this book was proposed by 
E. Zermelo and A. Fraenkel early in 20th century. Once an axiom system has been 
formulated, one can ask whether a given mathematical statement or its negation 
follows from the axioms. The answer may be a “yes”, a “no”, or an independence 
result. 
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 Note that this view is a synthesis of Platonists and Aristotelian elements.7
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    One often talks about “naive” versus “axiomatic” set theory. This may suggest a 
much deeper partition than there actually is. 
    The relation between Cantor’s view of sets and the axiomatic treatment of the the-
ory is similar to that between our space intuitions and Euclidean geometry. The 
Euclidian axioms allow us to derive mathematical truths about points, lines, and 
planes deductively. This is important, because the deductive method accounts for the 
high confidence mathematicians have in the truth of their theorems. However, our 
“naive” space intuitions are a valuable guide in guessing these theorems and outlines 
of their proofs. Also, a similarities between geometric objects and features of the real 
world are grasped by our intuition, not by deductive reasoning. Without naivity, there 
would be no applications of mathematics. 
    When we say that somebody practices naive set theory, all we mean is that his/her 
arguments are based on Cantor’s definition of a set. The naive approach is quite often 
the most enlightening one. If a mathematician’s reasonings are also informed by a 
careful analysis of how sets are being built, we say that he/she practices axiomatic set 
theory. Frequently, this will just mean adopting the architect’s point of view without 
being concerned about details of the axiomatization . 8

    In this book, both modes of set-theoretical thought will be practices. We start out 
with a naive treatment of some of the basics: relations, functions, equipotency, order 
types and induction. As we go along, questions will arise that call for a more careful 
scrutiny. Of course, the choice of topics reflects our own biases and our desire to keep 
the number of pages finite. 
    To close this section, we introduce some ideas from Tractatus Logico, which exp-
lains the pictures perfectly well: 
	 “The world is all that is the case. The world is the totality of facts, not of  
	 thins. The world divides into facts.”	 Page 57. 
	 “The world is determined by the facts, and by their being all the facts. For the  
	 totality of facts determines what is the case, and also whatever is not the case.  
	 The facts in logical space are the world.”	 Page 58. 
    Perhaps, we need to accept that the world is dynamic, the absolute stable and abso-
lute movement of an object will fail to be valid. An existence is valid only for a 
particular period. For example, our ancients used to believe that the earth is plain and 
the sky is a big circle surronding the earth, before the development of sciences, this 
seemingly to be an unchangable fact for all, but when the time of its modification 
arrives, it arrives its infinity. Admit this concept or not, we end the section with the 
following saying again in Tractatus Logico: 
	 “What we cannot speak about we must pass over in silence.”	 Page 56. 
    The quote of Hilbert is taken from [83]. The quote of Poincar  is taken from [84]. 
Ca-ntor’s famous definition of a set is the first sentence of the article [85]. Detailed 
accounts of the history of set theory in general, and of Cantor’s work in particular can 
be found in the following book: [85], [86], and [87].  

é

 The use of the phrase “axiomatic set theory” in such instances may not be entirely appropriate. 8

But it is commonly used, and there is no need to further complicate the picture by naming 
additional modes of practicing set theory.
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    English translations of many of the most influential papers on the foundations of 
mathematics written between 1879 and 1931 are reprinted in the book [88].  
    The question to what extent Cantor’s personal view of sets included elements of 
what we call “the architect’s view” is a fascinating topic for philosophers and 
historians of science. It you are interested in this issue, we recommend the book [89]. 
    Bertrand Russell found his Paradox in June 1901. He described it in a letter to 
Frege written on June 16, 1902, and apparently also in an earlier letter to Peano. The 
paradox was first published in his book [90]. 
    The original version of the paradox was different from ours. We gave here a 
formulation of Russell’s Paradox that very naturally leads to its resolution. If you 
want to imagine the impression Russell’s Paradox must have made on his 
contemporaries, please keep in mind that they were lacking the benefit of hindsight 
which informed our choice or wording. 
    Most of the materials could be found in [91], [92], and [93], we follow the routine 
mostly by the advanced one (in saying advanced one, we only mean the one focused 
to graduate students) [93]. Some materials in [94] will be introduced to the author’s 
belief, ignoring such assertions will not affect the understanding. 

6.2 Axiomatic Set Theory 
    Axiomatic set theory is a branch of mathematical logic in which one deals with fra-
gments of the informal theory of sets by methods of mathematical logic. Usually, to 
this end, these fragments of set theory are formulated as a formal axiomatic theory. In 
a more narrow sense, the term “axiomatic set theory” may denote some axiomatic 
theory aiming at the construction of some fragment of informal (“naive”) set theory. 
    Set theory, which was formulated around 1900, had to deal with several paradoxes 
from its very beginning. The discovery of the fundamental paradoxes of G. Cantor 
and B. Russell gave rise to a widespread discussion and brought about a fundamental 
revision of the foundations of mathematical logic. The axiomatic direction of set 
theory may be regarded as an instrument for a more thorough study of the resulting 
situation. 
    The construction of a formal axiomatic theory of sets begins with an accurate desc-
ription of the language in which the propositions are formulated. The next step is to 
express the principles of “naive” set theory in this language, in the form of axioms 
and axiom schemes. A brief description of the most widespread systems of axiomatic 
set theory is given below. In this context, an important part is played by the language 
which contains the following primitive symbols: 
	 (i)	 the variables  which play the part of common names for 
	 	 the sets in the language; 
	 (ii)	 the predicate symbols  (sign of incidence) and  (sign of equality); 
	 (iii)	 the description operator , which means “an object such that ”; 
	 (iv)	 the logical connectives and quantifiers:  (equivalent),  (implies),   
	 	 (or),  (and),  (not),  (for all),  (there exists); 
	 (v)	 the parantheses (and). 

x, y, z, u, v, x1, ⋯

∈ =
ι ⋯

⇔ ⇒ ∨
∧ ¬ ∀ ∃
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The expressions of a language are grouped into terms and formulas. The terms are the 
names of the sets, while the formulas express propositions. Terms and formulas are 
generated in accordance with the following rules: 
	 (1)	 If  and  are variables or terms, then  and  are formulas. 
	 (2)	 If  and  are formulas and  is a variable, then , ,  
	 	 , , , , and  are formulas and  is a term; 	
	 	 the variable  is a term. 
   For instance, the formula  is tantamount to the statement “  is a 
subset of ”, and can be written as ; the term  is the 
name of all subsets  and, expressed in conventional mathematical symbols, this is 

. Let the symbol  mean “the left-hand side(LHS) is a notation for the right-hand 
side (RHS)”. Below a number of additional notations for formulas and terms will be 
presented: 
Notations: 
	 (a) The empty set:	 . 
	 (b) The set of all  such that :	 , 
where  does not enter freely in  (i.e., is not a parameter of the formula . 
	 (c) The unordered pair  and :	 . 
	 (d) The single-element set consisting of :	 .	  
	 (e) The ordered pair  and :	 	 ,  
where  denotes the ordered pair, instead of being an inner product signal. 
	 (f) The union of  and :	 . 
	 (g) The intersection of  and :	 . 
	 (h) The union of all elements of :	 . 
	 (i) The Cartesian product of  and :	  
	 	 	 	 	 . 
    These notations are already familiar to us as basic operations between well-defined 
set theory. Now we introduce the terminologies as for the functions: 
	 (j)  is a function:	  
	     Fnc  
	 (k) The values of the function  on the element : 
	     . 
    It therefore equips us with the ability to represent the standard infinite set , which 
is stated as the following: 
	 (l) The standard infinite set : 
	     Inf .	 	 	 	 	 || 
    The axiomatic theory  that follows is the most complete representation of the pri-
nciples of “naive” set theory. The axioms of  are: 
	 A1: Axiom of extensionality:	 , 
	     that is, if the set  and  contain the same elements, then they are equal. 
	 A2: Axiom scheme of comprehension:	 . 
	     where  is an arbitrary formula not containing  as a parameter. That is,  
	     there exists a set  containing only elements  for which . 

τ σ (τ ∈ σ) (τ = σ)
A B x (A ⇔ B) (A ⇒ B)

(A ∨ B) (A ∧ B) ¬A ∀x A ∃x A ιx A
x

∀x(x ∈ y ⇒ x ∈ z) y
z y ⊆ z ιw ∀y(y ∈ w ⇔ y ⊆ z)

z
Pz :=

∅ := ιx ∀y ¬y ∈ x
x A(x) {x |A(x)} := ιz ∀x(x ∈ z ⇔ A(x))

z A(x) A(x))
x y {x, y} := {z |z = x ∨ z = y}

x {x} := {x, x}
x y ⟨x, y⟩ := {{x}, {x, y}}

⟨ ⋅ , ⋅ ⟩
x y x ∪ y := {z |z ∈ x ∨ z ∈ y}

x y x ∩ y := {z |z ∈ x ∧ z ∈ y}
x ∪ x := {z |∃v(z ∈ v ∨ v ∈ x)}

x y
x × y := {z |∃uv(z = ⟨u, v⟩ ∧ u ∈ x ∧ v ∈ y}

w
(w) := ∃v(w ⊆ v × v) ∧ ∀uv1v2(⟨u, v1⟩ ∈ w ∧ ⟨u, v2⟩ ∈ w ⇒ v1 = v2)

w x
w′￼x := ιy⟨x, y⟩ ∈ w

z

z
(z) := ∅ ∈ z ∧ ∀u(u ∈ z ⇒ u ∪ {u} ∈ z)

A
A

∀x(x ∈ y ⇔ x ∈ z) ⇒ y = z
x y

∃y ∀x(x ∈ y ⇒ A)
A y

y x A
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   This system is self-contradictory. If, in A2, the formula  is taken as , the 
formula  readily yields , which is a contradict-
ion called Russell’s paradox as we introduced in Theorem 0.3. In order to have a 
well-defined axiomatic system to avoid such paradox, we intend to introduce the 
axiomatic systems of set theory may be subdivided into the following four groups: 
	 (a) 	 The construction of axiomatic systems in the first group is intended to 		
	 	 restrict the comprehension axioms so as to obtain the most natural means 
	 	 of formalization of conventional mathematical proofs and, at the same 	
	 	 time, to aviod the familiar paradoxes. The first axiomatic system of this 	
	 	 type was the system , due to E. Zermelo (1908). However, this system 	
	 	 does not allow a natural formalization of certain branches of  
	 	 mathematics, and the supplementation of  be a new principle — the  
	 	 axiom of replacement — was proposed by A. Fraenkel in 1922. The 	 	
	 	 resulting system is known as the Zermelo-Fraenkel system and is  
	 	 denoted by ZF. 
	 (b)	 The second group is constituted by systems of the axioms of which are 	
	 	 selected in the context of giving some explanations for paradoxes, for 		
	 	 example, as a consequence of non-predicative definitions. The group 	 	
	 	 includes Russell’s remified theory of types, the simple theory of T-types,  
	 	 and the theory of types with transfinite indices (see [114]). 
	 (c)	 The third group is characterized by the use of non-standard means of 	 	
	 	 logical deduction, multi-valued logic, complementary conditions of 	 	
	 	 proofs and infinite derivation laws. Systems in this group have been 	 	
	 	 developed to the least extent. 
	 (d)	 The fourth group includes modifications of systems belonging to the first 
	 	 three groups and is aimed at attaining certain logical and mathematical  
	 	 objectives. Only the system NBG of Neumann-Gödel-Bernays (1925) 		
	 	 and the system NF of W. Quine (1937) will be mentioned here. The  
	 	 construction of the system NBG was motivated by the desire to have a  
	 	 finite number of axioms of set theory, based on the system ZF. The  
	 	 system NF represents an attempt to overcome the stratification of the  
	 	 concepts in the theory of types. 
   The systems Z, ZF, and NF can be formulated in the language described above. The 
derivation rules, and also the so-called logical axioms, of these systems are identical, 
and form an applied predicate calculus of the first order with equality and with a des-
cription operator. Here are the axioms of equality and of the description operator: 
	 	 	 	 	 ,	 	 (2.3) 
where  is a formula not containing the bound variable  (i.e., it has no constituen-
ts of the type ), while  is obtained from the formula  by replacing 
certain free entries of the variable  with : 

, 
where the quantifier  means that “there exists one and only one ”, while the 
formula  is obtained from the formula  by replacing all free entries of 

¬x ∈ x A
∀x(x ∈ y ⇔ ¬x ∈ x) y ∈ y ⇔ ¬y ∈ y

Z

Z

x = x, x = y ⇒ (A(x) ⇒ A(y))
A(x) y

∀y, ∃y, ιy A(y) A(x)
x y

∃!x A(x) ⇒ A(ιx A(x))
∃!x x

A(ιx A(x)) A(x)
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the variable  with the term . The quantifier  can be expressed in terms of 
the quantifiers  and  and equality. 
    Now we shall introduce the non-logical axioms of the system Z: 
	 Z1:	 The axiom of extensionality A1. 
	 Z2:	 The pair axiom: .	 (the set  exists) 
	 Z3:	 The union axiom: .	 (the set  	 	
	 	 exists) 
	 Z4:	 The power set axiom: .	 (the set  exists) 
	 Z5:	 The separation axiom scheme: . 
	 	 (there exists a subset  consisting of the elements  in  for which  is 	
	 	 true). 
    The axioms Z2-Z5 are examples of axioms of comprehension; 
	 Z6:	 The axiom of infinity: . 
	 Z7:	 The axiom of choice: 	 	  
	 	 . 
	 	 (for any set  there exists a function  which selects, out of each non-	 	
	 	 empty element  of the set , a unique element ). 
    The above axioms are complemented by the regularity axiom: 
	 Z8:	 The axiom of regularity: 
	 	 , 
	 	 which is intended to postulate that there are no descending chains  
	 	 . Axiom Z8 simplifies constructions in , 		
	 	 and its introduction does not result in contradictions. 
   The system Z is suitable for developing arithmetic, analysis, functional analysis and 
for studying cardinal numbers smaller than . However, if the alephs are defined in 
the usual manner, it is no longer possible to demonstrate the existence in  of  and 
higher cardinal numbers. 
  The system ZF is obtained from Z by adding Fraenkel’s replacement axiom sche-
me, which may be given in the form of the comprehension axiom scheme: 
	 ZF9:	 . 
	 	 (there exists a set  consisting of , , where  runs through 	
	 	 all the elements of a set ). In other words,  is obtained from  if each 	
	 	 element  of  is replaced with . 
  The system ZF is a very strong theory. All ordinary mathematical theorems can be 
formalized in terms of ZF. Before we proceed to the NBG axiomatic system, let us 
pause to give a description of ZFC with a description by English, for which the 
author chooses to use the work of [93]. 
Definition: Axiom of ZFC 
	 (1)	 Axiom of Extensionality.  
	 	 If  and  have the same elements, then . 
	 (2)	 Axiom of Pairing. 
	 	 For any  and  there exists a set  that contains exactly  and . 
	 (3)	 Axiom Schema of Separation. 

x ιx A(x) ∃!x
∀ ∃

∃u ∀z(z ∈ u ⇔ z = x ∨ z = y) x, y
∃y ∀x(x ∈ y ⇔ ∃t(t ∈ z ∧ x ∈ t)) z

∃y ∀x(x ∈ y ⇔ x ⊆ z) Pz
∃y ∀x(x ∈ y ⇔ x ∈ z ∧ A(x))

z x z Ax

∃zInf(z)

∀z∃w(Fnc(w) ∧ ∀x(x ∈ z ∧ ¬x = ∅ ⇒ w′￼x ∈ x))
z w

x z w′￼x

∀x(¬x = ∅ ⇒ ∃y(y ∈ x ∧ y ∩ x = ∅))

x2 ∈ x1, x3 ∈ x2, x4 ∈ x3, ⋯ Z

ℵω
Z ℵω

∃y ∀x(x ∈ y ⇔ ∃v(v ∈ z ∧ x = ιt(A(t, v)))
y x x = ιtA(t, v) v

z y z
v z ιtA(t, v)

X Y X = Y

a b {a, b} a b
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	 	 If  is a property (with parameter ), then for any  and  there exists a 	
	 	 set  that contains all those  that have 	 	
	 	 property . 
	 (4)	 Axiom of Union. 
	 	 For any  there exists a set , the union of all elements of . 
	 (5)	 Axiom of Power Set. 
	 	 For any  there exists a set , the set of all subsets of . 
	 (6)	 Axiom of Infinity.  
	 	 There exists an infinite set. 
	 (7)	 Axiom of Choice. 
	 	 Every family of nonempty sets has a choice function. 
	 (8)	 Axiom of Regularity. 
	 	 Every nonempty set has an -minimal element. 
	 (9)	 Axiom Schema of Replacement. 
	 	 If a class  is a function, then for any  there exists a set  
	 	 . 
    The system NBG is obtained from ZF by adding a new type of variables — the cla-
ss variables  — and a finite number of axioms for forming classes, by 
means of which it is possible to prove formulas of the type 

, 
where  is a formula of NBG which does not contain bound class variables or the 
symbol . Since any formula  can be used to form a class, the infinite number of 
ZF axioms can be replaced by a finite number of axioms containing a class variable. 
The axiom of choice has the form 

 
and confirms the existence of a selection function, which is unique for all sets and 
which constitutes a class. 
    The system NF has a simpler axiomatic form, that is: 
	 (i)	 The axiom of extensionality 
	 (ii)	 The xaioms of comprehension in which a formula  can be stratified, 		
	 	 i.e., it is possible to assign to all variables of the formula  superscript 	
	 	 indices so as to obtain a formula of the theory of T-types, i.e., in the 	 	
	 	 subformulas of type  the index of  is one lower than the index of  
	 	 . 
    The system NF has the following characteristics: 
	 (1)	 The axiom of choice and the generalized continuum hypothesis are 	 	
	 	 disprovable. 
	 (2)	 The axiom of infinity is demonstrable. 
	 (3)	 The extensionality axiom plays a very important role. Thus, if the 	 	
	 	 extensionality axiom is replaced by the slightly weaker axiom: 
	 	 , which permits a large 	 	
	 	 number of empty sets, while the comprehension axioms of NF remain 		
	 	 unchanged, a fairly weak theory is obtained: The consistency of the 	 	
	 	 resulting system can be proved even in formal arithmetic. 

P p X p
Y = {u ∈ X |P(u, p)} u ∈ X

P

X Y = ∪ X X

X Y = P(X ) X

∈

F X
Y = F(X ) = {F(x) |x ∈ X}

X, Y, Z, ⋯

∃Y ∀x(x ∈ Y ⇔ A(x))
A(x)
ι A(x)

∃X(Fnc(X ) ∧ ∀x(¬x = ∅ ⇒ X′￼x ∈ x))

A
A

x ∈ y x
y

(∃u(u ∈ y) ∧ ∀u(u ∈ y ⇔ u ∈ z)) ⇒ y = z
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    Results concerning the interrelationships between the systems we have just descri-
bed are given below: 
	 (a)	 Any formula of ZF is demonstrable in NBG  it is demonstrable in ZF. 
	 (b)	 In ZF it is possible to establish the consistency of Z, completed by any 	
	 	 finite number of examples of the axiom scheme of replacement ZF9. 	 	
	 	 Thus, ZF is much stronger than Z. 
	 (c)	 The consistency of T is demonstrable in Z, so that Z is stronger than T. 
	 (d)	 NF is not weaker than T in the sense that it is possible to develop the 	 	
	 	 entire theory of types in NF. 
    The axiomatic approach to the theory of sets has made it possible to state a propos-
ition on the unsolvability in principal (in an exact sense) of certain mathematical 
problems and has made it possible to demonstrate it rigorously. The general 
procedure for the utilization of the axiomatic method is as follows: 
   Consider a formal axiomatic system  of the theory of sets (as a rule, this is ZF or 
one of its modifications) that is sufficiently universal to contain all the conventional 
proofs of classical mathematics, and for all ordinary mathematical facts to be deduci-
ble from it. A given problem  may be written down as a formula in the language . 
It follows that problem  cannot be solved (in either way) by tools of the theory , 
but since this theory  was assumed to contain all ordinary methods of proof, the 
result means that  cannot be solved by ordinary methods of construction, i.e.,  is 
“transcendental”. 
    Results which state that a proof cannot be performed in the theory  are usually 
obtained under the assumption that , or some natural extension of , is consistent. 
This is because on the one hand, the problem can be non-deducible in  only if  is 
consistent, but such consistency cannot be established by the tools offered by  (cf. 
Gödel incompleteness theorem), i.e., cannot be derived by ordinary tools. On the 
other hand, the consistency of  is usually a very likely hypothesis; the very theory  
is based on its truth. 
    Furthermore, the axiomatic approach to the theory of sets made it possible to accu-
rately pose and solve problems connected with effectiveness in the theory of sets, 
which had been intensively studied during the initial development of the theory by R. 
Baire, E. Borel, H. Lebesgue, S.N. Bernstein, N.N. Luzin, and W. Sierpiński. It is said 
that an object in the theory of sets which satisfies a property  is effectively defined 
in the axiomatic theory  if it is possible to construct a formula  of  for which it 
can be demonstrated in  that it is fulfilled for a unique object, and that this object 
satisfies property . Because of this definition it is possible to show in a rigorous 
manner that for certain properties  in  it is impossible to effectively specify an 
object which satisfies , while the existence of these objects in  can be established. 
But since the chosen theory  is sufficiently universal, the fact that the existence of 
certain objects in  is ineffecitve is also a proof of the fact that their existence cannot 
be effectively established by ordinary mathematical methods. 
    Finally, the methods of the axiomatic theory of sets make it possible to solve a nu-
mber of difficult problems in classical branches of mathematics as well: in the theory 
of cardinal and ordinal numbers, in descriptive set theory and in topology. 

⇔
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    Some of the results obtained by the axiomatic theory of sets are given below. Most 
of the theorems concern the axiomatic set theory of Zermelo-Fraenkel (ZF), which is 
now the most frequently employed. Let  be the system ZF without the axiom of 
choice Z7 (or simply ZF, as a terminology of ZFC), the results can be readily adapted 
to the system NBG as well. 
	 (i)	 It was shown in 1939 by K. Gödel that if ZF  is consistent, it will 	 	
	 	 remain consistent after the axiom of choice and the continuum 	 	 	
	 	 hypothesis in ZF. In order to prove this result, Gödel constructed a 	 	
	 	 model of the theory ZF consisting of the so-called Gödel constructive 		
	 	 sets (cf. Gödel constructive set, see [95]), this model plays an important  
	 	 role in modern axiomatic set theory. 
	 (ii)	 The problem as to whether or not the axiom of choice or the continuum 	
	 	 hypothesis is deducible in ZF remained open until 1963, when it was 	 	
	 	 shown by P.J. Cohen, using his forcing method, that if ZF  is consistent, 	
	 	 it will remain consistent after the addition of any combination of the 	 	
	 	 axiom of choice, the continuum hypothesis or their negations. Thus, 	 	
	 	 these two problems are independent in ZF. 
    The principal method used for establishing that a formula  is not deducible in ZF 
is to construct a model of ZF containing the negation of . Cohen’s forcing method, 
which was subsequently improved by other workers, strongly extended the possibil-
ities of constructing models of set theory, and now forms the basis of almost all 
subsequent results concerning non-deducibility. For instance: 
	 (iii)	 It has been shown that one can add to ZF, without obtainiing (additional) 
	 	 inconsistencies, the hypothesis stating that the cardinality of the set of 		
	 	 subsets of a set  may be an almost arbitrary pre-given function of the 		
	 	 cardinality of  on regular cardinals (the only substantial restrictions are 	
	 	 connected with König’s theorem). 
	 (iv)	 M.Ya. Suslin (1920) formulated the following hypothesis. Any linearly 	
	 	 totally ordered set such that any pairwise non-intersecting family of non-	
	 	 empty open intervals in it is at most countable must contain a countable 	
	 	 everywhere-dense subset. The non-deducibility of Suslin’s hypothesis in 	
	 	 ZF was established by Cohen’s method. 
	 (v)	 It was shown that the following postulate: “Any subset of real numbers 	
	 	 is Lebesgue measurable” is unsolvable in ZF  (without the axiom of 	 	
	 	 choice). 
	 (vi)	 The interrelationships of many important problems of descriptive set 	 	
	 	 theory with ZF was clarified. The first results relating to this problem 		
	 	 were demonstrated by P.S. Novikov. The methods of axiomatic set 	 	
	 	 theory made it possible to discover previously unknown connections 	 	
	 	 between the problems of “naive” set theory. 
	 (vii)	 It was proved that an effectively totally ordered continuum is absent in 	
	 	 ZF. Numerous results proved the absence of effectively defined objects 	
	 	 in the descriptive theory of sets and in the theory of ordinal numbers. 
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−

A
A
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