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1.1 Introduction to Topology

There are many terminologies named after the ‘topology-properties’ in the learning
of math, such as closedness, openness, compactness, etc. Before our formal definition
for a topological space, we here present a big picture for some key concepts we shall
encounter:

Topological Space: A topological space is a set equipped with a collection of subsets
(open sets) that satisfy certain axioms. These open sets define the notion of
"nearness" and help establish the structure of the space.

Continuity: In topology, continuity refers to a mapping between two topological
spaces that preserves the notion of closeness. A function is continuous if the preimage
of an open set is open.

Homeomorphism: A homeomorphism is a bijective mapping between two
topological spaces that is continuous, with a continuous inverse. It essentially
represents a one-to-one correspondence between two spaces that preserves their
topological properties.

Compactness: A topological space is compact if every open cover (a collection of
open sets whose union covers the space) has a finite subcover. Compactness captures
the idea of being "finite" or "bounded" in a topological sense.

Connectedness: A space is connected if it cannot be divided into two disjoint
nonempty open sets. Intuitively, it means that the space is not "broken" into separate
parts.

Metric Space: A metric space is a type of topological space where distances between
points are defined using a metric (a function that satisfies certain properties).
Euclidean spaces are examples of metric spaces.

Topology vs. Geometry: While geometry focuses on distances, angles, and
measurements, topology is concerned with more qualitative properties, like continuity
and neighborhoods. Topology studies shapes and spaces up to continuous
transformations.

Now we shall give a formal definition for the topological space, but before that, we
shall introduce a terminology we have been using all the time without knowing its
formal definition:

Definition: metric
A metric d on a set X is a functiond : X X X — [0,00) such that:

D dx,y) =d(y,x) (Symmetric)
(i) d(x,y) > 0 with equality © x =y  (Positive Homogeneous)
(i) d(x,z) <d(x,y)+d(y,z2) (Triangle Inequality)

holds Vx,y,z € X.

A metric, also known as a distance function, is a fundamental concept that quantifi-
es the distance or "closeness" between elements in a set. It provides a formal way to
measure how far apart two points are from each other. Metrics are used in various
mathematical contexts, including metric spaces, which are mathematical structures
where distances between points are defined.

Example 1.1: Euclidean metric
We have used many and many times the distance function in the R” space,
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the so-called Euclidean metric given by the formula:

d(x,y) = \/ D =), (1.1)
i=1

which offers the magnitude of the distance between two points x,y € R". ||

For those who already familiar with the notion ‘norm’, we want to talk about is ve-
ry subtle difference: A norm is a generalization of a metric for vector spaces, which
measures the "size" of vectors. While a metric measures distances between points, a
norm measures the magnitude of vectors.

It is now natural to give the formal definition for metric space:
Definition: Metric Space
A metric space is a set X equipped with a metric d. Metric spaces provide a
framework to discuss concepts like continuity, convergence, compactness, and
open/closed sets. Topology and analysis heavily rely on the notion of metric
spaces.

In basic analysis books, we have already seen the open/closed balls, which are
defined via interior points and limit points. Now we shall introduce the same termino-
logy but via the language of topology:

Definition: open ball (in metric space)
Let (X, d) be a metric space. For x € X an arbitrary point and » > 0 a constant,
an open ball B,(x) (or B(x, r)) centered at x of radius r is
B.(x):={yeX|dx,y)<r}={yeX|d(y,x) <r}. (1.2)

In later discussion, (X, d) will automatically represent a metric space with set X
equipped with metric d well-defined. Moreover, the last equality in (1.2) holds by the
symmetricity of metric. Furthermore, it shall make no confusion for closed balls in
metric space being defined with the same approach:

Definition: closed balls (in metric space)
Let (X, d) be a metric space. For x € X an arbitrary point and r > 0 a constant,
an open ball B,(x) (or B(x, r)) centered at x of radius r is

B.(x) :={y € X|d(x,y) <r} ={y € X|d(y,x) <r}. (1.3)

Lemma 1.1:
Let (X, d) be a metric space, for x € X and r > 0. B,(x) is an open ball
centered at x with radius . Then Vy € B,(x), 3p > 0 such that B,(y) C B,(x).
Proof:
Sincey € B(x), r > d(x,y) = p =r —d(x,y) > 0.
Thenz € B(y) © d(y,z) <p=>d(y,2) <r—d(x,y)
=>r>d(y,z)+dx,y) >d(x,z2) (Triangle Inequality)
which means z € B,(x) by (1.2). Thus z € B (y) = z € B,(x). Since z is

arbitrarily chosen, we have the desired result Bp(y) C B,(x).
[]

Under the definition of open ball, we could therefore derive the definition for a su-
bset being open in a metric space:
Definition: open set (in metric space)



Let (X, d) be a metric space, a subset U C X is said to be open if Vx € U,
dr > O such that B.(x) C U.
Since the complement of an open set in the whole space is closed, we shall not give
the definition of closed sets.
Properties: open set in metric space
Let (X, d) be a metric space, then
(1) @, X are open.
(1)) If U, Vare open in X, then U N Vis open in X.
(iii) If{U,} e are a collection of open sets in X with the index set / chosen
arbitrarily, then U U, 1s also open.
a€el
Note that, the second properties is valid when such a intersection is done among fi-
nite many open sets. We may also express that, openness is ‘closed’ under finite
intersections and arbitrary unions.
Properties: closed sets in metric space
Let (X, d) be a metric space, then
(1) @, X are closed.
(i) IfU,Vare closed in X, then U U Vis closed in X.
(i) If{U,} e, are a collection of closed sets in X with the index set I chosen
arbitrarily, then ﬂ U, 1s also closed.
a€el
On the contrary, being closed is ‘closed’ under finite unions and arbitrary intersect-
ions. Moreover, observing that we have @, X being closed and open at the same time,
this could be very counter-intuitive, but the fact is that being closed and being open
are not mutually excluded!

We now offer a proof of property (ii) of open sets in metric spaces, the proof of
others could be done with the similar approach:

Topology is usually define by the collection of open sets that could be found in a
given “space”, using the above statements, we give the criterion for being a topology.
Definition: Topology (on a set)

A topology T on a set X is a collection of subsets of X such that

n o,XeT.

(1))  Finite intersections of open sets are open: [f U, V&€ TthenUNV € T.

(iii)  Arbitrary unions of open sets are open: If {U,}; 1s a collection of open

sets such that U, € T Va then U U,eT.
a€cl
In topology, the concept of power sets plays a significant role in defining the struc-

ture of open sets and capturing the properties of a topological space. The power set of
a set is a collection of all possible subsets of that set, and it is sometimes used to
define the topology on the set.
Definition: Power sets

Given a set X, the power set of X, denoted by (X)), is the collection of all

subsets of X, including @ and X itself, is given by P(X) := {A|A C X}.
Remark:
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(i)  Atopology T over a set X satisfies T C P(X).
(11)  Elements of T are called open sets.
Moreover, the three conditions above are regarded as axioms; as an alternative, we
could state, instead, with the terms of closed sets:
Definition: Alternative defintion for Topology (on a set)
A topology T on a set X is a collection of subsets of X such that
1 g,XeTl.
(1) If U, Vare closed in X, then U U Vis closed in X.
(ii1) If{U,} e are a collection of closed sets in X with the index set / chosen
arbitrarily, then ﬂ U, is also closed.
acl
Now we are able to introduce some familiar terminologies we have encountered in
the basic analysis course:
Definition: closed, neighbourhood
Let (X, T') be a topological space.
(i) A C Xis called closed when X \A is open.
(1) U C Xis called a neighbourhood of x € X if there is an open set V
suchthatx € V. C U.

The term "open sets" carries over from the idea of open intervals and continuity in
real analysis. While the term might not immediately seem intuitive in more abstract
spaces, it reflects the foundational concept that open sets capture the notion of
closeness and neighborhoods, preserving the properties of continuity and
convergence.

Still, if there is no confusion, we shall always use (X, T') to represent a topological
space with a topology T over the set X.

The definition of a topological space that is now standard was a long time in being
formulated. Various mathematicians — Fréchet, Hausdorff, and others — proposed
different definitions over a period of years during the first decades of the twentieth
century, but it took quite a while before mathematicians settled on the one that
seemed most suitable. They wanted, of course, a definition that was as broad as
possible, so that it would include as special cases all the various examples that were
useful in mathematics — Euclidean space, infinite-dimensional Euclidean space, and
function spaces among them — but they also wanted the definition to be narrow
enough that the standard theorems about these familiar spaces would hold for
topological spaces in general. This is always the problem when one is trying to form-
ulate a new mathematical concept, to decide how general its definition should be. The
definition finally settled on may seem a bit abstract, but as you work through the
various ways of constructing topological spaces, you will get a better feeling for what
the concept means.

Example 1.2: Metric topology
A metric d on a set X defines a topology Tyon X, u € T, & Vx € U3r >0
such that B.(x) C U. T, s called the topology induced/defined by the metric d.

As we see in Example 1.2, a metric induces a topology. Since the concept of a

metric is closely connected to the idea of distance, and the metric topology captures

5



the concept of "closeness" and provides a natural way to define open sets in a
topological space.
Definition: Metric topology
Given a metric space (X, d ). The metric topology induced by the metric d is:
The open sets in the metric topology are the sets U such that for every point x
in U there exists a positive real number € > 0 such that the open ball
B.(x) C U, that 1s to say:
Uis open & Vx € X de > 0 such that B.(x) C U.

The metric topology is a fundamental example of a topological space induced by a
metric. It provides a natural way to define open sets and preserve the notions of
continuity, convergence, and closeness within a space.

Example 1.3: Finite Complement Topology
Let X be a set, let T, be the collection of all subsets U of X such that X \U

either is finite or is all of X. Then T is a topology on X, called the finite
complement topology. Let us now check that 7 is indeed a topology:
(i) @ and Xare in T}, since X — X is finite and X — ¢ is all of X.
(i) If {U,} is an indexed family of non-empty elements of 7}, to show that
U U, is in Ty is to show that:
X\uU, =uX\U,).
The latter set is finite because each set X \ U, is finite.
(i) IfU,, -, U, are non-empty elements of 7, to show that N U; is T;is to
show that:

n n
X\ﬂ U= U X\U).
i=1 i=1
The latter set is a finite union of finite sets and, therefore, finite. I
The finite complement topology is a specific type of topology defined on a set that
involves the complements of finite subsets. It's an interesting example of a topology
that highlights the interplay between open and closed sets.
Definition: Finite Complement Topology
Given a set X, the finite complement topology on X is defined by considering
the open sets to be those that are either the empty set & or have finite
complements (i.e., their complements are finite or the entire space X):
A subset U of X is open in the finite complement topology if
U = @ or if X\ U is finite or equal to X itself.
Definition: standard topology on R"
The standard topology onn[R” is the topology induced by the Euclidean

distance, i.e. d(x,y) = (2 (x; — yl-)z)%.
i=1

Example 1.4: Different metric may define the same topology
We see that a metric could induce a topology, we now give a fact that different
metric could provide the same topology!
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Let X = R?and d_, : R* x R? — [0,00). We have
doo(xvy) = maX{ |x1 - yl | P |.X2 - y2| }
(1)  Itis trivial that d_ is a metric.
(i)  Open balls with respect to d_, are open squares.
(111) But open sets for this metric are exactly the same as for the Euclidean
one. ]
Example 1.5: Discrete topology and indiscrete topology
Let X be a set, then the indiscrete topology 7., on X is defined to be {@, X }.
The discrete topology, on the other hand, is defined to be 7,,, = P(X). I
Remark:
(1)  Forany topology Ton X, T, C T.
(1)  For any topology Ton X, T C T.,..
(iii) For x any element of X, {x} € T ..
Above we use the terminology C, which is valid only if the topologies we are com-
paring are comparable, this naturally induces the following definition:
Definition: comparable topology
Suppose that 7" and 7" are two topologies on a given set X. I[f 7" D T, we say
that 7" is finer/larger/stronger than T; if T" properly contains 7, i.e. 7' D T, we
say that 7" is strictly finer than 7. We also say that 7 is coarser/smaller/weaker
than 77, or strictly coarser, in these two respective situations. We say that 7' is
comparable with T"if either 7" 2 Tor T 2 T'.
Remark:
Two topologies on X need not to be comparable! ||
Exercise 1.1:
There is a topology on R that does not come from any metric.
Proof:

Consider T := {@} U {U C R|R\U is finite }.

[Claim]: T is a topology
(i) @ € T by definition, R\@ € T.
(i) IfU,V e T are open, without loss of generality, we may assume
that they are all non-empty and both R\ U and R\ V are finite.
Want To Show: R\(U N V') is finite
R\(UnNnV)=(R\U)U (R\V) which is finite union of
finite set which is finite => UNV € T.
(ii1)) {U,},ea €T, {U,}, 4 non-empty, then
R\ U U, = ﬂ (R\U,) € T since finite intersection of finite set

acA aceA
1s also finite.

Thus, T is a topology coming from no metric in R.

Comment:



When we define a new space, there are many features as well as properties fall into
our interest. We need to identify the objects of this space (in this book, they are open
sets or closed sets; in most literature, mathematicians prefer the former one), we need
to see the relations between objects (such as binary relation, which attracts the most),
as comparability makes sense, it is natural to see operations within objects (e.g. when
studying numbers, we need to define addition; in topological terms, however, other
than basic set operations, we also care about the extension and restriction). Moreover,
we need to specify the generating objects. That is, when we have unlimited objects to
study, we wish the existence of some small set of objects containing all the
information, which is called basis, and there is an extension called subbasis, which is
useful when we need to use even less objects to describe the basis. These summarize
most features we care in a given space, when the number of spaces increases, it is
important to see if there are possible transformations within them (for example, in
topological sense, such a transformation is the continuous maps). Transformation
itself could be as concrete as it can be.

To summarize, we shall concern with:

(1)  Objects of topological spaces, the construction and properties;

(2) Relations among objects;

(3) Operations among objects;

(4)  Generating Basis;

(5) Transformations within spaces.

(6) Properties and key features.
The order may vary from case to case and the presence may also change. The order is
not related to their importance. In (6) we do apply the terminologies of properties and
features again, since in studying more concrete materials, we often care about the
topological aspects and functional aspects; for the former one we usually study the
openness, closedness, compactness, separability, etc. while the latter one offers
treatments upon the transformations. Furthermore, do remember that even these
properties and features share the same name in different areas (such as topology and
functional space), their formal definition and behaviour may vary! This is beacuse
these terms form a structure of the studying mathematical terms, but different terms
share different building blocks. Therefore same definition may fail in different areas.
Now let us go back to topology, we now start our discussion with respect to (4), the
generating basis:

1.2 Basis of Topology
For each of the examples in the preceding section, we were able to specify the top-

ology by describing the entire collection 7" of open sets. Usually this is too difficult.
In most cases, one specifies instead a smaller collection of subsets of X and defines
the topology in terms of that.
Definition: Basis

If X is a set, a basis for a topology on X is a collection & of subsets of X

(called basis elements) such that

(1)  Foreach x € X, there is at least one basis element B containing x.
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(i)

If x belongs to the intersection of two basis elements B, and B,, then
there is a basis element B; containing x such that B; C B; N B,.

If A satisfies these two conditions, then we define the topology T generated by A
as follows: A subset U of X is said to be open in X (that is, to be an element of T) if
for each x € U, there is a basis element B € 9% such that x € B and B C U. Note
that each basis element is itself an element of 7.

Let us now check that the collection 7" generated by the basis 93 is indeed a topol-
ogy on X, this description follows from James R. Munkres:

[Claim]: T is a topology on X.

(i)

(i)

(iii)

(iv)

If U is the empty set, it satisfies the defining condition of openness
vacuously. Likewise, X is in 7, since Vx € X d some basis elements

B € & containing x and contained in X.

Now let us take an indexed family {U,},c4 Where A is an arbitrary
index set, countable or not, finite or not, of elements of 7"and we wish to
arrive at the fact that U = U U, 1s indeed an element of 7.

a€A
Givenx € U Jda such that x € U,. Since U, is open, 3 a basis element

B € %Bsuchthatx € BC U,. Thenx € Band B C U, hence U is open.
Lastly we take two elements U, and U, of T and we wish to show that
U, n U, belongs to T as well. Without loss of generality, let us assume
that the intersection is not empty. Given x € U, N U,, choose a basis

B, € & containing x such that B; C U,; choose also a basis element

B, € & containing x such that B, C U,. The second condition for a
basis enables us to choose a basis B; containing x such that

B; C Us := U, N U,, therefore, U; N U, belongs to T by definition.
Finally, we generalize (ii1) to the case of finite intersection U; N ---N U,
of elements of 7T also lives in 7. This fact is trivial for n = 1, hence by
induction, we suppose it is valid for n — 1 and prove it for n:

We have (U;n---NnU,)=U;n--nU,_) N U, By hypothesis the
RHS belongs to 7; by the result we just proved, taking the intersection
Un--NnU,_;as U, in (iii) and U, as U,, we conclude the result.

Therefore, this definition is well-defined. Another way of describing the topology
generated by a basis is given by the following lemma:
Lemma 1.2: From Basis to Topology
Let X be a set; let & be a basis for a topology 7 on X. Then T equals to the
collection of all unions of elements of 3.

Proof:

To prove the statement is equivalent to prove that U B=T:

“C”'
- .

Be%

Given a collection of elements of %, they are also elements of 7. Because
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T is a topology, their union is in 7.

662”:

Conversely, given U € T, choose for each x € U an element B, of & such that
x €B,CU.ThenU = U B,, so U equals a union of elements of %.

xelU

[

This lemma states that every open set U in X can be expressed as a union of basis
elements. This expression for U is not, however, unique. Thus the use of the term
“basis” in topology differs drastically from its use in linear algebra, where the
equation expressing a given vector as a linear combination of basis vectors is unique.

We have discussed so far how to go from a basis to the topology it generates, now
we offer a technique where we could approach the reversed direction:

Lemma 1.3: From Topology to Basis

Let X be a topological space. Suppose that € is a collection of open sets of X

such that for each open set U of X and each x € U, there is an element C of €

such that x € C C U. Then € is a basis for the topology of X.

Proof:

The proof is divided into two parts, in the first part, we must show that € is

indeed a basis, i.e. we need to prove that € satisfies the two conditions for

being a basis. While in the second part, we have to show that the topology T

generated by € is a topology of X.

WTS I. € is a basis.

(1) Givenx € X, since X is itself an open set, there is, by hypothesis an
element C € € such thatx € C C X.

(11)  To check the second condition, without loss of generality, we may
assume that C, N C, # @VC,,C, € €. Letx € C; N C, be arbitrarily
chosen. Since C; and C, 1s open then so 1s C; N C,. Therefore, there
exists, by construction, an element C in € such thatx € C; C C; N G,.

WTS II: topology generated by & is a topology of X.

Let T be the collection of oepn sets of X; we want to prove that the topology 7’

generated by € equals to the topology T.

First, note that if U € T and if x € U, then there is an element C € € such

that x € C C U. It follows that U belongs to the topology 7. Conversely, if W

belongs to the topology 77, then W equals a union of elements of &, by the

preceding lemma. Since each element of € belongs to 7 and T is assumed to

be a topology, W € T.

[

We introduced the partial ordering in topological spaces, 1.e. we denote T C 7, for
two topologies 7 and 75 if T, is smaller than 7,. Now we shall introduce a criterion
interms of the bases for determining this partial relationship:

Lemma 1.4: From Basis to Comparison of Topologies
Let & and 9’ be bases for the topologies T and 77, respectively, on a set X.
Then the following are equivalent:
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(1)  T'is finer than 7.
(i) Vx € X and each basis element B € & containing x, there is a basis
element B’ € 9%’ such thatx € B’ C B.
Proof:
(1) = (1):
Let U be an element of 7 and x € U. Since & generates T = B € A such
that x € B C U. By (ii), there is an element B’ € 9%’ such thatx € B’ C B.
Then x € B’ C U, whichmeans U € T".
(1) = (1):
We are given x € X and B € 9% with x € B. Now B belongs to T by definition
and T C T' by (i); therefore, B € T'. Since T" is generated by %', there is an
element B’ € 9%B'such thatx € B’ C B.
[]
While not as fundamental as a basis, a subbasis provides a more flexible starting
point for constructing a topology by allowing unions and finite intersections of its
elements. Subbases are particularly useful when dealing with more complex spaces or
when generating a topology from multiple sources.
Definition: subbasis
A subbasis for a topology on a set X is a collection & of subsets of X such that
the collection of all possible finite intersections of elements from & forms a
basis for the topology on X. That is, if (X, T") is a topological space. A subset &

of T'is a subbasis of Tif B := {Sl-1 NN sl-k|k > 0,5, S, € cS’} 1s a basis

of T.

Remark:
A subbasis & for a topology on X is a collection of subsets of X whose union
equals X. The topology generated by the subbasis & is defined to be the
collection I of all unions of finite intersections of elements of &' I

1.3 Continuous Mappings
For readers who are familiar with category theory, they may regard the topologies

as objects and the continuous maps between them as morphisms; thus, it is necessary
to introduce the terminology of continuous mapping. Before that, let us briefly recall
what a category means:
Definition: Category

A category € consists of:

(i)  Acollection of subjects G,

(i1)  For each pair of objects a, b € 6, a collection of morphisms Hom(a, b)
0
(it may be empty if a # b). We write a J, borb L a if f € Hom(a, b).

(iii) For each object a € €, a morphism Id, € Hom(a, a).
(iv) For each triple of objects a, b, c € €, a composiition map given by
o : Hom(b, ¢) X Hom(a, b) = Hom(a, c)

11



(c<g—b,b<£a) |—>c§ifa.
Remark:
These data are subject to two conditions:
(1) Va,b € %yand Vf € Hom(a,b) wehavefold, =f =1d, .

(2)  The composition is associative, i.e. Vd bedpla we have that
ho(gef)=(heg)ef. |
A topological spaces and continuous mappings form a category known as the cate-
gory of topological spaces, often denoted as TOP. In this category, the objects are the
topological spaces, and the morphisms (arrows) between objects are the continuous
mappings between those spaces.
Definition: TOP
We claim that the topological spaces along with the continuous mappings
among them being a category, denoted as TOP, defined by:
(i)  The objects of the category TOP are the topological spaces.
(i)  Given two topological spaces (X, Ty) and (Y, Ty), a morphism (arrow)
from X into Y in TOP is a continuous mapping f : (X, Ty) = (¥, Ty).
(iii) The composition of morphisms in TOP is defined as the usual
composition of functions. If f : X — Yand g : Y — Z are continuous
mappings, then their composition g o f : X — Z is also a continuous
mapping.
(iv) For each topological space (X, Ty), the identity morphism Idy : X = X
is the continuous mapping defined as the identity function on (X, Ty).
Remark:
As we mentioned above, the composition of morphisms is associative in TOP,
ie.f: X—->Y, g:Y—>Zandh:Z > W,hoe(gef)=(hog)eof. [
Recall that a function f : R — R is continuous at x, € R if Ve > 0 36 > 0 such
that Vx e R |x —xy| <0 = |f(x) — f(xy)| < &. A function f : R — R is said to be
continuous if it is continuious Vx, € R.
Definition: continuous maps (in metric spaces)
Let (X, dy) and (Y, dy) be two metrci spaces. A functionf : X — Yis
continuous at x, € X if Ve > 036 > 0 such that
dy(x, xy) < 6 = dy(f(x), f(xy)) < e. We say such an f'is continuous if it is
continuous at every point of X.
Lemma 1.5:

dy(x, xp) < 5 = dy(f(x), f(x)) < € < Bs(x) C f~1(B(f(x)).
Proof:
LHS holds © x € By(x,) = f(x) € Bs(f(x))

& x € Bs(xg) = x € fTH(Bf (%)) © Bs(xy) € f (Bf (xp)))-
The other side is analogous.

[l

Lemma 1.5 tells us that a map between metric spaces is continuous if and only if
the preimage of open set is open.
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Lemma 1.6:
Let (X, dy) and (Y, dy) be two metric spaces, a function fis continuous in the
sense of f : X = ¥, 1.e. dy(x, xy) < 6 = dy(f(x), f(xy)) < &, if and only if
VU C Y open with respect to the topology T, , f ~1(U) is open in X with
respect to Ty,

Proof:
“="
Suppose that U C Y is open, if f~'(U) = @ then openness is guaranteed.
Without loss of generality, we may assume that f~'(U) # @. Let XgEf )
then f(x,) € U. Since U is oepn, then & > 0 such that B,(f(x,)) € U due to
continuity, 36 > 0 such that Bs(x,) C f _1(Bg( f&x))) Cf ~1(U). Therefore,
f~I(U) is open since X, 1s chosen arbitrarily.
‘e
Suppose that YU C Y open, f~}(U) is open. Choose x, € X and & > 0, we
know that open balls are open sets, thus B,(f(x,)) is open in ¥

=>f_1(B€(f(x0))) is oepn and x,, ef_l(Bg(f(xO))) = 36 > 0 such that

Bs(xy) gf‘l(Bg(f(xO))). By Lemma 1.5, dy(x, xy) <6 = dy(f(x), f(xg) < &
= f'is continuous at x,;. Moreover, since X, is chosen arbitrarily, we can
therefore conclude that f is continuous at everywhere in its domain.
[]
One important consequence of Lemma 1.6 is that continuity does not depend on
metric, it depends on the topology. More precisely, continuity of a function depends
not only on f but also its domain and co-domain topologies. Furthermore, one may
turn this lemma into the defintion of continuity, and it should not be very hard to see
that this definition is equivalent to the open-set definition. We now offer the open-set
perspective:
Definition: continuous maps (open-set perspective)
Let (X, Ty) and (Y, Ty) be two topological spaces. A functionf : X — Yis
continuous (with respect to Ty and Ty) if YU C Y open, f~1(U) is open in X.
We now give some important results on continuity. Before that, we need a termino-
logies taken from [6].
Remark:
(1)  The preimage of the intersection is the intersection of the preimages.
(i1))  The preimage of the union is the union of the preimages.
(111)) The image of the union is the union of the images.
(iv) The image of the intersection is a subset of the intersection of the
images.
Moreover, the preimage may not coincide with the inverse function. If certain
special conditions are satisfied, then the inverse function exists and we use the
same notation to denote that function. I
Theorem 1.7:
Let (X, T) and (Y, Ty) be two topological spaces and letf : X — Y be a
function. Then the following statements are equivalent:

13



(1)  fis continuous;
(11) Inverse image of every basis element of 7} is open;
(1) Inverse image of every subbasis element of Ty 1s open.
Proof:
To prove the equivalent relations is to prove that (i) < (ii) and (i1) < (ii1):
(1) = (11):
Let f be continuous. Since every basis element of 7y is open, its inverse image
1s also open.
(1) = (1):
To prove the inverse. Let % be a basis for Ty and let the inverse of every basis
element B € By be openin X, i.e. f~!(B) € Ty. Note that any open set V C Y
can be, according to the definition, written as a union of the basis elements, i.e.
V= U B, hence f~1(V) =f_1( U Ba>, according to the above remark, we
a€A acA
have f~! ( U Ba) = Uf‘l(Ba) for some {By, -+, B4} € ABy. Since the
acA acA
union of open sets is open hence f~'(V) is open.
(11) = (i11):
Since every subbasis element is in the basis it generates, inverse image of
every subbasis elements of Y is open in X.
(111) = (11):
Let now &'y be subbasis of ¥ which generates the basis Jy. Let the inverse
image of every subbasis element S € & be open in X, i.e. f~1(S) € Ty. Since
any basis element can be written as a finite intersection of subbasis elements,

n n
1Le. B = ﬂ \Y and f~1(B) = ﬂf‘l(Sl-). Since finite intersection of open sets is
i=1 i=1
open, hence f~'(B) is open in X.
[]
Remark:
Thus, to test the continuity of a function it suffices to check the openness of
inverse images of elements of only a subset of Ty, namely, its subbasis. I
Theorem 1.8:
Letf : X — Y be a map where (X, Ty) and (Y, Ty) are two topological spaces.
Then the following statements are equivalent:
(1)  fis continuous;
(2) Inverse image of every closed set of Y is closed in X.
(3) Foreach x € X and every neighborhood V of f(x), there is a
neighborhood U of x such that f(U) C V.
Proof: consult [6].
It is natural to derive from the continuous maps to the isomorphism between topo-
logical spaces. The isomorphisms in topological spaces is called homeomorphism, the
choice of another name other than isomorphism has a particular reason, for which,
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along with detailed description of homeomorphism, will be left to the discussion of
product topology.
Comment:

In real analysis, continuity is primarily concerned with functions between real nu-
mbers or subsets of the real line. In topology, continuity is a more general concept
that applies to functions between topological spaces. This definition extends the real
analysis definition to more abstract spaces. Continuous functions in topology pres-
erve the underlying topological structure and open sets. In functional analysis,
continuity often deals with linear operators between vector spaces equipped with a
suitable topology. This concept is crucial in studying the properties of linear transf-
ormations and their relationships with topological structures.

Though applications vary from case to case, the definition is quite the same, one
may recall the € — 6 langauge in basic analysis course to describe the continuity, or
consult the continuity we just defined in this section. In either case, the most impor-
tant information by admitting continuity is that it captures the idea of smoothness,
preservation of structure, and gradual change, making it a crucial tool for
understanding mathematical relationships and their implications.

In the next few subsections, we shall introduce the product topology, the subspace
topology, the order topology, the metric topology, the quotient topology.

1.4 Product Topology

The product topology is a construction that allows us to define a topology on the
Cartesian product of two or more topological spaces. It captures the idea of
"coordinate-wise" openness and is a fundamental concept in topology, especially
when studying products of spaces and their properties.

We would like to introduce the product of pairs of topological spaces (X, Ty) and
(Y, Ty), we would like a topology 7" on X X Y so that the Universal Property holds:
Definition: Universal Property

Let (X, T) and (Y, Ty) be two topological spaces. Consider two continuous
maps py : X XY, T) = (X,Ty)and py : X X Y,T) = (Y, Ty), where T is the
desired topology on the space X X Y. Then for any topological space (Z,T,)
and any two continuous functions
Kx:Z,T,) = X, Ty)and Fy : (Z,T,) = (Y, Ty).
There exists a unique continuous function f : Z — X X Y such that
pxef =fxandpyef = fy.
Now We start to construct such a topology. Denote T' = Tprod- Then:
VU C Xopen,p)}l(U) =UXYeT,
VYV C Xopen, p; (V) =XxVeET.

Letnow 8 = {pg ()| U € Ty} U {p;'(V)|V € Ty} Take T = Ty
[Claim]: & is a subbasis of Tprod-

Note that U & = X X Y by this construction. Now VU,, U, € Ty and
Vi, V, € Ty, one has
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P U)Np (V) =U;xY)N(X X V) =UnV,fori=1,2,
Then & is a subbasis of Tprod-

Moreover, we could obtain the basis & = {U X V| UeX,Vey } for U,V being

open in X and Y, respectively.
[Claim]: Universal Property holds
Let now (Z, T,) be a topological space. Consider the continuous functions:
x:(Z,T,) = X, Ty) and fy : (Z,T,) = (Y, Ty).
We obain the unique function f : Z — X X Y such that f(z) = ( fx(2), fy(Z)).
Moreover,

FlUxV)={ze Z| () ) € Ux VY =5 U n f7\(V) € T,

Therefore, f is unique and continuous, as we desired.
Question:
How arbitrary is 77 That is, can we choose a different 7" such that
Py X XY, T)—- (X,Ty)and py : X X Y,T") = (Y, Ty) being continuous
and the Universal Property fails to be false?

Answer:
This 7, in fact, is unique.
[Claim]. T =T

“Cc:
Since we want py and py to be continuous, then the subbasis
8 ={py' )| UeT}n{p;'(V)|VeET,} €T Thus T, C T
.
The universal property of ((X XY, T, px, py) tells us that if we take
(Z,T,) = (X XxY,Ty), take fy = py and f;, = py. Then
f:(XXY, T)—> (XXxY,T) is continuous, and f(x, y) = (x,y). That is
to say, the identity mapping gives us different 7, a contradiction.
Therefore YWe T, f\(W)=WeT=>TCT.
Now we offer the formal definition for the product topology:
Definition: product topology
Let (X, Ty) and (Y, Ty) be two topological spaces. The product topology on
X X Y is the topology having as basis the collection 9 of all sets of the form
U X V, where U is an open set of X and V is an open set of Y.
Remark:
Note that the collection & is not a topology on X X Y. I
Theorem 1.9: Basis for Product Topology
If 9B is a basis for the topology of X and € is a basis for the topology of Y.
Then the collection & := {B X C|B € &, C € €} is a basis for the topology
of X X Y.
Proof:
We apply Lemma 1.3. Given an open set W of X X Y and a point x X y of W,
by definition of the product topology there is a basis element U X V such that
16



x Xy € UxVcCW.Because % and € are bases for X and Y, respectively, we
can choose an element B of & such that x € B C U, and an element C of €
suchthaty € C C V. Thenx Xy € B X C C W. Thus the collection & meets
all the requirements for applying Lemma 1.3, result follows.
[]
Similarly, since we have introduced the product topology, we want to study its bas-
1s and subbasis as we did to the basic topology. It is sometimes useful to express the
product topology in terms of subbasis. To this end, we first introduce certain funct-
ions called projections:
Definition: projection function
Let 7; : X X Y — X be defined by the equation 7;(x,y) = x and let
7, : X X Y = Y be defined by the equation z,(x,y) = y. The maps z; and =,
are called the projections of X X Y onto its first and second factors,
respectively.
Theorem 1.10: Subbasis for Product Topology
The collection S = {JZ]_I(U) | U openin X} U {ﬂz_l(V) | VopeninY}isa
subbasis for the product topology on X X Y.
Proof:
Let T denote the product topology on X X Y and let 7" be the topology
generated by 8. We wish to show that 7 = T,
“D7
Since every element of & belongs to 7, so do arbitrary unions
of finite intersections of elements of & implies 7" C T.
“Cc:
Conversely, every basis element U X V for the topology 7'is a finite
intersection of elements of & since U X V =z’ oyn T, L(V). Therefore,
UxVeTlT' =>TCT.
[]
The product topology is the finest (largest) topology that makes all projection maps
continuous. This means that it is the strongest topology that fits the "coordinate-wise"
openness criterion. It is also used to define and study continuous mappings between
product spaces. A mapping between product spaces is continuous if and only if each
of its component mappings is continuous.
Definition: homeomorphism
A continuous map f : (X, Ty) — (¥, Ty) is a homeomorphism if there exists a
continuous function g : (¥,7y) — (X, Ty) such that g o f = Idyand f o g = Idy
where Idy : X = X and Idy : Y — Y. With Idy(x) = x and Id,(y) = y.
Remark:
Every homeomorphisms are open and closed maps. Moreover, any
homeomorphism is a continuous bijection, but a continuous bijection may not
have a continuous inverse. Now we give a counter-example: |
Example 1.5: Continuous bijection may not have a continuous inverse
Let X = [0,27) C R with subspace topology, let
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Y=S8"={(x,y) e R?|x*+y? =1}

with subspace topology. Then the mapping f : [0,27) — S! for

f(@) = (cos 0, sin ) is continuous. (Check it!) However, the inverse function,

which tries to map points on the unit circle back to angles, is not continuous.

This is because, for points close to 1 and O (where the angle wraps around),

small perturbations in S' lead to large changes in the angle. I
Question:

What does it mean when we say that two topological spaces are the same?
Definition: homeomorphic topological spaces

We say two topological spaces X and Y are homeomorphic (the same) if there

exists a homeomorphismf : X — Y.
Lemma 1.11:

Let (X, Ty) and (Y, Ty) be two topological spaces. Suppose that (W, Ty,) is a

topological space together with two continuous maps:

gy W—-Xandgy : WY
so that for any topological space (Z, T,) and any two continuous mappings
SxiZ—->Xandf,: Z > Y.
There exists a unique continuous function f : Z — W such that
gxof =fyand gy of =fy.

Then (W, T};) is homeomorphic to (X X Y, Tprod)-
Proof:

Left as an exercise (hint: Universal Property). ]

We are now exposed to enough materials for the product topology between the top-
ological spaces (X, Ty) and (Y, Ty); in fact, this could be extended to arbitrary prod-
ucts.
Let {X,},c4 be a collection of sets indexed by an arbitrary index set A (countable

or not, finite or not). That is, we have a function f : A — X, defined by f(a) = X,,.

There then exists a set, namely the product H X, together with a collection of maps

a€A
ip,: HXﬂ — X, }4ea, so that for an arbitrarily chosen set Z and a family of maps
PEA
{fy: Z = X} 4en, there exists a unique function f : Z — HXa such that pg o f = f;
aEA

holds Vf € A (ff behaves the same as @, its employment here is to aviod ambiguity).
Exercise 1.4: Cartesian Product
Let A := {1,2}. Then there exist two sets X; and X, such that the product is
I1x.={s: (1.2} - X, UX, such that g(1) € X,,8(2) € X,}
acA

= {(s().5@) | s(1) € X,.2(2) € X,} = X, x X,,

where X, X X, denotes the cartesian product.
Proof:
This result is trivial but the proof is not.
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Weset [[X,={g:4- [ JX,

8, =8a) e X, Va € A}. We define

acA a€A
P’ HXa — X, by pg(g) = g(f) since A L U X, i Xj. Given now
acA acA
(fy: Z > X,}yen» wemay define f : Z — [ [ X, by (Z) = (£(2)) sen

a€A
Then, ps(f(2)) = f3(2)Vz € Z=>pyof =f(B) = f;
Next we shall prove the existence, which follows:

Ith:7Z — H Z, 1s another function such that p; o h = f,, then Vz € Zand

acA

V3, one has h(z); = (pg o M)(2) = f3(z) = (f(z))ﬁ, which implies that
h(z) = f(z) Vz hence uniqueness follows and the result.
[]
This exercise tells us that the cartesian product is unique. The next exercise, with
proof left empty, shows that the reverse is also valid:
Exercise 1.5:
Let A be a set and consider the collection of topological spaces indexed by
elements of A defined by {(Xa, T, } «cA- Then there is a topological space

(W, Tyy) together with a family {pa (W, Ty) = (X, Ta)} acA SO that for any
topological spaces (Z, T,) and their corresponding family of continuous
mappings, there exists a unique contunuous map f : (£,7,) = (X,,T,) such
that p, o f = f, Va. Moreover, W is unique up to a homeomorphism.
Notation:
The usual notation for (W, Ty;) is ( H X, Tprod)-
acA

One may notice in Exercise 1.5, we did say the variation of W is unique up to a ho-
meomorphism, recall that the term “homeomorphism”, is often replaced by
“isomoprhism”, our usage here is to aviod ambiguity: Just like the continuous
functions in topological spaces inherit the same properties as continuous maps in
other mathematical structures, the isomophisms, which is a structure-preserving
bijection between objects. In the context of topological spaces, however, the term
"isomorphism" is typically not used directly because it can be too rigid. A topological
isomorphism would imply a bijective map that preserves not only open sets but also
other topological properties (like compactness, connectedness, etc.), which may not
always be a meaningful or interesting concept.

Instead, the concept of a homeomorphism is introduced here, which focuses on pr-
eserving the topology's key properties while allowing for more flexibility and gener-
alization. Homeomorphisms enable us to study topological spaces in a way that
respects their topological structure while potentially allowing for deformations or
changes that do not alter the topological properties.

So far, we have introduced most of the important concepts in topological spaces.
When we define a space, it is important to talk about its elements and the maps
between its elements, there are many other important terminologies we would like to
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explore, but lack of tools, we often wish to learn information from the maps, that is
why the continuity and differentibility of a function is so important in analysis. But
still, there are some other concepts we can discuss without heavy machinery, which
are often called the topological properties, which are fundamental characteristics of
topological spaces that capture the behavior and structure of the spaces under
consideration. These properties are often studied in topology to classify, compare, and
analyze different types of spaces. For example, openness, closedness, compactness,
separability, etc, are key features we would like to use in further exploration.

Let us now pause a while and discuss the methodology we mentioned in the above
paragraph.
Algorithm 1.1: Defining Mathematical Spaces

Defining a new space in mathematics involves a systematic approach that

combines creativity, rigor, and clear communication. Whether you're
introducing a new topological space, metric space, vector space, or any other
mathematical structure, here's a general methodology to consider:

I. Motivation and Inspiration:

Clearly identify the motivation for defining the new space. What problem are
you trying to address? What concepts or structures does this space generalize
or capture? Look for inspiration from existing mathematical spaces, objects, or
structures that have relevant properties or behaviors.

I1. Defining the Set (Object):

Begin by defining the underlying set of the new space. Determine what kind of
elements the set should contain based on the desired properties of the space.
Specify any constraints, conditions, or requirements on the elements that
belong to the set.

II1. Defining Operations and Relations:

If applicable, define any operations (addition, multiplication, etc.) that should
be defined on the elements of the set. These operations should align with the
properties you want the space to have. Define any relevant relations
(equivalence, order, etc.) that help establish the structure of the space.

IV. Topology and Open Sets (if relevant):

If defining a topological space, specify the topology on the set. This involves
determining the collection of open sets that satisfy the desired topological
properties. If the space has a metric, define the metric function that measures
distances between elements.

V. Properties and Axioms:

List the key properties, axioms, or characteristics that you want the space to
possess. Ensure that these properties align with the motivation and desired
behaviors of the new space.

VI. Examples and Counterexamples:

Provide examples of elements and subsets in the space that illustrate its key
properties. Consider providing counterexamples that highlight the limitations
or boundary cases of the space's properties.

VII. Connections to Existing Concepts:
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Establish connections between your new space and existing mathematical
concepts. This can help others understand the context and significance of the
new space.

|

We wish our discussion of the topology follows this step clear enough. Now let us
continue our discussion in product topology. Since this is an introductory book on
topics of topology, we do not want to include too many advanced materials even in
basic category theory. So we shall close this subsection with an example:

Example 1.6: Box Topology
There is another “natural” topology on H X, called the box topology, namely,
acA
1s apparantly a

Thox- defined by Tyoy == { | Ua

acA
product topology different from T prod» concidence occur when A is finite.

If A is not finite, then Ty, 2 T prod- Note that since T}, 2 T, prod: then the

maps py H Tbox — (X, Tp) are continuous. However, the universal
property fails for 7},,, hence it is not a “good” topology. I

1.5 The Subspace Topology

With now enough tools and notions, we can get to the discussion of subspace topo-
logies. The subspace topology is an essential concept in topology that allows us to
study subsets of topological spaces while inheriting the topology from the original
space. It provides a way to understand the topology of a subset in terms of the
topology of the larger space.

Definition: Subspace Topology
Let (X, T) be a topological space. If Y C X, then Ty :={YNnU|U € T}isa
topology on Y, called the subspace topology.

In other words, the open sets in the subspace topology are the intersections of open
sets in the original space X with the subset Y.

We care about the basis for subspace topology too. In fact, the new basis is taken
the same way as we take the subspace topology, this is the result of the following le-
mma:

Lemma 1.12:
If & is a basis for the topology of X then the collection
By ={BNY|B & A} is abasis for the subspace topology on Y.
Proof:
Given U open in X and given y € U N Y, we can choose an element B € &
suchthaty € BC U.Theny € BNnY C UNY. Then by Lemma 1.3 that %

1s a basis for the subspace topology on Y.
[]
When dealing with a space X and a subspace Y, one needs to be careful when one
uses the term “open set”. Does one mean an element of the topology of Y or an
element of the topology on X? We make the following definition:
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Notations:
If Y 1s a subspace of X, we say that a set U is open in Y (or open relative to Y)
if it belongs to the topology of Y; this implies in particular that it is a subset of
Y. We say that U is open in X if it belongs to the topology of X.
There 1s a special situation in which every open set in Y is also open in X.
Lemma 1.13:
Let Y be a subspace of X. If U is open in Y and Y is open in X, then U is also
open in X.
Proof:
Since Uisopenin Y, U = Y N V for some open set V open in X. Since Y and V
are both open in X, thensois YN V.
[
The properties that characterize the subspace topology are more important than the
definition above. In his notes [4] in Fall 2014, John Terilla offered two characteriz-
ations of the subspace topology. The following two characterizations are drawn from
his lecture notes: The first one characterizes that the subspace topology is the coarsest
topology on Y for which the inclusion map i : ¥ — X 1s continuous. The second one
is a universal property that characterizes the subspace topology on Y by characteri-
zing which functions into Y are continuous. We shall use one lemma to conclude thes-
e results:
Theorem 1.14:
Let (X, dy) be a topological space and let ¥ C X be a subset. We claim that

TY = {U C Y| 30 C Xopenwith U = Un Y} is a topology on Y. Moreover,

TY is the smallest topology on Y, and the inclusion i : ¥ < X is continuous.
Proof:

We first prove that 7Y under this setting is indeed a topology on Y, that means

we need to check the three conditions for being a topology:

(i) Y =XnY e TY by definition. Similarly, @ =@ nY € T".

(ii)  For arbitrarily chosen open sets U, V € T, there exists U and V C X
being open such that U = U N Y and V = VN Y. Moreover, one has
UnVNOnY)n(VnY)) =UnV)nY e T"since both U and
V are open in X.

(ii1) Similarly, if {U,},c4 1s an arbitrarily chosen collection of open sets in
TY then U u,eT’

acA

Now we know that 7" is indeed a topology on Y. It remains to check the

behaviour of the inclusion mapping i : ¥ & X:

First, let 7" be any other topology such that i : ¥ < X being continuous.

Let now U € TY be an open set, then by definition of 7Y onehas U= UNnY

for some open set U C X, butthen UNY = i‘l(U) € T'hence TY =T

Result follows from the uniqueness.

[
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This type of result follows from [2], and the proof adapts no materials from categ-
ory theory. As we promised, let us dive deep into its result and interprete it:
In order to describe the first characterization, let us illustrate a general fact: Let
(X, Ty) be a topological space and let S be any open set inside. Conside the function:
f:5-X
It makes no sense to ask if f'is continuous unless § is equipped with a topology. There
do exist topologies on the set § such that f is continuous. If 7 is the intersection of all

topologies on § for which f being continuous, then 7, will be the coarsest topology for
which fbeing continuous. Note that 7, has a simple explicit description as

T; = {f‘l(U)| U C X being open }.

This leads to the following alternative definition of the subspace topology:
Definition: Subspace Topology (alternative definition)
Let (X, Ty) be a topological space and let S C X be any subset of X. The
subspace topology on S is defined to be the coarsest topology on S for which
the canonical inclusion f : § < X is continuous.
Remark:
There is an astonishing result: the coarsest topology on S, having the
function f being continuous, may not be a subset of X! Here is why:
Since fis injective, S is isomorphic as a set to its image f(S) C X; and the set S
with the subspace topology determined by the injection f : § — X is
homeomorphic to the set f(§) C X with the subspace topology determined by
the inclusion i : f(§) C X. If fis not injective, then the topology 7}is not
referred to as the subspace topology. |

We pause a moment to see this important result, notice that this terminology could
be very useful in the construction of weak topologies. For example, suppose that X is
a set without any structure and let {Y,} .4 1s a collection of topological spaces. We
are given a collection of maps {@,},c4 such that Va € A, ¢, : X — Y, and we wish
to construct a topology on X such that all the maps {¢,},c4 are continuous. In
practice, we wish to use as less open sets as possible to build such a topology. This is
the strategy in constructing a weak topology, which provides a way to study converg-
ence and continuity in functional space when the original space is too small to
contain the limit points. Detailed description could be found in [5].

There is a principle in mathematics that if one can understand the morphisms in a
category, then one can understand the objects. Without making this principle more pr-
ecise now, let us give an illustration:

Suppose that you want to understand a topological space (X, Ty). One approach is
to study the continuous functions f : Z — X or f : X = Z where (Z,T,) is another
topological space. Now, the subspace topology has an important universal property
which characterizes precisely which functions f:Z — Y are continuous for all
topological spaces (Z, T,). This property completely determines the subspace topo-
logy on Y, which is the second characterization of subspace topology:

Universal Property for the Subspace Topology:
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For every topological space (Z, T,) and every functionf : Z = Y, f'is
continuous if and only if i o f : Z — X is continuous, where i : ¥ — X is the
natural inclusion.

One should think of the universal property stated above as a property that may be
attributed to a topology on Y. At this point, one may think that some topologies have
this properties and some do not. Furthermore, the subspace topology is the only
topology on Y with this property! The proof of this observation may involve too
much heavy machinery from category theory, hence we shall not present it here, for
those who are interested in may consul [4].

1.6 Order Topology
Relation is one of the most important features of mathematical objects. In order to

offer a better understanding of the order topology, we adapt some background termin-
ologies from [7]. Before that, we will give the following notations for the common
number systems:
Notations: Common Number Systems

(i)  The natural number is given by N := {0,1,2,---}. Note that O is not

always an element of N.
(i) The integers Z = {---, — 2, —1,0,1,2,---}.

m
(iii) The rational numbers Q = {— |m,n € Zandn # 0}.
n

Definition: Relation
Let A be aset and let n € N with n > 1. An n-ary relation R on A is a subset
R C A", where A" is the cartesian product. Given @ = (a, --*,a,_;) € A", we
say that R holds for @ if @ € R, and otherwise we say R does not hold for a.

If n =1, we call R a unary relation; if n = 2, we call R a binary relation; and if
n = 3, we call R a ternary relation. In most scenarios, we consider R as a binary rela-
tion. Moreover, sometimes when a and b has the binary relation R, we may say aRb,
but this does not necessarily mean bRa, with a Rb < bRa when the binary relation is
said to be reflexive. This leads to the necessity in defining the features of a given
binary relation:

Definition: features of binary relation
Let R be a binary relation on a set A. Then we define the followings:
(1) Risreflexive if Va € A, (a,a) € R.
(2) Risirreflexive if Va € A, (a,a) & R.
(3) Rissymmetricif Va,b € A, (a,b) € R = (b,a) €ER.
(4) R is antisymmetric if Va,b € A, (a,b) € R & (b,a) € R.
In the above, (1) and (2), (3) and (4) are dual to each other, respectively.
(5) Ris transitive if Va,b,c € A, (a,b) € RA{(b,c) €ER=> {(a,c) € R.
(6) Ristotalif Va,b € A, cither {(a,b) € Ror (b,a) € R.
(7)  Ris trichotomy if Va,b € A, exactly one of a = b, {(a,b) € R, or
(b,a) € R is valid.
For the most part, our examples come from the following classes of algebraic stru-
ctures:
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Definition: Equivalence Relation
An equivalene relation is a pair (E, ~ ) such that E is a set and ~ is a binary
relation on E which is reflexive, symmetric, and transitive. That is, a relation
~ on a set F satisfies, Va,b,c € E:
1 a~a. (reflexive)
(i) a~b=>b~a. (Symmetric)
(ii)a ~bAb ~c = a~c. (Transitive)
Definition: Equivalence Class
Given an equivalence relation ~ on a set X and an element x € X, the
equivalence class of x in X, denoted by [x], is defined to be the set of all
clements in X that is equivalent to x; namely, [x] := {y € X |y ~ x}.
Definition: Preorder
A preorder on a set X is a binary relation < such that it is reflexive and
transitive.
Definition: Partial Order (Partially ordered set, or Poset)
A partial order is a pair (P, <p ) such that P is a set and <j is a binary relation
on P which is reflexive, antisymmetric, and transitive.
Definition: Ordered Sets
An ordered set is a set X equipped with a binary relation < that satisfies certain

properties:

1) Vx,yeX,x<yory<ux (Comparability, or, Total Order)
(1) Vx,y,zeX,x<yandy<z=>x<z (Transitivity)

(i) Vx,yeX,x<yandy <x=>x =). (Antisymmetricity)

Definition: linear order
A linear order is a pair (L, <; ) such that L is a set and <; is a binary relation
on L which is reflexive, antisymmetric, transitive, and total.

Remark:
Thus, a linear order is a partial order which is total. I

Definition: strict linear order
Similarly, we could define the strict linear order with the only difference being
<, being replaced by <;, which is irreflexive, transitive, and trichotomy.

We will also use the following terminologies for functions:

Definition: Injective, Surjective, and Bijective

Let A and B be two sets and let f : A — B be a function. Then the range of f

is the set range(f) := {b € B| da € A such that f(a) = b}.

We say that fis one-to-one (or injective) if f(a,) # f(a,)Va,; # a, € A. That is
to say, b € range(f) = Ila € A such that f(a) = b.
We say that f'is onto B (or surjecitve) if range(f) = B. That is, if Vb € B,
da € A such that f(a) = b.
Moreover, we say that fis one-to-one and onto (or bijective) if it is both
injective and surjective.
The order topology is a concept in topology that arises from the order structure of a
set. It's a way of defining a topology on a totally ordered set that captures the order
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relationships between elements. The order topology is particularly useful when study-
ing ordered sets and their continuity properties.
Notations:

Let (L, <) be a linear order, and let a, b € L. We define the following notions:

(i) (a,0)={x€L|a<x}.

(i) (—oo0,b)={x €L|x<Db}.

(i) (a,b)={x € L|a<x <b}.

(iv) (a,bl={x € L|la<x <b}.

Definition: Order Topology
Let (L, <) be a linear order with at least two elements. Define the set
S :={(-00,b)|be L}U{(a,0)|a € L}.

Then & is a subbasis on L, and the topology generated by it is called the order

topology on L.

This essentially (but not precisely) means that the order topology on L is the one
generated by the basis of open intervals, in the sense described above, since
Va,be LAa<b, (a,b)=(—oc0,b)N (a,o0). Therefoer, (a,b) is in the basis
generated by &

Example 1.7: Order Topology

(i)  The order topology on (R, <) is the same as the usual topology. We
already know this since the usual topology is generated by the basis of
open intervals.

(1))  The order topology on (Q, <) is the same as its subspace topology
inherited from the usual topology on R. This is also easy to see, but not
trivial, since, e.g. (—x, £) N Q is an open set in the subspace topology
inherited from the usual topology on R, but is not a basic open interval
in the order topology on Q. It is, of course, a union of basic open
intervals.

(iii)  The order topology on (N <) is also the same as its subspace topology

inherited from the usual topology on R, which is to say that it is discrete.
Indeed, for example, we have {7} = (6,8).
Definition: Order Topology (Alternative)
Let X be a set with a simple order relation; assume that X has more than one
element. Let 93 be the collection of all sets of the following types:
(i)  All open intervals (a, b) in X.
(i)  All intervals of the form [a, b), where a is the smallest element (if any)
of X.
(iii))  All intervals of the form (a, b], where b is the largest element (if any) of
X.
Then the collection 3 is a basis for a topology on X, which is called the order
topology.
It is easy to see the difference between these two definitions, the first one is establi-
shed by the subbasis while the second one is generated by basis.
Definition: Rays
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(a, + o0) and (— 0, a) are called open rays while [a, + o0) and (— o0, b] are
called closed rays.

Theorem 1.15:
Let X be a set with a simple order relation. The open rays form a subbasis for
the order topology T on X.

Comment:

The order topology reflects the order relationships in the ordered set. Open interv-
als correspond to open sets in the topology, and their unions and intersections capture
intervals of elements in the order. More literature on topics of orders could be access-
ed via [8], the readers are also encouraged to view materials in [1].

1.7 Quotient Topology

The motivation behind the quotient topology arises from the need to study spaces
that are formed by identifying or "gluing" certain points together in a way that
respects the original topology. The quotient topology provides a way to study the
resulting space in a manner that captures the relationships between points that have
been identified as equivalent.

In various mathematical contexts, it's common to want to treat certain points as be-
ing the same or equivalent for the purpose of analysis. For example, in geometry, one
might want to consider a square where points along its boundary are treated as
equivalent to form a topological circle. The quotient topology allows one to study the
circle while keeping track of the underlying square's topology.

Definition: Quotient Set
The quotient set X/ ~ is the set of all equivalence classes of X with respect to
the equivalence relation ~. In other words, each element of X/ ~ is itself an
equivalence class of elements in X. Therefore, X/ ~:= {[x]|x € X}.

Given an equivalence relation ~ on a set X, we have the quotient set X/ ~ . There is

an canonical map which is surjective. More specifically,
q : X - X/ ~ such that x — [x].
Let us now generalize this description and generalize it into the term quotient maps:
Definition: quotient map
A quotient map is a function p : X — X/ ~ that assigns each element of X to
its equivalence class in the quotient set X/ ~ . It respects the equivalence
relation, meaning that x ~ y = p(x) = p(y). Hence p is surjective.

When we say that a function is "constant on an equivalence class," it means that the
function takes the same value for all elements within that equivalence class. In the
context of equivalence relations and quotient sets, if two elements are related by the
equivalence relation, they belong to the same equivalence class. Therefore, a function
being constant on an equivalence class means that it assigns the same value to all
elements in that class. That is to say, x ~ y = f(x) = f(y).

Now let us move to the discussion of the universal property of the quotient maps:
Universal Property of Quotient Map:

For all set Y, Vf : X — Y which is constant on the equivalent classes of ~ lie
on f(x) = f(x") if x ~ x". Then there exists a unique f : X/ ~ — Y given by
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f(plx]) = f([x]) = f(x). That is to say, f = f  p.
Example 1.8:
Let X = R. Define the equivalence relation x ~ x’ © x —x’ € Z. Then

f: R — C by sending x — e** =: f(x), which is constant on equivalence

classes = 3!f : R/ ~ — C such that f([x]) = >™* = f(x). [
Lemma 1.16:

Let (X, Ty) be a topological space and denote ~ as an equivalence relation on

X.Letg : X = X/~ be the quotient map. There exists a topology Tqyot,

which denotes the quotient topology, so that g : (X, Ty) — (X/ ~, Tquot) 1s
continuous, and so that for any topological spaces (Z, T,,) and any continuous
map f : (X, Ty) = (Z, T,), which is constant on the equivalence classes of ~,
there exists a unique continuous map f : (X/ ~ , Tquot) — (Z,T,) so that
feq=Ff

Proof:

Define the quotient topology Tqyet = {U C X/~ |q_1( U) open } We first

check that Tquot is indeed a topology:

i) ¢7'(@)=@and g '(X/ ~) =X, hence @, X € Tqyo-

i) If U, Ve Tquota then g~!(U) and g~'(V) are both open by definition,
theng (UNV)=¢g ' (U)ng '(V)isalsoopen=>UnNV e Tquot-

(i)  Let {U,}4ea S Tquot be a collection of open sets. Then under the map

q_l( U U, = U q_l(Ua), which is open in X, hence U U, e Tquot-
a€A a€A aEA
Next we prove that the Universal Property does hold:

Suppose that f : (X, Ty) = (Z,T,) is continuous and constant on the
equivalence classes of X, the uniqueness is guaranteed by the surjectivity; it
left us to prove the existence:
If there exists a unique map f : X/ ~ — Z such that f o g = f, we need to check
the continuity of f. Given V € T, since
g ((f)_l(V)) = (fo2) (V) =f~!(V) which is open, hence result follows.
[]
We can turn Lemma 1.16 into a definition of the quotient topology, which uses the
notion of quotient maps to construct a topology on a set.
Definition: Quotient Topology
Let (X, T) be a topological space, and let ~ be an equivalence relation on X.
The quotient space X/ ~ is the set of equivalence classes of X under ~. The
quotient topology on X/ ~ 1is defined in a way that makes the canonical
projection p : X — X/ ~ continuous. That is,U C X/ ~ is open if and only if
p~1(U) is open in X.
In topology, the fiber of a function is a concept that helps us understand how a fun-
ction behaves locally with respect to its target space. The notion of a fiber is partic-

ularly important when dealing with continuous maps between topological spaces.
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Definition: Fiber
A fiber of a function f : (X, Ty) — (Y, Ty) is a set of the form f~'(y) for some
y € Y. Namely, it is the set {x € X | f(x) = y}.
Remark:
If such an fis continuous, then the fiber £~!(y) inherits a topology from X. It’s
a subset of X with the topology induced by X. I
Fibers are used to describe the inverse images of points in the target space. They
help in understanding which points in the domain map to a given point in the codo-
main. Moreover, note that the preimage and the inverse of the same function could be
very different. Consider a function f : X — Y, the preimage of a set B under f is the
set of all elements in the domain X that map to elements in B, is denoted by
f~I(B) = {x € X|f(x) € B}. Even we use the same notation as the inverse function,
it is important to see that an inverse function is bijective while the preimage function
may not be, therefore it is possible for the fibre to be an empty set.
Example 1.9: Fiber
Letg : X - X/ ~ and the fiber
g (X)) = (¥ e X|[¥] = [x]} = {(x' € X|x ~ x'} = [x]. I
Remark:
In general, the fibers are a function f : X — Y that are equivalent classes of ~

defined by x ~ x" © f(x) = f(x). Hence, fiber indicates equivalent classes in
general. |

Now we state a result using the fiber to find the homeomorphic space of a given
quotient topology.
Lemma 1.17:
Letf : (X,Tyx) — (Y, Ty) be a continuous and surjective map and let ~ be an
equivalence relation on X defined by x ~ x" < f(x) = f(x"). Assume 7" is the
largest topology on Y making f continuous, i.e. VU C Y, f~1(U) is open
implies the openness of U. Then (Y, T’) is homeomorphic to (X/ ~ , Tquot)-
Proof:
We first prove that fis a continuous bijection: Since f'is constant on the
equivalence classes, then there exists a unique continuous map

X/ ~, Tquot) = (¥, T") such that f([x]) = f(x). If fis injective,

F([xD) = f([x]) implies that f(x) = f(x") hence x = x’ = [x] = [x'],

therefore, f is a continuous bijection.

It remains to prove that & := ()~ : (Y, T") - (X/ ~, Tquot) 1S continuous.

Given U C X/ ~ open, since h~'(U) = f(U), then h~'(U) C Y is open if and

only if f~1(h~1(U)) is open in X. That is, f~'(F(U)), since g o f = f, then
TGN = (fe)  (fFWU) =g~ ((NH'(FW)) =q7'(U).

Since g is continuous and q_l(U ) is open in X. Then by assumption, on 77,

h=Y(U) = f(U) is open in Y, hence h := (f)~! is continuous = fis the

desired homeomorphism.

Example 1.10: Homeomorphism on R?/ ~
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Consider R? is the standard topology, f : R?> — R under the map (x,y) — x.
Then for all U C R, f~}(U) = U x R, which is open in R? hence U is open.
Therefore, the quotient space R2/ ~ , where (x, V)~ @, y)ex=xis
homeomorphic to R and the map f([x, y]) = f(x) is a homeomorphism. I
We have already noted that the subspaces do not behave well: if p : X — Y is a qu-
otient map and A is a subspace of X, then the map g : A — p(A) obtained by
restircting p need not to be a quotient map. One has, however, the following theorem:
Theorem 1.18: Quotient Map and Subspace
Letp : X — Y be a quotient map; let A be a subspace of X that is saturated
with respect to p; let g : A — p(A) be the map obtained by restricting p. Then
(1)  If A is either open or closed in X, then g is a quotient map.
(i1)  If p is either an open map or a closed map, then g is a quotient map.
Proof:
Step I:
We verify the following two equations:
g\(V) = p~I(V)if V C p(A);
pUNA)=pU)npA)ifUC X.
To chcek the first equation, we note that since V C p(A) and A is saturated,
p~1(V) is contained in A. It follows that both p~!(V') and ¢~'(V) equal all
points of A that are mapped by p into V. To check the second equation, we note
that for any two subsets U and A of X, we have the inclusion
pUNA) CplU)NpA).
To prove the reverse inclusion, suppose y = p(u) = p(a), foru € U and
a € A. Since A is saturated, A contains the set p‘l( p(a)), so that in particular
A contains u. Then y = p(u), where u € U N A.
Step I
Now suppose that A is open or p is open. Given the subset V of p(A), we
assume that g~!(V) is open in A and show that V is open in p(A).
Suppose first that A is open. Since ¢~!(V) is open in A and A is open in X, the
set g~'(V) is open in X. Since ¢ (V) = p~}(V), the latter set is open in X, so
that V is open in Y because p is a quotient map. In particular, V is open in p(A).
Now suppose that p is open. Since ¢~ (V) = p~!(V) and ¢~ (V) is open in A,
we have p~!(V) = U N A for some set U open in X. Now p(p~'(V)) =V
since p is surjective; then V = p(p_l(V)) =p(UNA)=pU)Nnp(A). The set
p(U) is open in Y because p is an open map; hence V is open in p(A).
Step I
The proof when A or p is closed is obtained by replacing the term “open” by
the term “closed” throughout Step 1.
[]
Now we consider other concepts introduced previously. Composites of maps beha-
ve nicely; it is easy to check that the composite of two quotient maps is a quotient
map; this fact follows from the equation

p g7 WU) = (p g~ '(U). (1.4)
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On the other hand, products of maps do not behave well; the Cartesian product of two
quotient maps need not to be a quotient map. One needs further conditions on either
the maps or the spaces in order for this statement to be true. One such, a condition on
the spaces, is called local compactness, which we shall study later. Another, a condi-
tion on the maps, is the condition that both the maps p and g be open maps. In that
case, it is easy to see that p X ¢ is also an open map, so it is a quotient map.

1.8 Openness, Closedness, and Limitedness
Recall in basic analysis course, we have encountered the terminologies called limit

points, closedness, and closure. All of them could offer a perspective corresponding
to the convergence of a sequence; in particular, Cauchy sequence, where the converg-
ence of all Cauchy sequences lead to completeness. In this subsection, we shall dive
deeper in the treatment of closed sets, closures, and limit poins. These lead naturally
to consideration of a certain axiom for topological spaces called the Hausdorff axiom.
Moreover, after this subsection, we will be equipped with enough background for the
study of not only the separation properties but also the compactness as well as
connectedness.
Definition: Neighbourhood

A neighbourhood of a point x in a topological space X is a subset N C X such

that there exists an open set such that U C X withx € U C N.
Proposition 1.19: Neightbourhood and Open Sets

A subset U of a topological space X 1s open if and only if U is a neighbourhood

of every points x € U.
Proof:

If U is open and x € U, then U is an open neighbourhood of x. Suppose that

U C X is a subset, then U is a neighbourhood of every x € U. Then Vx € U,

there exists an open set Vy such that x € V,, C U, hence

U=|Jx) Gy ycU=U=J{x} = Vxk= Uis open,

xelU xeU xelU

[

Definition: Limit Points
Let X be a topological space and let A C X be a subset, a point x € X is called
a limit point of A if for all neighbourhood N of x, N N (A\{x}) # @.
Definition: Interior
Let (X, Ty) be a topological space and let A C X be a subset, then the interior
of A, denoted by A°, is the largest open set that contains A.
Remark:
0 4= |J vca
UCA open
(1) ACXisopen © A =A".
(i) It may happen that A° = @. For example, if X = R and A = Q. Then
Vx € Q, Ve > 0, the interval (x — €, x + €) containing irrationals
implies(x —e,x+¢e) CQ > Q° =@.
Definition: Direct Set
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A directed set is a set A with a preorder < such that V4,4, € A, 345 € A
such that 4; < 43 and 4, < 4;.
Example 1.11: Directed Sets
(N, <) is a directed set.
Let X be a topological space, let x € X be a point. Let
A := {N C X | N is a neighbourhood of x}. Define < on A by inverse
inclusion: Ny < N, & N; 2 N,. Given N;, N, € A, N; 2 N; N N, and
N, 2 Ny N N, hence A is a directed set. I

Recall in calculus, the convergence is built up by the accumulation performance of
a sequence. In topology, there is also such a sequence, made up, however, by the open
sets, this is the reason we introduced relations and directed sets. Such a sequence,
which is fundamental in our understanding of the convergence and the continuity, is
called “nets”.

In topology, a net is a generalization of sequences that provides a way to analyze
convergence and continuity in topological spaces that might not be first-countable, as
well as to study properties such as compactness and closure. Nets offer a broader
framework for understanding the behavior of points in a topological space, particu-
larly when sequences may not be sufficient.

Definition: Net
A net in a topological space X is a function x : A — X by sending A — x,
where A is a directed set. We denote that x : A = X by {x,},cx.

Observation of this definition tells us that a net is a function generalizes the conce-
pt of sequences, allowing indexing by any directed set, making them applicable in
more general topological spaces.

Definition: Convergence of Net
Anet (x;),c 1n a topological space X converges to y € X if and only if for all
neighbourhood Wofy, 34, € A such that ) < 1 = x;, € W.Ifx; — y, we say
y is a limit point of (x;),c . A net (x;),;c, 1s convergent if it has a limit.

Recall that the closure of a set is a fundamental concept that characterizes the poin-
ts that are "close" to the set. The closure of a set includes the set itself along with its
limit points, providing a way to describe the extent to which the set fills its surrou-
nding space. The closure is an important tool for analyzing the behavior of sets within
a given topological space. Loosely speaking, the closure of A C X 1is the smallest
closed set A contains A. Now we introduce the relationships between closures and
interiors:

Definition: Closure
If X is a topological space, A C X is a subset, the closure A of A is the smallest
closed set that contains A.
Lemma 1.20: Existence and Uniqueness
The closure A of a subset A of a topological space X exists and is unique.
Proof:

LetA := ﬂ C. Then (i) A is closed. (ii) By construction, A C A.
ccx closed,Acc

32



(iii) C’ 2 A where C’is closed implies A = ﬂ C C C'. (C’ denotes

ccx closed.Acc
the set containing all limit points)

[]
Definition: Closed
A=A & Aisclosed.
Proposition 1.21:
Let X be a topological space and A C X is a subset. ThenA = AUA’. In
particular, x € A & for all neighbourhood N of x NN A # @.
Proof:
x &€ AUA’ & there is a neighbourhood N of x suchthat NN A = @.
[Claim]: x & A < 3 neighbourhood N of x suchthat NN A = .
“=7
x¢&A=>xe(A)=>X\A=NisopeninX. Say N is a neighbourhood
ofxsincex EN=>@Z=NNADNNA.
‘e
Suppose that there exists a neighbourhood N of x suchthat NN A = .
Then there exists an open set U C X such thatx € U C N.
Hence ACX\U=>ACX\U=>UNA=@butx € U, thusx & A.
By /[Claim], it suffices to show that x & A’ U Athen x & A by definition.
[]
Hausdorff space is a fundamental concept in topology that captures a strong separ-
ation property within a topological space. Named after the mathematician Felix Haus-
dorff, this property ensures that distinct points in the space can be separated by disjo-
int open neighborhoods. Limits of sequences or nets in a Hausdorff space are unique.
If a sequence or net converges to a point, then it can only converge to that particular
point.
Definition: Hausdorff space
A topological space X is called Hausdorff (75) if Vx,y € X such thatx #y,
there exist open sets U and Vsuchthatx € Uandy € Vand UNV = @.
Example 1.12: Hausdorff space
(i)  Any metric space (X, d) is Hausdorff. Since Vx,y € X with x # y,
d(x,y) > 0 then Bé(x) N Bé(y) = @ = Hausdorff.
(i) LetX:={a,b,c}andT :={@,X,{a,b},{a,c},{b}}, thisis not
Hausdorft.

Now we give one of the most important results derived from Hausdorff:
Proposition 1.22:

In Hausdorft space, limits of sequences when exist then unique.
Proof:

Suppose that X is Hausdorff, consider two points y, z € X, {x,} is a sequence
with x, = yand x, — z.
[Claim]: y = z.

If y # z = there exists an open neighbourhood U of y and V of z such
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that U NV = @. Since x,, — y there exists N € N such that
x,€UVn>N.SmceUNV =0gthenx, &V Vn > N.Thenx, » z
hence contradiction.

Therefore, y = z and uniqueness follows.

[
Proposition 1.23:
For any topological space (X, Ty), for any subset A C X, we have
(i) X\A°=X\A.
(i) X\A = (X\A).
Proof:
Recall that a subset U C X is open < U° is open.
x\a=x\( |J =[] &= M
UCA,U open X\ACX\U,U open ccx closed,cox\A)
_X\A.
Similarly, X\A =X\ (] C= U X\C)
Acc closed X\A2X\C,X\C open
— U U= (X\A).
U open,ucx\A
[]

Proposition 1.24:
Let (X, Ty) be a topological space, let A, B C X be subsets, we have
i) ACB = A°C B°and A C B.
i) A)=A A°)y=A"
(iii) AUB=AUB.
(iv) AnB)Y=A°nBkB"
Proof: Elementary.
Remark:
(i)  Consider (0,1),(1,2) € R and (0,1) n (1,2) = @ hence
[(0,1)n (1,2)] = @. But (0,1) n (1,2) = {1}. In general,
A N B C A N B, equality may not happen.
(i) SinceQCRandQCR,(Q=R°=R.Q°=gand Q° = @.
So A° C (A)" and the inclusion may be strict. I
Definition: Boundary
Let X be a topological space and A C X is a subset. The boundary (or frontier)
of A is the set 0A := A N X \A.
Example 1.13: Boundary
(1) Consider X =R and A = (0,1). Then
0A = (0,1) N R\(0,1) = [0,1] n (R\(0,1)) = {0,1}.
(ii) Consider again X = RbutA = Q. ThendQ = QNR\Q=RNR =R,
Proposition 1.25:
Let X be a topological space and let A C X be a subset. Then
(i) A=AUOJA.
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(i) A° = A\OA.
(i) X=A"UJAUX\A)".
Proof:
(1): _ B _ B
AUA=AUANX\A)=(AUA)NAUX\A)=ANX=A.
(i1):
A\OA = A\A N X\A)) = (A\A) U A\TX\A) = @ U (4 N (X\(X\A)
=@UMANA")=A"since X\B = (X\B)".
(ii1):
By Proposition 1.23 we have (X \A)° = X \A. Since
X=AUX\A)=AU(X\A).
By (i), =(AUJdA)U (X\A) =(A\dA)UdA U (X\A)
=A°UJA U X\A).
[]
In topology, a neighborhood basis (or local basis) at a point in a topological space
provides a systematic way to describe the open sets around that point. It is a colle-
ction of open sets that serve as building blocks for the neighborhoods of the point. A
neighborhood basis is crucial for understanding the local structure of a topological
space, analyzing convergence, and defining continuity.
Definition: Neighbourhood Basis
A neighborhood basis A, of a point x € X where X is a topological space is a
collection of neighborhood of x so that for all neighbourhood W, there exists
B e B, suchthatx € BC W.
Example 1.14: Neighbourhood Basis
Let X = R" and a point x € R”, set B, := {B.(x)|r € Q*}, wher
B.(x) == {y € X|d(x,y) < r} is an open ball. We claim that &, is a
neighbourhood basis of X, If N is a neighbourhood of x € R", then there exists
an R > 0 such that Bg(x) C N. Moreover, there exists an r € Q" such that
0 <r <R.Thenx € B,(x) C Bp(x) C N as we desire. I

Not all topological spaces have a countable neighborhood basis at every point.
However, first-countable spaces are those where each point has a countable
neighborhood basis. For example R" is first countable according to the following
definition:

Definition: First Countable
A topological space X is said to be first countable if every point x € X has a
countable neighbourhood basis.

In a first-countable space, sequences and nets can be characterized more easily. Co-
nvergence of sequences can be described using neighborhoods from the local basis.
However, this may not be valid in general topologies:

Proposition 1.26:
Let X be a first countable topological space. Consider a subset A C X and a
point y € A. Then there exists a sequence {x,}, C A with x, 2.

Proof:
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Let {N;}2, be a countable neighbourhood basis of y. By replacing N; (if
necessary) by Ny N N, N --- N N,, we may assume that N, 2 N, 2 ---.. Since
y € A and N, is a neighbourhood of y, then N; N A # @. Pick x; € N; N A,
since N; 2 N, Vk > i, let W be a neighbourhood of y, since {N,} is a
neighbourhood basis, there exists i € N such thaty € N, C W, then for k > i
onchasxy, EN,CN,CW=x, - y.
[
Remark:
Note that this result does not apply to general topologies. For example, it fails
when applying to box topology T}, I
Now let us introduce the convergence results of nets:
Proposition 1.27:
Let X be a topological space. Consider a subset A C X and a point y. Then
y € A & 3(x)),c, in A such that x; — y.
Proof:
“&e”
Suppose that there exists a net (x;), in A such that x, — y. Then for any
neighbourhood W of y, by definition, WN {x, |1 €A} # D =>WNA# D
since VA € A, x; € A hence by Proposition 1.21y € A.
“="
Left as exercise (Hint: apply Proposition 1.21).
[
Nets provide a way to define continuity for functions between topological spaces,
even in cases where sequences might not suffice.
Proposition 1.28:
Letf : X — Y be a function between topological spaces X and Y. Then
f1s continuous if and only if for all net (x;),c, in X with x; — w then
£ = fw).
Proof:
=7
Suppose f'is continuous, (x;),c, 1s a net, x; — w. Let U be a neighbourhood of
f(w) in Y, since fis continuous, f~'(U) is a neighbourhood of w since x, — w.
There exists A, € A such that x; € f~1(U) VA with A, < A = f(x;) € U VA
with 4, < A. Hence f(x;) — f(w).
“e
Left as exercise.

Proposition 1.29:

A topological space X 1s Hausdorff < limits of nets in X are unique.
Proof: Exercise.
Proposition 1.30:

A topological space X is Hausdorft < the diagonal
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A, = {(x,y) € XX X|x =y} isclosed in X X X where X X X has product
topology.
Proof:
Forx,y € Xsuchthatx #y & (x,y) € A..
A, CXXXisclosed & X X X\A,isopen & V(x,y) € (X X X\A,) exists
open neighbourhood W of (x,y) such that WN A, = @ & exists
U C X,V C X open subsets such that (x,y) € UXVand U X VN A, =&
S UNV =@ < Xis Hausdorff.
[]

Recall in analysis we have the terminology “compact”, for which we admit any co-
nvergent sequence has a convergent subsequence. It is natural to ask the properties
for the “subnet” even we have not formally introduced the compactness.

Before that we need introduce another term called “cofinal”. In topology, the term
"cofinal" refers to a relationship between two directed sets. This concept is used
primarily in the context of nets, which are generalized sequences that provide a way
to study convergence and continuity in topological spaces. Cofinality captures the
idea of one directed set being "larger" than another in a specific sense.

Definition: Cofinal
Given two directed sets A and B, where f : A — B 1is a function that preserves
the order of the sets, we say that B is cofinal in A if Va € A 3b € B such that
f(b) > a.

When dealing with nets, cofinal subsets of the directed set are used to construct su-
bnets that capture specific convergence patterns of the original net. Moreover, in the
context of compactness, a directed set is cofinal in another if the net indexed by the
latter directed set is used to construct a convergent subnet of the net indexed by the
former directed set.

Example 1.15: Cofinal
Consider A = N and B = {2n|n € N}. The function f : A — B defined by
f(n) = 2n makes B cofinal in A. Every natural number n has an associated
even number 2n that is greater than or equal to n. I

Definition: Subnet
Givenanetf : A — X and a cofinal subset B of the directed set A, the
composition f e g : B — X is called a subnet of f, where g : B - Aisa
function that preserves the order of B and is cofinal.

Definition: Convergence of Subnet
Asubnet g : B — X ofthenetf : A — X is said to converge to a point x € X if
for every neighborhood U of x there exists an index b, € B such that for all
b>byg) eU.

Proposition 1.31:
Let (x;),cA be anet on a topological space X that converges to w € X. Then
any subset (x,,,)),ep Of (X)), X,y = W

Proof:
Let N be a neighbourhood of w, since x; — w then 34, € A such that for
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Ao < 4, x; € N. Since ¢ is cofinal, there exists u such that 15 < @ ().
Then Vu € B with py < p one has ¢(py) < @(u); therefore, py < p, and
Ay < @(ug) < @(u) = @(u) € N by definition.
[]
Comment:

A subnet retains the convergence properties of the original net. If the original net f
converges to a point x then any subnet g also converges to x. Moreover, convergence
of subnets provides a tool for characterizing the convergence of the original net
without necessarily considering all the elements of the original directed set.
Furthermore, even not mentioned here, compactness of a topological space can often
be characterized by the convergence of certain types of subnets of a net.

1.9 Compactness and Convergence
Compactness is a fundamental concept in topology that captures the idea of “close-
ness" and "boundedness" in a topological space. A compact space is a space where
every open cover has a finite subcover, meaning that it's possible to select a finite
number of open sets from the cover that still cover the entire space.
Definition: Cover and Subcover
Let X be a topological space, a collection {U,} 4 is a cover of X if and only

it X = U U,. {U,}4e4 1s an open cover if it is a cover and each U, is open

a€A
(we can define closed by the same way), a subcover of a cover {U,},c4 15 a

subcollection { Uy} 4 p for some B C A.
Example 1.16: Cover and Subcover
Let (X, d) be a metric space, then {B,(x) |x € X,r > 0} is a cover of X and if
we let {B,(x)|x € X,r € QT}, then this is a subcover. I
Definition: Compact
A topological space X is compact if every open cover of X has a finite
subcover. That is, given an open cover {U,},c4, 3k € N such that for
k

ap, -, € Aonehas X = U U,, which is the subcover.
i=1
Remark:
(1)  If X is compact, then every net in X has a convergent subnet.
(i) K C R™is compact < K is closed and bounded. This does not hold in
general spaces.
(i11)) Tychonoffs Theorem tells us that a product of compact spaces is
compact. I
Proposition 1.32:
Let X be a topological space and let Y C X be a subspace.
Then Y is compact < for all collection {U,},c 4 of sets open in X, with

Y C U U, of sets open in X, with ¥ C U U, there exists k € N such that

acA acA
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k
for ay, ---,a, one has Y C U, .
1 k a;

i=1

Proof:
‘6:9,:
Suppose that ¥ is compact, then {V, := U, N Y}, 4 is an open cover of Y.
Since Y is compact, there exists k € N such that for ay, -+-, @; one has
k
Y=v,u-uv, >vc|Ju,
i=1
‘6@9,:
Let {V,},c4 be an open cover of Y, by the definition of subspace topology,
there exists U, € X opensuchthatV,=YN U, Va € A
> Y= U V, C U U,. By definition, there exist a4, ---, @, such that
a€A a€A .
YCU,U~UU, 2Y=Yn(JU,)=(nU,)u--uEnl,). O
i=1
Lemma 1.33:

Images of compact spaces under continuous maps are compact.

Proof:
Let X be a compact topological space and consider f : X — Y being continuous

for Y another topological space.
[Claim]: f(X) C Y is compact.
This is to show that given any collection {U,},c4 of sets open in Y with
k

fX) € | U, there exist U, -, U, such that f(X) C | J U,,. Since f

acA i=1

is continuous, U, is open and f(X) C U U, {(f ' (U)} enisa
acA
collection of open sets and X = U f~Y(U,). Since X is compact there
acA

exist ay, -++, o such that X =f_1(Ua1) U Uf_l(Uak). Therefore,

k
f(X) C U f ‘I(Uai). According to Proposition 1.32, f(X) is compact.
i=1
[]
Lemma 1.34:
A closed subset of a compact space is compact.
Proof:
Suppose that X is compact, take a closed subset K C X. {U,},c 4 1s a collection
of open sets in X, such that K C U U,. Then {U,},c4 U {X\K} is an open

a€A
cover of X = Jk € N such that for U, , -+, U, one has
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X=U,v-uU, UX\K)=>KCU, U, U--UU,, thus K is compact
by Proposition 1.32.
[
Lemma 1.35:
A compact subset of a Hausdorff space is closed.
Proof:

Let X be Hausdorftf and let K C X be a compact subset.

[Claim]: Vx € X\K, there exists an open set U such that x € U.
UCX\K,ie UnK = @. Since X is Hausdorff, then Vk € K, there
exist open neighbourhoods U of x , V) of k, such that U, NV, = @.
Since {V} },.cx 1s a collection of sets open in X with K C U V.. Since K

kek
is compact, 3n € Nand Vj , -+, V; suchthat K C V; U .- UV . Let
nowU=U, n--nU andUN [V, n--nV, | CU,
[Claim]: Un [V, U-- UV, | =@.
unV,c U, nV, =oVie Nn[ln]and result follows.

[]
Lemma 1.36:

Let X be a compact topological space and Y be a Hausdorff topological space.
Letf : X — Y be a continuous map. If fis a bijection, then it is a
homeomorphism.
Proof:
[Claim]: g :=f~!: ¥ — X being continuous.
For all C C X closed subsets, g~!(C) is closed in Y. But g~'(C) = f(C)
since X is compact and C is closed hence C is compact by Lemma 1.34.
Since fis continuous, f(C) is also compact by Lemma 1.33. Because Y
is Hausdorff, then by Lemma 1.35 f(C) is closed.
]
The Bolzano-Weierstrass theorem is a fundamental result in real analysis that guar-
antees the existence of convergent subsequences in bounded sequences. It is named
after mathematicians Bernard Bolzano and Karl Weierstrass. The theorem plays a
crucial role in understanding the behavior of sequences and is a key building block in
the study of limits, continuity, and compactness.
Theorem 1.37: Bolzano-Weierstrass Theorem
Every bounded sequence of real numbers has a convergent subsequence.
Corollary 1.37.1:
[0,1] is compact.
Proof:
Suppose not, then there exists a collection of open subsets of R, namely,

{U,} ea- 50 that [0,1] = U U, but no finite collection of U, covers [0,1].

aEA
Then there is no n € N such that for o, -*+, @, € A one has
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1
[0,1] C UOC1 U--uU Ua,, which means neither [O’E] nor [5,1] has a finite cover

constructed by U,. Name the interval that cannot be covered by finitely many
U, [a;,b,], now divide [a;, b;] into two that each of them cannot be covered
by [a,, b,], -+-. Then [0,1] 2 [a;, b;] 2 [a,, by] 2 -+ 2 [a,,, b,] 2 ---. Consider

1 S
|b, —a,| =§,O§a1 <ay<--<a,<L-<b, <+ < b, implies that

lim a, exists and lim b, exists. Since |b, — a,| = 0 as n — oo, one has
n—oo n—oo

lima,=1lmb, =Ce€R.Thus0<C<1,ie. C€[0,1] = 3p € Asuch

n—-oo n—-oo

that C € Uj. Since Uy is open there exists € > 0 such that (C —¢,C+¢) C Uy
and since both a,, b, converges to C we conclude that there exists an N such

n’ n
that (ay, by) € (C—¢,C+¢€) C Uy = lay, byl C Uy, then this is a finite
cover, hence a contradiction, so [0,1] is compact as we desired.
]
We have introduced the product topology before. Now let us build some connecti-
ons between the compactness and the product. The Tube Lemma is an important
result in topology, particularly in the study of topological vector spaces. It provides a
powerful tool for establishing the existence of neighborhoods around subsets of a
topological vector space that are contained within specified open sets.
Lemma 1.38: Tube Lemma
Let X and Y be two topological spaces with Y compact. Let x € X be a point
and U C X X Y is an open subset. Consider {x,} X Y C U, then there exists an
open neighbourhood V of x, in X such that V X Y C U.
Proof:
Vy € Y d an open neighbourhood V; of x,, W, of y such that V, x W, C U.

Consider {Wy}yey an open cover of Y since Y is compact. Then there exists an
n € Nsuch that for y;, -+, y, € Ywe have Y = W, U .- UW, . Let now
V= Vy U-- UV, .Then

1 Yn n

VxYcVx| W, cv, xW)u-u, xW,)CcU.
i=1
[]
The Tube Lemma is widely used in functional analysis, where it helps establish co-
ntinuity properties of linear mappings and analyze the behavior of functions defined
on topological vector spaces. It is also crucial in proving various results related to
topological vector spaces, such as the properties of normed spaces and Banach
spaces.
Corollary 1.38.1:
A product of two compact spaces is compact.
Proof:
Let X, Y be two compact spaces. Let {U,} 4 be an open cover of X X ¥ so

Vx € X, {x} XY C X X Yis compact and the map definedby ¥ - X X Y
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sending y to (x, y) is continuous. Therefore Vx € X dn € N, where n = n(x)
(n depends on x), such that a;(x)---, o, (x) € A and
{x} XY C U,V -+ VU, () Then by Tube Lemma, there exists an open

neighbourhood V) of x such that V, X Y C U, (U --- U U, ). {Vi} exis an
k

open cover of X, dx;, .-, x;, € X such that X = U V. . Then Vi, let n; = n(x,),

n=1

n; k k n
we have V, XY C U Ugy = X XY = U Vi, XY C U U Usj(x;
j=1 i=1 i=1 j=1
]
Corollary 1.38.2:
If X, ---, X,, are compact spaces, then X; X X, X --- X X 1s also compact. In
particular, [0,1]" is compact.
Proof: Follows from induction. [ ]
Remak:
Ifay,--,a,, by, -, b, € R are such that a; < b,. Then [a, b;] X --+[a,, b, ] 1s

n
compact because F : [0,1]" — H [a;, b;] and
i=1
F(ty, -, 1,) = ((a, + ,(by — ), (ay + 1(b, — ay)), ),
which is a continuous surjection. In fact it is a bijection, therefore it is
homeomorphism. I
Compactness in topology is also a fundamental concept that captures the essence
of boundedness and finiteness in a topological space. Recall that a subset X C R" is
said to be bounded if 3R > 0 such that X C By(0). Note that
Bx(0) C (—R,R)" C [-R, RI".
Definition: Bounded
Let X be a topological space and let A C X be a subset. Then A is said to be
bounded in X if there exists an open set U such that A C U.

This definition captures the idea that a bounded subset can be completely contained
within some open set of the topological space. However, this definition is more
abstract compared to the concrete notion of boundedness in metric spaces, where
distances between points are involved. Keep in mind that the definition might vary
depending on the specific context or type of topological space you are dealing with.

Now let us build up the connection between compactness and boundedness as we
promised.

Theorem 1.39:
A subset K C R" is compact < K is closed and bounded.
Proof:
“=7
Since R" is Hausdorff, then any cog}pact subset is closed. Consider
U, = B(0), fori = 1,2,3,---, then U U, =R" = di, -, i, such that

i=1
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KC U, V--UU.Letnowm := max{i, -, i}. Then K C U,, = B,(0) > K
is bounded.
‘e
Suppose that K is closed and bounded, since K is bounded then IR > 0O such
that K C [—-R, R]" = K is compact.
[]
Remark:

In general, compact subsets need not to be closed. |
Corollary 1.39.1:
A compact subspace of a metric space is bounded.
Proof: Exercise.
Lemma 1.40:
Let X be a compact topological space and let f : X — R be a continuous
function. Then there exist a, b € X such that f(a) < f(x) < f(b)Vx € X.
(Such a, b might not be unique.)
Proof:
Since f'is continuous, f(X) = R is compact, hence closed and bounded. Since

it is bounded, inf f(x), sup f(x) both exist. Since f(X) is closed, there is an
xe xeX
a € X such that f(a) = inf f(x), similarly, f(b) = supf(x).
x€X xeX

[]
Lemma 1.41:

X is compact & V{C,},c4 of closed subsets with C, N --- N C, # & Vk such
that ay, -+, o € A. Then ﬂ C, # 3.

acA
Proof:

X is compact & Any oepn cover {U,} 4 has finite subcover.
< Any collection {U,} 4 of open sets with no finite subcover
1s not a cover of X.
< Any collection {Ualpha} ,c 4 of open sets, Vn,

Va,,,a,€ A, X#U, U--UU,.
=X # U U,

a€A
< For all collection {U,,} 4 of open sets and Vn

Vay, -+, a,€ A, X\(U, U+ UU,)#@.
> X\ U, #2.ie. X\U,) N nX\U,) # @

a€A
& U X\U,) # .
a€A
< For all collection {C,} 4 of closed sets Vn, Vo, -, a, € A,
CyN--NC, #.
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aEA

[

The finite intersection property is a fundamental concept in topology that serves as
a criterion for compactness and plays a crucial role in characterizing certain
properties of topological spaces. It provides a way to ensure the existence of common
points among finitely many open sets in a topological space.

The motivation behind the finite intersection property lies in capturing the compac-
tness and convergence properties of subsets within a topological space. It helps us
understand how open sets can "overlap" in a way that guarantees the existence of
points shared by finitely many sets. This concept becomes particularly powerful when
considering compactness and sequential compactness, as well as when proving
certain limit and convergence properties.

Definition: Finite Intersection Property (F.I.P.)
A collection of subsets {C,}, 4 of a set X has finite intersection property
if for all finite subset {a;, ---ar,} C A, CO,1 N-+N Can * .
Lemma 1.43:
X is compact < For any collection {C,} 4 of closed subsets of X with finite

intersection property, ﬂ C, # Q.

a€eA
Definition: Limit Point

Let (x;),c be anet in a space topological X, a point p € X is said to be a limit
point (or cluster point, accumulation point) of this net if for all neighbourhood
Wofpand Vi, € A there exists A € Asuchthat 1) < Aand x; € W.
Example 1.17:
Let X = R and consider X, := (—1)" for n € N. Then one can check that
p = 1 and p = — 1 are limit points in this case. |
Proposition 1.44:
A point p € X be a limit point of a net (x;),-, < there exists a subnet (x/lﬂ)ﬂe Y

that converges to p.
Proof:

=7

Suppose p is a cluster point of (x;),-,, let M be the pairs defined by
M = {(A,W)| 4 € A, Wis neighbourhood of p with x, € W}.

Order M by (1, w) < (A", w') & (4 < A') and (W 2 W’). Define now a map

@ : M — Aby (A, W) = A. @ is order preserving.

[Claim]: @ is cofinal.
Since p is a limit point of (x;),c, then VA, € A and for all
neighbourhood W of p, there exists A € A such that Ay < Aand x;, € W,
ie.(4,W)e M,and Ay, < 4 = ¢(4, W) hence ¢ is cofinal. Moreover,

(x(pu,W))(LW)GM is a subnet of (x;),c -
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Since p is a limit point of (x;),c, for all neighbourhood W of p, 34, € A with

x), € W, forany y = 4, U) € Mwith (A4, W) < (4,U) since 4, < 4 and

x,; € U C W.Hence Vu € M with (4, W) < pu, X, EW=x, —p.

66@’,:

Suppose that (x/lﬂ)ﬂeM is a subnet of (x;);c, and X, = D

[Claim]: p is the limit point of (x;) ;<.
Let W be a neighbourhood of p, 4, < 4, we need to show that there
exists a 4 € A such that 4; < A and x; € W. Since x,, — p there exists

Mo € M such that if 1y < p then ’1/1;4 € W. Since (x/lﬂ)ﬂE » 1s a subnet of
(x;),ea then Ju; € Wsuch that Ay < 4, , since 4 is directed, 34, € M
such that py < pi, and p; < p,. Then 4y < 4, < 4, and X%,, € W since

muy?

M1 < Hy.
[
Proposition 1.45:

A topological space X is compact <> Any net (x;),c in X has a cluster point,
1.e. each of them has a convergent subnet & Every sequence has a convergent
subsequence.
Notation:
Given a net (x)),e5 and 4y € A, the Ay-tail of the net T := {x,; |4y < 1}.
In order to prove Proposition 1.45, we now make an observation: For any net
(x;),en, the set {T;},c, of tails has Finite Intersection Property (F.L.P.). This is
because VAj, -, 4 €A Fu €A such that 4, <A Vi =T,2T, Vi =

U
ﬂ T, 2 T, # @. We now proceed to the proof.
i=1
Proof of Proposition 1.45:
G‘:’ﬁ: B
Suppose that (x;),c 1S a net in a compact space X. Consider {7}, with
F.I.P. Since X is compact then ﬂ T, # @, pickp € ﬂ T,, for any

AEA IEA
neighbourhood W of p, VA € A, WN T, # & hence 31 € A such that A < A’

and x;; € W, 1.e. p 1s a limit point of (x;),;cx.

“@”:

Suppose that every net in X has a cluster point, let & be the collection of closed
subsets of X with F.I.P., we need to show that the intersection ﬂ C #@.

ce®
Consider that & is the set of finite intersections of elements of &, i.e.

g ={Cin---nC,|C,,-,C, €€, neN}
Since € has F.I.P. so does &. Direct & by the reverse inclusion, i.e.
G, <G, & G, CG,.
& is now a directed set, VG, G, € &, G|, < G; N G, and G, < G| N G,.
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VG € @ non-empty, choose x; € G, we get a net (X;)scw, this net has a limit
point called p. Then for any neighbourhood Wof p, VG € &, 3G’ € & with
G <GLie.G2G,andxgp € W.GNW 2G NW 3 xs. Therefore,

GNW+@=>peG=G=>pe ﬂGg ﬂc=> ﬂc;é@.
Geg ce¢¥ Cce¥

[

Before we proved that the finite product of compact topological spaces is still com-
pact, now we extend this to arbitrary product, which is the result of Tychonoff
theorem, also known as the Tychonoff's product theorem, is a fundamental result in
topology that characterizes the compactness of the Cartesian product of an arbitrary
collection of topological spaces.

Theorem 1.46: Tychonoft’s Theorem

For any collection of compact topological spaces {X,},c4 the product H X,

acA
1s also compact.

Remark:
The surprising fact is that this theorem is related, actually, equivalent to
the axiom of choice. This equivalence is known as the Tychonoff's
Theorem-Axiom of Choice Equivalence.Tychonoff’s Theorem is equivalent to
the axiom of choice. I
Axiom of Choice:
Let # := {U,} 4 be a collection of nonempty sets indexed by a nonempty
index set A. Then there is a functionf : A — U U, such that Va € A one has
a€A
fla) e U,.

The essence of the axiom is the assertion that one can choose exactly one element
from each non-empty set in a collection of sets. The function f is called a "choice
function" or “selector." The Axiom of Choice has various equivalent formulations and
versions, such as Zorn's Lemma and the Well-Ordering Principle. We now state
another equivalent form of it, but we need some terminologies.

Definition: Comparable
Two elements p, g € (X, <), where X is a set and < is a partial order (we
sometimes call (X, <) a poset) are called comparable if either p < gorg < p.
If they are not comparable then they are called incomparable.

Definition: Chain
A subset A C X where X is a poset with partial order < is called a chain if
every pair of elements of A are comparable.

So in the poset (R, <), the whole partial order is a chain. In N with the divisibility
relation, the set {7,72,73, .-+ } is a chain, but the set of all odd numbers, for example,
is not.

Zorn's Lemma is a fundamental result in set theory that provides a tool for establi-
shing the existence of maximal elements in partially ordered sets (posets).

Lemma 1.47: Zorn’s Lemma
Every non-empty partially ordered set (poset) in which every chain (totally
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ordered subset) has an upper bound contains at least one maximal element.
Now we proceed to the proof of Tychonoff’s Theorem:
Proof of Theorem 1.46:
Suppose that € := {C;},c; is a collection of closed subsets X = HXa with

acA
Finite Intersection Property.

[Claim]: ﬂ C # @.
iel

Let F := {B C PX) |B 2CVCe¥and B F.I.P.}. Suppose that
{B,} e, 1s a chain in F, we argue that U B, e 7.

jel
[Claim]: | |B; € #.
jel
() SinceCCBVjeJ=CC| B VCe®T.
Jjes
(i)  Each B;has F.LP, If {By, B,, -+, B} C U B;, since {B;} ¢,

jel

is a chain, then there exists s € J such that B, -+, B C B.

Moreover, since B, has F.I.P. B, N --- N B, € B, while

B,n--NnB, C U B, => U B; has F.LP. result follows.

jel jel
Now we may apply Zorn’s Lemma, since by our construction, & has a
maximal element, namely, D. Then consider the projection:
I, HXa — X
acA

Since D has F.LP. TI4(D) has F.I.P. where I1; C 9°(X;) V. Now we denote
{Hﬂ(B) |B S D} to be a collection of closed sets with F.I.P., where, trivially,

M, =:{T1,(B) | B € D}.

Since Xy 1s compact = ﬂ Hﬁ(B) # . Choose now b, € ﬂ I1,(B) for
BeD BeD
arbitrarily chosen a. One obtains that b = (b,),c4 € HXa =X
a€A
[Claim]: b € [ C.
i€l S

For each a, consider a neighbourhood N, of b, in X,,. Since b, € I1 (B)
VB € D. Then N,nII(B) # @VaVp=> D U {Il,-1(N,)},c4 has F.LLP.
therefore D U {IT;'(N,)},c4 = D by maximality of D. Since C; € DVi
we obtain C; N I1,-1(NV,) # @ViVa. Let U be a neighbourhood of b in

HXa, since {Ha—l(Ua) a€AU,CX, open} is a subbasis of the

aEA
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Throd on X. There exists k € N such that for ;, -+, o € A we have
bell,'(U)n-nI(U,)CU=>CNU#@Vi =>beCVi
But C; = C; since by our choice each C; is being closed. Therefore
beCVi >be(|C#@
i€l
Together with two claims we finally conclude that (ITy , Tprod) 1s compact as

we desired.
[]

This is a rather normal proof of Tychonoff Theorem using Zorn’s Lemma. In fact,
there are other approach to obtain the same result; in [10], Etienne Matheron offered
two other approaches, for one of them using the categorical tools. Readers who are
interested in this aspect may consult his article.

We shall close our first chapter by the discussion of convergent sequences as well
as the completion of Cauchy seqeunces. First recall the definition we saw in a basic
analysis course:

Definition: Cauchy sequence
A sequence {x, },cn In @ metric space (X, d) is said to be Cauchy if it satisfies
Ve > 034N € Nsuch thatif n,m > N, then d(x,, x,,) < €.

Definition: Complete Metric Space
A metric space (X, d) is said to be complete if every Cauchy sequence has a
limit inside it.

Example 1.18: Complete Metric Space
(1) R with the standard metric d(x,y) := |x — y| is complete.

.. n T, . T ]
(11) (—5, 5) is homeomorphic to R. For example, tan : (—5, 5) — Ris

T
homeomorphic. But (—5, 5) 1s not complete.

Not that the second sub-example above states a very important feature of comple-
teness: Homeomorphisms do not always preserve the completeness of metric spaces.
A homeomorphism, by definition, preserves topological properties, including
convergence properties. However, the preservation of convergence properties, such as
the convergence of sequences or nets, does not necessarily imply the preservation of
completeness, as completeness is a specific property related to metric spaces.

It is natural to ask, since completeness is excluded from the structure, what features
or properties, in or not in the structure, the homemomorphism preserve? It is trivial to
see that open sets are indeed preserved, as well as continuous functions. One anti-
intuition fact is that homeomorphism does also preserve the convergence, as we
specified above, this is because the convergence is a part of the structure of
topologies while the completeness is a part of the structure of the metric spaces.
Moreover, the topological properties such as compactness, connectedness, and
separability, are also preserved by homeomoprhisms. Furthermore, as we shall see
later on, the topological invariants and the topological-induced properties, are also
preserved under homemomorphisms.
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In topology, a subset of a metric space is said to be totally bounded if, intuitively, it
can be "covered" by finitely many small balls (open balls) of a given radius. Totally
bounded sets are an important concept in understanding the compactness and
convergence properties of metric spaces.

Definition: Totally Bounded
A metric space (X, d) is said to bne totally bounded if Ve > 0 dn € N such that

for x;, .-+, x,, € X we have X = UBg(x).
i=1
Theorem 1.47:
Let (X, d) be a metric space, then the followings are equivalent:
(1) (X, T,) is compact.
(1))  Every sequence in X has a convergent subsequence.
(111)) X is complete and totally bounded.
Proof:
(1) = (1):
Suppose that (X, 7)) is compact and {x,},cx 1S @ sequence with no convergent
subsequence. Then Vy € X there exists a neighbourhood Uj of y such that

x, € U, only for finitely many choice of n. Let {U, } ¢ be a collection of open

covers of X. Since X is compact, it has a finite subcover = {x,},x has only
finitely many terms, but this is impossible, hence contradiction.

(11) = (111):

This part of the proof is divided into two parts: In the first part we prove the
completeness and in the second part we prove the boundedness.

Step I. Completeness.

Since {x,},cy 1S Cauchy, by assumption, there exists a convergent
subsequence {x,, };ey such thatx, — y. Since {x,},¢y is Cauchy, then x, — y
as well by its definition.

Step II: Boundedness.

Suppose there exists € > 0 such that X cannot be covered by finitely many €

Jx, such that X \B,(x;) # @ _
-balls. Then such that X \ (B,(x;) U B,(x,)) is
dx, such that X \B (xz) #* Q@

not empty. Therefore Ix, € X'\ U B.(x;) such that X'\ U B.(x;) # @. We get
i=1 i=1
a sequence {x,},cn such that d(x,, x;) > eVi <n = {x,},y has no

n’ l
convergent subsequences, a contradiction.

(111) = (1):

Let {U,},c4 be an open cover of X. Suppose it has not finite subcover. Since
by assumption X is totally bounded then it can be covered by finitely many
balls with radius 1. Then Jx, € X such that B,(x,) cannot be covered by

1
finitely many U ’s. There is a cover of X by finitely many balls with r = >
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Then there exists a ball B 1 (x;) which cannot be covered by finitely many U, 's
and B 1 (x;) N B{(xy) # @. We get a sequence of balls:
Bl (x())a B%(xl)a T Ban(xn)a
so that B i (x,) N B;l(xnﬂ) # @ and no ball can be covered by finitely many
n on+

1
U,’s. Moreover, d(x,, x,,) < o + Yoy < > = thus

d(xn’ xn+k) < d(xn’ xn+l) + -t d(xn+k—l’ 'xn+k)

1 1 1
SF(I +5+ +§)
2 1
< n—1 - m=2"
Consequently, {x,}, <y 1S cauchy by (iii). Since X is complete by assumption,
x, — y for some y = Jagsuchthaty € U, and 3r > 0 such that

1 r
B.(y) € U, Since x,, — y there exist n such that x,, € B.(y) and o < B}

therefore B 5 (x,) € B,(y) C U, which is a finite subcover, contradiction.

[

1.10 Connectedness

Connectedness is an important concept in topology that describes the property of a
topological space being "unbroken" or "not easily divided into separate pieces." A
topological space is considered connected if it cannot be separated into two disjoint
nonempty open sets. In other words, a space is connected if it forms a single,
continuous piece without any gaps or breaks.

Definition: Connected
Let X be a topological space. A separation of X is a pair U, V of disjoint
nonempty open subsets of X whose union is X. The space X is said to be
connected if there does not exist a separation of X.

Connectedness is obviously a topological property since it is formulated entirely in
terms of the collection of open sets of X. Said differently, if X is connected so is any
space homeomorphic to X since homeomorphisms are designed to preserve the
topological structure. Another way of formulating the definition of connectedness is
the following statement:

A space X is connected < the only subsets of X that are
both open and closed in X are the empty set and X itself.

For a subspace Y of a topological space X, there is another useful way to formulate
the definition of connectedness:

Lemma 1.48:
If Y 1s a subspace of X, a separation of Y is a pair of disjoint nonempty sets A
and B whose union is Y, neither of which contains a limit point of the other.
The space Y is connected if there exists no separation of Y.
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Since connectedness is defined to be violation of separation between disjoint non-
empty open subsets. It is natural to ask, is it possible for a non-connected space
having connected subspace? This question could also be viewed as “how can we
coonstruct spaces that are connected?””. We shall now prove several results that tell us

how to form new connected spaces from the given ones.
Lemma 1.49:

Let X be a topological space and consider two non-empty open subsets
C,D C Xsuchthat X = C U D. If Y is a connected subspace of X then Y
lies entirely within either C or D.
Proof:
Since C and D are both open in X, the sets C N Yand D N Y are openin Y.
These two sets are disjoint and their union is Y; if they were both non-empty,
they would constitute a separation of Y. Therefore, one of them is empty.
Hence Y must lie entirely in either C or D.
[]
Theorem 1.50:
The union of a collection of connected subspaces of X that have a point in
common is connected.
Proof:
Let {A,} be a collection of connected subspaces of a space X; let p be a point

of ﬂAa. We prove that the space Y := UAa 1s connected. Suppose that

a a
Y = C U D is a separation of Y. The point p is in one of the sets C or D;
without loss of generality, we may assume that p € C. Since A;’s are
connected, each of them must lie entirely in either C or D by Lemma 1.49,
and it cannot lie in D since it contains the point p of C. Therefore A, C C holds

true for every a, so that | |A C C, contradicting the fact that D is non-empty.
ry a g pty

a

[

There is also a “squeeze-theorem-like” property for connectedness which is very
useful when we can squeeze the set we wish to prove its connectedness by two
connected sets. Note that we admit the fact that the closure of connected sets is also
connected. However, note also that the interior of connected space may fail to be
connected.

Theorem 1.51:
Let A be a connected subspace of X. If A C B C A then B is also connected.
Proof:
Let A be connected and let A C B C A. Suppose that B=C U D is a
separation of B. By Lemma 1.49, A must lie entirely in either C or D; without
loss of generality, we may assume that A C C. Then A C C and since C and D
are disjoint, it follows that B cannot intersect D. This contradicts the fact that D
is a non-empty subset of B.

[
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We said before that the topological property is preserved under homeomorphisms,
we now prove that continuous map also preserve the connectedness:
Theorem 1.52:
The image of a connected space under a continuous map is connected.
Proof: Exercise.
Moreover, the connectedness is preserved under finite product. In fact, this can be
generalized into arbitrary product without violating the connectedness.
Theorem 1.53:
A finite Cartesian product of connected spaces is also connected.
Proof: Exercise.

1.11 IVT, MVT, and UCT

In the study of Calculus, there are three basic theorems about continuous functions,
and on these theorems the rest of calculus depends. They are the followings:

(i)  Intermediate Value Theorem (IVT): If f : [a, b] — R is continuous and
if r is a real number between f(a) and f(b), then there exists an element
¢ € [a, b] such that f(c) = r.

(i) Maximum Value Theorem (MVT): If f : [a, b] — R is continuous then
there exists an element ¢ € [a, b] such that f(x) < f(c)Vx € [a, b].

(iii))  Uniform Continuity Theorem (UCT): If f : [a, b] — R is continuous,
then given € > 0, there exists & > 0 such that | f(x;) — f(x,)| < € for
every pair of number x,, x, € [a, b] for which |x; —x,| < 4.

These theorems are used in a number of places. The IVT is used for instance in
constructing inverse functions such as \3/; and arcsin x; and the MVT is used for
proving the IVT for derivatives, upon which the two fundamental theorems of calc-
ulus depend. The UCT is used, among other things, for proving that every continuous
functions is integrable.

We have spoken of these three theorems as theorems about continuous functions.
But they can also be considered as theorems about the closed intervals [a, b] of real
numbers. The theorems depend not only on the continuity of the function f but also
on properties of the topological spaces [a, b].

The property of the space [a, b] on which the IVT depends on the connectedness,
and the property on which the other two depend on is the compactedness. We have so
far introduced all of them so let us now talk about their applications to these
fundamental theorems.

We now introduce a fact that the intervals and rays in R are connected and this co-
ncept should be already for familiar for those who are confortable with analysis. We
prove it here again, in generalized form. It turns out that this fact does not depend on
the algebraic properties of R but only on its order properties. To make this clear, we
shall prove the theorem for an arbitrary ordered set that has the order properties of R.
Such a set is called linear continuum.

Definition: Linear Continuum
A simply ordered set L having more than one element is called a linear
continuum if:
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(1) L has the least upper bound property.
(1) Ifx <y there exists zsuch thatx < z < y.

The terms "linear continuum" and "continuum" are closely related, but they refer to
slightly different concepts, particularly in the context of topology and real analysis.
Let's explore the differences between these terms:

Linear Continuum:
A "linear continuum" refers to a specific type of topological space that is
ordered, connected, and densely ordered. In other words, it's a linearly ordered
set (often the real numbers R) that forms a connected space, and between any
two elements, there is another element.

The properties of a linear continuum include:
Ordered Set:
The elements of a linear continuum can be arranged in a linear order (usually
denoted by <) that is reflexive, transitive, and connected.
Connectedness:
A linear continuum is connected as a topological space. This means that
there are no disjoint open sets that partition the space.
Dense Ordering:
Between any two distinct elements of a linear continuum, there is another
element. In other words, the space is densely ordered.

The classical example of a linear continuum is the set of real numbers R equipped

with the usual order and topology. As for continuum:

Continuum:
In a more general sense, "continuum" refers to a connected, unbroken space
that does not have any gaps or jumps. It emphasizes the idea of a smooth,
uninterrupted flow of points.

The properties of a continuum include:
Connectedness:
A continuum is connected as a topological space, meaning that it cannot be
partitioned into two disjoint nonempty open sets.
Unbroken Flow:
A continuum is a space where there are no "holes" or "gaps." It can be thought
of as a space that is continuously connected without interruptions.

Remark:
In this broader sense, a linear continuum is a specific type of continuum that
possesses additional properties related to linear ordering and density. I

Now we prove an important result of the linear continuum:

Theorem 1.54:
If L 1s a linear continuum in the order topology, then L is connected, and so are
the intervals and rays in L.

Proof:
Recall that a subspace Y of L is said to be convex if for every pair of points
a,b € Y with a < b, the entire interval [a, b] of points of L lies in Y. We prove
that if Y is a convex subspace of L, then Y is connected.
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So suppose that Y is the union of the disjoint nonempty sets A and B, each of
which is open in Y. Choose a € A and b € B; suppose for convenience that
a < b. The interval [a, b] of points of L is connected in Y. Hence [a, b] is the
union of the disjoint sets
Ay=An]a,bland By= B nN|a,b],
each of which is open in [a, b] in the sense of subspace topology, which is the
same as the order topology (see Remark below). The sets A, and B, are
nonempty because a € Ajand b € B,. Thus, A and B, constitute a separation
of [a, b].
Let now ¢ := sup A,. We show that ¢ belongs to neither A nor B, which
contradicts the fact that [a, b] is the union of A, and B,,.
Case I: ¢ € B,
Suppose ¢ € B,,. Then ¢ # a so either ¢ = b ora < ¢ < b. In either case, it
follows from the fact that By, is open in [a, b] that there is some interval of the
form (d, c] contained in By: If ¢ = b, we have a contradiction at once, for fis a
smaller upper bound on A than c. If ¢ < b, we note that (c, b] does not
intersect A since c is an upper bound of A,. Therefore (d, b] = (d, c] U (c, b]
does not intersect A,,. Again, since d is a smaller upper bound on A, than c,
contradiction.
Case Il: c € A,
Suppose now ¢ € A. Then ¢ # b so either c = a ora < ¢ < b. Because A is
open in [a, b], there must be some interval of the form [c, ) contained in A,
According to the definition of the linear continuum, we can choose a point
z € L satisfying ¢ < z < e, still, a contradiction since this implies z € A,,.
[]
Remark:
A key result we used in the proof is that the order topology and the subspace
topology coincide when the subset under consideration is itself a convex subset
of the ordered space. I
Corollary 1.54.1:
The real line R is connected and so are the intervals and rays in R.
As an application, we shall prove the intermediate value theorem (IVT) as we pro-
mised.
Theorem 1.55: Intermediate Value Theorem (IVT)
Letf : X — Y be a continuous map where X is a connected space and Y is an
ordered set in the order topology. If @ and b are two points of X and if ris a
point of Y lying between f(a) and f(b), then there exists a point ¢ of X such
that f(c) = r.
Proof:
Assume this is true. The sets A := f(X) N (—o0,7r) and B := f(X) N (r, + o0)
are obviously disjoint and they are nonempty since one contains f(a) while the
other having f(b) inside. Each is open in f(X), being the intersection of an

open ray in Y with f(X). If there were no point ¢ of X such that f(c) = r, then
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f(X) would be the union of the sets A and B. Then A and B would constitute a
separation of f(X ) and lead us to the contradiction since the connectedness is
closed under the continuous mapping.

[]

Connectedness of intervals in R gives rise to an especially useful criterion for sho-
wing that a space is connected; namely, the condition that every pair of points of X
can be joined by a path in X. The following discussion of path connectedness and the
relations between it and the connectedness follows from [22] and [23].

We now turn to a closely related conception: the path connectedness. It is more int-
uitive, and, as we will see soon, can be extended to define “higher level conne-
ctedness” which is described by computable algebraic objects.

Definition: Path and Loop
Let X be a topological space and let x, y € X be two points.
(i) A path from x to y is a continuous map y : [0,1] — X such that y(0) = x
and y(1) = y.
(1)) Inthe case x =y, we will call the path a loop with base point x.
(1) There 1s a special path/loop from x to x: the constant path y, defined by
v.(t) = x Vt € [0,1].
Remark:
So path is a continuous map, not just a “geometric curve”. Different
parameterizations of the same “geometric pictures” will be regarded as
different paths. I

Path-connectedness is a fundamental concept in topology that describes the degree
to which points in a topological space can be connected by continuous curves or
paths. A space is path-connected if you can find a continuous path between any two
points in the space. Path-connectedness is a stronger notion than simple
connectedness, as it not only ensures that the space is connected as a whole but also
allows for a "path" between any two points.

Definition: Path Connceted
We say a topological space X is path-connected if any two points in X can be
connected by a path.

It is easy to prove that path-conncetedness is stronger than connectedness:
Proposition 1.56:

If X is path-connected then X is connected.
Proof:

Suppose that X is path connected but not connected. Assume that there exist
nonempty disjoint open sets A and B such that X = A U B. Take a pointx € A
and a point y € B and a path y from x to y. Then [0,1] = y~'(4) U y~(B),
which makes the union of non-empty disjoint open sets, which contradicts with
the connectedness of [0,1].

[]

We now introduce some results from the compactness and derive the desired Extre-
me Value Theorem (EVT) as well as the Uniform Continuity Theorem (UCT) and
then talk a bit of the Lebesgue number lemma.
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Results:
(1) Let X be a simply ordered set having the least upper bound property. In
the order topology, each closed interval in X is compact.
([1], Theorem 27.1)
(1)) Every closed interval in R is compact. ([1], Corollary 27.2)
Now we prove the extreme value theorem of calculus, in suitably generalized form.
One should note that the EVT is the special case of the following generalization occu-
rs even when X is closed interval in R and ¥ = R.
Theorem 1.57: Extreme Value Theorem (EVT)
Letf : X — Y be continuous, where Y is an ordered set in the order topology. If
X is compact, then 9 ¢,d € X such that f(c) < f(x) < f(d) Vx € X.
Proof:
Since f'is continuous and X is compact, the set A := f(X) is compact. We show
that A has a largest element M and a smallest element m. Then since m and M
belong to A, we must have m = f(c) while M = f(d).
If A has no largest element then the collection {(—o0,a)|a € A} forms an
open covering of A. Since A is compact, some finite subcollection
{(=o0,ay),+,(—0,a,)} covers A. If q; is the largest of the elements a,, -+, a,,
then a; belongs to none of these sets, contradiction to the fact that they cover A.
A similar argument applies to the smallest elements, result follows.
[]
Now we prove the uniform continuity theorem of Calculus. In the process, we are
led to introduce a new notion that will prove to be surprisingly useful, that of a
Lebesgue number for an open covering of a metric space.
Definition: Diameter
Let (X, d) be a metric space, let Y C X be a subset. The diameter of Y is
defined to be diamY := sup{d(y;, y,) |y, ¥, € Y}, where diamY could be
infinite.
Lemma 1.58: Number Lemma
Let {U,} ,c4 be an open cover of a compact metric space (X, d ). Then for
some 6 > 0 so that for all subset ¥ C X with diamY < ¢ there existsana € A
such that Y C U,
Proof:
Pick x € X thenx € U, for some a = a(x) € A. Then there exists £(x) > 0
such that B, y(x) C U,,, so we get an open cover {B,,,(x)},cx, which is an
open cover of X.
Since X is compact, there exists k € N such that for x;, ---, x, € X one has
X = B,(,)(x)) U --- U By, y(x). Let now 6 := min{e(x), -+, e(x) }. f Y € X
with diamY < 6, then YN B l_)(xl-) # @ forsome 1 <i<k.
[Claim]: Y C U (x;).
Suppose yy € Y N B, y(x;), then Vy € Y,

d(y,x;) <d(y,yy) +dQp, x;

e(x
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<o+ ex) (since d(y,y,) < 0 and d(yy, x;) < €(x;))
< 2e(x;) (By the choice of 9)
Therefore Y C B, ,.)(x;) € U,(x;) as we claim.

[

The Lebesgue Number Lemma is a fundamental result in topology that provides a
useful tool for understanding the relationship between an open cover of a compact
metric space and the existence of a "Lebesgue number," which is a positive number
that ensures that any subset of the space with diameter less than the Lebesgue number
can be fully contained in one of the open sets of the cover.

Note that in different literature we may see different treatments. For example, the
version we adapt here comes from Eugene Lerman (see [2]). There are also other
approachses, for instance, in [ 1], the approach is done by

dx,A) :=1inf{d(x,a)|a € A},
where d(x, A) is called the distance from x to A. See also the treatment given by [24].
Recall in basic analysis we knew the difference between being continuous and bei-
ng uniform continuous.
Definition: Uniform Contiuity
A function f : (X,dy) — (Y, dy) is said to be uniformly continuous if Ve > 0
16 > 0 such that Vx,, x; € X one has:
dx(xo, x) < 6 = dy(f(xp), f(x})) < &.
Theorem 1.59: Uniform Continuity Theorem
Letf : (X,dy) = (Y, dy) be a continuous map where (X, dy) is compact. Then f
is uniformly continuous.
Proof:

€
Given € > 0, take the open covering of Y by balls B§(y) of radius 7 Let o be

an open covering of X by the inverse images of these balls under f. Choose o

to be the Lebesgue number for the covering &f. Then if x; and x, are two points
of X such that dy(x;, x,) < 6 the two-point set {x;, x,} has diameter less than o
so that the image { f(x,), f(x,)} lies in some open ball B%(y). Then

dy(f(x)), f(x,)) < € as we desired.
[]

1.12 Local Connectedness and Limit Point Compactness

We now generaliz the results we have proved so far. Both connectedness and com-
pactness are topological properties hence they are closed under continuos mappings.
We also know that according to Tychonoff’s Theorem arbitrary product of compact
spaces is also compact, since compactness implies connectedness, this means that the
arbitrary product of connected spaces is connected, not disconnected. We used these
terminologies to prove the IVT, EVT, and UCT and we saw how powerful these tools
are. It is natural to ask what should we do when we try to prove IVT, for example,
when we do not have the connectedness involved? This is where the locally connect-
edness, as well as the locally compactness come to our sight.
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Locally connectedness is a property in topology that characterizes the "closeness"
of points within a topological space. A space is locally connected if, intuitively, every
point has a neighborhood that is connected. This property provides information about
how the space is connected on a small scale, even if it might not be globally
connected.

The idea to derive the local connectedness is: given an arbitrary space X, there is
anatural way to break it up into pieces that are connected (or path-connected).
Definition: Components

Given X, define an equivalence relation on X by setting x ~ y if there is a

connected subspace of X containing both x and y. The equivalence classes are

called componenets (or the connected components) of X.

Property: (see [1], Theorem 25.1)
The components of X are connected disjoint subspaces of X whose union is X
such that each nonempty connected subspace of X intersects only one of them.
Definition: Path Components

We define another equivalence relation on the space X by defining x ~ y if

there is a path in X from x to y. The equivalence classes are called the path

components of X.

Property: (see [ 1], Theorem 25.2)

The path components of X are path-connected disjoint subspaces of X whose

union is X such that each nonempty path-connected subspace of X intersects

only one of them.
Definition: Locally Connected

A topological space X is said to be locally connected if Vx € X and for all

open subsets U C X containing x, there exists an open, connected set V such

thatx € VC U.

Definition: Locally Path Connected

We say a topological space X is:

(1)  Locally Path Connected at x € X if for any open neighbourhood U of x
there exists an open neighbourhood V of x inside U which is path
connected.

(11)  Locally Path Connected if it is locally path connected at any point.

Theorem 1.60: Criterion for Locally Connected (see [1], Theorem 25.3)
A topological space X is locally connected < for every open set U C X, each
component of U is open in X.

Theorem 1.60: Criterion for Locally Path Connected (see [ 1], Theorem 25.4)
A topological space X is locally path connected < for every open set U C X,
each path component of U is open in X.

Theorem 1.61: Relations (see [ 1], Theorem 25.5)

If X is a topological space, each path components of X lies in a component of

X. If X is locally path connected, then the components and the path

components of X are the same.

Proposition 1.62: Connected + Locally Path Connected = Path Connected
If X is a connected and locally path connected topological space. Then X is also
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path connected.
Proof:
Fix a point x € X. Consider the set
A = {y € X |y can be connected by path to x}.
By locally path connectedness, we know if a point is in A = a neighbourhood
of this point is in A. If a point is in A€ then a neighbourhood of this point is in
A€. Therefore, A # @ is both open and closed. Since X is connected then
X =A.
[]

From the above results, one can see that connectedness does not necessarily imply
the locally connectedness, similar result applies to path connectedness and locally
path connectedness. The reason is that they are different topological properties.

Instead of introducing the local compactness, which involve concrete background
of the Hausdorff space, we now introduce the limit point compactness. The key
difference between compactness and limit point compactness lies in the way they
handle infinite sets. Compactness deals with open covers and their finite subcovers,
while limit point compactness concerns the existence of limit points for infinite
subsets.

Definition: Limit Point Compact
A topological space X is said to be limit point compact if every infinite subset
of X has a limit point in X

Theorem 1.63: (see [1], Theorem 28.1)
Compactness implies limit point compactness, but not conversely.

Now we introduce another version of compactness called sequential compactness
which deals specifically with sequences of points in a space. A space is sequentially
compact if every sequence of points in the space has a convergent subsequence
whose limit lies within the space. Sequential compactness is a useful property in
spaces where sequences play a significant role.

Definition: Sequentially Compact
A topological space X is said to be sequentially compact if every seqeunce of
points in X has a convergent subsequence.
Theorem 1.64: (see [1], Theorem 28.2)
Let X be a metrizable space. Then the followings are equivalent:
(1) X is compact.
(1)) X is limit point compact.
(ii1)) X is sequentially compact.

The term “metrizable” is quite unfamiliar at this time since we have not yet introd-
uced it. The treatment of it will be given in the third chapter, where we zoom in to the
discussion of the metric space and metric topology.

To close this chapter, we shall talk a bit of the local-to-global lemma. In the world
of advanced mathematics, we are often interested in comparing the local properties of
a space to its global properties. Connectedness is one of our most important tools in
doing this. Often, it is easier to prove that a property holds in a neighborhood of each
point than to prove that it holds for the entire space. If the space is connected, then
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using the following lemma, we can sometimes deduce that a property holds globally,
simply from the fact that it holds in a neighborhood of every point.
Lemma 1.65: Local-To-Global Lemma
Let X be a connected topological space. Suppose that we have an equivalence
relation ~ on X such that every point has a neighborhood of equivalent points.
Then there 1s only one equivalence class, 1.e., all points of X are equivalent.
Proof:

LetX = U X, be the partition of X into the equivalent classes X,,. Thus, X is

a
the disjoint union of the X, and if x € X, then(x € X, >y € X)) ©® (x ~ y).
By assumption, Vx € X there exists an open set U such that x € U and every
element of U 1s equivalent to x; 1.e. x € U C X,,. Thus, every equivalence class
X, 1s open.
Suppose now that there there is more than one equivalent class. Let U = X, be
an equivalence class, and V = U Xj. Then U, V form a separation,

p#a
contradicting with the connectedness of X. Hence the uniqueness holds.
[]
Comment:

The "local-to-global" principle is a general approach used in topology where a glo-
bal property of a topological space is deduced from the local properties of its points.
While the local-to-global principle can be applied to many local-to-global properties,
it might not apply to all of them. It depends on the specific property and the nature of
the space being considered.

The local-to-global principle can be applied to many properties that have a local
character and are preserved under open sets. Examples of local-to-global properties
include connectedness, path connectedness, and locally connectedness.

However, there are properties for which the local-to-global principle might not ap-
ply:

Compactness and Limit Point Compactness:
Compactness and limit point compactness are not local-to-global properties. A
locally compact space does not necessarily imply global compactness, and a
space where every point has a limit point does not necessarily imply limit point
compactness.
Separation Axioms:
Some separation axioms, such as regularity and normality have local-to-global
properties, but others like 7;, and T, do not necessarily follow this principle.
Completeness:
Completeness, as seen in metric spaces, is a global property that depends on
the entire metric space and not just local neighborhoods.

2.1 Separation Axioms
We have introduced compatibility in the previous chapter. In this chapter we shall
deal with other topological properties such as connectedness and separability. The
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order of their presence is only due to convenience. We shall now consider the
separability.

A topological space 1s said to be separable if it contains a countable dense subset. A
dense subset is one that is "closely packed" in the sense that every point in the space
is either a part of the subset or a limit point of the subset. If a space is separable, it
means that you can find a countable set that is "everywhere dense" in the space. The
concept of separability is important because it measures how "rich" the space is in
terms of having points that are "close" to each other. The overview over separability
1s mainly from [14]:

Definition: Dense
Let X be a metric space. For A C X a subset we say A is dense in X if A = X,
Remark:
Recall that A = A U A’ where A’ is the set containing all the limit points of A,
therefore, according to this definition, it follows that A is dense in X < every
open ball in X contains a point in A. Moreover, by the sequential
characterization of the closure, we can say that A is dense in X & Va € X
there exists a sequence (x,,),,cy 1n A such that x, - a in X. I
Definition: Separable
Let X be a metric space (or a topological space). We say that X is separable
when it has a finite or countable dense subset.
Theorem 2.1:
Let X be a metric space. Then the followings hold:
(1)  If X is separable then there is a finite or countable basis for the metric
topology on X.
(11) If every infinite subset of X has a limit point then X is separable.
(i11) If X is separable then every subspace of X is separable.
Proof: Consult [14].

In order not to deviate from our main goal, which is the discussion of separability
axioms, we shall close the discussion for now, with a statement on its stability under
homeomorphisms. Before that we introduce a competitive definition for being dense:
Definition: Dense (comparable definition)

Let (X, T') be a topological space. The subset A C X is said to be dense in X if
the intersection of every nonempty open set with A is nonempty, i.e.
ANU# @holds true VU € T\@.
Theorem 2.2: Separability is closed under Homeomorphisms
Let (X, Ty) and (Y, Ty) be two topological spaces and letf : X — Ybe a
homeomorphism. If X is separable then so is Y.
Proof:
Since X is separable there exists a subset A C X that is both countable and
dense. That is, for all open sets U C X we have that A N U # @.
[Claim]: f(A) is a countable and dense subset of Y.
Since f'is surjective and A is a countable subset of X we see that f(A) is
a countable subset of Y. Now let V be an open subset of Y, since fis

61



continuous we have that f~'(V) is open in X and since A is dense in X.
Therefore we have A N f~1(V) # @. Hence,
fAANFTIV)) 2. A0 ffI V) #@. ANV # 2.
Since V is chosen arbitrarily, f(A) is a countable and dense subset of Y.
[]

Separation axioms, also known as separation properties, are fundamental concepts
in topology that describe how well distinct points and closed sets can be separated
from each other within a topological space. These axioms characterize the “separa-
teness" and "closeness" of points and sets, which is crucial for understanding the stru-
cture of topological spaces.

It may be bit confusing to claim the fact that the separability and the separation
axioms indeed are not the same: They refer to different aspects of the properties of
topological spaces:

Separability:
Separability is a property of a topological space that relates to the existence of
a dense subset with a specific cardinality. A topological space X is said to be
separable if there exists a countable dense subset in X. This means that there is
a countable set of points that are "dense" in the sense that every point in the
space is either in this set or is a limit point of this set. In other words, one can
approximate any point in the space arbitrarily closely using elements from the
countable dense subset.

Separation Axioms:
Separation axioms, on the other hand, are a set of properties that define how
well-behaved the open sets of a topological space are in relation to each other
and to the points in the space. These axioms provide information about how
"separated" or "disconnected" different parts of the space are from each other.

The materials we use to cover the separation axioms are from [9], [10], [11], [12],

[13], and mainly results from [14].
Definition: 7, (Kolmogorov)
For any two distinct points, there exists an open set containing one of the
points but not the other. That is to say, a topological space X is T if Vx,y € X
with x # y, there is an open set containing one and only one of x or y.
Example 2.1: 7,
Let X = {a, b, ¢} and consider the topology T = {@, X, {b},{a,b}} on X. ||

We make a comment taken from [17], where a relationship between topological sp-

aces and their Kolmogorov quotients are concerned.
Comment: [17]

Every topological space has a Kolmogorov quotient that is obtained by identifying
topologically indistinguishable points, that is, points that are contained in exactly the
same open sets. This means that there is no sequence of operations on an open sets
that would give a set A such that x € A but y & A for x # y. Nothing topologically
important to the space X is lost in identifying these points.
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The resulting space is Tj;-space: a space where all points are topologically distingu-
ishable. Most topological spaces we concern are 7. In a 7}, space, every point serves
a purpose!

However, there are situations where it 1s inconvenient if a space is 7};. Such a situa-
tion occurs when one is interested in refinements of the topology: the more points
there are in X, the more choices there are for refinements. The same is true for
subspaces, though the loss here is not so dramatic, still, if one is interested in the
specific points of the space, one might not wish to clump them together in equiva-
lence classes.

Definition: 7 (Fréchet)
For any two distinct points, there exist disjoint open sets containing each of the
points. That is to say, a topological space is T if Vx,y € X such that x # y,
there exist open neighbourhoods U, of x and U, of y such thaty & U, and
X & Uy.
Example 2.2: T
Let X be a set and let T be a cofinite topology (where singletons are closed).
Cofinite topology is defined by declaring a subset of X to be open if and only if
its complement in X is either finite or the whole set X. If x # y, consider the
neighbourhoods U, := x\{y} and U, := y\{x}. I
Proposition 2.3: Criterion for 7
A topological space X is T} < Vx € X, {x} is closed.
Proof:
=7
Suppose that X is 7. Then for x € X and Vy € X such that x # y there exists
an open neighbourhood U, of y such that x & U,. {x} =X \ U U, therefoer
y#X
{x} 1s closed.
‘=
Suppose singletons are closed, for x,y € X such that x # y and let
U, = X\{»}, easily see U, = X\ {x}.
[]

We now give some comments on 7} space, which are from [18], [19], [20]. For rea-
ders interested in this topic we highly recommend [20] for further readings.
Moreover, there are many open problems listed in [18].

Comment:

In topology, the T, separation axiom (also known as the Fréchet-Urysohn property)
is a fundamental property that characterizes the degree of separation between points
in a topological space. A topological space is said to satisfy the 7 axiom if, for any
two distinct points in the space, there exist open sets containing each point but not the
other. In other words, the points in the space can be separated by disjoint open sets.

A T space is stronger than a 7}, space (a space satisfying the Kolmogorov proper-
ty). In a 7 space, not only can distinct points be distinguished by open sets, but they
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can also be separated by disjoint open sets. Many common topological spaces,
including the Euclidean topology on R", metric spaces, and discrete spaces, satisfy
the 7' axiom.

The T, axiom is often used as a basic requirement when proving various properties
in topology. For instance, the uniqueness of limits in topological spaces is a consequ-
ence of the 7| property. Moreover, as we proved in Proposition 2.3, The T property
1s preserved under homeomorphisms. If two spaces are homeomorphic and one of
them satisfies the 7} axiom, the other will also satisfy it.

A product of 7 spaces is again a T space. This is an important property when dea-
ling with products of topological spaces. However, this may fail to be true when the
amount of products we consider is infinity. In the case of infinite products, specifica-
lly uncountably infinite products, some additional conditions or restrictions might be
needed to ensure that the product remains Fréchet. This is due to the potential
subtleties that arise in dealing with uncountable collections of open sets and closed
sets in the product topology. In some cases, extra assumptions or restrictions, such as
the Axiom of Choice or specific properties of the spaces involved, might be required
to ensure the validity of the statement for infinite products.

An equivalent statement for a space X to be Fréchet (or Fréchet-Urysohn) if when-
ever x 1s in the closure of a set A, there is a sequence of points a, in A which conve-
rge to x. In a letter written to Gary Gruenhage, F. Galvin asked the follow-ing geust-
ion: If X, X;, X,, --- are such that HXZ- is Fréchet for all n € w, mustHXl- be

i<n iI€w

Fréchet? Y. Tanaka has asked the same question. Gary Gruenhage’s paper [21] offers
a construction, assuming Martin’s Axiom (MA), a Fréchet space X such that X" is
Fréchet for all n € w but X? is not Fréchet, where the space X is countable and has
only one non-isolated point.
Definition: 7, (Hausdorff)

For any two distinct points, there exist disjoint open sets containing each of the

points. That is to say, a topological space X 1s 75 if Vx,y € X such that x # y,

there exists an open neighbourhood U, of x, U, of y, such that U, N U, = @.

It is natural to ask that why is 7j, 7|, and Hausdorff space are often mentioned, wi-
th Hausdorff seems to be the only “famous” one? One possible reason is that the
Hausdorff separation axiom aligns well with our geometric and intuitive understa-
nding of "closeness." When points can be separated by disjoint open sets, it reflects
the idea that distinct points can be "strictly distinguished" from each other based on
open neighborhoods.

Remark: ([1] Theorem 31.2)
A subspace of a Hausdorff space is Hausdorff and a product of Hausdorff space
1s Hausdorff. I
Definition: 75 (regular)
Given a closed set and a point not in that set, there exist disjoint open sets
containing the closed set and the point. That is to say, a topological space X
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is regular if for all points x € X and for all closed subsets C C X, there exist
opensets U,VwithUNV =@ suchthatx € Uand C C V.

Propotion 2.4: Criterion for 75
A topological space X is T; < X is T and open sets separate points and closed
sets.

As Proposition 2.4 implies, there are implications between all T, T}, T, T;, and
T,, which we shall introduce later. Our treatment with separation axioms concern
with the most common ones, T5, Tz, and some others will not be considered
throughout these notes. However, the as there are a rational number between 3 and 4,
there is a 75 L between T5 and 7}, as an intermediate, which we shall deal with later.

Remark: ([1] Theorem 31.2)
A subspace of a regular space is regular and a product of regular spaces is
regular. ]
Comment:

The T; separation axiom is a property in topology that characterizes a certain level
of "closeness" between points and closed sets in a topological space. The T;axiom is
a stronger separation property than both the 7;; and 7 axioms. A T; space is also T,
(Hausdorft), T} (Fréchet), and T;,. A T; space generalizes the 7, (Hausdorff) property
by ensuring that points and closed sets can be separated, rather than just distinct
points.

Moreover, The T; property captures an important aspect of continuity. In a 75 spa-
ce, you can separate a point from a closed set using disjoint open neighborhoods,
which is a fundamental requirement for various continuity-related concepts.
Furthermore, The 75 property is preserved under continuous maps. If X 1s 75 and
f : X — Y is a continuous map, where Y is another topological space, then Y is also
T;. Notwithstanding, the product of two 75 spaces is T3, this can be extended to finite
product, however, the arbitrary product of 7; spaces is not necessarily a 75 space.
While finite products of 75 spaces are guaranteed to be T3, the situation changes when
dealing with an arbitrary (possibly uncountable) product of 75 spaces.

The counterexample lies in the realm of set theory and the cardinality of the produ-
ct. When dealing with an arbitrary product, issues related to the size of the product
index set can arise. In particular, if the index set is too large (uncountably large), the
product might not satisfy the 75 separation axiom.

Example 2.3: Arbitrary product of 75 may not be 75.
This can be illustrated using the product topology and considering an
uncountable product of the Sorgenfrey line, which is a well-known example of
a T; space. In this case, when you take an uncountable product (for instance,
the product over the real numbers), issues related to the size of the index set
can lead to counterexamples where the product is not 75. |

It's worth noting that set-theoretic issues and cardinality considerations play a role
in such counterexamples. When dealing with arbitrary products of spaces, especially
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when the index set is uncountable, extra assumptions or conditions might be needed
to ensure that the product retains certain topological properties.
Definition: 7, (Normal)
Given two disjoint closed sets, there exist disjoint open sets containing each of
the closed sets. That is to say, for any two closed subsets C;, C, € X with
C, N C, = &, there exist open sets U and Vwith UNV = @ such that C; C U
and G, C V.
Proposition 2.5: Criterion for 7,
A topological space X 1s T, < X i1s T} and any two disjoint closed sets can be
separated by open sets.
Comment:

The T, separation axiom, also known as the normal space axiom, is a property in
topology that characterizes a higher level of separation between disjoint closed sets in
a topological space. The T, axiom is stronger than both the 75 and 7, (Hausdorff)
axioms. A T} space is also T3, T5, T}, and Tj,. Moreover, the T, property is important
for applications in functional analysis, measure theory, and other areas of
mathematics that involve working with spaces with "enough separation.” Further-
more, the T, property 1s preserved under continuous maps.

The arbitrary (finite or infinite) product of T, spaces is still a 7, space. Unlike the
situation with 75 spaces, where infinite products might not satisfy the 75 property, the
T, property is well-behaved with respect to products. This is a significant result
known as the Tychonoff theorem, which we shall introduce later.

2.2 Relations between Separation Axioms
We have offered criterions for 73, 75, and T, with the corr-esponding description in
Proposition 2.3, Proposition 2.4, and Proposition 2.5, res-pectively. Now we
present a criterion for the missing 7.
Proposition 2.6: Criterion for 7, (HausdorfY)
Let (X, Ty) be a topological space.
Then (X, Ty) is T, (Hausdorrf) ©The diagonal A := {(x,x)|x € X} is closed
in X X X.
Proof:
“=7
Vx # y, T, implies that there exist open sets U and V such thatx € U,y € V,
while UN'V = @. This can be modified into the form: there exists U, X U, in

X X X such that

(x,y) €U, xV,and AN (U, X V)) =@.
This means that every point in A€ has an open neighborhood entirely contained
in the complement. Therefore, A€ is open and by the open-closed duality A is
open.
‘e
Assume now that A is closed in X X X, we wish to show (X, Ty) is Hausdorft.

66



Let x,y € X be such that x # y. Consider the open set U := X \{y} in X.
Obviously (x,y) € A. Since A is closed, there exist open sets V, and V,

such that (x,y) € V, X Vyand V, XV, N A = @. If there exists z € V, N 'V,
then (z,z) € (V, X V)) N A, contradiction. Therefore (X, Ty) is Hausdorff.
]

Relations between Separation Axioms: [11]

We can also study the relations between these axioms. Obviously we have:

i T,=>T,.

w NT+0L=>0T+T,=>0,T1T+1,> 1T

Note that we also have

(i) T, & T, T, & T3, T & T, with counterexample (R, T, fipite)-

av) T,# 1;, T, T, T, # T, with counterexample (R, 7") with
T :={(—o00,a)|a € R}.

(v) T3 # T, T; » T, with counterexample (R, 7)) where T is generated by
the basis & := {[n,n + 1)|n € Z}. In this topology, closed subsets and
open subsets are the same.

(vi) T, & T3, T, & T, with counterexample (R, 7") where T is generated by
the subbasis & := {(a,b)|a,b € Q} U Q. Q° is closed but it cannot be
separated from {0}.

(v) T; # T, with counterexample being the Sorgenfrey plane
(R, Tsorgenfrey) X (R, Tsorgenfrey)» one may consult [1] in Section 31,

Page 152.
Proposition 2.7: T, + Criterion = T;
A T, (Hausdorff) space X is T; (Regular) & Vx € X, there exists an open
neighbourhood N of x containing a closed neighbourhood, i.e., there exists
an open set V such thatx € VC VC N.
Proof:
=7
Suppose now X is regular. Take x € X, let N be a neighbourhood of x. Then
there exists an open set V such thatx € V C N. Since V is open, then
C := X\Visclosed and x ¢ C. Since X is regular, there exist open
neighbourhoods W of C, U of x, such that U n W = @&. Consequently
U C X\W,since C C W,onehas U C X\W C X\C =V C N. Therefore,
X \ W is the desired closed neighbourhood of x.
‘e
Suppose now x € X, C C X is a closed subset and x & C, then X\ C is an open
neighobourhood of x. By assumption there exists a closed neighbourhood N of
x with N C X\C. Since N is an neighbourhood of x, there exists an open
neighbourhood U of x with U C N. Set V := X\ N to be an openset, then one
has V= X\N 2 X\(X\C) = C. Since U C Nand V = X\N, one has
unv=ga.
[
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Lemma 2.8: T,+Compact = T;
Compact Hausdorff space is regular.
Proof:
Let X be a compact Hausdorff space and consider a point x € X, a closed
subset C C X such that x & C. V¢ € C there exists an open neighbourhood U,
of x and U, of ¢ such that U, N U, = @ by Hausdorff. Since X is compact,
{U.}.ec1s an open cover of C. Moreover, since C is closed it is compact since
it has bounded neighbourhoods. Therefore there exists n € N such that for the
points ¢y, -+, ¢, satisfying C C U, U ---U U, = U,letV:=U, Nn---NU,
then UNV =@ withx € Vand C C U.
[]
Theorem 2.9: 7,+Compact = T,
Compact Hausdorff space is normal.
Proof:
Suppose that X is compact Hausdorff and let C;, C, C X be closed subsets such
that C; N C, = @. By Lemma 2.8 V¢ € C, there exist open sets U, 3 c,
V. 2 G, such that U, NV, = &. Then {U,} ., is an open cover of C;.

Therefore there exists an n € N with ¢y, ---, ¢, € C; such that
G, cU,u-ulU, = ULetnowV:=V, NV, 2C,thenUNV=0
with C; € U while G, C V.
[]
We talk about the properties of the normal spaces to close this subsection. Normali-
ty, may not behave well as its name suggested. However, most of the spaces we are
familiar with are 7. It importance comes from the fact that the results one can prove
under the hypothesis of normality are central to much of topology. The Urysohn
metrization theorem and the Tietze extension theorem are two such results, which we
shall deal with later.
Properties: of Normal
(1)  Every regular space with a countable basis is normal.
([1], Theorem 32.1)
(1))  Every metrizable space is normal. ([1], Theorem 32.2)
(111) Every compact Hausdorff space is normal. (Theorem 2.9)
(iv) Every well-ordered set X is normal in the order topology.
([1], Theorem 32.4)

2.3 Countability Axioms

In order to obtain more relationships between separation axioms, we need to intro-
duce more materials such as the countability axioms. One may see an elegant
introduction in [29], there are some very good lecture notes corresponding to this
topic, one may also consult [27] and [28]. For a thouroughly treatment, one may also
review the 31st section of [1]. First recall the definition of first countable we offered
in 1.8.
Definition: First Countable (4,)
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A topological space X is said to be first countable if every point x € X has a
countable neighbourhood basis.
Remark:
If (X, Ty) 1s first countable, then for each point one can choose a countable
neighbourhood base { U, } satisfying U, 2 U, 2 U; 2 -+, since if one has a
countable neighbourhood basis V|, V,, --- at x, then one can take
U=V, U,=VnV,,Us;=V,NnV,NVj, . I

A first-countable topological space is a space in which every point has a countable
neighborhood basis. This means that for each point in the space, there exists a
countable collection of open sets that form a basis for the neighborhoods of that
point. The concept of a first-countable space is important in topology as it leads to
some convenient properties related to sequences, limits, and continuity.

We shall introduce four basic countability properties, they are (1) The first counta-
ble axiom, (2) The second countable axiom, and (3) The Lindel6f condition. They are
denoted as A; space, A, space, and A; space, respectively. We first introduce some
results of A;.

Theorem 2.10: A, and Convergence
Let X be a topological space, then
(1) LetA C X be a subset. If there is a sequence of points of A converging
to x, then x € A; the converse holds if X is Ay
(i) Letf : X — Y. Iff1is continuous, then for every convergent sequences
x, = x in X, the sequence f(x,) = f(x). The converse holds if X is A;.
Proposition 2.11: A, and Compactness
Suppose that the topological space X is A;. If X i1s also Hausdorff, then a subset
A C X is limit point compact < it is sequentially compact.
Example 2.4: A,-space
(i)  Any metric space is A; since one can take {U,} := B 1 (x).

(1))  The set of real numbers R equipped with the standard Euclidean
topology is a first-countable space. Vx € R the collection of open
intervals with rational endpoints centered at x forms a countable
neighborhood basis.

(i11) The discrete topology on any set X is first-countable. Each singleton set
{x} is an open set, and these singleton sets form a countable
neighborhood basis at each point.

First-countable spaces have a nice property when it comes to sequences and their
limits. If a space is first-countable, then every limit of a sequence can be described
using the countable neighborhood basis of the limit point. This is particularly useful
in metric spaces where sequences play a crucial role. As we see above, a sequentially
compact space, where every sequence has a convergent subsequence, is always first-
countable. However, the reverse is not necessarily true; a first-countable space is not
necessarily sequentially compact. Moreoever, in a first-countable space, a function is
continuous at a point if and only if the limit of the function at that point coincides
with the value of the function at that point. Furthermore, all metric spaces are first-
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countable. This is because, in metric spaces, the open balls centered at a point with
rational radii form a countable neighborhood basis.

Now we move to the discussion on the second countable axiom, namely A,. A sec-
ond countable topological space is a space that possesses a countable basis for its top-
ology. This means that the space has a collection of open sets that is both sufficient to
generate the entire topology and countable in size. The concept of second countability
1s important in topology as it leads to some useful properties related to compactness,
separability, and metrizability.

Definition: Second Countable (A,)
If a topological space X is said to be second countable if it has a countable
basis.

Remark:
Obviously any second contable space is also first countable. But the converse
1s not true, for example, the discrete topology is first countable but not second
countable. Moreover, one need to note that the second countable axiom, being
stronger than the first countable axiom, sometimes is so strong that not even
every metric space satisfies this property. I

Second-countable spaces have some convenient properties related to compactness.
For instance, every compact subset of a second-countable space is itself second-
countable. A second-countable space is always separable, meaning that it contains a
countable dense subset. This is because the countable basis can be used to construct a
countable dense subset. As we shall introduce later, all metric spaces are second-
countable. The collection of open balls with rational radii centered at all points of the
space forms a countable basis.

Recall the definition of total boundedness:

Definition: Totally Bounded
A metric space (X, d) is said to b’? totally bounded if Ve > 0 dn € N such that

for x;, -+, x, € X we have X = U B.(x).
i=1
Proposition 2.12:
Any totally bounded metric space is A,.
Proof:
Suppose that (X, d) is a totally bounded metric space. By definition, for any

n € N, one can form a finite — - net, i.e. there exists finitely many points,
n k(n)
namely X, 1, X, 9, ***s X, gy € X such that X = U Bi(x;).
i=1
[Claim]: B = {BL(X,U-) | neNI1<Li<L k(n)} 1S a countable basis.
Take any open subset U and an arbitrary point x € U. Then there exists
a € > 0 such that B,(x) € U by openness. Now choose n € N and
1 <i < k(n) such that
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1 € 1
— < —andd(x,x,;) <—.
n 2 ’ n
It follows immediately that

Bi(x,;) € B2(x) C B.(x) C U,

therefore the countable family 3 is a basis.

Corollary 2.12.1:
Any compact metric space 1s A,.
Theorem 2.13:
Let a topological space X be A,. Then X is separable and first countable.
Before we proceed to the proof of Theorem 2.13, we need a property for the dense
subsets.
Lemma 2.14:
Let D C X be a subset and let & be a basis of open sets not containing &.
Then D isdense © VB e B, BND # @.
Proof:
“=7
Suppose that B € % but BN D = @. Then D is contained in the closed set
X \B, which implies that D # X, hence not dense, contradiction.
‘e
Let x € X be an arbitrary point and let N be a neighbourhood of x in X. Then
thereisa B € &% such thatx € B C N. Since BN D # @, it follows that
NN D # @, therefore x € D which implies X = D. Result follows.
[]
Proof of Theorem 2.13:
Let & be a countable basis. We may assume that @ & 9. For each B € 33,
choose xz € B. Then by Lemma 2.14, {x;| B € 93} is a countable dense
subset of X, so X is separable.
For each x € X, the family {B € 9% |x € B} is a countable neighbourhood
basis at x. Therefore the first countable axiom follows.
[]
Remark:
Note that the reverse may not always be valid. A famous example is done by
the Sorgenfrey line, this is a concept we try to aviod in the first chapter, in
order for a detailed description we shall offer below. I

The Sorgenfrey line and the Sorgenfrey space are topological spaces that have uni-
que properties and are often used as counterexamples in topology to illustrate conce-
pts that might not hold in more familiar spaces like the real numbers with the standa-
rd Euclidean topology.

The lower limit topology is the topology generated by the set of all open intervals
in the real numbers. The lower limit topology is denoted by R,. The standard example
of the lower limit topology is the real line, which is called the Sorgenfrey line.
Sorgenfrey Line:
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The Sorgenfrey line, denoted by R, is a topological space where the open sets
are generated by half-open intervals of the form [a, b) for a, b € R. In other
words, the basis for the topology consists of half-open intervals. This topology
1s also known as the lower-limit topology.

Properties:
The Sorgenfrey line has some interesting properties:
(1)  Itis separable and second-countable.
(1)) It is not a normal space.
(111) The space is connected, path-connected, and locally connected.

Sorgenfrey Space:
The Sorgenfrey space, denoted by R2, is a two-dimensional analog of the
Sorgenfrey line. It is defined by taking the product of two copies of the
Sorgenfrey line, with the basis for the topology consisting of sets of the form
la,b) X [c,d) with a, b, c,d € R. Sorgenfrey space share the same properties
(1), (i1), and (iii) of Sorgenfrey line, but it does not have all the properties of
Sorgenfrey line.

Let us now return to the remark of Theorem 2.13, we claimed that the reverse, 1.e.

a separable A, space may not be A,, we now offer a counterexample.

Example 2.5: Separable A, space may not be A, (see [30])
The Sorgenfrey line, also know as R equipped with lower limit topology. In
R, Q is still a dense set, and each point x has a countable local base of sets of

1
the form [x, x + —) for n € Z™, but the space is not second countable.
n

In the Sorgenfrey space, namely, [R{L%, the situation is even worse: Q) X Q is a
dense subset, so it’s separable, and as a product of two first countable spaces it
is certainly first countable, but the reverse diagonal, A := {(—x, x)|x € R}is
an uncountable closed discrete set. It’s easy to see that no space with an
uncountable closed discrete subset can be second countable. I
We now state an important behaviour of A; and A, spaces, which is very useful wh-

en we consider the subspace or the product of the A, (resp. A,) spaces.
Theorem 2.15:
(1) A subspace of A; space is A, a countable product of A; space is A;.
(i) A subspace of A, space is A,, a countable product of A, space is A,.
Proof: (see [1], Theorem 30.2).
Corollary 2.15.1:
A subspace of a separable space is separable, a countable product of a
separable space is also separable.
Proof: (see [30], Theorem 3.4).
Moreover, we state a fact that any second countable topological space is separable.
This could be easily derived from the following proposition:
Proposition 2.16:
Any second countable topological space has a countable dense subset.
Proof:
Let {U,} be a countable basis of the topology (X, Ty). For each n € N, choose
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apointx, € U, and let A = {x,}. Then A is a countable subset in X.
[Claim]: A = X.
In fact, Vx € X and any open neighbourhood U of x, there exists an n
such thatx € U, C U. In particular, U N A # @ therefore A = X.
[]
Remark:
A, = separable but separable & A,. I
Example 2.6: separable but not A, space
Again, this counterexample is done by the Sorgenfrey line, the separability of
(R, R,) follows from the fact that @ = R. To see that (R, R ) is not A,, we let
3B be any basis of R,. Then Vx € R there exists an open set B, € 9 such that
x€B, . Clx,x+1),
which implies that x = inf B,. As a consequence, for any x # y, we have
B, # B,. S0 & is not a countable family. I
However, in some cases, the converse is true:
Proposition 2.17:
A metric space is A, < it is separable.
Proof: (see [27], Proposition 1.13).
Remark:
Separability is a very useful concept in functional analysis. It is used to prove
certain compactness results. Another well-known result is:
A Hilbert space # is separable < it has a countable orthogonal basis.
From this fact one can easily construct a non-separable Hilbert spaces. I
Theorem 2.18:
Suppose that X has a countable basis. Then the following statements are valid:
(1)  Every open covering of X contains a countable subcollection covering X.
(1))  There exists a countable subset of X that is dense in X.
Proof:
Let {B,} be a countable basis for X.
(1):
Let of be an open covering of X. For each positive integer n for which it is
posible, choose an element A, of & containing the basis element B,,. The
collection &, of the sets A, 1s countable, since it is indexed with a subset J of
the positive integers. Furthermore, it covers X. Given a point x € X, we can
choose an element A € &/ containing x. Since A is open there exists a basis
element B, such that x € B, C A. Because B, lies in an element of &/, the
index n belongs to the set J, so A,, is defined; since A, contains B,, it contains
x. Thus &' is a the desired countable subcollection of &f.
(i1):
From each nonempty basis element B,, choose a point x,. Let D be the set
consisting of the points x,. Then D is dense in X: Given any point x of X, every
basis element containing x intersects D, therefore x € D, denseness follows.

[
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Two properties listed in the above theorem are sometimes taken as an alternative

countability axioms.

Definition: Lindelof (A3)
A topological space X is said to be A, if every open cover of X has a countable
subcover. In other words, for any collection of open sets that covers the space,
you can select a countable subset of those sets that still covers the entire space.

Weaker in general than A,, each of these properties is equivalent to A, when the sp-
ace is metrizable (we will see this later). They are less important than the second
countability axiom but one should be aware of its existance for it is sometimes useful.
For example, to show that a space X has a countable dense subset than it is to show
that X has a countable basis.

The Lindeldf property is a topological property that ensures a certain level of “co-
mpactness” or "coverage" by open sets in a space. It is a countability axiom that
imposes a limitation on the open covers of a space. It ensures that no matter how
"large" or "uncountable" the open cover might be, you can still find a countable subc-
ollection that covers the entire space. Moreover, compact spaces are Lindelof, but the
reverse 1s not necessarily true. Every compact space has a finite subcover, which is
also a countable subcover. Therefore, compact spaces satisfy the Lindelof property.
However, there exist Lindelof spaces that are not compact. Furthermore, every
sequentially compact space is Lindelof, but the reverse is not necessarily true. Seque-
ntial compactness is a stronger condition than the Lindelof property.

2.4 Urysohn’s Lemma

The Urysohn Lemma is a fundamental result in topology that provides a powerful
tool for constructing continuous functions that separate points and sets in topological
spaces. It is a key ingredient in proving various properties of topological spaces,
especially in the context of normal spaces and in establishing metrization theorems.
Definition: Completely Regular

A topological space is said to be completely regular if Vx € X and for all
closed subsets C C X with x & C, there exists a real-valued continuous
function f : X — [0,1] such that f(0) = O and f | = 1,1.e. f(c) = 1Vc € C.

A completely regular topological space is a type of topological space that extends
the notion of regularity by allowing the separation of points from closed sets by
continuous functions.

Theorem 2.19:
A subspace of a completely regular space is completely regular. An arbitrary
product of completely regular spaces is completely regular.

Proof:
Let X be a completely regular space and let Y be a subspace of X. Letx; € Y
and let A C Y be a closed subset such that x, & A. Now let A = A NY,then
xo & A. Since X is completely regular it follows that one can choose a
continuous function, namely, f : X — [0,1] such that f(x,) = 1 and
f(A) = {0}. The restriction of f |, is the desired continuous function on Y.
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Let now X := H X, be a product of completely regular spaces where A is an

acA
arbitrary index set (i.e. countable or not, finite or not). Let b := (b,) be a point

of X and let A be a closed set of X disjoint from b. Choose a basis element
H U, containing b that does not intersect A; then U, = X, except for finitely

many a, say o = ay, -+, a,. Giveni = 1,---, n, choose a continuous function
fi: Xg, = [0,1]

be such that fi(ba,.) = ] and f(X \Uai) = {0}. Let now ¢,(x) = ﬁ(ﬂai(x)), where

m,. denotes the projection. Then ¢; maps X continuously into R and vanishes

outsied Ty, I(Ual-)- Then the product

J@) = @1(0) - (%) - -+ - @, ()
is the desired continuous function on X, for it equals to 1 at b and vanishes

outside H U,.

Remark:
Every completely regular space is regular, but not all regular spaces are
completely regular. The completely regular property is stronger than regularity.
However, the completely regular space is not necessarily normal, a
counterexample could be viewed in [31]. I
Definition: 7 1 space (TychonofY)

[

A topological space X is said to be Tychonoft (75 L ) if it is Hausdorff and

completely regular.

Tychonoff spaces play a significant role in continuity and function theory. The Ur-
ysohn Lemma, which allows the construction of continuous functions that separate
points and sets, holds in Tychonoft spaces.

We now prove two claims corresponding to the relationship between T 1 and T5:

Theorem 2.20:
A Tychonoff space is regular, i.e. T; 1 = Ts.

Proof:
Given x € X and a closed subset C C X with x &€ C. There exists a function

f: X —1[0,1] such thatflc = landf(x) =0.Let U :=f_1([0,%]) S x and

1
1% :=f_1((5,1]) D C, result follows.

Lemma 2.21: Urysohn’s Lemma (T, = T; 1 )

Let X be a normal space and let A, B C X be two closed subsets such that

A N B = @. Then there exists a continuous function f : x — [0,1] such that

f1,=0andf|, = 1. Thatis to say, every normal space is Tychonoft.
Lemma 2.22:
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Suppose X is normal. Let A be a closed subset of X and U be an open subset of

X such that A C U. Then there exists an open set Vsuchthat A CV CV C U.
Proof:

Since U is open then X \ U is closed. Since A C U then X\U)N A = @.

Assume X is normal, then there exist open sets V, V' C X with A C V and

X\U C V'suchthat VN V' = @. Then V C X\V' C X\(X\U) = U.

Proof of Lemma 2.21:
The proof of Urysohn’s lemma is divided into three steps:
Step I:
Inductively construct open sets U, C X where r € Q N [0,1] so that
r<s<1=>ACUCUCUCU CX\B.

Since A C X\B =: U, then by Lemma 2.22, there exists an open set U, such
that

ACU,CU,C U CX\B. (Base case)
Since Q N [0,1] € N2 Then there exists a bijection

r:{0,1,2,---} - Q@n[0,1]

nwer,

such that 7y =0 and r; = 1.
Now we proceed to the inductive step:
Suppose that Uy, := U,., U, , -+, U, have been defined. We now construct U,

n+1
Let r; := min{r;},c[o ,) such that r, <r,, and let r,,, := max{r;},co 1; such that
Fip > Tyl o

(i) SinceO0=ry<- <1 <r, <r,<--rp=1wehaveU, CU, .

(i) By Lemma 2.22, there exists an open set U,  such that

u,cUu. CcU. CcU,.

l n+1 n+1 m

Step I

Define the function f : X — [0,1] piecewisely
l,ifx €e X\U,=:B

J@) = inf{r eQn[0,1](x e U}, ifx € UI'

By our construction, f(x) € [0,1]Vx and f(x) = 1 if x € B. We wish to show
that f vanishes everywhere ouside B and fis continuous. For any subset Z C R
such that inf Z exists and Va,b € R,

infZ <a < 3dr € Z suchthatr < a,

b<infZ < 3r' & Zsuchthath < r'.
Therefore,

2 The symbol R, (read as "aleph-null") represents the cardinality of the set of natural numbers N,
which is the smallest infinity in the hierarchy of infinite cardinal numbers introduced by the
mathematician Georg Cantor.
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(i) fx)=inf{r|x € U,} <a & Irsuchthatx € U, r < a. (2.1)
(i) f(x)=inf{r|x € U,} > b & Ir'suchthatx & U,.,r' > b. (2.2)
Since A C U, f(x) = 0Vx € A, now it left us to prove the continuity of f.
Step III

Note that & := {[O,a)|a S [0,1]} U {(b,l] |b € [0,1]} is a subbasis for a

topology on [0,1]. To show that fis continuous is to show that the preimage of
the elements of the subbasis are open, i.e. f~([0,a)) and f~'((b,1]) are open.
[Claim]: f~1([0,a)) is open.
Pick x € f71([0,a))e f(x) < a © Trsuchthatr < gandx € U.(2.1)
S x € U U, which is open.
r<a
Thus, U U.=f ~1([0,a)) is open.
r<a
[Claim]: f~1((b,1]) is open.
Similarly, x € f~1((b,1]) © b < f(x)
< dr'withb <r'andx € U. (2.2)
< s > b such thatx & U,

sxe | Jx\T)
s>b L
= 7 ((b,1]) = U (X'\U,) which is open.
s>b
Continuity follows from two claims, result follows thereafter.

2.5 Urysohn’s Metrization Theorem
Our goal of this subsection is to arrive at the following result:
A, + T+ Completely Regular = Metrizable. (2.3)

This is the famous result called Urysohn’s Metrization Theorem, which is a fundame-
ntal result in topology that provides a condition under which a topological space can
be metrized, meaning that its topology can be induced by a metric (distance function).
The theorem is named after the Russian mathematician Pavel Urysohn and is a signi-
ficant contribution to the study of topological spaces and their properties.
Definition: Metrizable

A topological space (X, Ty) is said to be metrizable if there exists a metric d on

X such that T; = T.

In topology, an embedding is a way to represent one topological space within anot-
her in a manner that preserves certain properties and relationships. An embedding es-
sentially allows us to view a space as a subset of another space while maintaining its
topological structure. This concept is fundamental in understanding the relationships
and properties between different spaces.

Definition: Embedding
A continuous map f : X — Y is called an embedding if f : X — f(X)isa
homeomorphism where f(X) is given a subspace topology.
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Remark:

(1)  An embedding is a way to map one space into another while preserving
the topological properties. The topology on the embedded space is the
same as the subspace topology induced by the larger space.

(1)  The simplest form of embedding is the inclusion map. I

Example 2.6: Embedding
(i)  The continuous mapping f : R — R? by sending x to (x,0) is an

embedding.
(i)  The continuous mapping g : [0,27) — C by sending 6 to ¢? is NOT an
embedding. [
Lemma 2.23:
The space [0,1]N with product topology is metrizable.

Proof:
Since [0,1]Y := {(xn)neN

define a function

x, € [0,1]}. Given tw sequences (x,,), (y,) In [0,1]",

Xn = Yn |-

d(x,y) = i %

n=1
It is not hard to see that such a d is a metric. Let now 7, denote the

corresponding topology generated from the metric d.
[Claim]: T, = Tprod'
That is, Id : ([O,I]N, Td) — ([O,I]N, Tprod) is a homeomorphism.

[13 prod g Td”:
Consider the projections p; : [0,1]Y — [0,1] such that pi(x) = x;.

1
Fix jand Ve > 0, if d(x,y) < P € then
| pi(x) — pi(V) | = |x; — ¥

=2j-5-|xj—yj|
N |

<. —|x, =

< ,;:12"' n = Ynl

, o1
:2J-d(x,y)<21-5-8 = €.

Therefore such a function p; is continuous. An immediate consequence is
that Id : ([O,I]N, Td) — ([O,l]N, Tprod) is continuous. That is to say,
YV E Tprog, V=147 (V) € Ty = Tproq S 1
“Td g Tpr0d77:
Suppose that V € T, 1s an open set. Then Vx € V, where x is a sequence
then there exists an € > 0 such that B,(x) C V. There exists N € N such

1 e
that — < —. Consider
2N 2
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£
U:={ye [0,1]N| =31 <5 forj = L+ N}.

N 00
1
Vy € U d(ry) = Y —lx, =i+ X —oln =yl
n=1 ¥ n=N+1
€ 1 1 1
<— Yy — 4 — —
2 Z 2n 2N 2n
n=1 n=1
€ €
<—:l+—=-1=¢
2 2
Thus, U C B,.(x) C V therefore V is open in Torod = Ta € Tprod-

[]
Lemma 2.24:

Suppose that X is 7}, and {f, : X — [0,1]} ,c4 1s a collection of continuous
functions that separate points and closed sets, i.e. if x € X and C C X closed
subsets with such that x & C, there exists an a suc that f,(x) = 1 and f, | . = 0.
Then there is a function F : X — [0,1]4 such that F(x) = ( JuX))gen € [0,1]4
1s an embedding.
Proof:
Recall in the proof of Lemma 2.23 we built projections p,, : [0,1]* — [0,1]
such that pa((xﬁ) e 1) = X,, which are continuous and for all ¥ and for all G
the mapping ¥ — [0,1]4
continuous.
Now, setting p, o F = f, Va implies that F : X — [0,1]" is continuous.
Suppose that x,y € X with x # y since {y} is closed and x & {y}, there then
exists an a such that f,(y) = 0 and f,(x) = 1. (In 7| singletons are closed.)
Therefore we have F'(x) # F(y) which means F is injective.
[Claim]: F : X — F(X) is closed.
Let C C X be a closed subset, z € F(x) be a point such that z is a limit
point of F(C). Then z = f~!(y) for some y € X and there exists a net
(x),ex In C such that F(x;) - z = F(y). If y &€ C, then there is an
a € Asuchthatf, |- = 0andf,(y) = 1.
= fo(x) = 0VA € A = fio(x) » fo(y) = F(x)) » F(y) =z,
contradcition. Therefore y € C and z = F(y) € F(C) which means
F(C) is closed and then result follows.

is continuous < Va,p,° G : Y — [0,1] are

[]
Lemma 2.25:

Suppose X is a topological space which 1s completely regular and A,. Then
there exists a countable family of functions {f, : X — [0,1]} 4 that separates

points and closed sets.
Proof:

Suppose C C X is a closed subset and x € X is a point such that x & C. Then
S+ X — [0,1] is a continuous function such that f(x) = 1 and f | . = 0. We may
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assume that f = 1 on a neighbourhood of x.
Since X is A,, there exists a countable basis, namely &', for the topology on X.
Suppose U, V € & with U C V, consider the following set:

{f : X = [0,1] continuous |f |, = 1,f |\, = 0}. (2.4)

If this set is nonempty, choose one and exactly one function from the set. We
get a countable set of continuous function and we shall denote this set as
{f,: X—=10,1]} ,c4 where A C & X & so that it is countable.
[Claim]:The collection {f,},c 4 separate points and closed sets.
Suppose C C X is a closed subset and x € X\ C is a point. Since &
is a basis and X \ C is open, there exists a V € & such that
x € V C X\C. Since X is assumed to be completely regular, it follows
that there is a function g : X — [0,1] such that g(x) = 1 and g | = 0.

We may assume g = 1 on a neighbourhood of x. There exists U € &
such that x € U and g |, = 1. Since g is continuous, g |; = 1, since

g |X\V = 0 then U C V. Therefore we have (2.4) # @. Hence Ja € A
and the corresponding f,, such that f, |, = 1 and f, | = 0. Then it
follows that f,(x) = 1 and f, | - = 0, as we desired.

Theorem 2.26: Urysohn’s Metrization Theorem
Let X be a T}, A,, and completely regular space, then X is metrizable.
Proof:
According to Lemma 2.25, there exists a countable collection
{f,: X—=10,1]} ,c4 of continuous functions that separate points and closed
sets. We may assume that A = N, then by Lemma 2.24,
F:X = [0,11N, F(x) = (£,(0)gen
is an embedding and since [0,1]Y is metrizable by Lemma 2.23, and F is an
embedding therefore X is metrizable.

[

2.6 Tietze Extension Theorem

Before our discussion of Tietze Extension, we prove some results derived from
Urysohn’s Metrization Theorem.

Theorem 2.27:
A, T; space is metrizable.

Recall that according to Urysohn’s Lemma, being normal implies completely regu-
larity; therefore, to prove Theorem 2.27 is equivalent to prove the following:
Theorem 2.28:

A, T; space 1s 1.

Before the proof, recall the definition of Lindelof space: A topological space is said
to be Lindelof if every open cover has a countable subcover.
Lemma 2.29: Lindel6f’s Lemma
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A, = Lindelof.
Proof:
Suppose that X is A,. Let { B, }, <y be a countable basis for the topology on X.
Let {U,},c4 be an open cover of X. Then,
(i) Vx € X3dn(x) € Nand a(x) € A such thatx € B,y C U,
(i) LetAB :={B,|da € AwithB, C U,}.
According to (i), & is a countable open cover of X. VB € 9, choose a(B)
such that B C U, g). Then { U, 5} pc g 1s @ countable subcover.
[
Proof of Theorem 2.28:
Assume that X is 75 A,. Let A, B C X be two closed subsets such that
A N B = @. Since X is regular, Vx € X with x & B, there exist open sets U,
and U, such that x € U, while B C U, with U, N U, = @. Therefore
U, C X\U, hence U, C X\U, since X\U, is closed = U,NB = @.
Now, let {U,},c4 U {X\A} be an open cover of X. Since X is A,, according to
Lemma 2.29, X is Lindelof, thus this cover has a countable subcover, i.e.
{U,},en U {X\A} is countable. Then {U,,},y is an open cover and
U,N B =@ Vn € N. Similarly, there exists an open cover {V,}, .y of B with
VNA=g.
Note that if W is open in X and C is a closed subset in X. Then
W\C = Wn (X\C) is open. Let G, := U,\V}, by the above argument, G, is
open; with the same fashion, G, := U,\(V; U V,), so on and so forth, and this
fashion terminates at G, := U, \( U V). Similarly, set H, := V,\U,,
n>1
H, := V,\(U,; U U,), so on and so forth, and this fashion again terminates at

H, = v\(|T.

n>1

(o] (So]
Letnow G := U G;and H := U H; where both of them are open sets. Since
i=1 j=1

V,NA =g and U U, 2 A then G 2 A. Similarly, H 1s an open set and
n=1

H D B. It left us to argue that G N H = @& and then we are done.
[Claim]: G N H = &.

Suppose not, then GNH # @ =>3dz€e GNH = z€ G,NnH, for

some n,m € N. We may assume that n > m. Since

H =V \(UuU--uU)andG,:=U\(V;U---UV),

n > m implies that G, N H,, = &, contradiction.

Therefore, G N H is empty and result follows.
[

The Tietze Extension Theorem is a fundamental result in topology that deals with
extending continuous functions defined on a closed subset of a topological space to
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continuous functions defined on the entire space. This theorem has important
applications in various areas of mathematics, including analysis, functional analysis,
and topology. The theorem is named after the German mathematician Heinrich
Tietze, who proved this result in the early 20th century.
Theorem 2.30: Tietze Extension Theorem
Suppose that X is a normal topological space. Let FF C X be a closed subset and
let f : F — [0,1] be a continuous mapping. Then there exists a continuous
function f : X — [0,1], which is an extension of fsuch that f | =1
The Tietze Extension Theorem guarantees that a continuous function defined on a
closed subset A of a normal space X can be extended to a continuous function defined
on the entire space X.
Remark:
(1)  If F'is not closed, then this theorem fails to be true.
(1))  One can use this theorem to prove that Moore’s plane is not normal.
Example 2.7: Counterexample
Consider the real line R with the standard topology. Let A := (0,1) and define

1
a function f : A - R with f(x) = —.
X

The function fis continuous on (0,1) and it's a valid candidate for extension to
the entire real line. However, if we try to extend f we run into problems near 0,
where the value of the function goes to infinity.

If we attempt to extend f to a continuous function on the entire real line, we
would need to define f(0) as lim f(x). However, this limit doesn't exist in the

x—0
real numbers. I
This 1s why the closed subset condition in the Tietze Extension Theorem is crucial.
The theorem relies on the properties of closed subsets and the normality of the space
to ensure that an extension exists and is continuous. Removing the closed subset
condition can lead to situations where extensions are not possible or cannot be
guaranteed to be continuous.
Now we proceed to the proof of Tietze Extension.
Definition: Uniform Convergence
Let X be a topological space and let (Y, d) be a metric spaec. A sequence of
functions {f, : X — Y}, 1S said to be uniformly convergentto f : X — Yif
Ve > 0 3N € Nsuch thatifn > N then d(f(x), f,(x)) < eVx € X.
Lemma 2.31:
Suppose that X is a topological space and let (Y, d) be a metric sapce. IF
{f, : X = Y}, asequence of continuous functions, converges uniformly to
f : X — Y, then fis also continuous.
Proof:
We need to show that:
Vx, € X Ve > 0 there exists an open neighbourhood U of x, such that

x € U= d(f(x),f(xy)) <e.
Since f, — funiformly, there exists N € N such that Vn > N,
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€
d(f,(x), f(x)) < 3 Vx € X. Since fy is continuous at x,,, there exists a

neighbourhood U of x;, such that if x € U then d(f(x), fy(x()) < g Therefore,

Vx € U, d(f(xp), f(x)) < {le(f (@),fz\é(xO)) +d(fy(xo), f(0) + d(fy(x), f(x))

<gs+o-+-=e€
3 3 3
[

Proof of Theorem 2.30:
Without loss of generality, we may assume that O = inf f(x) and 1 = sup f(x).
xeF xeF
1 2
LetA :=f_1([0,§]) and B :=f_1([§,1]). By this construction, both A and B
are nonempty closed subsets in FwithANB =@ = A, Bis closed in X.

1
According to Urysohn’s Lemma, 3g, : X — [O’E] continuous with g; |, =0
1 1 2 1
and g |, = 3 Then Vx € F, f(x) < 3 = g x) =0,f(x) > 3 = g,(x) = 3
2
Letf) :=f — g, |, then f; is continuous and 0 < f(x) < 3 by construction.

Now repeat this fashion by replacing f; with f: there exists g, : X — [O,g X 5]

1 2
continuous such thatVx € F, if f{(x) < 33 = g,(x) =0 and if

I 2 I 2 I 2
i) 2= —=>gx) == -—.Letf, :=f —g |, with0 < H(x) < —-—.
1 2 2 1~ 81F 2

33 33 3 3

Continue this fashion, we finally terminate at a continuous function f, with

2 1 2
i X— [O,(E)”] and there exists g, ; : X — [O,g . (5)”] such that Vx € F,

£ St (2 2 g1 (0 = 0,£0) > = - (2 = g,1,(0) = = - (=Y. Now
3 3 3 3 3 3

: 2 2 n+1 1 2 n—1
let fp1 =fo = &ua1 | With 1 € [0,5 : (5) Jand 0 < g,(x) < 3 (5) :

thus, g(x) = Z g8, (x) converges uniformly on X therefore it is continuous.
n=1

Then, Vx € F, f(x) — g;(x) = fi(x), f1(x) — g,(x) = fr(x), -+,

Soo1(x) — g,(x) = f,(x). If we add all these equalities, we obtain

S@) = (8100 + -+ + g,(0) = f,(0),
VneN,0= limf,(x) =f(x)— Z g,(x) = f(x) — g(x), thus, g(x) is the

n—oo
n=1

desired extension of f(x) and we are done.
[]

We now use Tietze’s Extension Theorem to show that Moore/Nemyski’s plane X is

not normal.
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The Moore Plane is an example of a topological space that demonstrates the count-
erintuitive properties that can arise in topology. It is named after the American mathe-
matician Robert Lee Moore. The Moore Plane is a famous example of a topological
space that is connected and completely regular (or Tychonoff), yet it is not normal.
This highlights the fact that normality is a stronger separation property than mere
complete regularity.

The following version of the definition of Moore plane follows from [32], with det-
ailed treatment available in both [33] and [34]:

Definition: Moore Plane

If T is the closed upper half-plane I' := {(x,y) € R?|y > 0}, then a topology

may be defined on I by taking a local basis, namely, B(p, g) as follows:

(i)  Elements of the local basis at points (x, y) with y > 0 are the open discs
in the plane which are small enough to be included by I'.

(ii)  Elements of the local basis with the form p = (x,0) are defined to be the
set {p} U A where A is an open disc in the uppre half-plane which is
tangent to x-axis at the point p.

That is to say, the local basis is given by

{Up,@) = (0 0) | =P+ (v — @) < €} [ & > 0}, 4 > 0

Vip) = 1O U@ @ =pP + (y =) <e?}]e > 0}g =0

Thus the subspace topology inherited by I'\ {(x,0) | x € R} is the same as the
subspace topology inherited from the standard topology of the Euclidean
space.

The Moore Plane is connected, meaning that it cannot be partitioned into two disjo-
int nonempty open sets. The Moore Plane is completely regular, which means that for
any closed set A and a point x & A there exists a continuous function f : R? — [0,1]
such that f(x) = 0 and f(y) = 1Vy € A. The most remarkable property of the Moore
Plane is that it is not a normal space. This means that there exist disjoint closed sets
that cannot be separated by disjoint open sets. In other words, normality fails in the
Moore Plane.

[Claim]: The Moore/Nemyski’s plane X is not normal.
Define any continuous function f : L := {(x,y) € R*|y = 0} — [0,1]. We
now introduce a notation which is often used in mathematics, especially in
functional analysis and PDE. We use C(L, [0,1]) to denote the collection of all
the continuous functions f : L — [0,1].
Since L is closed in X if X is normal (In particular, L is a discrete topology).
Then any function f : L — [0,1] extends to a continuous function, namely,
f : X = [0,1]. On the other hand, consider the set given by

R := {(x,y) € X | x,y are rational }.

Then R = X and R is countable. If f, g : X — [0,1] are two continuous
functions such thatf'|, = g|, = f = g. Therefore,

e 0. < [0.107] < [r0.11Y],
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but this is impossible since this is equivalent to say | [O,I]R| < | [0,17N | .

Remark:
One important fact we used is that every functions from the discrete topologies
are automatically continuous. [

3.1 Metric Space

A metric space is a fundamental concept in mathematics, particularly in the field of
analysis and topology. It provides a way to define and understand notions of distance,
convergence, continuity, and other important properties within a given set.

We have introduced the notion of metric and the open ball in metric spaces, recall
we used B.(x) :={y € X|d(x,y) <r} to denote the open ball; in some literature
people use B(r, x) or B(x, r) and sometimes call it r-ball or ball of radius r around x
in X.

Definition: Subspace of Metric Space
Let (X, d) be a metric space. A subspace of X is a subset ¥ C X with the metric
obtained by restricting the one on X to Y.

Example 3.1:
We can view the set of rational numbers Q as a subspace of R with the
standard Euclidean metric d(x, y) := |x — y|. Note the following: the ball of
radius 1 in R around r € Q is the interval (r — 1,7 + 1), but the ball of radius
linQis(r—1,r+1)NnQ. I

Definition: Bounded
A subset U of a metric space (X, d) is said to be bounded if there exists a
positive r > 0 and a point x € X such that U C B,.(x).

Boundedness can also apply to functions defined on metric spaces.

Definition: Bounded (functions)
A function f : (X,d) — R is said to be bounded if there exists a real number
N € Rsuchthat | f(x)| < M Vx € X.

Understanding boundedness is crucial for various reasons: It's a key concept in the
study of compactness: A subset of a metric space is compact if and only if it's both
closed and bounded. It affects the behavior of sequences and functions: Boundedness
can impact the existence of limits, convergence, and continuity.

In many metric spaces, boundedness and compactness are closely related. A subset
of R is compact if and only if it's closed and bounded. This connection highlights the
role of boundedness in understanding the compactness of subsets.

Recall the notion of convergent sequences in a metric space, we assumed its uniqu-
eness in the previous discussion, now we prove it is valid.

Proposition 3.1:
In any metric space, limits of convergent sequences are unique.
Proof:
Suppose that (X, d) is a metric space and that the sequence {x, },cn In X

converges to x and y. Let € > 0.

€
Since x,, = x, there exists an index N; € N such that d(x,, x) < > forn > Nj.
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€
Similarly, if x, — y there exists an N, € N such that d(x,,y) < ) forn > N,.

Take N := max{N,, N,}. Then both inequalities above hold, and so the triangle

e €
inequality yields d(x,y) < d(x, xy) + d(xy,y) < 5 + > = €.

Since ¢ is chosen arbitrarily, let € | 0, then d(x,y) =0 = x = y.
[]

Recall that we did not build up the same argument for the “nets” in the topological
space, this is because: In general, the limit of a convergent net in a topological space
1s not necessarily unique. Unlike sequences in metric spaces, where limits are unique,
nets can have multiple accumulation points in a topological space. This is because
nets are more general than sequences and can capture more intricate convergence
patterns.

In a non-Hausdorff topological space (where distinct points might not have disjoint
open neighborhoods), a net can converge to multiple points. This is because there
may be overlapping neighborhoods of different points. Even in Hausdorff spaces, a
net can have multiple limit points, meaning that it converges to more than one point.
Remark:

It's important to note that in some cases, topological properties such as

Hausdorffness or compactness can ensure unique convergence. For example, in

a compact Hausdorff space, the convergence of nets is unique. I
Proposition 3.2:

A convergent sequence in a metric space is bounded.
Proof:

Let {x,},en be a convergent sequence in X such that x, — x. Since x, — x

there exists N € N such that d(x,, x) < 1 for n > N. Thus the terms in the

sequence for n > N are contained in B,(x).

Now we relax the condition on x,, 1.e. we enlarge the radius to include all the

elements of the sequence {x,}, . To that end, set

r =14+ max{d(x, x), -+, d(xy, x),1}. Take the open ball to be B,(x) yields

the boundedness, result follows.

[]

Proposition 3.3:

If {x,},en 1S @ sequence such that x, — x then Vy € Y, d(x,,y) = d(x,y).
Proof:

Lety € X. Since x, = x = d(x,,x) = 0. Let ¢ > 0 then 3N € N such that

Vn >N,

d(x,,y) < d(x,,x) +d(x,y) < e +d(x,y).
Similarly we can achieve the lower bound:
d(x,y) <d(x,x,) +d(x,y) = dx,y) —d(x,, x) <d(x,,y).
Forn > N one has d(x,y) — ¢ < d(x,,y). Therefore,
dx,y)—e <dx,,y) <dx,y)+e=>|dx,—y)—dx,y)| <e.
[]

Corollary 3.3.1:
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Letx, = xandy, = ythend(x,,y,) — d(x,y).
Therefore it is natural to introduce the notion of boundedness, which we should
derive after Propositio 3.2.
Definition: Bounded Sequence
A sequence {x,} in (X, d) is said to be bounded if there exists ap € X and a
B € R such thatd(x,,p) < BVn € N.
Remark:
Similarly, we can derive a competitive definition for a subset to be bounded in
a metric space: A subset A C X is said to be bounded if there existsap € X
and a B € R such that d(x, p) < BVx € A. I
Definition: Cauchy sequence
A sequence {x,},cn in (X, d) is said to be a Cauchy sequence if Ve > 0
AN € N such that Vn,m > N, d(x, — x,,)) < €.
Proposition 3.4:
Every convergent sequence is a Cauchy sequence.
Proof:
Let x, — x and let € > 0. Then there exists an N such that Vn > N

€
d(x,, x) < E Hence, Vn,m > N,

d(x,, x,) < d(x,, x) + d(x,, x) < % + % — e

[

A Cauchy complete metric space, often referred to as a complete metric space or
just a complete space, is an important concept in the field of analysis and topology. It
captures the idea of "completeness" of a metric space, which relates to the conve-
rgence of Cauchy sequences.

Definition: Cauchy Complete
A metric space (X, d) is said to be Cauchy complete if every Cauchy sequences
are convergent.
Definition: Subsequence
A subsequence of a sequence {x,},cn I @ metric space is a sequence
{X,, } . ken consisting of terms of the sequence {x,,},ey With iy > my & k > k.

The final condition simply means that the terms in the subsequence are arranged in
the same way as in the original sequence.

The limit of a subsequence, if it exists, is unique. This is consistent with the uniqu-
eness of limits for sequences in metric spaces. Moreover, the limit of the subsequence
coincides with the limit of the original sequence. But one should always bear in mind
that a subsequence can diverge even if the original sequence converges.

Proposition 3.5:
Let {x,},en be a convergent sequence in a metric space. Then any subsequence
converges to the same limit.

Proof:
Suppose x, = x in X and {x,, } is a subsequence. Choose ¢ > 0. Since x,, — x
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there exists N; € N such that d(x,, x) < eVn > N;. Choose N € N large
enough so that . > N, for k > N then d(x, , x) < € and result follows.
[]

Remark:

This proposition also implies that every subsequence of a convergent sequence

is convergent. I
Example 3.2: Singletons are closed

Let (X, d) be a metric sapce and x € X. We now argue that {x} is a closed set

in X. That is to say, according to the definition of openness, Vy € X\ {x} there
d(x,y)

is an open ball such that U,(y) 2 x. Let r := ,if x € B,(y) then

d(x,y) < r <d(x,y), contradiction, therefore B,(y) C X \{x}. I
Remark:
Similarly, one can prove that any finite subset of a metric sapce is closed. ||
Proposition 3.6: Convergence Criterion
Let {x,} be a sequence in (X, d). Then {x,} is convergent < Ve > 0, all but
finitely many terms in {x,} are in (x — &, x + ¢).
Proof:
“=7
Given x, = x and € > 0 IN such that Vn > N, |x, — x| < &. Therefore,
Vn>N.x,€(x—¢gx+e¢).
‘e
For the other direction, fix an arbitrary € > 0 and consider the open interval
(x — &, x + €). Given that all but finitely many terms in {x,} are in the interval,
it follows that 3M such that Vn > M, x, € B,.(x) therefore x,, is convergent.
[]
Theorem 3.7:
Let {x,} be a sequence in a metric space (X, d). Then x,, is convergent to x <
for every neighbourhood of x, all but finitely many terms in {x,} are not in the
neighbourhood of x.
Remark:
It is not hard to derive that every closed set has the property that every
convergent sequence converges in the set. |
Recall the notion of continuous in metric space: a function f : (X,dy) — (Y, dy) is
said to be continuous if Vx € X,Ve < 036 > 0 such that
dy(x,y) <6 = dy(f(x), f(y)) < e
In metric spaces, continuity is defined using the metric structure to capture the
notion of "closeness." Topological spaces generalize the concept of metric spaces by
considering open sets instead of distances. In a topological space, a function is
considered continuous if it preserves open sets. The relationship between continuity
in metric spaces and continuity in topological spaces is as follows:
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Every continuous function in a metric space is also continuous in the
associated topological space. The topology induced by the metric defines open
sets, and a function that preserves distances also preserves open sets.

In general, not every continuous function in a topological space can be equipped
with a metric such that it remains continuous. This is because the metric topology is a
specific case of the general topological structure and might not capture all possible
continuous functions in the topological space.

3.2 Compact Metric Space

Let us first talk about the compactness in the space R” since most of the materials
are familiar. Recall the notion C(R), which represents the collection of all continuous
function over the field R.

Definition: Support
The support of a function f € C(R) is the set {x € R| f(x) # 0}.

Note that in general, the support of a function is taken to be {x € R| f(x) # 0}.
Different from the one in R, the support of a function is defined as the closure of the
set of points where the function is nonzero to capture both the nonzero points and the
points where the function approaches zero in a continuous manner.

Definition: Sequentially Compact
Let (X, d) be a metric space. A set A C X is said to be sequentially compact if
every sequence in A has a convergent subsequence in A.

Definition: Topologically Compact
Let (X, d) be a metric space. A set A C X is said to be topologically compact if
every open cover of A has a finite subcover.

Notaion:
In some literature, the authors may use A € X to denote that A is a compact
subset of X.

Example 3.3:
(1) R s notacompact subset of R.
(i)  (0,1] is not compact or sequentially compact in R.
(iii) [0,1] is compact subset of R.

We now introduce some important result along without proof. Then we will discuss

more general situations in metric spaces.
Theorem 3.8:
Compact sets in R are closed and bounded.
Lemma 3.9:
A compact set in a metric space (X, d) is closed and bounded.

Is the converse also true? The answer is, in general, the converse does not hold. In
fact, if this metric space is R, then there is a theorem called Heine-Borel tells us the
converse is true. However, in general metric spaces, the Heine-Borel theorem doesn't
necessarily hold, so closed bounded sets are not guaranteed to be compact.

Theorem 3.10: Heine-Borel
Let K be a subset of R. Then K is compact < K is closed and bounded.
Proof:
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We konw that compact implies closed and bounded according to Theorem 3.8.
We thus need to prove the other direction. Let K be a closed and bounded
subset of R. Then, given K is bounded, K is contained in some closed interval,
namely [a, b], which we have shown to be compact. Hence Kis a closed subset
of a compact set, therefore compactness of K follows.
[]
At this point, one may wonder why we mention the idea of sequential compactness,
and how this actually relates to the idea of topological compactness. Firstly, recall the
Bolzano-Weierstrass Theorem, which is a powerful result that guarantees the existe-
nce of a convergent subsequence for any bounded sequence of real numbers.
Theorem 3.11: Bolzano-Weierstrass
Every bounded sequenece in R" has a convergent subsequence.
Lemma 3.12:
Consider A C R” such that A is closed and bounded. Then A is sequentially
compact.
Proof:
Let {x,} be a sequence in A. Then {x,} is bouded as A is bounded, and thus by
Bolzano-Weierstrass, there exists a convergent subsequence of {x,}. Then use
the fact that A is closed and every sequence in A has a convergent subsequence,
then the result follows.
[]
In fact, the converse of Lemma 3.12 is also true.
Theorem 3.13: Bolzano-Weierstrass
Let K be a subset of R. Then K is sequentially compact < K is closed and
bounded.
Proof:
We have shown the < direction. Let K be a sequentially compact subset of R.
Let {x,} be a sequence in K that converges to x in R. Then every subsequence
of {x,} converges to x. Therefore x € K, since x is chosen arbitrarily, K
contains all the limit points, hence closed.
Suppose K is not bounded, then there exists a sequence {x,} in K such that
|x,| = o0 asn — oo. Then every subsequence of {x,} is unbounded and
diverges, thus {x,} has no convergent subsequence, contradiction.

Remark:

In fact, one can generalize the result of Theorem 3.13 into R". |
Corollary 3.13.1:

Given A C R, A is sequentially compact < A is topological compact.

We now know that a set in R" is sequentially compact < it is topologically compa-
ct, this is true by showing
sequentially compact < closed and bounded < topologically compact,

where the last “<” uses the Heine-Borel Theorem. However, as the previous remark
shows, we do not have Heine-Borel in the general metric spaces. Then the question

arises: is sequentially compact equivalent to topologically compact in metric spaces?
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The answer is yes. To prove this, recall we proved Lebesgue Number Lemma in
Lemma 1.58.

The Lebesgue Number Lemma states that for any open cover of a compact metric
space, there exists a positive real number (the Lebesgue number) such that every
subset of the metric space with diameter less than the Lebesgue number can be
completely covered by a single set from the open cover.

Now we introduce the concept called totally bounded, which extends this concept
to metric spaces in general, whether they are compact or not. It ensures that the entire
space can be covered by small subsets (open balls or open sets) with diameters less
than a given positive number.

Definition: Totally bounded
A metric space X is totally bounded if Ve > O there exist x;, x,, **+, X,,
such that {B,(x;)| 1 <i < n} is an open cover of X.
Properties:
(1)  Totally bounded spaces are always bounded (since the diameter of any
subset in the cover is limited).
(1))  Totally boundedness is a crucial concept when defining completeness
and compactness in metric spaces.
Lemma 3.14:
If a metric space X is sequentially compact then it is totally bounded.
Proof:
Assume that X is sequentially compact and not totally bounded. Then there
exists an € > 0 such that X cannot be covered by a collection of open sets of
finitely many e-balls. Hence Vx; € X, x; € X \B.(x)), x5 € (X\B.(x)))\B,.(x,)
and so on. Then Vi # j, d(x;, x;) > € and {x,} has no convergent subsequence

eX

as otherwise it would be Cauchy, contradiction.

[]
Theorem 3.15:

A metric space X is (topologically) compact < it is sequentially compact.
Proof:

‘e
Let X be sequentially compact and let { U;},; be an open cover of X. By the
Lebesgue number lemma(Lemma 1.58), there exists an » > 0 such that
Vx € X, B.(x) C U, for some i € I. Now by Lemma 3.14, X 1s totally
bounded. Hence there exist y;, .-+, y, € X such that

X € B.(y))U -+ UB,(yp).
However, Vi € [, B,(y;) C Uy, for some j(i) € I. Thus {Uj), -+, U} is a
finite subcover for X. Since { U} is chosen arbitrarily, compactness follows.
=7
Assume that there exists a sequence {x,} in X with no convergent
subsequence. Notice that no term in the sequence can appear infinitelymany
times, as otherwisethere would be a trivial subsequence of {x,}. Hence, we
may assume, without loss of generality, that x; # x;Vi # j. Since for every n
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there exists an ¢, > 0 such that B, (x,,) contains no other terms in the sequence.

If not, there would again be a convergent subsequence, hence for all i, there
exists an open ball U; centered at x; such that x; & U, for all i # j.
Now consider U := X\ {x,|n € N}. U, is open since U = {x,|n € N} is
closed (it contains all of its limit points). Hence U, U {U,|n € N} is an open
cover of X. However, this open cover has no finite subcover as any finite
collection of the cover fail to include infinitely many terms from the sequence
{x;}, contradiction.
[
Recall that for X and Y two metric spaces, a continuous function f : X — Y, then
for all open subset U C Y, f~'(U) is also open in X.
Theorem 3.16:
Let X and Y be metric spaces and f : X — Y be a continuous map. If K C X is a
compact subset then f(K') C Y is also compact.
Proof:
Let {U,} be an open cover of f(K ). Then define V; := {f~1(U,)} which is open
by the continuity of f. Therefore {f~!(U.,)} is an open cover of K. Hence there
exists a finite subcover {Vl-l, e, Vin} of K as K is compact. Thus
{Uil, o, Uin} = {f(Vil), ---,f(vl-n)} is a finite subcover.
[]
Corollary 3.16.1:
Let X be a metric space and K C X be a compact subset. Then given a
continuous function f : X — R, f obtains a maximum and minimum finite
value on K.
Remark:
Sometimes in particular we want to study bounded continuous functions, and
this corollary gives us a nice property: Given a compact metric space X, every
continuous function fis bounded. I
Now we state another useful result to end this subsection.
Theorem 3.17:
Given a metric space (X, d), the followings are equivalent:
(1)  Xis compact.
(11) X s sequentially compact.
(111) X is Cauchy complete and totally bounded.
(iv)  Every collection of closed subsets of X with F.I.P. has a non-empty
intersection.
Proof: One may consult [42].

3.3 Complete Metric Spaces
Recall that in the last subsection introduced the notion of Cauchy complete metric
spaces. We remarked before that the completeness is a property in metric space rather
than a topological one, however, there are still a number of theorems involving
complete metric spaces that are topological.
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Completeness is a fundamental concept in the theory of metric spaces, serving as a
generalization of the idea of convergence. A metric space is complete if every Cauchy
sequence in the space converges to a point within the space itself. Completeness
captures the idea of "filling in the gaps" in a metric space, ensuring that no points are
missing from the space even when considering sequences that come arbitrarily close
to each other.

Definition: Complete (of metric spaces)
A metric space (X, d) is said to be complete if every Cauchy sequence in X
converges in X.

Any convergence sequence in X is necessarily a Cauchy sequence, of course; com-
pleteness requires that the converse hold. Note that a closed subset A of a complete
metric space (X, d) is necessarily complete in the restricted metric. For a Cauchy seq-
uence in A is also a Cauchy sequence in X, hence it converges in X. Because A is a
closed subset of X, the limit must lie in A. Now we introduce the first completeness
criterion:

Lemma 3.18:
A metric space (X, d) is complete if every Cauchy sequence in X has a
convergent subsequence.

Proof:
Let {x,} be a Cauchy sequence in (X, d). We show that if {x,} has a
subsequence {x, } that converges to a point x, then the sequence {x,} itself

converges to x. Given € > 0, first choose N large enough such that

€
d(x,, x,,) < 5 Vn,m > N. Then choose an integer i large enough such that

€
Vn; 2 Nd(x,,x) < 5 Then we have the desired inequality:

d(x,,x) < d(x,, xni) + d(xni, x) < €.
[]
Remark:
The Euclidean space R* is complete in the Euclidean metric d. I
Now we deal with the product space R”. Before that, we need a lemma about seq-
uences in a product space.
Lemma 3.19:
Let X be a product space X := HXQ and let {x,} be a squence of points of X.
Thenx, - x & n,(x,) — x,(x) Va.
Proof:
‘<
Since the projection mapping , : X — X, 1s continuous, it preserves the
convergent sequences.
“=7
Suppose that 7,(x,) = 7,(x) Va. Let U := H U, be a basis element for X that

contains x. For each a for which U, does not equal to the entire space X,
choose N, so that z(x,) € U,Vn > N,. Let N be the largest of the numbers
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N,, then Vn > N, one has x,, € U, result follows.
[]
Theorem 3.20:
There is a metric for the product space R relative to which R” is complete.
Proof:
Let d(a, b) := min{ |a — b|,1} be the standard bounded metric on R. Let D
be the metric on R defined by
D(x,y) := sup{d(x;, y,)/i}.
Then D induces the product topology on R”; we verify that R” is complete
under D.
[Claim]: R® is complete under D.
Let {x,} be a Cauchy sequence in (R?, D), since
d(7y(x), m(y)) < iD(x,y).
We see that for fixed i the sequence 7;(x,) is a Cauchy sequence in R
hence the convergence is for certain, namely, say a;. Then the sequence
x,, converges to the point a = (a,, a,, --) of R”.
[]
Remark: the space R”
For those who are not familiar with the choice of notion “R“”” and the notion
“R™, we now give the clarification:
R represents the infinite Cartesian product of real number spaces. Each
element of R is an infinite sequence of real numbers. The topology on R? is
typically given by the product topology, where open sets are generated by
cylinders (sets of sequences that agree with a given finite sequence at the first n
terms). Moreover, R? is a very large space with specific properties. It is not
locally compact, not separable, and not metrizable under its product topology.||
Although both the product spaces R" and R® have metrics relative to which they
are complete, one cannot hope to prove the same result for the product space R’ in
general, since R’ is not even metrizable if J is uncountable. There is, however,
another topology on the set R/, the one given by the “uniform metric”. Relative to
this metric, R’ is complete. (R’ : {f : / = R| fcontinuous}.)

The uniform metric, also known as the supremum metric or the L™ metric, is a
way of measuring the distance between functions in a function space. It is commonly
used in the context of spaces of bounded functions. The uniform metric defines
convergence and distance based on the supremum (least upper bound) of the
pointwise differences between functions.

Definition: Uniform Metric
Given a set X and a space of functions F defined on X, the uniform metric d_,
defined on F is given by: For two functions f, g € F,
d(f,8) :==sup | f(x) — g®)].
xeX
In other words, the distance between two functions is the supremum

(maximum) of the absolute differences between their values at each point in
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the domain.

We now talk more on the uniform metric as well as the so-called “uniform topolo-
gy”. The following discussion is a work of [44]:

The uniform topology on X” is the metric topology induced by the uniform metric.
The uniform topology is finer than the pointwise topology but coarser than the
compact-open topology. Moreover, the uniform topology provides a framework for
discussing concepts related to uniform convergence and uniform continuity of
functions. Now we introduce the first result on this topic, that the product topology
on X’ is weaker than the uniform topology on X"

Theorem 3.21:
If J is a set and (X, d) is a metric space, then the uniform topology on X” is
finer than the product topology on X".

Proof:
Ifx € X/, let U := H U; be a basic open set in the product topology with

jel
x € U. Thus, there is a finite subset J, C J such that if j € J\J, then U; = X.
Ifj € Jy, then since U; is an open subset of (X, d) with the metric topology and
x; € U, there is some 0 < ¢; < 1 such that Bgl,(xj) C U, Lete :=ming; If
! JEJ

dy,(x,y) < e then d(x;, ;) < eVj € Jand hence d(x;,y;) < ¢;Vj € J, which
implies that y; € U] Therefore, if y € Bj°°(x) theny € U, i.e. Bgd°°(x) cCU
Vj € Jy. Ifj € J\Jy then U; = X and y; € U, thereafter. Therefore, if

y € Bgd°°(x) theny € U, i.e. B€d°°(x) C U. It follows that the uniform topology
on X” is finer than the product topology on X”.
[]
The following theorem shows that if we take the product of a complete metric spa-
ce with itself, then the uniform metric on this product space is complete.
Theorem 3.22:
If J is a set and (X, d) is a complete metric space, then X’ with the uniform
metric d_, is a complete metric space.
Proof:
It is straightforward to check that (X, d) being a complete metric space implies
that (X, d ) is a complete metric space (recall d(a, b) ;= min{ |a — b|,1}). Let
f, be a Cauchy sequence in (X’, d_.): if € > 0 then there is some N such that
Vn,m > N one has d_(f,, f,,) < € Thus, if ¢ > 0, there is some N such that
Vn,m > Nandj € J then d(f,(j), f,,(j)) < d(f. f,) < &. Thusifj € J then
£,(j) is a Cauchy sequence in (X, d ), which therefore converges to some
f(j) € X,and thus f € X/. If n,m > N and j € J, then
d(£(1)s Ju)) < (S (D), () + d( £, (D), F())
< do(fo F) + A1), F(G))

<& +d(f, () £,
As the LHS does not depend on m and d(f,,(j), f(j)) — 0, one gets that if
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n > Nandj € Jthen d(f,(j), f(h)) < e. Therefore, if n > N then
d(f,, f) < €. This means that f, converges to fin the uniform metric, showing
that (X7, d_) is a complete metric space as we desire.

[

Now let us generalize somewhat, and consider the set YX where X is a topological
space rather than merely a set. Of course, this has no effect on what has gone so far;
the topology of X is irrelevant when considering the set of all functions f : X — Y.
But suppose that we consider the subset C(X,Y) of YX consisting of all continuous
functions f : X — Y. It turns out that if Y is complete, this subset is also complete in
the uniform metric. The same holds for the set B(X,Y) of all bounded functions
f : X — Y. (A function f is said to be bounded if its image f(X) is a bounded subset
of the metric space (Y, d)).

Theorem 3.23:
Let X be a topological space and let (Y, d) be a metric space. The set C(X,Y)
of continuous functions is closed in ¥* under the uniform metric. So is the set
B(X, Y) of bounded functions. Therefore, if Y is complete, these spaces are
complete in the uniform metric.

Proof: Consult [1], Theorem 43.6.

Now we arrive at the most important result of this subsection. We will offer a result
declaring the existence of an isometric between a metric space and a complete metric
space.

Theorem 3.24:
Let (X, d) be a metric space. There is an isometric imbedding of X into a
complete metric space.

Proof: Consult [1], Theorem 43.7.

We introduced the notion “isometric” in the above theorem, which is a type of ma-
pping between metric spaces that preserves the distances between points. Intuitively,
an isometry is a function that doesn't distort the geometric shape of the space it
operates on. [sometries are used to study the preservation of geometric properties un-
der certain transformations.

Definition: [sometry
Let (X, dy) and (Y, dy) be two metric spaces. A function f : X — Y is said to be
an isometry if dy(x,y) = dy(f(x), f(y))Vx,y € X.

[sometries are distance-preserving, meaning they preserve the metric structure of t-
he spaces they operate on. Moreover, [sometries are injective (one-to-one) since dist-
inct points in X must map to distinct points in to preserve distances. However, isome-
tries need not be surjective (onto).

Remark:
There are two types of isometry:
(1) Isometric Embedding
An isometry f : X — Y that is also a surjective map is called an
isometric embedding. It essentially preserves the entire geometric
structure of X within Y.
(11) Isometric Isomorphism
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If an isometry f : X — Y is both injective and surjective, it is called an
isometric isomorphism. Isometric isomorphisms establish a bijective
correspondence between the two spaces while preserving distances. ||

Hence we can give an important remark corresponding to Theorem 3.24.

Remark: of Theorem 3.24.

The isometry between a metric space and its completion is unique up to
isomorphism. This property is known as the universal property of the
completion of a metric space. I

Definition: Completion
Let (X, d) be a metric space. If 4 : X — Y is an isometric imbedding of X into
a complete metric space Y, then the subspace 4(X) of Y is a complete metric

space. It is called the completion of X.

We now give two important results to conclude this subsection. In fact, in the follo-
wing theorem, one may use the notion of M as an alternative defintion for the
completion.

Theorem 3.25:
Every metric space X with fixed metric has a unique metric space M (with
respect to the metric) such that:

i) MCM.

(ii))  The metric on M restricts to the metric on M.

(iii) M is Cauchy complete, and the closure of M is M.

The proof of this theorem relies on the following lemma:

Lemma 3.26:
For any metric space M, the space of all bounded continuous functions denoted

as C, (M) .= {f : M - R| fis continuous and sup |f(m)| < oo} is a metric
meM
space with the uniform metric d_,. In fact, it is Cauchy complete.

Proof:
We start by mapping M to a subset of C_ (M ). Choose a point m" € M and
consider the map
M>me gm(p) = d(p’ m) - d(p’ m/)-
Notice that this map is bijective and
d(my,m,) = sup | g, (p) — & + my(p)| = do.(8p,> &m,)-
PEM
This means that the map is isometric and what this allows us to do is view M as
a subset of C_ (M ).
Now we consider the closure of M’. Recall that a closed subset of a complete
metric space is complete itself, so the closure of M’, denoted by M’, is Cauchy
complete. By the isometry this implies that there exists the completion of the
metric space M.
[]
Comment:
Completing a metric space is a fundamental concept in the study of metric spaces.
The completion of a metric space involves constructing a larger metric space that
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includes the original space as a dense subspace while ensuring that all Cauchy
sequences in the original space converge within the completion. This process is used
to address the issue of incomplete metric spaces and to create a space where all
Cauchy sequences have limits.
Completion Process:
Given an incomplete metric space (X, dy), the completion of X to X is:
Dense Embedding:
There exists an isometric embedding i : X — X such that i(X) is dense
in X.
Cauchy Sequence Convergence:
For any Cauchy sequence {x,}, the sequence converges in X to a limit
that also belongs to X.

To the author’s own perspective, using X to represent the completion of the original
metric space X could cause confusion. That is, is it true that the completion of the
metric space is equivalent to taking the closure of the original space? The answer is
NO, the completion of a metric space is not equivalent to taking the closure of the
original space. The completion process involves more than just taking the closure.

While both concepts involve considering limits, they address different issues: The
completion of a metric space is about ensuring that all Cauchy sequences have limits
by introducing new elements to the space. Taking the closure of a set is about consid-
ering the limit points of the set itself, ensuring that no limit points are "missing" from
the set.

In summary, the completion of a metric space and taking the closure of a set are
distinct concepts that serve different purposes. The completion process is about
creating a larger space to accommodate all Cauchy sequence limits, while taking the
closure focuses on the limit points of a given set within the same space.

3.4 Metric Topology
It might be ambiguous for beginners to think about the exact differences between
metric spaces and topological spaces at the first sight. We have introduced one impor-
tant difference between these two concepts: that is, with convergence being part of
the topological properties, the completeness, however, is not a topological property,
but a metric space property.

The construction of topology, as we see in the first chapter, depends on the constru-
ction of open sets, and the open sets cannot be identified without the notion of metric.
These two concepts have been entwined so far, in fact, the topological spaces are
“bigger” than the metric spaces since metric spaces are special types of topological
spaces.

In this subsection, we first offer the formal definition of the metric topology, which
should be very familiar to you already, then we proceed to the discussion of metriza-
bility, which, again, we have proved in Urysohn’s Metrization Lemma, the next
goal of this subsection is the discussion in boundedness, and we argue that the stand-
ard bounded metric induces the same topology as the original metric does. Then we
shall enclose this section by discussion about some results derived from the metriz-
ability.
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Definition: Metric Topology
Let (X, dy) be a metric space, then the collection 7 of open balls
B.(x) := {y € X |dx(x,y) < &} with the radius € > 0 is a basis for a topology
on X called the metric topology induced by the metric dy.

Every metric spaces automatically induce a topology, however, as we noted in the
first chapter, there are topologies coming from no metric. Loosely speaking, the topo-
logical spaces are “bigger” than the metric spaces, but this does not necessarily mean
that the topological spaces are more complicated than metric spaces. They are derived
and studied due to different purposes:

Topological Spaces:
Topological spaces are more general than metric spaces. They define
open sets and neighborhoods without relying on a specific notion of distance
(as in metrics). This generality allows them to capture a broader range of
mathematical objects and phenomena. Moreover, topological spaces provide an
abstract framework for studying continuity, convergence, and connectedness.
Furthermore, in topological spaces, the topology can be very complicated,
leading to exotic topological properties like non-metrizability, non-Hausdorff
spaces, and non-separability. This complexity can make the study of certain
topological spaces challenging.

Metric Spaces:
Metric spaces are more specific than topological spaces because they rely on a
metric, which defines a notion of distance between points. This added structure
makes them suitable for studying concepts related to distance, convergence,
and continuity. Moreover, metric spaces have a uniform structure due to the
metric, which can simplify proofs and calculations. For example, in a metric
space, one can use concepts like open balls to analyze neighborhoods and
limits.

Remark:
Metric topology provides a specific and well-defined connection between the
concepts of distance, convergence, continuity, and open sets in the context of
topological spaces. The metric structure gives rise to a particular topology,
which is often referred to as the "metric topology." I

As we see, there are some topologies equipped with no metric structures. Therefo-
re, the motivation behind studying metrizability in topology is rooted in the desire to
understand the relationship between topological spaces and metric spaces, and to
determine which topological spaces can be endowed with a metric structure. We have
proved the Urysohn’s Metrization Theorem, now we give a formal definition of
being metrizable:

Definition: Metrizable
If X is a topological spcae, then X is said to be metrizable if there exists a
metric dy on the set X that induces the topology on X. In particular, a metric
space is a metrizable space X together with a specific metric d that gives the
topology of X.
We have introduced the convergence, which is a metric space property, now we sha-

Il introduce another one, which might be surprising, that the boundedness of a set is
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not a topological property, but a metric space property, for it depends on the particular
metric dy that is used for X.
Definition: Bounded
Let (X, dy) be a metric space with metric dy. A subset A of X is said to be
bounded if there is some number M such that
d(x),x,) <M Vx;,x, € X.
Theorem 3.27: Standard Bounded Metric
Let (X, dy) be a metric space. Define d : X X X — R by the equation given by
d(x,y) := min{d(x, y),1}.
Then d is a metric that induces the same topology as d. Then d is called the
standard bounded metric corresponding to d.
Proof:
Checking the first two conditions for a metric is trivial. Let us check the
triangle inequality:
d(x,z) <d(x,y) +d(y,2).
If now either d(x,y) > 1 ord(y, z) > 1, then the RHS is at least 1, then it holds
since the LHS is at most 1. It remains to consider the case in which d(x,y) < 1
and d(y,z) < 1.
In this case, we have
d(x,z) <d(x,y)+d(y,z) <d(x,y) +d(y,2).
Now we note that in any metric space, the collection of e-balls with ¢ < 1
forms a basis for the metric topology, for every basis element containing x
contains such an e-ball centered at x. It follows that d and d induce the same
topology on X, since the collections of e-balls under these two metrics
coincide.

[

Now we offer a criterion in telling what metric topology is finer than the other:

Lemma 3.28:
Let d and d' be two metrics defined on the set X; let 7"and 7" be the topologies
they induce, respectively. Then 7" is finer than 7 <& Vx € X Ve > 036 > 0
such that

B,;(x,0) € By(x, ¢).

Proof:
“=7
Suppose T is finer than 7". Given the basis element B,(x, €) for T, there is a
basis element B’ for the topology 7" such that x € B’ C B,(x, £). Within B’ one
can find a ball B;(x, ) centered at x.
‘e
Conversely, suppose the RHS holds. Given a basis element B of T containing x,
we can find within B a ball B,(x, €) centered at x. By the given condition, there
is a 6 such that B;(x, ) C B(x, ¢), result follows.

[
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Subspaces of metric spaces behave the same way one would expect; if A is a subsp-
ace of the topological space X and dy is a metric for X, then the restriction of d to
A X A is a metric for the topology of A.

About order topologies there is nothing to say; some are metrizable (Z* and R) and
others are not.

The Hausdorft axiom is satisfied by every metric topology. If x # y are distinct

1
points of the metric space (X, dy), let € := Ed(x, y), then the triangle inequality impl-

ies that By (x, €) and By (Y, €) are disjoint.
We now state and prove some results by assuming a topological space to be also

metrizable.

Lemma 3.29: The Sequence Lemma
Let X be a topological space; let A C X be a subset. If there is a sequence of
points of A converging to x, then x € A; the converse holds if X is metrizable.

Proof:
Suppose that such a sequence is x, — x where x,, € A. Then every
neighbourhood U, contains a point of A, so x € A. Conversely, suppose that X
is metrizable and x € A. Let d be a metric for the topology of X. For each

positive integer n, take the neighbourhood B, (x, —) of radius — of x, and
n n

choose x,, to be a point of its intersection with A. We assert that the sequence x,,
converges to x. Any open set U containing x contains an e-ball B, (x, €); if we

1
choose N so that I < ¢ then U contains x;Vi > N.

[]
Theorem 3.30:

Letf : X — Y be a function. If fis continuous then every convergent sequence
x, = x in X, the sequence f(x,) converges to f(x). The converse holds if X is
metrizable.
Proof:
Assume that f'is continuous. Given x,, — x, we wish to show that f(x,) — f(x).
Let V be a neighbourhood of f(x). Then f~1(V) is a neighbourhood of x, and so
there is an N such that x, € f~1(V)Vn > N. Thenf(x,) € V Vn > N.
Conversely, assume that the convergent sequence condition is satisfied. Let A
be a subset of X. We wish to show that f(A ) = f(A).
[Claim]: f(A') C f(A).
If x € A, then there is a sequence x, of points of A converging to x by
Lemma 3.29. By assumption, the sequence f(x,) = f(x). Since
f(x,) € f(A), by Lemma 3.29 again, f(x) € f(A). Hence f(A) C f(A) as
we desired.

[

3.5 Compactification
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Recall that a topological space is said to be locally compact if every point has a co-
mpact neighbourhood.
Lemma 3.31:
Let X be a locally compact Hausdorft space (L.C.H.) and x € X is a point.
Then for all neighbourhood U of x, there is a compact neighbourhood N of x
with N C U.
Proof:
Since X 1s locally compact, there exists a compact neighbourhood C of x, thus
there exists an open neighbourhood V of x with V C C.
Let W = VN U, since X is Hausdorff and C is compact, C is closed. Therefore
W:=VnUCC = WC C= Wis compact. Moreover, since X is compact
and Hausdorff, it is automatically regular, thus W is also regular.
Regular spaces have neighbourhood bases of closed sets. There exists a
compact neighbourhood N of x in W which is closed in W, with
xXENCWCW,
since W is compact, then N is also compact.
[Claim]: N is a compact neighbourhood of x in X.
Since N is a neighbourhood of x in W, there exists an open subset
T C Wsuchthatx € T C U. Since T is open in W, there exsists an open
subset O C X such that T = W n O (subspace topology). x € N C W,
x€EWNOCWNO =T C N, since Wn O is open in X and
x € WnN O, then N is a compact neighbourhood of x in X.
[]
Corollary 3.31.1:
Let X be a locally compact Hausdorff (L.C.H.) space. Then Vx € X and for all
neighbourhood U of x, there exists an open neighbourhood V of x with V C U
and V is compact.
Theorem 3.32:
A locally compact Hausdorff (L.C.H.) space is completely regular.
Corollary 3.32.1:
An A, L.C.H. space X is normal and metrizable.
Proof:
According to Theorem 3.32, X is completely regular, hence regular. Thus X is
regular and second countable by assumption, hence X is normal. Then by
Urysohn’s Metrization Theorem, X is metrizable.
[
Compact spaces have nice properties and when we are given a non-compact space,
it is naturally to ask can we make this space compact so that the tools we apply to the
compact spaces fail to be false. This leads to the following definitinon called comp-
actification.
Definition: Compactification
A compactification of a space X is an embedding f : X — Y so that
(1)  Yis compact.
(i) f(X)isdenseinV,ie. f(X) =Y.
2
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Definition: One-Point Compactification
A compactification f : X — Y is said to be a one-point compactification if
Y\ f(X) is a single point.
Recall the definition of embedding:
Definition: Embedding
A continuous map f : X — Y is called an embedding if f : X — f(X)isa
homeomorphism where f(X) is given a subspace topology.
We now prove two lemmas which in turn prove that the definition of the compacti-
fication 1s well-defined.
Lemma 3.33: “=”
Letf : X — Y be an embedding where Y is a compact Hausdorff space and
Y\ f(X) is a single point. Then X is L.C.H.
Proof:
Since f : X — Y is a homeomorphism, we may, without loss of generality,
assume that X C Y. Since Y is Hausdorff then X is also Hausdorff (subspace of
Hausdorff is Hausdorff). Let co := Y\ f(X) = Y \X. Then Vx € X, there
exists a compact neighbourhood of x in X. Since x € X and oo & X, x # 0.
Since Y is Hausdorff, there exist open neighbourhoods U of x and V of oo such
that U NV = @. Moreover, since V' is open and Y\ Vis closed and U C Y\ V,
therefore, U C Y\V C Y \{oo} =: X. Furthermore, since Y is compact and
U C Yis a closed subset thus U is compact. Taking N = U yields a compact
neighbourhood of x in X and result follows.
[]
Lemma 3.34: “<”
Let X be a L.C.H. space, there exists a compact Hausdorff space X and an
embedding f : X — X such that X*\ f(X) is a single point.
If X is compact, then XT = X U {oo0}. If X is not compact, then f(X) = X* and
f : X — Yis a compactification.
Proof:
Let us use the same notation as we did in the proof of Lemma 3.33, denote the
single point Y \X =: co. Let X = X U {0} and define
T:={UCX|Uopen} U {(X\C)U {oo}|C C X compact}.
To make our lives easier, let us denote Type I set to be {U C X | U open} and
use Type II set to denote {(X\C) U {oo} | C C X compact}.
[Claim]: T is a topology.
1) @ CXisopen = @ € T. Since @ C X is compact =
X\@)U {0} =XU{c0} €T
1) HU,VeT, UV CTypelsetthen UNV C X is an open subset,
soitisin 7.
IfUC Xisopenand V := (X\C) U {oo}, then
UNV=UnNX\C)isopenin X hence in T.
IfU; .= (X\C) U {0},U, :=(X\C,) U {oo}, then
U nU,=X\(C,UC,y))U {0} is compact hence U, N U, is
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compact and it follows that U; N U, € Type Il set and so is in 7.
(iii) Suppose that {U,},c4 is a collection of open subsets of X and
{Cﬂ} peB is a collection of compact subsets of X. Then one has

(U s Jx\Gpu (oo}

a€A pEB
= Juax\[)¢pu (e}
acA peB
= (x\(( S\ Un) U {0}
PEB aEA
= (ﬂ Cp N (X\ U Ua)) is compact.
PEB a€A
Therefore (X \( ﬂ Cﬂ\ U Ua)) U {oo}is Type Il soin T. The
PEB ac€A
other two situations hold analogously.
Also, X € X U {o0} is an embedding.
[Claim]: X is Hausdorff,
Suppose that x, y € X such that x # y. We want to separate them by
open sets. Since X is Hausdorff, we can choose y = oo while x € X.
Since X 1s L.C.H. there exists an open neighbourhood V of x such that
V is compact in X. Therefore, (X\V) U {0} is an neighbourhood of oo
and VN (X\V)U {o0}) = @.
[Claim]: X is compact.
Let {U,} 44 be an open cover of X™ then 3 € A such that co € U,
Therefore, C := X +\Uﬂ C X 1s compact and then 37 such that for
ap, -, a, € Aonehas C C U, U --- U U, hence
Xt=U,u--uU, VU,
Note that if X is compact, then X \X U {0} = {0} € T is open, X is also
open and they disjoint. If X is not compact, then for all compact subsets C C X
onehas X\C# @ = XN (X\C)U{o0}) =X\C#T > w0 € X.
[]

In fact, one can prove that the one point compactification of a non-compact L.C.H

space 1s unique up to a unique homeomorphism.

Lemma 3.35: Uniqueness
Iff : X > Zand g : X — Y are two one-point compactification, then there
exists a unique homeomorphism ¢ : Z — Y such thatf = ¢~ o g.

Proof:
Let z,, be the unique point of Z\ f(X) and y, be the unique point of 7\ g(X).
Since f'and g are bijective then the only way to define such a ¢ is by the
following formula:
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g(flz)), ifz # z, i.e. 2 EfX)

[Claim]: ¢ is a homeomorphism.
It suffices to show that for any open subsets U C Z, ¢ (U ) is open in Y.
IfU Cf(X),f ' (U)isopen, g(f~'(U)) is open in Y since f~! is
continuous and g(f~!(U)) is open in g(X) hence in Y.
IfU € f(X)thenzy € U= Z\U C f(X), since Z\U is closed in Z and
Z is compact then Z\U is also compact in Z and f(X), since f~! and g
are homeomorphism, g(f~1(Z\U)) is closed in Y. But
(gof NZ\U) =@(Z\U) = Y\@(U), ¢ is a bijection = ¢(U) is
open in Y. Therefore ¢ is open and by symmetry so is ¢ .

@ (2) ;= {

[]
Definition: Proper Map

A continuous map f : X — Y between two topological spaces is said to be
proper if for all compact subset C C Y, f~!(C) is also compact.

A proper map between topological spaces is a concept that captures a notion of
“boundedness” or "compactness" of preimages under the map. Proper maps are
particularly useful in topology and differential geometry.

Theorem 3.36: Criterion for Proper
A continuous map f : X — Y between two L.C.H. spaces extends to a
continuous map f+ : X - Yt < fis proper.
Proof:
We may assume that Y C Y™ and X C X* where Y™ := Y U {0, } and
X=X U {ooy}.
“=7
Suppose that f* : X* — Y7 is continuous and C C Y is compact. Then Y\ C
is an open neighbourhood of coy, = Ciis closed in Y* = (fH)~1(C) is
closedin X* = (fH)H(C) N {coy} =@ = (fHUC) =f71(C). Since
f ~1(C) is closed in X* and X* is compact, it follows that f “10) is compact in
X" and hence in X.
‘e
Suppose that f : X — Y is proper.
[Claim]: YU C Y open, (f7)~}(U) is open in X ™.
Case I
UCY\{ooy} =Y > (fH)~NU) = f~(U) which is open in X since f
is continuous. But X is open in X* = (f7)~1(U) is open in X ™.
Case II
{0y} C U = Y"\Uis acompact subset of ¥ = f~1(YT\U) is
compact since f is proper, where f~/(YT\U) = (f )~ I(Y"\U), it
follows that(fH)~1(U) = X*\(fH~'(Y"\U) is open in X ™.

Corollary 3.36.1:
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A proper map between two L.C.H. spaces is closed.
The proof is left as an exercise. Just to aviod ambiguity, the openness or closedness
we used above for a function f means what types of sets it preserves. For example, if f
preserves open sets then we say fis open, vice versa.

3.6 Metrizability and o-Local Finiteness

In the previous subsections we introduced the concept of metrizability, which is
done by the Urysohn’s Metrization Theorem, stating that a 7 A, completely regular
(in fact, the conditions may vary from case to case, for example, in [58], the
Urysohn’s Metrization Theorem admits A, 75 being sufficient, in our case however,
the regularity is not weakened but strengthened, this is because the 75 condition 1s
weakened to 7)) topological space is metrizable. In that theorem, while the regularity
being a neces-sary condition, however, the countable basis (A,) is somewhat
expendable. This subs-ection and the upcoming one focus on (i) weaken the A,
condition and arrive at the same metrizability and (ii) extend this terminology into a
bigger class, i.e. introduce the locally metrizability then discuss its properties as well
as some important results. The following literature comes from [1], [2], [9], [39], and
[44]. A more detailed treatment could be viewed via [57] and [58].

We now introduce the first notion: Local finiteness, which focuses on the behavior
of open sets near individual points. It does not impose global constraints on the entire
space but instead looks at local neighborhoods of each point.

Definition: Locally Finite
A cover {U,},c4 of a space X is said to be locally finite if Vx € X, there exists
a neighbourhood N of x such that NN U, = @& for all but finitely many a € A.

As we shall see later: Local finiteness is a more general property than paracompact-
ness. While every paracompact space is locally finite, there exist locally finite spaces
that are not paracompact. Paracompactness imposes additional conditions related to
open covers and their refinements. Moreover, local finiteness is related to but distinct
from local compactness. Locally compact spaces have compact neighborhoods
around each point, whereas locally finite spaces only require finite intersections of
open sets near each point.

Definition: Partition of Unity
Let {Uy, ---, U,} be a finite indexed open covering of the space X. An indexed
family of continuous functions
fi: X—=1[0,1] fori =1,---,n,
is said to be a partition of unity by {U;} if
(i) suppf,CU;Vi=1,-,n.
n
i) D f@=1VxeX
i=1
Definition: Refinement
Acover {U,} 44 1s a refinement of a cover {Vj} 4 if Va € A there exists a

ﬂ = ﬂ(a) € B SU.Ch that Ua g Vﬂ((l)
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Paracompactness is intimately connected to the existence of partitions of unity,
which are functions that assign non-negative values to open sets in a cover and sum
up to 1 on the entire space.

Definition: Paracompact
A topological space X is said to be paracompact if X is Hausdorff and any open
cover of x has a locally finite open refinement.

Yes, paracompactness is indeed a topological property. In the context of general
topology, a property is considered "topological" if it is preserved under homeomor-
phisms, which are continuous bijections with continuous inverses between topolog-
ical spaces. Paracompactness is one such property.

Now we prove a useful result of the local finiteness.

Lemma 3.37:
Let & be a locally finite collection of subsets of X. Then
(a)  Any subcollection of & is locally finite.
(b)  The collection B := {A'} ., of the closures of the elements of & is

locally finite.
© Ja=UJAa
Aed Aed

Proof:
Statement (a) is trivial. To prove (b), note that any open set U that intersects
the set A necessarily intersects A. Therefore, if U is a neighbourhood of x that
intersects only finitely many elements A of &/, then U can intersect at most the
same number of sets of the collection 9. (It might intersect fewer sets of %,
since A, and A, can be equal even though A, and A, are not).
To prove (c), let Y denote the union of the elements of &/: U A=Y In

Aed

general, U A C Y; we now proceed to the other direction, under the

Aed
assumption of local finiteness. Let x € Y; let U be a neighbourhood of x that

intersects only finitely many elements of &/, say A, ---, A;. We assert that x
belongs to one of the sets A_l , e, A_k, and hence belongs to the union. For

k
otherwise, the set U \ ( U A;) would be a neighbourhood of x that intersects no
i=1
element of &f and hence does not intersect Y, contradiction to x € Y.

[

If our goal is to use locally finite sets to help describe a given topology, obtain a pr-
operty that is weaker than second countable but stronger than first countable, and
prove to metrizability of a topological space, then we would likely want locally finite
collections of open sets that describe a basis; that is, we would like a locally finite
basis of a topological space. However, given a metrizable topological space, it is
unlikely that we will be able to find a locally finite basis since, as Example 6.4.3
shows, the requisite of having arbitrary small neighbourhoods around each point is an
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immediate obstacle to having a locally finite basis. However, as we can consider balls
of a fixed radius at a given time and as we only need to consider rational radii, the
following is not out of reach.
Definition: o-locally finite
A collection & of subsets of X is said to be o-locally finite (countably locally
finite) if &/ can be written as the countable union of collections &, , each of
which is locally finite.

As an example of obtaining a o-finite refinement, we demonstrate the following
lemma. Note this is the best analogue of ‘every open cover of a compact topological
space has a finite subcover’ that we can possibly obtain for a metrizable topological
space. Therefore, as compactness is such a nice property, we are perhaps on the right
track to study metrizable topological spaces.

Lemma 3.38:
Let (X, Ty) be a metrizable space and let & be an open cover of (X, Ty). Then
there exists an open refinement &/’ of & that is o-locally finite and covers
X, Ty).

Proof: Consult [58] Lemma 6.4.9.

Using Lemma 3.38, we can actually prove that metrizable spaces have nice bases
thereby showing that having a o-locally finite basis is a requirement of being metriz-
able.

Corollary 3.38.1:
Every metrizable topological space has a o-locally finite basis.
Proof:
Let (X, Ty) be a metrizable topological space and let d be a metric that induces

Ty.Foreveryn € N,let o, := {Bd(x, —) |x € X}. Since &, is clearly an
n

open cover of (X, Ty). Lemma 3.38 implies that there exists an open
refinement 98, of &/, that is o-locally finite and covers (X, Ty). Since %, is a

refinement of &, , notice that if B € %, then B C B (x,—) for some x € X
n

and thus diam(B) < z Let now & = U B,.
n n=1
[Claim]: A is a o-locally finite basis of (X, Ty).
To see this, note & is clearly o-locally finite being the countable union
of o-locally finite subset of (X, Ty). To see that A is a basis for (X, Ty),

let x € X and € > 0O be chosen arbitrarily. Choose n € N such that

1 €
—< 5 Since A, covers (X, Ty), there exists B € 9B, C A such that
n

2
x € B. Therefore, since diam(B) < —, it must be the case that
n
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2
X € B C Bj[x,—] C B,(x, €). Therefore, since x € X and £ > 0 were
n

chosen arbitrarily and since d induces Ty, it follows that 9 is o-locally
finite basis of (X, Ty) as we desire.
[
As Corollary 3.38.1 shows that every metrizable topological space must have a ¢
-locally finite basis, it is natural to ask whether we can obtain a converese. Of course
we must add the condition that the topological space under investigation is normal as
every metrizable space is normal. However, as verifying a topological space is
normal is often difficult, we desire to replace the assumption of being normal with
being regular.

Now we arrive at the second metrization theorem, also the main goal of this
subsection. Recall in Urysohn’s Metr-ization Therorem we require the space to be
A, T, . The Nagata-Smirnov Metrization Theorem states that every regular
topological space with a o-locally finite basis is metrizable. To proceed, we begin by
developing additional properties of regular topological spaces with o-locally finite
basis.

Lemma 3.39:
Let (X, Ty) be a regular topological space with a o-locally finite basis. If
V € Ty, then there exists {Un}% | € Ty such that
(6]

v=Ju,=JT.
n=1 n=1

Proof:

By assumption there exists a basis A of (X, Ty) such that B = U A, where

n=1

each &, is a locally finite subset of (X, Ty). For each n € N, define
od,:={BeARB,|BCV}.

Since clearly &/, C AB,, &, is a locally finite subset of (X, Ty) Vn € N. Thus

foreachn € N, let U, := B.Cleraly U, € Ty Vn € N. Furthermore, we
Bed,

see that, according to Lemma 3.37, that
U,cT,=|JBcVvvneN,

Bed,
Therefore,
0 (0]
Uv.clJT,cv
n=1 n=1

To see the inverse inclusion, let x € V be chosen arbitrarily. Since (X, Ty) is
regular and 3 is its basis, there then exsits a B € 9 such that
xXEBCBCV.
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Hence B € o, for some n € N,sox € U, for some n € N, and thus
(So]

X € U U,. Therefore, as x € V chosen arbitrarily, the inverse inclusion holds.

n=1

[l
Lemma 3.40: 75+o-locally finite = T,

Let (X, T) be a regular topological space with a o-locally finite basis. Then
(X, Ty) is normal.

Proof:
Let A and B be two arbitrary closed subsets of (X, Ty) such that A N B = @.
Since X \B and X \A are opens sets in (X, Ty), Lemma 3.39 tells us that there
exists {U,} > |, {Vn},‘;o C Ty such that

X\B:UU UU and X \A = UV —UV

n=1
By taking complements, we see that {U,} 2 isan open cover of A such that

BNU,=@VneNand {V, } o1 is an open cover of B such that
ANV, =gVn € N.Now we have open covers for disjoint closed sets, our
next goal is to let them be disjoint.
[Claim]: U,NV, = @Vn.
For every n € N, let

n n
=U\(JW) and v, = v\ (| D).
— k_
Clearly {U,},-, and {V,},-, are collections of closed subsets of (X, Ty)
n - n

so that { U U, } sy and { U Vii} ns1 are closed subsets of (X, Ty).
k=1 k=1
Therefore, since {U, },>; and {V, }, are collections of open subsets of

(X, Ty) and since D\E = D N (X \E) for all D, E C X, we see that
{U,},>1and {V)} - are collectlons of open subsets of (X, Ty). Let now

U= UU’andV UV’,

which are open subsets of (X ,Ty). Notlce that sinceVNA=g
Vn € Nthat Uy N A =U,N A.It follows that A C U U, hence

n=1
A C U. Furthermore, similar arguments allow B C V. Suppose the
contrary that U NV # @ so that there exists anx € U N V. By
definition of U and V/, there must exist n, m € N such that x € U, and
xeV, if’}z >m,thenx € V,, = x € V,_ and x € U] implies that

x € U\( U Vi) € U,\V,,. contradition. The other side will also lead to
k=1
110



a contradiction, therefore U NV = @ as we desired.
[
It is well-known that the second countability axiom is sufficient for a regular topol-
ogical space to be metrizable, but it is not necessary. That is, 75 + A, = Metrizable
but Metrizable & T; + A,. For example, any discrete space X is metrizable, but if X
consists of uncountably many points it does not have a countable basis. It is natural to
ask if there exists a necessary and sufficient condition for a topological space to be
metrizable.
Eiichi Nagata, a Japanese mathematician, made significant contributions to metriz-
ation theory. In 1947, he proved a metrization theorem that extended Urysohn's theor-
em and addressed when a topological space is metrizable in terms of a base for the
topology. This result is known as Nagata's Metrization Theorem. In 1953, Anatoly
Smirnov, a Russian mathematician, improved and extended Nagata's theorem,
providing a more general and widely applicable characterization of metrizable spaces.
This result became known as the Nagata-Smirnov Metrization Theorem.
Before we prove this theorem, we first introduce a notion called the Gy sets.
Definition: G Set
A subset A of a space X is said to be a G set in X if it equals to the intersection
of a countable collection of open subsets of X.

Example 3.4: G; Sets
In a metric space X, each closed set is a G set. Given A C X, let U,(A) denote
the e-neighbourhood of A. If A is closed, one can check that A = ﬂ U 1 (A)is

nez*
the desired Gy set. I

Lemma 3.41:
Let (X, T) be a regular topological space with a o-locally finite basis. Then
every closed subset of (X, Ty) is a G subset of (X, Ty).

Proof:
Let F be an arbitrary closed subset of (X, Ty). Since X \ F'is open, Lemma
3.39 tells us that there exists {V, }’ 1 fty QOOTX such that

xX\F=Jv,=J".
n=1 n=1

Foreachn € N, let U, := X\V, € T. We claim that F = ﬂ U, thereby
n=1
showing that F'is a G set. Indeed this follows directly from the above set

equality due to De Morgan’s Laws. Therefore, as I was arbitrary, every
closed subset of (X, Ty) is G;.

Lemma 3.42:
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Let (X, Ty) be a normal topological space and let A be a closed G subset of
(X, Tx). There exists an f € C(X, [0,1]) such that f(a) = 0 Va € A and
f(x) >0 Va e X\A.

Proof: Consult [58], Lemma 6.5.4.

Now we have enough tools to prove the main result of this subsection.
Theorem 3.43: Nagata-Smirnov Metrization Theorem

A topological space (X, Ty) is metrizable < it is regular and has a os-locally
finite base.

There exist several equivalent formulations of this theorem in the literature but are
rather complicated. We do not present a proof here, the readers could consult [1] The-
orem 40.3, [58] Theorem 6.5.5, while [62] Theorem 3.2.1 provides a proof with the
notion “perfectly normal”, in [59], Athanasios Andrikopoulos offers a new proof of
the Nagata-Smirnov Metrization Theorem based n Rudin’s Proof of Stone’s result on
paracompactness (see [65]). One may also consult the original work of Nagata [64],
and an overview on Nagata’s contribution to theory of generalized metric spaces [60]
is also considered helpful.

It is a fact that Urysohn’s Metrization is “more popular” than Nagata-Smirnov Me-
trization Theorem and this is due to some historical reasons. We recommend [63] for
readers who are interested in.

We state a very helpful interpretation of the metrizability we have explored so far,
perhaps we can make it an equivalent (in fact, loosely-defined) definition for a
topological space being metrizable.

Definition: Metrizable
A metrizable space is a topological space that is homeomorphic to a metric
space.

Hence the exploration of the metrizability turns out to be, in some cases, finding
the homeomorphisms between topological spaces and specific metric spaces. This is
not an easier task than the methods we have introduced so far, but it offers a great
insight for other possible approaches.

3.7 Metrizability and Paracompactness

Of course the Nagata-Smirnov Metrization Theorem has one limitation in that
one needs to verify that a topological space has a o-locally finite basis, which is often
not an easy task. As the idea of a o-locally finite basis was motivated by trying to
weaken second countability via an idea similar to compactness, in this subsection we
will introduce a generalization of compactness called paracompactness. It turns out
that paracompactness is particularly useful for applications in topology and differe-
ntial geometry. However, our only goal will be to relate paracompactness to the
existence of the o-locally finite bases.

112



On the other hand, the Nagata-Smirnov Metrization Theorem gives one set of
necessary and sufficient conditions for metrizability of a space. The theorem we are
going to prove, called Smirnov Metrization Theorem, offers another such set of cond-
itions. It is a corollary of the Nagata-Smirnov Metrization Theorem and was first
proved by Smirnov. For detailed description and treatment one may consult [61],
[62], [66], and [67].

This subsection, the same as the previous one, is divided into two parts. In the first
part we introduce the paracompactness and its properties as well as some results on it;
in the second part, we shall state and prove the Smirnov Metrization Theorem.

Definition: Paracompact
A topological space X is said to be paracompact if X is Hausdorff and any open
cover of x has a locally finite open refinement.

Recall that paracompactness is indeed a topological property and it is related to the
refinement we introduced in the previous subsection. Same as its motivation,
compactness is a stronger property than paracompactness. Every compact space is
paracompact, but not every paracompact space is compact. In other words, parac-
ompact spaces exhibit some of the desirable properties of compactness without being
necessarily compact. Moreover, every metrizable space is paracompact. This means
that in metric spaces (spaces that can be equipped with a metric), paracompactness is
a general property that holds. However, paracompactness extends beyond metrizable
spaces to a broader class of topological spaces.

Theorem 3.44: T,+Paracompactness = T,
Every paracompact Hausdorff space is normal.

Proof:
The proof is somewhat similar to the proof that a compact Hausdorff space is
normal.
Step I: First one proves regularity.
Let a be a point of X and let B be a closed set of X disjoint from a. The
Hausdorff condition enables us to choose, for each b € B, an open set U,
about b whose closure is disjoint from a. Cover X by the open sets U,, along
with the open set X \ B; take a locally finite open refinement & that covers X.
Form the subcollection & of € consisting of every element of & that intersects
B.Then @ covers B. Furthermore, if D € 9 then D is disjoint from a. For D
intersects B, so it lies in some set Uj,, whose closure is disjoint from a. Let

V.= U D.
De9

Then V is an open set in X containing B. Because 9 is locally finite, it follows

v=|JD.
. De
Therefore V is disjoint from a. Thus regularity follows.

Step II: Derive Normality.
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To prove the normality, one merely repeats the same argument, replacing a by
the closed set A throughout and replacing the Hausdorff condition by
regularity.
[
Theorem 3.45:
Every closed subspace of a paracompact space is paracompact.
Proof:
Let Y be a closed subspace of the paracompact space X; let & be a covering of
Y by sets open in Y. For each A € &/, choose an open set A’ of X such that
A’'NY = A. Cover X by the open sets A’, along with the open set X \ Y. Let %
be a locally finite open refinement of this covering that covers X. Then the
collection € := {BNY|B € 9%} is the desired locally finite open refinement.
[
Let us now turn to the motivation of using the idea of paracompactness to simplify-
ing the task of finding o-locally finite bases. In particular, our goal in a regular
topological space is to relate paracompactness and the existence of a o-locally finite
bases.
Lemma 3.46:
Let X be a regular topological space. Then the following conditions on X are
equivalent: Every open covering of X has a refinement that is:
(1)  An open covering of X and o-locally finite.
(ii) A covering of X and locally finite.
(iii) A closed covering of X and locally finite.
(iv) An open covering of X and locally finite.
Proof: Consult [1] Lemma 41.3 or [58] Lemma 6.6.6.
Theorem 3.47:
Every Metrizable space is paracompact.
Proof:
Let X be a metrizable space. We already know from Lemma 3.38 that given an
open covering & of X, it has an open refinement that covers X and is o-locally
finite. The preceding lemma then implies that &/ has an open refinement that
covers X and is locally finite.
[]
Theorem 3.48:
Every regular Lindelof space is paracompact.
Proof:
Let X be a regular Lindelof space. Given an open covering &/ of X, it has a
countable subcollection that covers X, this subcollection is automatically
o-locally finite. Then applying the preceding lemma shows that & has an open
refinement that covers X and is locally finite.
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[l

However, the product of two paracompact spaces need not be paracompact. A famo-
us conterexample could be viewed in[68].

We now introduce another terminology and then introduce the Shrinking Lemma.
Definition: o-compact

A space X is said to be o-compact if X is a union of countably many compact
sets.

Just like the o-local finiteness, the notion o-compactness is also a combination bet-
ween the countability and a familiar term compactness. The o-compact spaces often
have nice topological properties. For example, they are Lindelof spaces (every open
cover has a countable subcover) and paracompact spaces (every open cover has a
locally finite open refinement). Moreover, just like the paracompactness, a compact
space is automatically paracompact, and, yes, o-compact. Now we build up bridges
between o-compactness and paracompactness.

Proposition 3.49:
A locally compact o-compact topological space is paracompact.

Proof: Consult [69].

Remark:
Moreover, we can prove that a closed subset of a paracompact space is
compact. I

Now we prove a useful lemma: The Shrinking Lemma, known as the shrinking cri-
terion, is an important result in topology, particularly in the context of proving parac-
ompactness. It's a tool used to show that given a certain collection of open sets, you
can find a "shrunken" subcollection that retains certain properties.

Lemma 3.50: Shrinking Lemma
Suppose that X is paracompact and let { U}, 4 be an open cover. Then there
exists a locally finite open cover {V,},c4 with V, C U, Va. (V,, = & for some
a is allowed).
Proof:
Since paracompact spaces are regular. Then Va, Vx € U, there exists an open
neighbourhood O of x such that O C U,,. We get a collection of open cover:
O := {0 C Xopen |O C U, for some a}.
Since X is paracompact, O has a locally finite open refinement, for each
W € 0O, we can choose an a such that W C U,,1.e. choose a function
f:W-A,
so that W C Uyyy). Va € A, we define V,, := U w.
fW)=a
Since {(W|f(W)=a} =@ = V, = @. Since W is locally finite, it follows
that
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L JfW)=a
Since W C U, VW with f(W) = a. One has

[Claim]: {V,} ,c4 1s locally finite.
Choose a point x € X. Since W is locally finite, there exists a
neighbourhood N of x such that NN W = @& for all but finitely many
we W.LetA":= {f(W)|Nn W # @}, then it is finite. Since
V, N W # @ only fora € A’, result follows.

=U,.

- 7 VLVJF

[

Now we introduce the last metrization theorem in this chapter. Moreover, the conn-
ection between the Shrinking Lemma and the Smirnov Metrization Theorem lies
in their roles in proving metrizability:

In practice, when proving that a space is metrizable, you may start by showing that
it is paracompact (often using tools like the Shrinking Lemma) and Hausdorff. Once
these conditions are met, the Smirnov Metrization Theorem guarantees the existence
of a metric that makes the space metrizable.

The Nagata-Smirnov metrization theorem gives one set of necessary and sufficient
conditions for metrizability of a space. The Smirnov’s Metrization Theorem, on the
other hand, is a corollary of the Nagata-Smirnov Theorem and was first proved by
Smirnov. Before that, we shall introduce a notion called local metrizability, which is a
topological property of a space that means that every point in the space has a neighb-
ourhood that is homeomorphic to a metric space.

Definition: Locally Metrizable
A space X is locally metrizable if every point x of X has a neighbourhood U
that is metrizable in the subspace topology.

Theorem 3.51: Smirnov Metrization Theorem
A space X is metrizable < it is a paracompact Hausdorff space that is locally
metrizable.

Proof:
“=7
Suppose that X is metrizable. Then X is locally metrizable and Hausdorff; it is
also paracompact, by Theorem 3.47.
‘=
Conversely, suppose that X is a paracompact Hausdorff space that is locally
metrizable. We shall show that X has a basis that is o-locally finite. Since X is
regular, it will then follow from the Nagata-Smirnov Theorem that X is
metrizable.
Cover X by open sets that are metrizable; then choose a locally finite open
refinement € of this covering that covers X. Each element C of € is
metrizable; let the function d- : C X C — R be a metric that gives the
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topology of C. Given x € C, let B.(x, €) denote the set of all points y of C
such that d-(x,y) < €. Being open in C, the set B-(x, €) is also open in X.
Givenm € Z*,let o, be the covering of X by all these open balls of radius
1/m; thatis,let &, := {B-(x,1/m)|x € Cand C € €}.
Let &, be a locally finite open refinement of &, that covers X (Here we use
paracompactness.) Let & be the union of the collections &,,. Then Z is ¢
-locally finite.
[Claim]: & is a basis for X. Then our theorem follows.
Let x be a point of X and let U be a neighbourhood of x. We seek to find
an element D of & such that x € D C U. Now x belongs to only finitely
many elements of €, say to Cy, -+, C;. Then U N C, is a neighbourhood
of x in the set C;, so there is an & > 0 such that
Be(x,e) CUNC,
Choose m so that 2/m < min{¢g, -+, & }. Because the collection Z,),
covers X, there must be an element D of &, containing x. Because J,,
refines &, , there must be an element B-(y,1/m) of &, , for some
C € @ and some y € C, that contains D. Because
x €D C B:(y,1/m),
the point x belongs to C, so that C must be one of the sets Cy, -+, C;.. Say
C := C,. Since B(y,1/m) has diameter at most 2/m < g, it follows that
xeDC BCl_(y,I/m) C BCi(x, g)CU.
[
Smirnov Metrization Theorem is a fundamental result in topology that establishes a
connection between metrizability and topological properties, providing a criterion for
when a topological space can be equipped with a metric structure.

4.1 Manifold Introduction
It may arise the consideration that since the Euclidean spaces possess so many good
properties and behaviours, in practice, can we always treat our spaces as Euclidean?
The question is no since not every spaces have such a behaved structure. Then a
natural question is that how do we use the properties in Euclidean when we are not
working on i1t? This motivates the invention of manifolds. In fact, the motivation for
defining manifolds lies in the need to create a mathematical framework that can
capture and describe the geometry and topology of spaces in a flexible and versatile
way. Manifolds provide a bridge between local geometry, which can be understood
using calculus and linear algebra, and global topology, which focuses on the broader
properties of spaces. The following introduction of the manifolds is from [37], we
only include the necessary parts in it in order to derive the embedding theorems; for
those who are interested in manifolds, we recommend [35], [36], [37], and [38],
where in the last one more concrete results and examples are offered.
Our desired construction should contain these features:
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(1)  Capture the idea that in the vicinity of any point on it, the space behaves
like a Euclidean space.

(11)  Provide a framework for studying smooth and continuous
transformations between spaces.

(111)) Allow us to classify and distinguish spaces based on their topological
properties.

To this end, we adapt the following definition of an n-dimensional manifold met all
the expectations:

Definition: n-dimensional Topological Manifold
An n-dimensional topological manifold is defined to be a 7, A, topological
space, for which every point has an open neighbourhood homeomorphic to an
open set in R".

Loosely speaking, manifolds are the mathematical objects that are used to model
the abstract shapes of “phisical spaces”. A d-dimensional manifold is a topological
space that locally looks like R? as the definition. For example, the surface of the
Earth looks locally flat, like a piece of the plane, but globally its topology is that of a
sphere. The universe is modeled by a 3-dimensional manifold because locally it looks
like a piece of R>, but its global topology might be more complicated. Space-time is a
4-dimensional manifold. The space of possible positions of a ball rolling on a plane is
a 5-dimensional manifold.

The last condition in the n-dimensional topological manifold means that a topolog-
ical manifold looks locally like R”, as we desired. Therefore the following terminol-
ogy is used.

Definition: n-dimensional Chart
Let M be a topological space. An n-dimensional chart (U, ¢) on M consists of a
homeomorphism ¢ : U — U from an open set U C M to an open set U C R".
The components of ¢ are denoted by
Q= (x! ---,x(’;), where xqip U-> R, forl <i<m,
and are called the local coordinates on M corresponding to the chart (U, ¢).
The inverse map ¢ ~! : U — U is called a local parameterization of M.
Definition: Topological Atlas
Let M be a topological space. An m-dimensional topological atlas on M (or C*
-atlas on M) consists of a collection of m-dimensional charts
A = {(U, @,)},e;covering M, i.e. M = U U,.
ael

With this terminology, note that a Hausdorff, second countable topological space is
an n-dimensional topological manifold if and only if it admits an n-dimensional
topological atlas.

When we define a new space, it is important to know the isomorphisms on it. In to-
pological spaces, we define such an isomorphism as homeomorphism; in manifolds,
we define such an isomorphism as “diffeomorphism”.

Definition: Diffeomorphism
Amap f : U— Vbetween open sets U, V C R" is called a homeomorphism if
fis bijective and both fand f~! are smooth.
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We used the term “smooth”, in order to make this lecture note as self-contained as
it can be, we now offer a brief review on the smoothness.

The smoothness of a function is a fundamental concept in calculus and analysis th-
at describes how nicely a function behaves with respect to its derivatives. Smoothness
is often associated with the concept of continuity, but it goes further by considering
higher-order derivatives.

Definition: Smooth Function
A function is considered smooth if it has derivatives of all orders (i.e., it is
infinitely differentiable).
Remark:
(1)  Smooth functions have derivatives at every point and exhibit no abrupt
changes in their behavior.
(1))  The smoothness of a function is often indicated by the notation C*,
which represents the class of smooth functions.
(111) Examples of smooth functions include polynomial functions,
trigonometric functions, and exponential functions. |

This definition is important since it can be related to not only the concept of analyt-
ic functions, but also to the concept of curvature: Analytic functions are a subset of
smooth functions that can be expressed as a convergent power series (An analytic
function is smooth and can be approximated with high precision using Taylor series
expansions.) In the context of curves, the smoothness of a curve is related to the
curvature. A curve is smoother if its curvature varies more slowly along its length.

Let us now go back to the discussion of diffeomorphism. Note that (as in the case
of homeomophisms) the condition that f~! be smooth is not automatically satisfied.
The standard example of a smooth bijection which is not a diffeomorphism 1s given
by:

fiR >R, f@):=1.

In a local chart a topological manifold is described as an open piece of R". To dev-
elop analysis on manifolds, one needs to introduce derivatives and integration of
functions, notions which, locally in charts, should coincide with those from multi-
variable calculus. However, a function that is differentiable in one chart may fail to
be differentiable in the other chart. To circumvent this, on a smooth manifold one
only works with mutually compatible charts.

Definition: Compatible Charts
Let M be a topological space. Let (U, ¢) and (V, ) be two n-dimensional
charts on M. The map @ oy~ ! : y(UNV) = @(UN V) is called the change
of coordinates map or the transition map between the two charts. The two
charts are said to be compatible if the transition map is a diffeomorphism.

Definition: Smooth Atlas (C*-atlas)
An n-dimensional topological atlas & on an n-dimensional topological
manifold M is said to be an n-dimensional smooth atlas (C*-atlas) if every two
charts in &/ are compatible.

Example 4.1: C*-Atlases
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On R” there is a smooth atlas with only one chart & := {(R", Idg.)}.
Another smooth atlas is the collection of all diffeomorphisms between
open subsets of R":
B = {(U, @): U, VCR"areopenand ¢ : U — Vdiffeomorphism}.
In fact, 9 consists of all charts compatible with (R", Idg.). [
We now introduce a relation on atlases and we will prove that such a relation is in
fact an equivalence relation.
Definition: Equivalence Relation
Let M be an n-dimensional topological manifold. Consider the following
relation on n-dimensional C*-atlases on M :
A ~dy e A Ud,isaC™-atlas.
Proposition 4.1:
The relation ~ is an equivalence relation on the set of n-dimensional C®
-atlases of M.
Proof:
Reflexivity and symmetry of the relation ~ are obvious. We will check that
transitivity also holds. Consider three n-dimensional C*-atlases on M: & |, &,
and &5 such that &/ | ~ &/, and o, ~ /5. We need to show that each pair of
the charts (U}, ¢,) € o and (U, ¢3) € o5 are compatible, 1.e. that the map

§01 ° (03 . @3((]1 N U3) - (01(U1 N U3) (41)
is a homeomorphism. This map is clearly a bijective, with inverse being:
@30 07" (U N Us) = 5(U N Uy). (4.2)

So, it suffices to show that:
[Claim]: (4.1) and (4.2) are smooth.
Let p € U; N U;. Since &, 1s an atlas, there exists a chart (U,, ¢,) € A,
such that p € U,. Since &/ | ~ &/, and &, ~ 5 it follows that the
following maps are diffeomorphisms:
Pre@;" Uy N Uy) = (U N U) (4.3)
and
P20 05" @3(Uy N Uz) = p(Uy N Us). (4.4)
In particular, the restriction of their composition is a diffeomorphism:
@1 ° (”3_1 c3(UnU,NUz) = (U NU, N Us).
Hence, (4.1) and (4.2) are smooth when restricted to the open
neighbourhoods ¢;(U; N U, N Us;) and ¢,(U; N U, N Us), respectively,
of ¢5(p) and ¢,(p).
Since p is chosen arbitrarily, result follows.
[]
In the context of topological manifolds, a maximal atlas is a concept related to the
structure and smoothness of the manifold. A maximal atlas on a topological manifold
M is an atlas that is maximal in the sense that it cannot be extended by adding more
compatible charts. In other words, it's the largest collection of charts that can be
defined on M such that they cover M and are compatible with each other.
Definition: Maximal Atlas
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An n-dimensional C*-atlas & on the topological manifold M is said to be
maximal if &/ ~ B = AB C o for any n-dimensional C*-atlas % on M.
Proposition 4.2:
Any equivalence class of smooth atlases has a unique maximal representative.
The maximal C®-atlas &, equivalent to the C®-atlas & is given by
A o = {(U, ) : AU{(U, )} is a C* atlas}.
Proof: Consult [37].
Definition: Differentiable Structure (Smooth Structure)
An n-dimensional differentiable structure (or smooth structure) on a
topological manifold M is an equivalence class of n-dimensional C*-atlas on
M. Equivalently, by Proposition 4.2, a differentiable structure is the same as a
maximal atalas on M.

A smooth manifold is defined by its maximal smooth atlas, which is a maximal col-
lection of charts (diffeomorphisms) that make the manifold a smooth space. Every
smooth manifold has a maximal smooth atlas, and this atlas uniquely defines the
smooth structure of the manifold.

Definition: Smooth Manifold
An n-dimensional smooth manifold is a topological manifold endowed with an
n-dimensional smooth structure.

Remark:
The axiom of being second countable insures that manifolds are not “too big”.
Let us mention that there are examples of Hausdorft topological spaces,
endowed with a smooth atlas, but which are not second countable. An easy
example is the disjoint union of an uncountable collection of manifolds of the
same dimension; e.g. an uncountable collection of points with the discrete
topology is not second countable, and has a 0-dimensional atlas. I

4.2 Embedding Manifolds

Embedding of manifolds is a fundamental concept in differential geometry and to-
pology. It involves the inclusion of one manifold into another in a way that preserves
certain topological and geometric properties. The most basic form of embedding is a
topological embedding, where the map f is required to be a homeomorphism onto its
image f(M). In this case, f(M) is a topological manifold, and f serves as a topologi-
cal isomorphism between M and f(M ). This is the main discussion we shall hold in
this subsection and the main resources could be found in [1] and [46]. In differential
geometry, we often work with smooth manifolds and smooth embeddings. We shall
not talk about this concept and we recommend [35], [37], [38], and [45].

Recall that a 1-manifold is often called a curve, and a 2-manifold is called a surfa-
ce. We shall prove that if X is a compact manifold then X can be embedded into a
finite-dimensional Euclidean space. The theorem holds without the assumption of
compactness, but the proof is a good deal harder.

First we introduce some termnilogies. Recall that the support of f : X — R is defi-
ned to be the closure of the set f~/(R\{0}). Thus if x lies outside the support of f,
there is some neighbourhood of x on which f vanishes.
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Definition: Partition of Unity
Let {Uy, ---, U,} be a finite indexed open covering of the space X. An indexed
family of continuous functions
fi: X—=[0,1]fori =1,---,n,
is said to be a partition of unity by {U;} if
(1) suppf,CU;Vi=1,-,n.

i) DY f@=1VxeX
i=1
Remark: Possible Connection to Probability Theory
While there can be conceptual connections between partitions of unity and
probability, they are distinct mathematical concepts with their own formalisms
and applications. Partitions of unity are primarily used in topology and
geometry, while probability theory deals with uncertainty and randomness. The
connection between the two arises in specific applications where smooth and
continuous functions play a role in probabilistic modeling or density
estimation. I
Theorem 4.3: Existence of Finite Partitions of Unity
Let {U,, -+, U,} be a finite open covering of the normal space X. Then there
exists a partition of unity dominated by {U,}.
Proof: Consult [1] Theorem 36.1.
We have now equipped with all the backgrounds of proving the main theorem of
this chapter:
Theorem 4.4: Embedding
If X is a compact n-manifold then X can be imbedded in R" for some positive
integer V.
Proof:
Cover X by finitely many open sets {U, --+, U, }, each of which may be
embedded in R". Choose embeddings g; : U; — R" Vi. Being compact and
Hausdorff, X is normal. Let f}, ---, f, be a partition of unity dominated by {U,};
let A; ;= supp f,. For each i = 1,---, n, define a function %, : X — R" by the rule
h) = {fl-(x) - gi(x), forx € U;
e 0 := (0,---,0), forx € X\A;
The function A, is well-defined since the two functions of /4, agree on the
intersection of their domains, and 4; is continuous because its restrictions to the
open sets U; and X \A, are continuous. Now define
F: X>(RX:---XRXRX:XR),
where there are 2n times Cartesian product. By the rule, one has
F) = (i), s £, y(x), -, I, ().
Clearly F'is continuous.
[Claim]: F is an embedding
It suffices to show that F'is injective since X is compact. Suppose that
F(x) = F(y). Then fi(x) = f(y) and h,(x) = h,(y) Vi. Suppose f(x) > 0
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for some i, f;(y) > 0 also, so that x,y € U,. Then

fix) - gi(x) = hi(x) = h(y) = fi () - 8(¥).
Since f;(x) = f,(y) > 0, it follows that g;(x) = g;(y). But g, : U, = R" is
injective, so that x = y as we desire.

[

Let us now turn this into a definition:
Definition: Embedded Manifold
A subset M C R" is called an n-diensional embedded manifold in R” if around
every point in M there exists an open set U C R" and there exists a
homeomorphism f : U — V where V C R" is open, such that
fMnU)=[R"*X{0})nV.
We will call a diffeomorphism (U, f) as above a chart adopted to M.

We enclose this subsection via the introduction of Whitney’s Embedding Theorem.
Whitney's Embedding Theorem, also known as the Whitney Embedding Theorem, is
a fundamental result in differential topology. It was proved by the American mathe-
matician Hassler Whitney in 1936. This theorem is a significant milestone in the
study of smooth manifolds and provides insights into their embedding in higher-
dimensional Euclidean spaces. The motivation behind Whitney's Embedding
Theorem and the study of embedding smooth manifolds into higher-dimensional spa-
ces lies in the desire to understand the structure and properties of smooth manifolds.
Theorem 4.5: Whitney’s Embedding Theorem

Any n-dimensional smooth manifold for n > 1 is diffeomorphic to an
embedded manifold in R?™, which is a closed subset.
Proof: Consult [47].

5.1 Group Theory

In this subsection, we will offer fundamental concepts in group theory, which, for
most of the readers, could be seen as a review session, therefore skipping this
subsection will does no harm to further exploration.

We follow the general introduction of the group theory. Our description of the gen-
eral abstract algebra follows from [56] and [73], for comprehensive treatment on
group theory one may consult [71], [72], and [75].

Definition: Group
A group is a set G, together with a binary operation, namely *, such that
Ya,b,c € G, one has
(1) a*bedG. (Closure)
i) a*b*c)=(@*b)*c. (Associativity)
(i) Jie€ Gsuchthata™i =a =i*a. (Existence of Identity)
(iv) 3Ja'eGsta*a'=i=a"'*a (Existence of Inverse)

Although group structure seems easily to establish, however, its structure is far fro-
m simple. An impotant reason is that we do not assume Va,b € G,a*b =b *a.
This is an algebraic property and any group (G, * ) with this additional condition will
be called an Abelian group:

Definition: Abelian Group
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A group (G, *) is said to be Abelian if Va,b € G,a*b =b *a.

One of the original motivations for studying Abelian group, according to [74], was
number theory, in particular the study of the Ideal Class Group of a number ring and
the group of units (Z/nZ)* notably by C. F. Gauss. More generally, abelian groups
arise naturally in terms of Cohomology Theories, which serve to distinguish (geome-
tric) objects by algebraic invariants.

Now we introduce a way in constructing a new group with existing ones, this is ca-
lled the direct product of groups. Distinct from the Cartesian product, this operation
preserves the group structure. It provides a way to combine groups in a systematic
and structured manner.

Definition: Direct Product
Let (G, *) and (H, o ) be two groups. On the Cartesian product given by G X H
we deine an operation ¢ via
(81, 71) © (82, 11p) = (81 % 82, 1y ° hy) V81,8, € Gand Vhy, hy € H.
Under this operation, we call G X H the direct product of G and H.

The Cartesian product is a set-theoretical concept used to create a set containing all
possible ordered tuples formed by taking one element from each of the component
sets. It's a way to describe the combinations of elements from different sets. The
direct product, on the other hand, is a concept used in group theory to create a new
group from existing groups. It involves defining a binary operation on ordered tuples
of group elements to form a new group.

In summary, both Cartesian product and direct product involve combining elemen-
ts from multiple sets or groups, but they serve different purposes and have distinct
mathematical structures. The Cartesian product focuses on forming sets of ordered
tuples, while the direct product is used to create new groups with specific algebraic
properties.

In the above context, we know another structural property called algebraic proper-
ty, since we introduced the topological properties before, now we talk about their
difference:

Topological Properties:
These properties are concerned with the geometric and spatial aspects of
mathematical spaces, particularly topological spaces. They describe how points
are related to each other in terms of proximity, continuity, and connectedness.
Examples of topological properties include openness, compactness, continuity,
and connectedness.

Algebraic Properties:
These properties are concerned with the algebraic structure of mathematical
objects, such as groups, rings, fields, and vector spaces. Algebraic properties
describe how elements in these structures interact under algebraic operations
like addition, multiplication, and inverses. Examples of algebraic properties
include associativity, commutativity, the existence of inverses, and
distributivity.

In summary, topological properties and algebraic properties represent different asp-
ects of mathematical structures. Topological properties are concerned with spatial rel-
ationships and continuity, while algebraic properties focus on algebraic operations
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and their behavior within specific algebraic structures. Both types of properties are
essential for understanding different mathematical contexts and structures.

We admitted that the direct product between two groups is also a group, let us now
prove this is well-defined.

Theorem 5.1:
The direct product of two groups is also a group.
Proof:
Let us adopt the same notation as in the definition. First we must check that
Step I: Direct product is closed.
Let g,,8, € Gand hy, h, € H, then
(81, 1) © (g2, 1) = (g™ g2, My ohy)) € GXH
since g, * g, € G and h; o h, € H, closure follows.
Step II: Associativity.
Let g, 85,83 € G and hy, h,, h; € H, then
((81, hy) ¢ (&2 hz)) (83, 113) = (81 ™ 82,y © hy) (83, h13)

= ((81* &) * g3, (hy © hy) o In3)

= (81 (g% g3)s hyo(hye h3))

= (g1, ) o ((82’ hy) < (g3, h3))-
Step I1I: Existence of Identity
Since (G, * ) and (H, o ) are groups. We may denote i; and i;; to be their
identity elements, respectively. Then Vg € G and Vh € H, one has

(8, h) o (i, i) = (8 *ig, h o iy) = (g, h).
The other side holds analogously.
Step 1V: Existence of Inverse.
(g.h)o(g,h ) =(g*g L hoh™) = (ig, i), similarly, we also have
(g Lh Yo (g,h) = (ig, i), existence of inverse follows thereafter.
[]

In fact, Theorem 5.1 could be generalized into “The direct product of countable
groups is still a group”. Moreover, this statement is still valid when one replaces the
countable condition by arbitrary. Therefore, the direct product of arbitrarily many
groups, countable or not, finite or not, is still a group. We may say that, as we explai-
ned before, the group structure is preserved under the operation of taking direct
product.

We now state some theorems without proof. These theorems contribute to the fund-
amental properties of a group. Readers who are not familiar with them could consult
[56].

Theorem 5.2: Uniqueness of Identity and Inverse
Let (G, = ) be a group. Then the identity i,; of G 1s unique, as well as the
inverse a~! for arbitrary element a € G.

Theorem 5.3: Invariant under Permutations
Let (G, ) be a group and let ay, -+, a,, € G be its elements. Then regardless of
how the product a,a,---a, is bracket, the result equals

(- (((aqay)az)ay)--a,_,)a,. (5.1)
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Theorem 5.4: Inverse Operation
Let (G, ) be a group and let a, b € G be its elements. Then:
i @hH'=a
() (ab)y'=b"la"l.
Theorem 5.5: Cancellation Law
Let (G, o) be a group and let a, b, c € G be its elements. If either ab = ac or
ba = ca,then b = c.

Like the treatment of the size of a set in set theory, we are also interested in the size
of a given group. This motivates us to define the size of a group, namely, the order of
a group. In practice, most groups share the same order are isomorphic with each
other.

Definition: Order
If (G, ° ) is a group. Then the order of G, denoted by |G|, is the number of
elements in the set G. We say that G is a finite group if its order is finite;
otherwise, we say G is an infinite group.

In fact, just like the relationship between the structure of a topology on a given set
A and the set-theoretical structure of itself. We also concern the relationships between
the structure of a group on A with the corresponding binary operation o and structure
purely on A. Loosely speaking, a simple set A has no structure, it is barely a collec-
tion of elements, endowed with either topological structure or algebraic structure, we
are able to study the behaviour of its elements via the given operations. However,
since these structures are endowed to the set A, it is natural to ask if the underlying
structure (if any) provides insights for additional possible structure like topological
structures. This is a rather philosophical study in mathematics, one need to consider
under what conditions the underlying system should possess so that the endowed
structures could lead to no contradictions, e.g. the Russell’s Paradoxes, where the
statement that there is no such a set contanining all the sets. Sometimes we call it
descriptive set theory, where the study of the axiomatic systems matters (e.g. Axiom
of Choice). We shall go through this special topic in the sixth chapter.

In order to derive one of our main topics in this section, we shall offer some impor-
tant results on the order of a given set, still, without proof. Readers could consult [56]
for detailed descriptions.

Theorem 5.6: Order Operation
Let (G, o ) be a group and let a € G be its element. Pick n,m € Z. Then
(1) aman — am+n.
(i) (a™)* = a™", and, in particular,
(iii) a”=(a"")"

Definition: Cyclic Group
Recall that in a given group (G, ° ), the power of a € G is defined to be
a" :=a- --- - a where there are n many a’s being multiplied. In particular,
note that ° = ig- A group G is said to be cyclic if there exists an element
a € G such that Vb € G, dn € Z such that a”” = b. In particular, we say
that G is generated by a, and denote G := (a).
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A very important reulst on cyclic group is that every cyclic groups is abelian, the

proof is rather trivial.
Theorem 5.7:
Every cyclic groups is Abelian.

In the previous chapter, we studied the concept of subspace topology, which is the
restriction of the original space but preserves all the topological structures. In the
algebraic aspects, we wish the same behaviour to hold.

Definition: Subgroup
Let (G, o ) be a group. Then a subset H C G is called a subgroup of (G, o ) if H
is a group under the same operation, namely o. In this case, we use H < G to
denote that H is a subgroup of G. Similarly as we did in the elementary set
theory, if H < G we say that H is a proper subgroup of G.

Remark:
Every group is a subgroup of itself, and {i} is a subgroup of every group. ||

The isomorphisms between topological spaces that preserve the topological struct-
ures is called homeomorphism, in algebraic aspect, we have the another such a
morphism, called simply the isomorphism, which preserve the algebraic structures.
Definition: Homomorphism (Group Homomorphism)

Let (G, ) and (H, * ) be two groups. Then a group homomorphism (or, simply,

a homomorphism) from G to H is a function ¢ : G — H such that

a(g18) = a(ga(gy) Vg, 8 € G.

In particular, if G = H and a = Id then « is the identity homomorphism.
Definition: Isomorphism

A homomorphism a : G — H which is bijective is called an isomorphism.

Two groups are said to be isomorphic if there exists an isomorphism between

them.

We make two remarks here. First recall a question we asked when proposed the ho-
memorphism, when do we say that two topological spaces are the same? The answer
1s that if there exists a homeomorphism between them, this is the same thing we
concern in group isomorphisms. Secondly do bear in mind that all homemorphisms
are continuous bijection, but a continuous bijection may not be a homeomorphism,;
but in group isomorphisms, according to the definition, the inverse, however, holds.
Moreover, one may notice that when we define a new mathematical object, we
always consider build up a morphism to preserve the underlying structures, but such a
morphism may behave differently.

Definition: Endomorphism
A homomorphism from a group to itself, e.g. @ : G = G, is called an
endomorphism.

Definition: Automorphism
An endomorphism which is also an isomorphism is called an automorphism.

In topology, we did not assign special names for the mapping inside the same spac-
e. But in group theory, we do concern these mappings. This is because the different
mathematical objects we are dealing with. In summary, group theory and topology
have different objectives and deal with different mathematical structures. Group
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theory focuses on algebraic structures and internal mappings (automorphisms) that
preserve the algebraic properties of groups. Topology focuses on the topological
properties of spaces and continuous mappings between different spaces. The concept
of homeomorphisms in topology serves a similar role to automorphisms in group
theory but within the context of topological spaces.
Proposition 5.8: Homomorphisms are closed under composition
Let (G, »), (H,*), and (M, ¢ ) be three groups. Let @ : G — H and
p : H— M be two homomorphisms. Then the composition fa : G — M is
also a homomorphism.
Proof:
Letx,y € G. Then fa(x o y) = f(a(x) * a(y)) = fa(x) ¢ pa(y).
[]
The kernel of a group homomorphism is a subgroup that captures the elements ma-
pping to the identity element in the target group. It plays a fundamental role in group
theory, helping to detect homomorphisms, understand injectivity, and relate the
domain and codomain groups through important theorems like the First Isomorphism
Theorem. It is a valuable tool for studying the structure and relationships between
groups.
Definition: Kernel
If a : G — H is a homomorphism. Then the kernel of « is defined to be the set
ker(a) := {g € Gla(g) = iy}.
Theorem 5.9:
Leta : G — H be a homomorphism and let g € G be an element. Then
D) alig) =iy
(i) a(g") = (a(g)".
Proof: Consult [56] Theorem 4.10.
Definition: Center
If (G, » ) is a group. Then the center of G, denoted by Z(G), is defined to be
the set of elements in G that commute with everything in G. That is to say,
Z(G):={z€ Glaz =zaVa € G}.
Theorem 5.10:
If G is a group, then Z(G) is a subgroup of G.
Proof:
Certainly iza = a = ai; Ya € G hence i; € Z(G), existence of identity
follows. If y,z € Z(G) anda € G = yza = yaz = ayz; thus yz € Z(G),
closure holds. Furthermore, if z € Z(G) anda € G = a~'z = za~!. Inverting
both sides yields z7!a = az™! = z7! € Z(G) hence the existence of the
inverse is valid, result follows.
[]
Theorem 5.11: Subgroup Criterion
Let G be a group and let H C G be a subset. Then H is a subgroup of G &
i) 1i€eH,
(i) ab-'€ HVa,b € H.
Proof: Consult [56] Theorem 3.13.
128



Theorem 5.12: Alternative Subgroup Criterion
Let G be a group and let H be a finite subset of G. Then H < G &
(i) i€H,
(i) abe€e HVa,b e H.

Proof: Consult [56] Theorem 3.14.

We shall introduce cosets, normal subgroup, and quotient group to enclose this su-

bsection.
Definition: Congruent Modulo
Let G be a group and let H be a subgroup. If a, b € G, then we say a is
congruent to b modulo H, and we denote itasa = b( mod H)ifa™'b € H
(or, in the case of an additive group —a + b € H).
Lemma 5.13: Equivalence Relation
Let G be a group and H be a subgroup. Then the congruence modulo H is an
equivalence relation on G.
Proof:
To show the equivalence is to show the following:
Step I Reflexivity
Ifa € G, thenala =i € H, and therefore a = a( mod H).
Step II: Symmetry
Ifa,b € Ganda = b( mod H), then a~'b € H and therefore
(a~'b)~! = b~ a lies in H as well. But this means that b = a( mod H).
Step III: Transitivity
Suppose that a, b, c € G, wherea = b( mod H) and b = ¢( mod H). Then
a~'b,b~'c € H. But in this case, H contains their product, a~'bb~lc = a e
Thus, it follows thata = ¢( mod H).
[]
Lemma 5.14: Equivalence Class
Let G be a group and let H be a subgroup. If a € G, then its equivalence class
with respect to congruence modulo H is the set {ah|h € H}.
Proof:
Ifa =b( mod H), thena™'b € H,soa'b = h, for some h € H. Thus,
b = ah, which is in our set. Conversely, if b = ah, for some h € H, then
a~'b = h € H, and therefore a = b( mod H).
[]
Definition: Left Coset
Let G be a group, H < G and a € G. Then the left coset of a with respect to H
is the set {ah|h € H}, which is denoted a H. (If the group operation is
addition, then we will writea + H := {a+ h|h € H}.)

In summary, cosets are an important concept in group theory, providing a way to
partition a group into sets that share certain properties. They are a foundational conc-
ept for understanding group structure, Lagrange's theorem, and the formation of fac-
tor groups, which are critical tools in group theory and its applications.

Remark:
Cosets provide a natural way to partition a group into distinct sets that share
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certain properties. This partitioning helps organize the elements of the group
based on their relationships with a given subgroup.

Theorem 5.15:
Let G be a group and H be a subgroup. Then the left cosets of H in G partition
G. In particular,
(1)  Eacha € G is in exactly one left coset, namely a H;
(i) Ifa,b € G, then eitheraH = bHoraHNbH = @.

Two points should be kept in mind here. First, left cosets are not subgroups! Reme-
mber, the left cosets partition G, and therefore the identity can only be in one of them,
namely, i H = H. The rest cannot possibly be subgroups. Second, as we have already
seen, when we write a H, the element a is not unique. Indeed, since the left cosets are
equivalence classes, we have a H = bH if and only if a~'b € H.

We can now prove our first big result on finite groups, due to Joseph-Louis
Lagrange.
Theorem 5.16: Lagrange’s Theorem
Let G be a finite group and H a subgroup. Then | H | divides |G|.
Proof:
We have already seen that G is partitioned into left cosets; in particular, |G| is
the sum of the sizes of these cosets. But for any a € G, aH = {ah|h € H}.
Now, if ah; = ah,, with h;, h, € H, then by the cancellation law, h; = h,.
Therefore, a H consists of precisely | H | distinct elements. It now follows that
the order of G is | H | multiplied by the number of left cosets. In particular,
| H| divides |G|.
[]
Definition: Index
Let G be a group and H < G. Then the index of H in G, denoted by [G : H],
is the number of left cosets of H in G.
Corollary 5.16.1:
If G is a finite group and H is a subgroup, then (G : H] = |G |/|H|.
Definition: Right Coset
Let G be a group and H < G. Then for any a € G, the right coset of a with
respect to His Ha = {ha|h € H}. (If G is an additive group, then we write
H+a={h+a|lheH})

If G is abelian, then there is no distinction between left and right cosets. In nonabe-
lian groups, right cosets also partition G, but possibly in a different way.

Let H be a subgroup of G. We would like to form a group whose elements are the
left cosets a H. Unfortunately, not just any subgroup will suffice; we need an extra
condition. This is where normal subgroups come in. Recall that if H < G, then the
left cosets of H do not necessarily coincide with the right cosets. We need to consider
subgroups for which they do coincide.

Definition: Normal Subgroup
Let G be a group and N a subgroup. We say that N is a normal subgroup of G if
aN = Na Va € G.
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Remember, when we say that a N = Na, we do not necessarily mean that an = na
Vn € N. Indeed, we could have an = na for some different n; € N.
Theorem 5.17:
If H is a subgroup of G and a € G. Then a~'Ha is a subgroup of G.
Furthermore, |a~'Ha| = |H|.
Proof:
We have i € H and therefore i = a~'ia € a~'Ha. If
a 'ha,a 'h,a € a'Ha, then
(a'ha)a'h,a) = a'hy(aa™Yhya = a=hjih,a = a~'hh,a € a'Ha,
since i h, € H. Finally, if a~'ha € a~'Ha, then
(@ 'ha)™' =a"'h~'a € a~'Ha, since h~' € H. Thus, a~'Ha is a subgroup of
G. Also, given the definition of a~'Ha, it is clear that we can only get one
element for each element of H. But if a~'h,a = a™'h,a, then by cancellation,
h, = h,. Thus, it follows that |a~'Ha| = |H]|.
[]
Let us now introduce our last terminology in this subsection. The quotient groups,
which are a powerful tool in group theory that allow us to simplify the study of group
structure by partitioning a group into cosets of a normal subgroup and defining a
group operation on these cosets. They have wide-ranging applications in
understanding group properties, solving equations in groups, and classifying group
actions, making them a central concept in abstract algebra.
Definition: Quotient Group
Let G be a group and N be a normal subgroup. Then the quotient group G/N is
the set of all left cosets a N, with a € G, under the operation
(aN)(bN) = abN.
The fact that the quotient group is indeed a group needs to be proved:
Theorem 5.18:
If G is any group and N is a normal subgroup, then G/N is a group of order
[G:N].
Proof: Consult [56] Theorem 4.6.
Theorem 5.19:
Let G be a group and N be a normal subgroup. Then the subgroups of G/N are
precisely of the form H/N, where H is a subgroup of G containing N.
Furthermore, H/N is normal in G/N < H is normal in G.
Here is one more rather neat fact about quotient groups:
Theorem 5.20:
Let G be any group. If G/Z(G) is cyclic, then G is abelian.
Proof:
Let Z = Z(G) and suppose that G/Z = {(aZ). Take any b, ¢ € G. Then
bZ = aMZ for some integer m and cZ = a"Z, for some integer n. Thus,
b =a™yand ¢ = a"z for some y, z € Z. But noting that powers of a commute
with each other and elements of Z commute with everything, we have
bc = a"ya"z = a"za™y = cb. Thus, G is abelian.
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5.2 Topological Group

In this subsection we offer a method of marrying algebraic and topological structu-
res. The materials are mainly from [72], [76], [77], [78], and [79]. Before we start, let
us first introduce some group notations:

A group G is written multiplicatively if the binary operation of the group is written
G? - G; (x, y) — xy and called multiplication; the unique inverse is written x~!and
the map G — G; x —~ x| is called inversion; and the identity is written l5. Given
S, T C G, we write

Sl:={s7!|se€S}and ST := {st|s € S,t € T}.
For n € N we define S” inductively by
§%:= {15} and §"*! := §"S; and S := ().
It will also be convenient to write xS := {x}S and Sx := S{x} for x € G, which
aligns the usual notation for left and right cosets when S is a subgroup. This notation
has effect that in general SS~! # S and S? # {s?|s € S}.

We first introduce the semitopological group, then the topologized group, and last-
ly the topological group. It follows that semitopological group is finer than topologi-
zed group and the topologized group is finer than topological group.

Definition: Semitopological Group
We call a triple (G, T, ) a semitopological group when (G, T;) is a
topological space and (G, » ) is a group, and the group operation
o: G X G — G that maps (x,y) to x o y is continuous in each variable
separately. When there is no ambiguity as to what the operation and topology
are, we will simply use G to denote a semitopological group.

Note that the function o : G X G — G is continuous in the variable x when the fu-
nction g, : G — G defined by x — x ey, is continuous for all y, in G. Similarly, e is

continuous in y when the function g, : G — G defined by y — x; o y is continuous

for all xoy in G.

For G to be a topological group we require G to satisfy all of the conditions for a
semitopological group as well as two more requirements. The group operation needs
to be continuous in both variables together and the inverse mapping given by
x — x~! needs to be continuous.

Remark:
Any group with the discrete topology is both a topological group and a
semitopological group. I
Theorem 5.21:
A locally compact Hausdorff semitopological group with a group operation
that is continuous in both variables together is a topological group.
Proof: Consult [79], Theorem 3.14.
Connection: Semitopological Group and Topological Group

A semitopological group is a group equipped with a topology such that the group's

multiplication operation is continuous with respect to that topology. In other words,
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it's a topological space and a group in which the group's binary operation is a continu-
ous map.

A topological group, on the other hand, is a group equipped with a topology such
that both the group's multiplication operation and the inverse operation are contin-
uous maps. In other words, it's a topological space and a group in which both multi-
plication and inversion are continuous.

Similarities:

Both semitopological groups and topological groups combine the algebraic struct-
ure of a group (with operations like multiplication and inversion) with the topological
structure of a topological space. Moreover, in both cases, the group's multiplication
operation is required to be continuous with respect to the given topology. This
ensures that group elements can be combined in a topologically coherent way.
Difference:

The primary difference lies in the treatment of the inversion operation. In a semito-
pological group, only the group's multiplication operation is required to be contin-
uous, while the inversion operation may or may not be continuous. In contrast, in a
topological group, both the multiplication and inversion operations must be contin-
uous. Also, a topological group imposes stronger topological conditions on its topol-
ogy than a semitopological group. Specifically, a topological group's topology must
be a Hausdorff (75) topology, which ensures the separation of points, while a semit-
opological group does not require this level of separation.

In summary, both semitopological groups and topological groups combine group
theory with topology, but they differ in the continuity requirements placed on the
group operations. Semitopological groups require only the multiplication operation to
be continuous, while topological groups require both multiplication and inversion to
be continuous. Topological groups impose a stronger topological structure by
requiring a Hausdorff topology, while semitopological groups allow for more
flexibility in the choice of topology.

Definition: Topologized Group
A group G that is also a topological space is called a topologized group.

Without any additional assumptions these are no more than their constituent parts: a
group and a topological space. When the group inversion G — G and the group oper-
ation G> — G are both continuous, where G has the product topology, we say that G
1s a topological group.

Connection: Topologized Group and Semitopological Group

A topologized group is a group equipped with a topology in a way that the group
operations (multiplication and inversion) are continuous with respect to this topology.

Both topologized groups and semitopological groups combine the algebraic structu-
re of a group (with operations like multiplication and inversion) with the topological
structure of a topological space. Moreover, in both cases, the group multiplication is
required to be continuous with respect to the given topology. This ensures that group
elements can be combined in a topologically coherent way.

Differences:

The main difference is in the treatment of the inversion operation. In a topologized

group, both the multiplication and inversion operations are required to be continuous.
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In a semitopological group, only the multiplication operation needs to be continuous,
and there's no continuity requirement for inversion. Also, semitopological groups are
a more relaxed concept than topologized groups. While a semitopological group
imposes a certain degree of topological structure on the group, it doesn't require as
much topological regularity as a topologized group. Topologized groups are a stricter
subclass of semitopological groups.

In summary, both topologized groups and semitopological groups blend group the-
ory and topology, but they differ in the strength of their continuity requirements.
Topologized groups impose continuity conditions on both multiplication and
inversion, while semitopological groups require continuity only for multiplication,
allowing more flexibility in the topology of the group.

Comment:

In general, semitopological group is finer than topologized group and the topologi-
zed group is finer than topological group.

A semitopological group is a more relaxed concept than a topologized group. In a
semitopological group, continuity is required only for the group multiplication, while
the inversion operation is not necessarily continuous. This provides more flexibility
in the choice of topology.

A topologized group imposes a stricter topological structure than a semitopological
group. In a topologized group, both the group multiplication and inversion must be
continuous with respect to the chosen topology. This ensures a stronger level of
topological regularity.

A topological group is a special case of a topologized group where the topology is
required to be Hausdorff (7,) and both the group multiplication and inversion are
continuous. Thus, a topological group imposes the strongest topological conditions
among these concepts.

So, in terms of the strength of topological conditions imposed, the hierarchy gener-
ally goes from semitopological group (weakest requirements) to topologized group
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(intermediate requirements) to topological group (strongest requirements). This hier-
archy reflects the level of topological structure imposed on the underlying group.
In fact, there are other approaches other than semitopological group or topologized

group.

One may consult [79] for a detailed description on these subjects as well as the int-
eractions among them. We now focus on the description of the topological group. As
we mentioned before, this is the marriage between topological properties and the
algebraic properties. Now let us state the formal definition of a topological group.
Definition: Topological Group
We say that (G, X ,T;) is a topological group if (G, X ) is a group and (G, T;;)
is a topological space such that, writing M(x, y) := x X y and Jx := x~! the
multiplication map M : G*> — G and the inversionmap J : G — G are
continuous.

Definition: Isomorphism
If (G, X ,T) and (H, Xy ,Ty) are topological groups we say that 0 : G - H
1s an isomorphism if it is a group isomorphism and a topological
homeomorphism.

We pause a little bit to consider a question: In defining a topological group, which
property we focus more? The topological property or the algebraic topology? In fact,
both the topological properties and the algebraic properties are equally important and
are given significant attention. The goal is to combine the algebraic structure of a
group with the topological structure of a topological space in a way that respects both
structures.

Algebraic Property:
The algebraic property of a group is fundamental and central in defining a
topological group. The underlying set must form a group, meaning it must
satisfy the group axioms (closure, associativity, identity element, and inverses).
This algebraic structure is non-negotiable and serves as the foundation of the
topological group.

Topological Property:
Equally important is the topological property, which is the choice of topology
on the group that respects the group's algebraic operations. The topology must
be compatible with the group structure in a way that ensures the group
operations (multiplication and inversion) are continuous functions. This
compatibility between the group and the topology is crucial to defining a
topological group.

Hausdorff Property (part of topological property):
In many cases, a Hausdorff (7,) topology is preferred for a topological group.
The Hausdorff property ensures that points can be separated, which is desirable
for a topological space. It helps in dealing with limits, continuity, and
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convergence in a more convenient manner.

Balance:
The challenge in defining a topological group lies in finding the right balance
between the algebraic structure and the topological structure. The topology
should be chosen so that it respects the algebraic properties, yet it should be
flexible enough to allow for continuous group operations.

In summary, the definition of a topological group places equal importance on both
the algebraic and topological properties. The focus is on finding a topology that
harmonizes with the group's algebraic structure, ensuring that group operations are
continuous while maintaining the group axioms. The choice of topology, its
compatibility with group operations, and whether it is a Hausdorff topology are all
considered carefully to achieve this balance.

Lemma 5.22:
Let (G, X ,T;) be a topological group. Then
(1) xU = {xu|lu € U} is open < U is open.
(i) Vs a neighbourhood of x & x~'V is a neighbourhood of e.

Here and elsewhere we will use e to denote the unit of a multiplicative group and O

to denote the unit of an additive one.
Theorem 5.23: Topological Group Criterion
Suppose that (G, X ) 1s a group and (G, T};) 1s a topological space. Then
(G, x ,T,) is a topological group <, writing ./, for the set of open
neighbourhoods of a, we have
(i) LetaeG. ThenNe N, ©aNe /N,
(i) IfN € W, then there exists an M € ', with M?> C N.
(iii) IfN € ., then there exists an M € ', with M C N1,
(iv) IfN € ./ ,and a € G then there exists an M € W, with M C aNa ™.
From time to time it is useful to have neighbourhood bases with further properties:
Lemma 5.24:
If (G, X ,T,;) 1s a topological group we can find a neighbourhood basis ./, for
e consisting of open sets N with N~! = N.
It is easy to define topological subgroups and quotient groups along the lines given

in the next lemma:

Lemma 5.25:
If (G, X ,T,;) is a topological group and H is a subgroup of G, if H is equipped
with the standard subspace topology then it is a topological group. Moreover, if
H is a normal subgroup of G then G/H equipped with the standard quotient
space topology (formally, the finest topology on G/H which makes the map
G — G/H given by x — xH continuous) is a topological group.

However, it i1s important to realise that, without further conditions quotient topolo-

gical groups may not behave well.
Lemma 5.26:
Let (G, X ,T;) be a topological group and H a subgroup of G. Then
(i)  The (topological) closure H of H is a subgroup.
(ii)  If H is normal, so is H.
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(iii) If H contains an open set then H is open.
(iv) If H is open then H is closed.
(v) If His closed and of finite index in G then H is open.

Therefore, we have the implications to the topological properties of the given topo-
logical group, namely, the subspace topology criterion, the normal criterion, the oepn-
nes and the closedness criterion. We now claim two results without proof.

Lemma 5.27:

If (G, X ,T;) is a topological group then I := {i;} is a closed normal subgroup.
Lemma 5.28:

Let (G, X ,T;) be a topological group. Then the followings are equivalent:

(1)  {ig} isclosed.

(i) GisT,.

(i) Gis Ty

For a detailed and propert treatment on topological groups one may consult [76],
[77], [78], and [79].

5.3 Categories and Functors

The main ingredients for this subsection and the upcoming one are from [3], [50],
[80], [81], and [82].

Category theory has been around for about half a century now, invented in the
1940°s by FEilenberg and MacLane. Eilenberg was an algebraic topologist and
MacLane was an algebraist. They realized that they were doing the same calculations
in different areas of mathematics, which led them to develop category theory. Cate-
gory theory is really about building bridges between different areas of mathematics.

Recall that we say a function f : A — B has its domain in A and we call B the cod-
omain of f. We denote by dom( f) := A while cod(f) := B. Recall the definition we
made in the previous chapters.

Definition: Category
A category € consists of:
(i)  Acollection & of objects of €.
(il) Va,b € €, a collection of morphisms between them, namely €,
the collection of all morphisms, sometimes we denote Homg(a, b) the
collection of all morphisms in € connecting a and b.
(iii) An operation o : (f,g) — f o g from pairs of morphisms to objects as

long as they are composable. We write A LB orf:A— Bforfe®@,.

Remark:
These data is subject to two axioms:
(i) Va,b €€y Vfe € suchthatf :a - borf:b — a,one has the
identity morphism i such thatiof =f = f o .
(i))  The composition “o” is associative, i.e. Vf, g, h € €, that are
composable, one has (hog)of =ho(f o g). |
In the above statement, we used the term “composable”, this is defined as:
Definition: Composable
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Two morphisms f, g € €, are said to be composable if dom(f) = cod(g), or
the other way around.
Remark:
Iff, g € €, are composable, then they must have a composition f o g.
Moreover, every object a has an identity morphism i, I
Example 5.1: Categories
(i) & := Set, where the objects are sets and the morphisms are functions.
(i) & := Topology, where the objects are topological spaces and the
morphisms are continuous maps.
(ili) € := LCH, where the objects are locally compact Hausdorff spaces and
the morphisms are proper maps. I
Definition: Small Category
Since we do not require €, or € to be sets, we call our cateogry € a small
category when they are sets.
Theorem 5.29: The Duality Principal
If  is a valid statement about categories, so is the statement ¢~ obtained by
reversing all the morphisms.

Therefore, the category €°P obtained reversing all the direction of morphisms in €
is also a category. Furthermore, the duality principal tells us that every categorical
concepts, theorems, definitions, and proofs have a dual conterpart obtained by
reversing all the morphisms.

Definition: Opposite Category
Let € be a category, then the opposite category €°P is defined by setting
(°P)y := €y and Va,b € €, Hom op(b, a) := Homg(a, b). That is,

Vf:a— bin &, one has fOP : b — ain €°P. Given a LbScing, we
P P o op , ,0 0

have ¢ == b — a in €°P. We define (fOP o gOP) := (g o f)°P.
Definition: Equivalence Relation on &,

In general, an equivalence relation ~ on €, is called a congruence if:

(i) f~g = dom(f)=dom(g)andcod(f) = cod(g).

(i) f~g=fh~ghandkf ~ kg for all h, k such that the composition is

valid.

Remark:

There is a category €/ ~ with the same objects as € but ~-equivalence
classes as morphisms. I
Definition: Isomorphism

The morphism f from a to b (a J, b) in a category € is said to be an

isomorphism if thereisa g € €, suchthatgef =i andfe g =1,.
Example 5.2:

If € := Set, then an isomorphism f : a — b is an invertible map.

If € := Topology, then an isomorphism is a homeomorphism. I
Definition: Terminal
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An object ¢ in a category & is a terminal if for all object a in €, there exists a
unique morphism f : a — t.
Example 5.3: Terminal
(i)  Set has terminal objects, any one element category { - } is terminal since
forany set X, 3!f : X — { - } such that f(x) = - Vx € X.
(i1))  Group has terminal objects, in the category Group of groups and
homomorphisms, one element groups {i} is a terminal. Since for all
group G 3!f : G — {i} suchthatf(g) =iVg € G.
Note that not all categories have terminal objects. I
Proposition 5.30: Uniqueness
Two terminal objects t,,t, € € are “uniquely” isomorphic.
Proof:
Since ¢, is a terminal then 3!g : #, — #,. Similarly !4 : #; — 1,. Applying
definition of terminal again yields a unique morphism in Home(#,, 7,) but
i, € Homg(#), 1;) so this morphism has to be i, . Since g o i : #; — ¢, one has
geoh =i, . Similarly, hog: 1, > 80 hog =i, Therefore fand g are
isomorphic.
[]

Definition: Initial
An object i in a category & is said to be an initial if Va € €3 La

In later description, if there are no ambiguities, we shall denote a € € to state the
fact that an object a € €,. Similar to the uniqueness of the terminal objects, initial
objects are also “uniquely” isomorphic. This is a direct result of Theorem 5.29, in
fact, we can even state that an object a € € is a terminal < it is an initial in G°P.
Example 5.4: Initial

(1) Inthe category Set, the empty set is initial since for all set X there exists
a unique function ¢ : @ — X, which is the empty function.

(ii)  In the category Group, the one element group {i} is initial since for all
group G there exists a unique homomorphism ¢ : {i} — G such that
@(i) = i, which is the identity element in G.

(iii)) In the category Vectr, the zero vector space {0} is initial since for all
vector space V there exists a unique linear map 7 : {0} — V such that
T(0)=0. |

When we introduce a new space, it is natural to ask if there is a mapping between

the elements inside.

Definition: Morphisms between Categories
A functor F' from a category 6 to a category < is a pair of functions, namely,
Fy:6y— Dyand F| : €, = D, such that the followings hold:

(i)  Sothat Va,b € €, Va L b € Homg(a, b),

F|(f) € Homg(Fy(a), Fy(D)).
(i) Va €@, F(i,)= iFO(a).
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(iii) F, preserves compositions, i.e. Va L ¢, Fi(geof)=F,(g) e Fi(f).

Example 5.5: Forgetful Functors
We have the forgetful/underlying set functor U : Group — Set which forgets
the group structure: which forgets the group structure for a group G, U(G) is
the set of elements of G. Given a homomorphism between the groups:
@ : G — H,suchthat U(gp) : U(G) - U(H).
The U(g) is the corresponding function. I

6.1 Paradoxes and Axioms

In 1873, the German mathematician Georg Cantor discovered that the set of alge-
braic reals is countable. A few weeks later he was able to demonstrate that the set of
all real numbers is uncountable. A new mathematical discipline was born: set theory.
In the course of the next two decades, Cantor developed the fundamental concepts of
this new discipline; the concepts of equipotent sets, order-isomorphic structures,
cardinals and ordinals are all due to him.

Generally speaking, set theory is the study of collections of objects. This view was
expressed by Cantor in his famous definition of a set:

“By a ‘set’ we mean any collection M into a whole of definite, distinct objects
m (which are called the ‘elements’ of M) of our perception or of our thought.”

If an element m belongs to a set M, we write m € M. It is also quite common to
say in this case that m is a member of M, and to refer to € as the membership
relation. As we shall see, all relevant facts about sets can be expressed in terms of the
membership relation.

The career of set theory has been impressive. In the first half of the 20th century,
the new fields of set-theoretic topology, theory of real functions, and functional
analysis evolved. Each of these disciplines is strongly rooted in set theory, albeit not
exclusively. Even more importantly, set theory can be regarded as the foundation of
all mathematics. It is possible to interpret the other branches of mathematics as the
study of sets. This seems at first glance to be an implausible claim. For most people

the real number \/5 is just a single object, perhaps a point on the real line, but
certainly not a collection of other objects.

To solve this ambiguity, we shall present compelling evidence for the possibility of
founding all of mathematics on set theory. But why bother? Many mathematicians,
especially those of the more applied persuation, never use even such basic set-
theoretic tools as arithmetic of infinite ordinals in their research. Would it be more
reasonable to study set theory just as a separate discipline, rather than trying to fit all
other disciplines into a set-theoretic straightjacket? Or, if the topologiests really
cannot live without the straightjacket, shouldn’t at least the applied areas be spared?

This suggestion misses the point on two counts. First, it is one thing to claim that
set theory could in principle serve as a foundation for all of mathematics, including,
say, differentail equations; and it is quite another thing to seriously propose that the
Navier-Stokes equations should be expressed in the language of set theory. Second,
there is a definite advantage to having a single framework for the separate
subdisciplines of mathematics. Different branches of mathematics build on each
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other. Analytic functions are heavily used in number theory, for example. If each
branch of mathematics had its own separate foundations, each use of a theorem from
another subfield might raise foundational issues. The existence of a common, albeit at
times clumsy, framework makes such mathematical cross-breeding entirely
unproblematic. It is exactly the existence of the established common framework that
allows most practioners to just do mathematics and to leave all foundational issues to
the specialists: set theorists, logicians, and philosophers.

The suggestion “to spare at least the applied areas from the straightjacket of set
theory” may sound funny, but it expresses a belief that is held in earnest by many
mathematicians and science administrators: that one can draw a clear dividing line
between applied and pure mathematics. Even those who do not share this view tend
to think that there are clear-cut instances of belonging to the realm of either the pure
or the applied. Any yet, the distance between the most applied and the most abstract
may be surprisingly short. Consider probability theory. This is as applied a field as
any. To a mathematician, it is just the study of probability measures. Theses are
functions defined on certain o-fields of sets, for instance on the Lebesgue measurable
subsets of the unit interval. Once this framework for doing probability theory has
been established, it is very natural to ask whether there exists a probability function
defined on all subsets of the unit interval so that, as in the case of the familiar
Lebesgue measure, each individual point has probability zero. This is one of the
deepest and most perplexing problems in set theory. Not only is it unsolved; there are
indications that it may even be unsolvable in a very strong sense.

Let us consider a hypothetical unsolved problem. Since this will be our substitute
for a real problem, let us call it the Virtual Problem. Let us assume that the problem
1s to prove or refute the Virtual Conjecture. How would you like this:

Theorem 6.1: Virtual Conjecture
The Virtual Problem is unsolvable.

Well, if you have been working hard on the Virtual Problem without many luck,
Theorem 6.1 may be a consolation prize. But could one possibly prove a theorem
like Theorem 6.1? Yes and no. Intuitively speaking, if all of mathematics can be
formulized in set theory, then also all modes of mathematical reasoning can be
formalized. Thus, “the collected reasonings of all mathematicians of all times”
become a mathematical object, and can be studied like any other mathematical object.
It may be possible to prove that neither a proof nor a refutation of the Virtual
Conjecture is among “the collected reasonings of all mathematicians of all times.”
Does this constitute a proof of Theorem 6.1? Almost. The assumption that all
mathematics can be formalized in set theory is an act of belief that does not lend itself
to mathematical scrutiny. While we can be reasonably sure that set theory
encompasses essentially all correct mathematical arguments that have been used by
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mathematicians up to this point in history3, there is always the somewhat remote
possibility that eventually somebody will discover an immediately recognizable
mathematical truth that transcends set theory. Thus, if it can be established that
neither a proof nor a refutation of the Virtual Conjecture is among “the collected
reasonings of all mathematicians of all times,” something like the follwoing theorem
will have been proved:
Theorem 6.2:
The Virtual Conjecture is unsolvable, unless currently used foundations of
mathematics are changed.

Over the last three decades, set theorists have proved hundreds of theorems like
Theorem 6.2. Such theorems are called independence results. The Virtual
Conjecture does not have to be a strictly set-theoretical statement. It may be a
problem in topology, algebra, functional analysis, or measure theory.

On the other hand, the foundations of mathematics have remained remarkably
stable. Most mathematicians accept the axiomatic version ZFC# of set theory as a
reasonably good foundation of mathematics and see little reason to exchange it for
something else5. Thus, evidence is accumulating that many problems in set theory
and related fields may be unsolvable in an absolute sense. However, if they are, we
can never be entirely sure of this.

Set theory not only serves mathematics by providing a foundation and allowing
one to delineate the limits of the knowable. It also is good mathematics. Set-theoretic
theorems and techniques can be used in many other branches of mathematics much in
the same way as linear algebra is used in differential equations. This is true not only
for the concepts and methods known already to Cantor, but also for more recent
results like Zorn’s Lemma, the Erdos-Rado Theorem, or the Pressing Down Lemma.

The history of set theory has not always been a smooth ride. In fact, the start was
rather bumpy. While some mathematicians embraced set theory eagerly, others were
openly hostile. For example, David Hilbert said in 1925 that no one shall be able to
drive us from the paradise that Cantor created for us. Henri Poincaré said in 1908 that

3 Of course, this becomes immediately a false statement if the deliberately vague term “set
theory” is replaced by a formal incarnation of it, like ZFC. In this case, the “immediately
recognizable mathematical truth that transcends ZFC” could be the assertion that ZFC is
consistent. However, if the Virtual Conjecture is something like the Continuum Hypothesis, then
the intuitive picture drawn here will do for a reasonably accurate first approximation of the notion
of an independence result.

4 The letters stand for Zermelo and Fraenkel, who developed the system, and for one of the
axioms, called the Axiom of Choice.

5 Not all mathematicians share this view. Mathematics can be developed in other frameworks.
Some of these are brands of set theory similar to the version ZFC discussed in this text; others
are entirely different approaches. In this book, we concentrate almost exclusively on a
presentation of ZFC. (The only exceptions are occasional discussions of set theory without the
Axiom of Choice.) We are far from claiming superiority of ZFC over alternative foundations of
mathematics. For whatever reason, it won the competition. It does a desent job; so let us stick to
it. It should be pointed out through that, to the best of our knowledge, none of the competitors of
ZFC resolves the question of truth or falsity of any statement whose independence of ZFC has
been established by the method of forcing.
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future generations will look at set theory as a sickness, from which mathematicians
will have recovered.

The power of the set concept lies in the possibility of treating collections of infin-
itely many objects m as a single entity M. Many contemporaries of Cantor felt uneasy
about this approach. The question as to whether infinity actually exists, or is just an
abstraction, a remote possibility that can be considered and approximated, but never
attained, is as old as philosophy itself. For the Greek philosopher Plato, infinity was
as real® as any finite object. His disciple Aristotle took the opposite stand: Infinity
exists only as a potential that is never actually attained. The chasm between the
Platonist and the Aristotelian approaches has permeated philosophical thought ever
since. In essence, Cantor’s treatment of infinity followed Plato, whereas his
opponents espoused Aristotelian thinking.

To the authors’s philosophy, it is hard for us to define the supremacy and assign
this terminology to either one of them. Platonist or Aristotelian, whatever we
mathematicians choose to trust, or, more precisely, whatever axiomatic system we
choose to use, will finaly in some days in the future, fails to convey the importance as
it did before. That is to say, if we have to give a definition of better axiomatic system,
we need to accept that this definition will not last forever. To this end, the author
shares Platonist’s view of infinity, that the forever will arrive, the infinity could be
attain in an abstract way, that is, it is an idea dependent to the time. However,
Bertrand Russel discovered that Cantor’s definition of a set leads to a contradiction.

Let us say that an object x has property &, if x is a set, but x is not an element of
itself, which will be denoted by x & x. Let us collect all objects x with property &
into a set M. Does M have property &#? The question is no and this is the well-known
Russell’s Paradox.

Theorem 6.3: Russell’s Paradox:
The assumption that the collection of all sets leads to a contradiction.
Pf:
Suppose that the collection & of all sets is a set, let
A= {x|x € &, such that x & x},
for example, @ &€ A. Since & is a set by assumption, then A is also a set, which
means that A € &, therefore A € A. But by our construction we have A € A,
contradiction.
[]

Can one resolve Russell’s Paradox, or do we have to accept it as a refutation of
set theory? Of course it can be resolved; otherwise this book would not exist. Let us
forget the terminologies in Theorem 6.3 for a moment and observe the statement
above it. As one may notice, we forgot to check whether M is a set. Property & has
two clauses. If M is a set, then M has property &* < M & M, but if M is not a set,
then M does not have property <. In this latter case, the paradox would disappear.

But is M a set? Let us consider Cantor’s definition. In the spirit of his theory, colle-
ctions of definite, distinct objects of our thought are sets. M satisfies the criterion of
distinctness, since its members are distinguished from its nonmembers by a certain

6 In a sense, infinity was even more real for Plato than the finite objects of our perception.
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property. Thus, Cantor’s definition implies that M is a set, and we get Russell’s
Paradox.

We have seen that Russell’s Paradox disappears if M is not a set. We have also seen
that Cantor’s definition implies that M is a set. Is there perhaps something wrong
with Cantor’s definition?

To see its flaw, let us reexamine the process by which the set M of our example w-
as constructed. M was the collection of certain definite objects of our thought,
distinguished by a property <. But how “definite” are these objects? If M might or
might not be one of those, isn’t M a bit indefinite? So, maybe, we should disqualify
M as a possible element of M on the grounds of its indefiniteness?

Nevertheless, admitting the modification leads us to a similar paradox; this time
with the added clause of some vaguely understood ‘“definiteness” in the defining
property of M.

But perhaps Cantor’s definition could be salvaged by giving a precise meaning to
the word “definite?” Think of the elements of a set as building blocks, and the
formation of a set as assembling these building blocks into a whole. It is reasonable
to require that at the moment a given set M is being formed, all its building blocks
must have already attained their final shape; in this sense they should be “definite.”
Let us call this stance the architect’s view of set theory. It stipulates that although it
is possible to contemplate all sets at once, each set has to be formed at some moment
in an abstract “time,” and at that moment, all its building blocks must already have
been available in their final shape’. Also, once a set is formed, one should be able to
use it as a building block of other sets.

This view solves Russell’s Paradox in an unexpected way: M is not a set, because
it could never have been established! At no moment in set-theoretic time do all the
building blocks for the construction of M exist.

How can architect’s view of set theory be expressed with sufficient mathematical
precision? The approach concentrates not on what sets are, but on how sets are being
formed. At the beginning of set-theoretic time, the only set that can be formed is the
empty set, since no previous building blocks exist. Once this set is formed, it can be
used as a building block for further sets. The modern alternative to Cantor’s
definition is to describe precisely by which operations new sets can be built from
existing ones, and then to apply these operations successively to the empty sets.

Can we get all sets in this way? Perhaps not, but we can construct a universe of
sets rich enough to encompass all known mathematics. This will do for starters.

The architect’s view of set theory can be formalized by axioms, similar to the
way in which our space intuitions were formalized by Euclid more than two thousand
years ago. The axiom system ZFC that will be studied in this book was proposed by
E. Zermelo and A. Fraenkel early in 20th century. Once an axiom system has been
formulated, one can ask whether a given mathematical statement or its negation
follows from the axioms. The answer may be a “yes”, a “no”, or an independence
result.

7 Note that this view is a synthesis of Platonists and Aristotelian elements.
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One often talks about “naive” versus “axiomatic” set theory. This may suggest a
much deeper partition than there actually is.

The relation between Cantor’s view of sets and the axiomatic treatment of the the-
ory is similar to that between our space intuitions and Euclidean geometry. The
Euclidian axioms allow us to derive mathematical truths about points, lines, and
planes deductively. This is important, because the deductive method accounts for the
high confidence mathematicians have in the truth of their theorems. However, our
“naive” space intuitions are a valuable guide in guessing these theorems and outlines
of their proofs. Also, a similarities between geometric objects and features of the real
world are grasped by our intuition, not by deductive reasoning. Without naivity, there
would be no applications of mathematics.

When we say that somebody practices naive set theory, all we mean is that his/her
arguments are based on Cantor’s definition of a set. The naive approach is quite often
the most enlightening one. If a mathematician’s reasonings are also informed by a
careful analysis of how sets are being built, we say that he/she practices axiomatic set
theory. Frequently, this will just mean adopting the architect’s point of view without
being concerned about details of the axiomatizations.

In this book, both modes of set-theoretical thought will be practices. We start out
with a naive treatment of some of the basics: relations, functions, equipotency, order
types and induction. As we go along, questions will arise that call for a more careful
scrutiny. Of course, the choice of topics reflects our own biases and our desire to keep
the number of pages finite.

To close this section, we introduce some ideas from Tractatus Logico, which exp-
lains the pictures perfectly well:

“The world is all that is the case. The world is the totality of facts, not of
thins. The world divides into facts.” Page 57.

“The world is determined by the facts, and by their being all the facts. For the
totality of facts determines what is the case, and also whatever is not the case.
The facts in logical space are the world.”  Page 58.

Perhaps, we need to accept that the world is dynamic, the absolute stable and abso-
lute movement of an object will fail to be valid. An existence is valid only for a
particular period. For example, our ancients used to believe that the earth is plain and
the sky is a big circle surronding the earth, before the development of sciences, this
seemingly to be an unchangable fact for all, but when the time of its modification
arrives, it arrives its infinity. Admit this concept or not, we end the section with the
following saying again in Tractatus Logico:

“What we cannot speak about we must pass over in silence.”  Page 56.

The quote of Hilbert is taken from [83]. The quote of Poincaré is taken from [84].
Ca-ntor’s famous definition of a set is the first sentence of the article [85]. Detailed
accounts of the history of set theory in general, and of Cantor’s work in particular can
be found in the following book: [85], [86], and [87].

8 The use of the phrase “axiomatic set theory” in such instances may not be entirely appropriate.
But it is commonly used, and there is no need to further complicate the picture by naming
additional modes of practicing set theory.
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English translations of many of the most influential papers on the foundations of
mathematics written between 1879 and 1931 are reprinted in the book [88].

The question to what extent Cantor’s personal view of sets included elements of
what we call “the architect’s view” is a fascinating topic for philosophers and
historians of science. It you are interested in this issue, we recommend the book [89].

Bertrand Russell found his Paradox in June 1901. He described it in a letter to
Frege written on June 16, 1902, and apparently also in an earlier letter to Peano. The
paradox was first published in his book [90].

The original version of the paradox was different from ours. We gave here a
formulation of Russell’s Paradox that very naturally leads to its resolution. If you
want to imagine the impression Russell’s Paradox must have made on his
contemporaries, please keep in mind that they were lacking the benefit of hindsight
which informed our choice or wording.

Most of the materials could be found in [91], [92], and [93], we follow the routine
mostly by the advanced one (in saying advanced one, we only mean the one focused
to graduate students) [93]. Some materials in [94] will be introduced to the author’s
belief, ignoring such assertions will not affect the understanding.

6.2 Axiomatic Set Theory

Axiomatic set theory is a branch of mathematical logic in which one deals with fra-
gments of the informal theory of sets by methods of mathematical logic. Usually, to
this end, these fragments of set theory are formulated as a formal axiomatic theory. In
a more narrow sense, the term “axiomatic set theory” may denote some axiomatic
theory aiming at the construction of some fragment of informal (“naive”) set theory.

Set theory, which was formulated around 1900, had to deal with several paradoxes
from its very beginning. The discovery of the fundamental paradoxes of G. Cantor
and B. Russell gave rise to a widespread discussion and brought about a fundamental
revision of the foundations of mathematical logic. The axiomatic direction of set
theory may be regarded as an instrument for a more thorough study of the resulting
situation.

The construction of a formal axiomatic theory of sets begins with an accurate desc-
ription of the language in which the propositions are formulated. The next step is to
express the principles of “naive” set theory in this language, in the form of axioms
and axiom schemes. A brief description of the most widespread systems of axiomatic
set theory is given below. In this context, an important part is played by the language
which contains the following primitive symbols:

(1)  the variables x,y, z, u, v, x;, --- which play the part of common names for
the sets in the language;

(1) the predicate symbols € (sign of incidence) and = (sign of equality);

(111)  the description operator 7, which means ““an object such that ---”’;

(iv) the logical connectives and quantifiers: < (equivalent), = (implies), V
(or), A (and), = (not), V (for all), 3 (there exists);

(v)  the parantheses (and).
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The expressions of a language are grouped into terms and formulas. The terms are the
names of the sets, while the formulas express propositions. Terms and formulas are
generated in accordance with the following rules:
(1) Ifr and o are variables or terms, then (7 € ) and (t = o) are formulas.
(2) IfA and B are formulas and x is a variable, then (A & B), (A = B),
(AVB),(AAB), 1A, VxA, and dxA are formulas and 1xA 1s a term;
the variable x is a term.

For instance, the formula Vx(x € y = x € z) is tantamount to the statement “y is a
subset of z”, and can be written as y C z; the term iwVy(y €w &y C 7) is the
name of all subsets z and, expressed in conventional mathematical symbols, this is
Pz. Let the symbol := mean “the left-hand side(LHS) is a notation for the right-hand
side (RHS)”. Below a number of additional notations for formulas and terms will be
presented:

Notations:
(a) The empty set: @ :=1xVy-y € x.
(b) The set of all x such that A(x): {x|A(x)} :=1zVx(x € z © A(x)),
where z does not enter freely in A(x) (i.e., is not a parameter of the formula A(x)).
(c) The unordered pair x and y: {x,y} :={z]z=xVz =y}
(d) The single-element set consisting of x:  {x} := {x, x}.
(e) The ordered pair x and y: (x,y) := {{x}, {x,y} },
where ( -, - ) denotes the ordered pair, instead of being an inner product signal.
(f) The union of xand y: x Uy :={z|]z €Ex Vz € y}.
(g) The intersection of xand y: x Ny := {z|z Ex Az E y}.
(h) The union of all elements of x: Ux:={z|3v(z€vVvv Ex)}.
(1) The Cartesian product of x and y:
xXy:={z|Juv(z ={u,v) Au € x Av € y}.
These notations are already familiar to us as basic operations between well-defined
set theory. Now we introduce the terminologies as for the functions:
(j) w is a function:
Fnc(w) := Jv(w Cv X V) AVuv»,({u,v;) EWA(U, V) EW = v, =1,)
(k) The values of the functionw on the element x:
wx = 1y{x,y) € w.
It therefore equips us with the ability to represent the standard infinite set z, which
1s stated as the following:
(I) The standard infinite set z:
Inf(z) =@ €zAVu(u € z=>uU{u} € 2). [
The axiomatic theory A that follows is the most complete representation of the pri-
nciples of “naive” set theory. The axioms of A are:
Al: Axiom of extensionality: Vx(x ey & x€z)=>y =z,
that is, if the set x and y contain the same elements, then they are equal.
A2: Axiom scheme of comprehension: PHVx(x ey = A).
where A is an arbitrary formula not containing y as a parameter. That is,
there exists a set y containing only elements x for which A.
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This system is self-contradictory. If, in A2, the formula —x € x is taken as A, the
formula Vx(x € y & —x € x) readily yieldsy € y © =y € y, which is a contradict-
ion called Russell’s paradox as we introduced in Theorem 0.3. In order to have a
well-defined axiomatic system to avoid such paradox, we intend to introduce the
axiomatic systems of set theory may be subdivided into the following four groups:

(a)  The construction of axiomatic systems in the first group is intended to
restrict the comprehension axioms so as to obtain the most natural means
of formalization of conventional mathematical proofs and, at the same
time, to aviod the familiar paradoxes. The first axiomatic system of this
type was the system Z, due to E. Zermelo (1908). However, this system
does not allow a natural formalization of certain branches of
mathematics, and the supplementation of Z be a new principle — the
axiom of replacement — was proposed by A. Fraenkel in 1922. The
resulting system is known as the Zermelo-Fraenkel system and is
denoted by ZF.

(b)  The second group is constituted by systems of the axioms of which are
selected in the context of giving some explanations for paradoxes, for
example, as a consequence of non-predicative definitions. The group
includes Russell’s remified theory of types, the simple theory of T-types,
and the theory of types with transfinite indices (see [114]).

(c)  The third group is characterized by the use of non-standard means of
logical deduction, multi-valued logic, complementary conditions of
proofs and infinite derivation laws. Systems in this group have been
developed to the least extent.

(d)  The fourth group includes modifications of systems belonging to the first
three groups and 1s aimed at attaining certain logical and mathematical
objectives. Only the system NBG of Neumann-Godel-Bernays (1925)
and the system NF of W. Quine (1937) will be mentioned here. The
construction of the system NBG was motivated by the desire to have a
finite number of axioms of set theory, based on the system ZF. The
system NF represents an attempt to overcome the stratification of the
concepts in the theory of types.

The systems Z, ZF, and NF can be formulated in the language described above. The
derivation rules, and also the so-called logical axioms, of these systems are identical,
and form an applied predicate calculus of the first order with equality and with a des-
cription operator. Here are the axioms of equality and of the description operator:

x=x,x=y=> (Alx) = A(y)), (2.3)
where A(x) is a formula not containing the bound variable y (i.e., it has no constituen-
ts of the type Vy, dy,1y), while A(y) is obtained from the formula A(x) by replacing
certain free entries of the variable x with y:

dIxA(x) = A(xAx)),
where the quantifier 3!x means that “there exists one and only one x”, while the
formula A(zxA(x)) is obtained from the formula A(x) by replacing all free entries of
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the variable x with the term :x A(x). The quantifier 3!x can be expressed in terms of
the quantifiers V and 3 and equality.

Now we shall introduce the non-logical axioms of the system Z:

Z1: The axiom of extensionality Al.
Z72: The pair axiom: duVz(z €u & z=xVz=1y). (thesetux,y exists)
Z3: Theunion axiom: dyVx(x e y © dt(t € zAx €1t)). (thesetz
exists)
Z4: The power set axiom: dyVx(x € y & x C 7). (the set Pz exists)
7Z5: The separation axiom scheme: IyVx(x € y & x € 7 A A(X)).
(there exists a subset z consisting of the elements x in z for which Ax is
true).

The axioms Z.2-Z5 are examples of axioms of comprehension;

Z6: The axiom of infinity: IzInf(z).

Z77: The axiom of choice:
VzAw(Fnc(w) AVX(x Ez A Xx =0 = w'x € X)).
(for any set z there exists a function w which selects, out of each non-
empty element x of the set z, a unique element w'x).

The above axioms are complemented by the regularity axiom:

78: The axiom of regularity:
Vx(mx =@ =>3Jy(y ExAynx =Q)),
which is intended to postulate that there are no descending chains
X, € X, X3 € X, X4 € X3, ---. Axiom Z8 simplifies constructions in Z,
and its introduction does not result in contradictions.

The system Z is suitable for developing arithmetic, analysis, functional analysis and
for studying cardinal numbers smaller than & . However, if the alephs are defined in
the usual manner, it is no longer possible to demonstrate the existence in Z of 8  and
higher cardinal numbers.

The system ZF is obtained from Z by adding Fraenkel’s replacement axiom sche-
me, which may be given in the form of the comprehension axiom scheme:

ZF9: dJyVx(x ey © dv(v € z A x = 11(A(2,V))).
(there exists a set y consisting of x, x = 1tA(¢, v), where v runs through
all the elements of a set 7). In other words, y is obtained from z if each
element v of z is replaced with 1tA(z, v).

The system ZF is a very strong theory. All ordinary mathematical theorems can be
formalized in terms of ZF. Before we proceed to the NBG axiomatic system, let us
pause to give a description of ZFC with a description by English, for which the
author chooses to use the work of [93].

Definition: Axiom of ZFC
(1) Axiom of Extensionality.
If X and Y have the same elements, then X =Y.
(2) Axiom of Pairing.
For any a and b there exists a set {a, b} that contains exactly a and b.
(3) Axiom Schema of Separation.
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4)
()
(6)
(7)
(8)
©)

If P is a property (with parameter p), then for any X and p there exists a
set Y = {u € X|P(u, p)} that contains all those u € X that have
property P.

Axiom of Union.

For any X there exists a set ¥ = U X, the union of all elements of X.
Axiom of Power Set.

For any X there exists a set ¥ = P(X), the set of all subsets of X.
Axiom of Infinity.

There exists an infinite set.

Axiom of Choice.

Every family of nonempty sets has a choice function.

Axiom of Regularity.

Every nonempty set has an €-minimal element.

Axiom Schema of Replacement.

If a class F'is a function, then for any X there exists a set
Y=FX)={Fx)|x € X}.

The system NBG is obtained from ZF by adding a new type of variables — the cla-
ss variables X,Y,Z, -+ — and a finite number of axioms for forming classes, by
means of which it is possible to prove formulas of the type

dY Vx(x € Y © A(x)),

where A(x) is a formula of NBG which does not contain bound class variables or the
symbol 1. Since any formula A(x) can be used to form a class, the infinite number of
ZF axioms can be replaced by a finite number of axioms containing a class variable.
The axiom of choice has the form

AX(Fnc(X) AVx(~x =@ = X'x € x))

and confirms the existence of a selection function, which is unique for all sets and
which constitutes a class.
The system NF has a simpler axiomatic form, that is:

(1)

(ii)

The axiom of extensionality

The xaioms of comprehension in which a formula A can be stratified,
i.e., it is possible to assign to all variables of the formula A superscript
indices so as to obtain a formula of the theory of T-types, i.e., in the
subformulas of type x € y the index of x is one lower than the index of

V.

The system NF has the following characteristics:

(D

(2)
3)

The axiom of choice and the generalized continuum hypothesis are
disprovable.

The axiom of infinity is demonstrable.

The extensionality axiom plays a very important role. Thus, if the
extensionality axiom is replaced by the slightly weaker axiom:

(Ju(u € y) AVu(u € y © u € 7)) = y = z, which permits a large
number of empty sets, while the comprehension axioms of NF remain
unchanged, a fairly weak theory is obtained: The consistency of the
resulting system can be proved even in formal arithmetic.
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Results concerning the interrelationships between the systems we have just descri-
bed are given below:

(a) Any formula of ZF is demonstrable in NBG < it is demonstrable in ZF.

(b) In ZF it 1s possible to establish the consistency of Z, completed by any
finite number of examples of the axiom scheme of replacement ZF9.
Thus, ZF is much stronger than Z.

(c)  The consistency of T is demonstrable in Z, so that Z is stronger than T.

(d)  NF is not weaker than T in the sense that it is possible to develop the
entire theory of types in NF.

The axiomatic approach to the theory of sets has made it possible to state a propos-
ition on the unsolvability in principal (in an exact sense) of certain mathematical
problems and has made it possible to demonstrate it rigorously. The general
procedure for the utilization of the axiomatic method is as follows:

Consider a formal axiomatic system S of the theory of sets (as a rule, this is ZF or
one of its modifications) that is sufficiently universal to contain all the conventional
proofs of classical mathematics, and for all ordinary mathematical facts to be deduci-
ble from it. A given problem A may be written down as a formula in the language S.
It follows that problem A cannot be solved (in either way) by tools of the theory S,
but since this theory S was assumed to contain all ordinary methods of proof, the
result means that A cannot be solved by ordinary methods of construction, i.e., A is
“transcendental”.

Results which state that a proof cannot be performed in the theory S are usually
obtained under the assumption that S, or some natural extension of S, is consistent.
This is because on the one hand, the problem can be non-deducible in S only if S is
consistent, but such consistency cannot be established by the tools offered by § (cf.
Godel incompleteness theorem), i.e., cannot be derived by ordinary tools. On the
other hand, the consistency of § is usually a very likely hypothesis; the very theory S
1s based on its truth.

Furthermore, the axiomatic approach to the theory of sets made it possible to accu-
rately pose and solve problems connected with effectiveness in the theory of sets,
which had been intensively studied during the initial development of the theory by R.
Baire, E. Borel, H. Lebesgue, S.N. Bernstein, N.N. Luzin, and W. Sierpinski. It is said
that an object in the theory of sets which satisfies a property 2 is effectively defined
in the axiomatic theory S if it is possible to construct a formula A(x) of S for which it
can be demonstrated in S that it is fulfilled for a unique object, and that this object
satisfies property 2. Because of this definition it is possible to show in a rigorous
manner that for certain properties 20 in S it is impossible to effectively specify an
object which satisfies 2, while the existence of these objects in S can be established.
But since the chosen theory S is sufficiently universal, the fact that the existence of
certain objects in S is ineffecitve is also a proof of the fact that their existence cannot
be effectively established by ordinary mathematical methods.

Finally, the methods of the axiomatic theory of sets make it possible to solve a nu-
mber of difficult problems in classical branches of mathematics as well: in the theory
of cardinal and ordinal numbers, in descriptive set theory and in topology.
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Some of the results obtained by the axiomatic theory of sets are given below. Most
of the theorems concern the axiomatic set theory of Zermelo-Fraenkel (ZF), which is
now the most frequently employed. Let ZF~ be the system ZF without the axiom of
choice Z.7 (or simply ZF, as a terminology of ZFC), the results can be readily adapted
to the system NBG as well.

(1)

(i)

It was shown in 1939 by K. Godel that if ZF™ is consistent, it will
remain consistent after the axiom of choice and the continuum
hypothesis in ZF. In order to prove this result, Godel constructed a
model of the theory ZF consisting of the so-called Godel constructive
sets (cf. Godel constructive set, see [95]), this model plays an important
role in modern axiomatic set theory.

The problem as to whether or not the axiom of choice or the continuum
hypothesis is deducible in ZF remained open until 1963, when it was
shown by P.J. Cohen, using his forcing method, that if ZF~ is consistent,
it will remain consistent after the addition of any combination of the
axiom of choice, the continuum hypothesis or their negations. Thus,
these two problems are independent in ZF.

The principal method used for establishing that a formula A is not deducible in ZF
is to construct a model of ZF containing the negation of A. Cohen’s forcing method,
which was subsequently improved by other workers, strongly extended the possibil-
ities of constructing models of set theory, and now forms the basis of almost all
subsequent results concerning non-deducibility. For instance:

(iii)

(iv)

(vi)

(vii)

It has been shown that one can add to ZF, without obtainiing (additional)
inconsistencies, the hypothesis stating that the cardinality of the set of
subsets of a set x may be an almost arbitrary pre-given function of the
cardinality of x on regular cardinals (the only substantial restrictions are
connected with Konig’s theorem).

M.Ya. Suslin (1920) formulated the following hypothesis. Any linearly
totally ordered set such that any pairwise non-intersecting family of non-
empty open intervals in it is at most countable must contain a countable
everywhere-dense subset. The non-deducibility of Suslin’s hypothesis in
ZF was established by Cohen’s method.

It was shown that the following postulate: “Any subset of real numbers
is Lebesgue measurable” is unsolvable in ZF~ (without the axiom of
choice).

The interrelationships of many important problems of descriptive set
theory with ZF was clarified. The first results relating to this problem
were demonstrated by P.S. Novikov. The methods of axiomatic set
theory made it possible to discover previously unknown connections
between the problems of “naive” set theory.

It was proved that an effectively totally ordered continuum is absent in
ZF. Numerous results proved the absence of effectively defined objects
in the descriptive theory of sets and in the theory of ordinal numbers.
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