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1.1 Set Theory

One of the main objectives of statistics is to draw conclusions about a population
of objects by conducting an experiment. The first step in this endeavor is to identify
the possible outcomes or, in statistical terminology, the sample space.

Definition: Sample Space
The set, S, of all possible outcomes of a particular experiment is called the
sample space for the experiment.

Once the sample space has been defined, we are in a position to consider collectio-
ns of possible outcomes of an experiment.

Definition: Event
An event is any collection of possible outcomes of an experiment, i.e. any
subset of S.

Let A be an event, i.c. a subset of S. Note that since § is a subset of itself, therefore
it is possible for A = §. We say that the event A occurs if the outcome of the
experiment is in the set A. When speaking of probabilities, we generally speak of the
probability of an event, rather than a set. But we may use the terms interchangably.

We first need to define formally the following two relationships, which allow us to
order and equate sets:

ACBeoxeA=>xeB (1.1)
A=B < ACBand B C A. (1.2)

Given any two events (or sets) A and B, we have the following elementary set ope-

rations:

AUB :={x|x € Aorx € B}. (1.3)
ANB:={x|x € Aand x € B}. (1.4)
A ={x|x &€ A, x €8§}. (1.5)

Theorem 1.1:
For any three events A, B, and C, defined on a sample space S, one has:

i) AUuB=BUA,ANnB=BnNA. (Commutative)

i) AUBUC)=AUB)UCANnBNC)=MANB)NC.
(Associative)

(i) ANBUC)=ANB)UANC),AuBNC)=AUB)NAUC).
(Distributive)

(iv) (AUB)=A°NB°, (AnB) =A°UB" (DeMorgan’s Law)

The operations of union and intersection can be extended to infinite collections of
sets as well. If A;, A,, -+ 1s a countable collection of sets, all defined on a sample
space S, then one has

UAZ-= {x € §S|x € A, for some i}, (1.6)
igol
ﬂAl: {x € S|x € A,Vi}. (1.7)

i=1
We can even generalize this into the union (resp. the intersection) of arbitrarily ma-
ny sets, 1.€., the index set may be uncountable.
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UA“ ={xeS|xeA,forsomea €I} (1.8)

ﬂAa ={xeS|xeA,forsomea €I} (1.9)
ael’

Finally, we discuss the idea of a partition of the given sample space.

Definiton: Disjoint, Pairwise Disjoint
Two events A and B are disjoint (or mutually exclusive) if A N B = &. The
events A, A,, --- are said to be pairwise disjoint (mutually exclusive) if
ANA=0Vi#]

Note that the disjoint sets are sets with no points in common. If one draws a Venn
diagram for two disjoint sets, the sets do not overlap. The collection A, := [i,i + 1)
fori =0,1,2,---, consists of pairwise disjoint sets. Note further that U2, A; = [0,00).
Definition: Partition

If A;, A,, -+- are pairwise disjoint and U2, A; = S, then the collection
A, A,, -+ forms a partition of S.

1.2 Basics of Probability Theory
For each event A in the sample space S we want to associate with A a number bet-

ween zero and one that will be called the probability of A, denoted by P(A). It would
seem natural to define the domain of P as all subsets of S; that is, for each A C § we
define P(A) as the probability that A occurs. Note that in measure theory, there are
two different approach to define a measure, whether on a o-ring or on a s-algebra,
they concepts and the definitions on both are identically the same, the choice of using
o-ring or o-algebra is based on the author’s preferrence. We shall use the approach by
the o-algebra.
Definition: s-algebra/Borel Field

A collection of subsets of S is called a s-algebra (or Borel field), denoted by

A, if it satisfies the following three properties:

(i) D€A.

(i) IfA € HBthen A e P/?.oo

(ili) IfA;, Ay, - € Bthen | JA € B.
i=1
The empty set @ is a subset of any set. Thus, @ C S. Property (i) states that this
subset is always in a o-algebra. Since S = @, properties (i) and (ii) imply that § is
also in 9. Moreover, by DeMorgan’s Laws it follows that 98 is closed under
countable intersections. That is, if A, A,, --- € A, then A{, AJ, --- € B by property

(i1), and therefore U Af € B. However, using DeMorgan’s Law, we have

i=1
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Thus, again by property (ii), ﬂAi € A.
i=1
Associated with sample space S we can have many different s-algebras. For exam-

ple, the collection of the two sets {@, S} is a o-algebra, usually called the trivial ¢
-algebra. The only o-algebra we will be concerned with is the smallest o-algebra that
contains all of the open sets in a given sample space S.
Definition: Probability Function

Given a sample space S and an associated s-algebra 9B, a probability function

is a function P with domain & that satisfies

i) PA)>0VA e A. (Positive Semidefinite)

i) PS)=1.

(6] (0]
(iii) IfA,, Ay, -+ € B are pairwise disjoint, then I]:"( UA,-) = 2 P(A)).
i=1 i=1
(Countably Additive)

The three properties are usually referred to as the Axioms of Probability (or refer to
Kolmogorov Axioms). Any function PP that satisfies the Axioms of Probability is
called a probability function. The axiomatic definition makes no attempt to tell what
particular function P to choose; it merely requires P to satisfy the axioms. For any
sample space many different probability functions can be defined. Which one (s)
reflects what is likely to be observed in a particular experiment is still to be
discussed.

We need general methods of defining probability functions that we know will alw-
ays satisfy Kolmogorov’s Axioms. We do not want to have to check the Axioms for
each new probability function. The following gives a common method of defining a
legitimate probability function.

Theorem 1.2:
Let S = {s,-:-,s,} be a finite set. Let & be any o-algebra of subsets of S. Let
Dy > P, be nonnegative number that sum to 1. For any A € %, define P(A)
by P(A) = Z p;- Then P is a probability function on 93. This remains true

{ils;cA}

if S = {5, 5,, ---} is a countable set.

Proof:
We will give the proof for the finite case while the countable case holds by

induction. Forany A € %, P(A) = Z p; > 0, since every p; > 0. Thus,
{ils,€A)

positive homogeneity follows. Moreover, we have
n

PS)= Y p=Yp=1L

{ils; €S} i=1
Thus the second axiom follows. Let now A, ---, A; denote pairwise disjoint
events. Then
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k k k
P(Ja)= 2 p=2 X pn=2PA
i=1 UlsieUk A i=1 {jls;€A;} i=1

The above equality is valid: The first and the third equalities are true by the
definition of P(A). The disjointedness of the A;’s ensures that the second

equality fails to be false since the same p;’s appear exactly once on each side of

the equality. Therefore the countable additivity follows.
[]
1.3 The Calculus of Probabilities
From the Axioms of Probability we can build up many properties of the probability
function, properties that are quite helpful in the calculation of more complicated
probabilities. Some of these manipulations will be discussed in this subsection.
We start with some (fairly self-evident) properties of the probability function when
applied to a single event.
Theorem 1.3:
If P is a probability function and A is any set in 9. Then
1 P@)=0.
i) PA) <L
(i) PA°) =1-PA).
Proof:
We shall prove (ii1) first since it is the easiest part.
(iii):
The sets A and A€ form a partition of the sample space, i.e. S = A U A°.
Therefore,
PAUA)=PS)=1 (1.10)
by the second axiom. Also, A and A€ are disjoint, so by the third axxiom,
P(AUA°) =P(A)+ P(A°). (1.11)
Combining (1.10) and (1.11) yields (iii).
(11):
Since P(A€) > 0, (ii) follows directly from (iii).
(1):
To prove (1), we use a similar argument on § = § U &. Since S and @ are
disjoint, one has
I =P©S) =P ug) =PS)+P@),
therefore P(@) = 0.
[]
Theorem 1.3 contains properties that are so basic that they also have the flavor of
axioms, although we have formally proved them using only the original three
Kolmogorov Axioms. The next theorem, which is similar in spirit of Theorem 1.3,
contains statements that are not so self-evident.
Theorem 1.4:
If P is a probability function and A and B are any sets of 93. Then
i) PBNAY)Y=PMB)—PANB).
(1) PAUB)=PA)+PB)—-PANB).
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(1) IfA C B, then P(A) < P(B).
Theorem 1.5:
If P 1s a probability function, then

(@)  P(A) =) P(ANC) forany partition C}, C,, ---.

i=1

i) P JA) < Y P@,) forany sets A, Ay, ---. (Boole’s Inequality)
i=1 i=1

1.4 Conditionaly Probability
Definition: Conditionaly Probability
If A and B are two events in S and P(B) > 0, then the conditional probability
of A given B, written as P(A | B), is P(A | B) = %

Note that what happens in the conditional probability calculation is that B becomes
the sample space then P(B|B) = 1. The intuition is that our original sample space S
has been updated to B. All further occurrences are then calibrated with respect to their
relation to B. In particular, note that what happens to conditional probabilities of
disjoint sets. Suppose that A and B are disjoint, then P(A N B) = 0. It then follows
that P(A|B) = P(B|A) = 0.

Rewriting the formula of conditional probability yields the form

P(ANB)=PA|B)P(B). (1.12)
Since P(A N B) = P(B N A) by the symmetry of the operation “N”, it follows that we
can further express (1.12) into the form
PANB)=PBNA) =PB|APA). (1.13)
Therefore we have a useful formula

P(A|B) = |13>(B|A)M 1.14
B P(B)’ (1.14)

which gives a formulfor turning around the conditional probabilities. (1.14) is often
called Bayes’ Rule. We now introduce a more general form.
Theorem 1.6: Bayes’ Rule

Let A, A,, --- be a partition of the sample space, and let B be any set. Then,

for eachi = 1,2,---, one has that

P(B|A)P(A,
P |5y = —PEIAPA)
¥ P(BIA)PA)
Therefore, a simple calculation yields a transformation between conditioned sets,
> P(BIA)PA)
P(A; | BPA)

In some cases it may happen that the occurrence of a particular event, B, has no

effect on the probability of another event. That is, P(A | B) = P(A). If this is the case,
then by Bayes’ Rule, one has that

i.e. one has P(B|A;) =
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P(B) P(B)
P(B|A) =PA lB)M = P(A)M = P(B).

It follows that, since P(B|A)P(A) = P(A N B), that P(A N B) = P(A)P(B). This is
precisely when B has no effect on A, and we call this the statistically independent.
Definition: Statistically Independent

Two events A and B are said to be statistically independent if

P(A N B) =PA)P(B).

Note that the independence could have been equivalently defined by either the form
P(A|B) = P(A) or the form P(B|A) = P(B), with further stating that P(B) > 0 or
P(A) > 0, respectively. The advantage of the above definition is that it treats the
events symmetrically and will be easier to generalize to more than two events.
Theorem 1.7:

If A and B are independent events, then the following pairs are also
independent:

(i) AandB“.

(ii) A€andB.

(i) A€ and B°.

The proof of this theorem is left as an exercise since it is only an elementary appli-
cation of the above results. Now let us generalize the statistically independent to the
case involving more than two events.

Definition: Mutually Independent
A collection of events A, ---, A, are mutually independent if for any
k

k
subcollection A, , -+, A; , one has IP( ﬂ Al.j) = H [P’(Al-j).
j=1 =1

1.5 Random Variables

Recall that random variables are measurable functions from the sample space to re-
al numbers. There are two most important quantities associated with a random vari-
able X, namely the expectation (also called the mean), and the variance. We shall
denote them throughout this note by EX and Var(X) := E(X — EX)>.

In fact, the expectation EX of a random variable X on a probability space (€2, X, )
is the Lebesgue integral of the function X : Q& — R. This makes all theorems on
Lebesgue integration applicable in probability theory, for expectations of random
variables.

One more thing to note is that the change of sample space from S to €2 is for a reas-
on. In defining a random variable, we have also defined a new sample space. Suppose
we have a sample space S = {s, -+, s,} with a probability function P and we define
a random variable X with range Q = {x,---,x,,}. We can define a probability
function Py on Q by

Py(X = x) = P({5; € S| X(s)) = x,}). (1.15)
The same thing happens when Q 1s countable. When € is not countable, Py is
defined by, for any set A C Q,
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Py(X € A) =P({s € S|X(s) € A}). (1.16)
With every random variable X, we associate a function called the cumulative distri-

bution of X.
Definition: Cumulative Distribution Function (CDF)

The cumulative distribution function or cdf of a random variable X, denoted by

Fy(x), 1s defined by Fy(x) = Py(X < x) Vx € §.
Theorem 1.8:

The function F'(x) is a cdf if and only if the followings hold:

(1) lim F(x)=0and lim F(x) =1.

X—>—00 X—>+00
(1))  F(x) is a nondecreasing function of x.
(iii) F(x) is right-continuous, i.e. Vx, € , lim F(x) = F(x,).

xlxg

The right continuity is a direct result from its definition Fy(x) = Pyx(X < x). When
one has Fy(x) = Py(X < x) in contrast, F'y is left-continuous. One can turn Theorem
1.8 to an alternative definition for cdf.

Whether a cdf is continuous or has jumps corresponds to the associated random va-
riable being continuous or not. In fact, the association is such that it is convenient to
define continuous random variables in this way.

Definition: Continuous, Discrete
A random variable X is continuous if Fy(x) is a continuous function of x.
A random variable X is discrete if Fy(x) 1s a step function of x.

We close this subsection with a theorem formally stating that F'y completely deter-
mines the probability distribution of a random variable X. This is true if P(X € A) is
defined only for events A in 9 the smallest sigma algebra containing all the intervals
of reals in all forms ((a, b), (a, b], [a, b), [a, b],a, b € R). If probabilities are defined
for a larger class of events, it is possible for two random variables to have the same
distribution function but not the same probability for every event. We shall not deal
with this problem in this note, hence we need to restrict ourselves into good settings.
Definition: Identically Distributed

The random variable X and Y are identically distributed if for every set A in
HBonchasP(X € A)=P(Y € A).
Note that two random variables that are identically distributed are not necessarily
equal.
Theorem 1.9:
The random variables X and Y are identically distributed < Fy(x) = Fy(x) Vx.
Proof:
“=7
Since X and Y are identically distributed, for any set A € 9, by definition,
P(X € A) = P(Y € A). In particular, Vx, the set (—oo, x] is in &, hence
Fy(x) =PX € (=0, x]) = P(Y € (—o0, x]) = Fy(x).
‘e
Showing this direction requires heavy use of sigma algebras; we will not go
into these details. It suffices to say that it is necessary to prove only that the
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two probability functions agree on all intervals (Chung 1974, Section 2.2).
[]

Associated with a random variable X and its cdf Fy 1s another function, called eith-
er the probability density function (pdf) or probability mass function (pmf). The
terms pdf and pmf refer, respectively, to the continuous and discrete cases. Both pdfs
and pmfs are concerned with “point probabilities” of random variables.

Definition: Probability Mass Function (PMF)
The probability mass function (pmf) of a discrete random variable X is given
by fx(x) = P(X = x) Vx.

A widely accepted convention, which we shall adopt, is to use the uppercase letter
for the cdf and the corresponding lowercase letter for the pmf or pdf.

We must be a little more careful in our definition of a pdf in the continuous case. If
we naively try to calculate P(X = x) for a continuous random variable, we get the
following: Since {X = x} C {x —e < X < x} Ve > 0, one has

PX=x)<Px—-—e<X<x)=Fyx)— Fy(x —é¢). (1.17)
Therefore
0<PX=x)< 1i£(Fx(x) —Fy(x—¢€)=0
£

by the continuity of Fy. However, if we understand the purpose of the pdf, its
definition shall not be ambiguous.

In the discrete case, we can sum over values of the pmf to get the cdf. The analogo-
us procedure in the continuous case is to substitute integrals for sums, and we get

P(X < x) = Fy(x) = J f(Ddt. (1.18)

Using the Fundamental Theorem of Calculus, if fy(x) is continuous, we have the

further relationship
d

——Fy() = fy). (1.19)
X

Note that the analogy with the discrete case is almost exact. We “add up” the “point
probabilities” fy(x) to obtain interval probabilities. Let us summarize this into the
formal definition.
Definition: Probability Density Function (PDF)

The probability density function (pdf), fy(x), of a continuous random variable

X
X 1s the function that satisfies Fy(x) = { Sfx(H)dt Vx.

Remark:
The expression “X has a distribution given by Fy(x)” is abbreviated
symbolically by “X ~ Fy(x),” where we read the symbol “~” as “is distributed
as.” We can similarly write X ~ fy(x) or, if X and Y have the same distribution,
X~Y.
In the continuous case we can somewhat cavalier about the specification of interval

probabilities. Since P(X = x) = 0 if X is a continuous random variable, it follows
Pa<x<b)=Pla<X<b)=Pa<X<b)=Pa<X<bh).

Page 9 of 73



It should be clear that the pdf (or pmf) contains the same information as the cdf.
This being the case, we can use either one to solve problems and should try to choose
the simpler one.

Theorem 1.10:

A function fy(x) is a pdf (or pmf) of a random variable X if and only if
(i)  fy(x) > 0Vx.

i) ) (o) =1(pm, or,[ fx(@dx = 1 (pdf).

Proof:
If fx(x) is a pdf (or pmf), then the two properties are immediate from the

400

definitions. In particular, for a pdf, one has 1 = lim Fy(x) = J Sfx()dt.
X—00 —oo

The converse implication is equally easy to prove. Once one has fy(x), one

can define Fy(x) and result follows from Theorem 1.8.

[

From a purely mathematical viewpoint, any nonnegative function with a finite pos-
itive integral (or sum) can be turned into a pdf or pmf. For example, if 4(x) is any
nonnegative function that is positive on a set A, 0 otherwise, and

[ h(x)dx = K < o0
{x€A}

For some K > 0, then the function fy(x) = h(x)/K is a pdf of a random variable X
taking values in A.

X
Actually, Fy(x) = J fx()dt does not always hold since Fy(x) may be continuous

but it may not be differentiable. In fact, there exist continuous random variables for
which the integral relationship does not exist for any fy(x). These cases are rather
pathological and we shall not discuss them in this note. Thus, in this text, we shall

always assume that Fy(x) = J fx(®)dt holds for any continuous random variable.

In more advanced literature a random variable is called absolutely continuous if the
integral relationship holds.

2.1 Distributions of Functions of a Random Variable

If X 1s a random variable with cdf Fy(x), then any function of X, namely g(X), is
also a random variable. Often g(X) is of interest itself and we write ¥ = g(X) to
denote the new random variable g(X'). Since Y is a function of X, we can describe the
probabilistic behavior of Y in terms of X. That is, for any set A,

P(YeA) =PgX)eA).

hence the distribution of ¥ depends on the functions Fy and g. Depending on the cho-
ice of g, it is sometimes possible to obtain a tractable expression for this probability.
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Formally, if we write y = g(x), the function g(x) defines a mapping from the origi-
nal sample space of X to a new sample space, if we denote them by €y and Qy,
respectively. Then

g Qy - Q.
We associate with g an inverse mapping, denoted by g~!, which is a mapping from
subsets of €2y to subsets of €2y, and is defined by
g7(A) = {x € Qylg(x) € A,
Hence for any set A C €2y, one has
P(Y € A) =P(g(X) € A) = P({x € Q| g(x) € A}) = P(X € g7'(A)).
This defines the probability distribution of Y. It is straightforward to show that this
probability distribution satisfies the Kolmogorov Axioms.

If we assume X is a discrete random variable, then Qy is countable. The sample sp-
ace for Y =g(X) is Q, :={y|y = g(x),x € Qy}, which is also a countable set.
Thus, Y is also a discrete random variable. The pmf of Y is

F=PF=y= )Y PX=x= )Y fxforyecQ,
x€g™'(y) x€g™(y)
and f,(y) = 0 if y & Q,. In this case, finding the pmf of Y is identifying g~!(), for
each y € Q,, and summing the appropriate probabilities.
Example 2.1: Binomial Transformation
Recall that for nonnegative integers n and r such that n > r, one has the

n n!
formula of n choose r being =

r rl(n —r)!
A discrete random variable X has a binomial distribution if its pmf is of the
form

() =PX =x) = <”>px(1 Y x = 0,1,
X

where n is a positive integer and 0 < p < 1. Consider the random variable
Y = g(X), where g(x) = n — x. Now we have Qy = {0,1,---,n} and it follows
that Q, = {y|y = g(x), x € Qy}. Since y = n — x, we have x = n —y, thus

Hr(y) = Z &) =fn—-y) = ( n )p"_y(l _p)n—(n—y)
n—y

xeg~l(y)

n , n n
= < >(1 — p)’p". (Since < > = < )).
y y n—=y

From X ~ Binomial(n, p) we arrive at ¥ ~ Binomial(n,1 — p). I
If X and Y are now continuous random variables, then in some cases it is possible
to find simple formulas for the cdf and pdf of ¥ in terms of the cdf and pdf of X and
the corresponding function g. The cdf of ¥ = g(X) is

Fy()=PY <y)=P@EX) <y)

=P({x € Qylgx) <y} = J Sx()dx.
{xeQy|g()<y}
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When the transformation are made, it is important to keep track of the sample spac-
es of the random variables; otherwise, much confusion can arise. When the transfo-
rmation is from X to Y by g(X), it is most convenient to use

Qy = {x|fx(x) >0} and Qy = {y|y = g(x) for some x € Qy}.

The pdf of the random variable X is positive only on the set €y and 0 elsewhere.
Such a set is called the support set of a distribution, or, more informally, the support
of a distribution. This terminology can also apply to a pmf, or, in general, to any non-
negative function.
Theorem 2.1:

If X and Y are random variables such that X has cdf Fy(x) and Y = g(X) with

Qy = {x]| fx(x) >0} and Qy = {y|y = g(x) for some x € Qy}.

(i)  If g increasing on Qy, then Fy(y) = Fy(g~!(y)) fory € Q.

(1)  If g is decreasing on 2y and X is a continuous random variable. Then

Fy(y) = 1 = Fy(g~'(y)) fory € Q.

If the pdf of Y is continuous, it can be obtained by differentiating the cdf. That is

Theorem 2.2:
Let X have pdf fy(x) and Y = g(X ), where g is monotone. Assume that
Qy = {x|fx(x) > 0} and Qy = {y|y = g(x) for some x € Qy}. Suppose that
fx(x) is continuous on 2y and g_l(y) has a continuous derivative on €. Then

-1 d 1
the pdf of Y is f; (y) = {fx(g (y))|dyg (y)|,y€Qy'

0, otherwise
Proof:
According to Theorem 2.1 and chain rule, one has

J fe(87'(9)4-87 (1), & s increasing
K =—FQ) = o .
dy ~fx(87' (") ;87 (¥). 8 is decreasing

Result follows.

[

In many applications, the function g may be neither increasing nor decreasing; he-
nce the above results will not apply in general. However, it is often the case that g
will be monotone over certain invervals and that allows us to get an expression for
Y =gX).

Theorem 2.3:
Let X have pdf fy(x), let Y = g(X), and define the sample space
Qy = {x|fx(x) >0} and Qy = {y|y = g(x) for some x € Qy}. Suppose there
exists a partition Ay, Ay, .-+, A; of Qy such that P(X € A)) = 0 and fy(x) is
continuous on each A;. In addition, suppose there exist functions g,(x), ---, g;(x)
defined on A, -+, A;, respectively, such that
(1) gk =gix) forx € A,
(i)  g;(x) is monotone on A,.
(iii) The set Qp = {y|y = g;(x) for some x € Q} is the same for all i.
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(1v) gi_1 has a continuous derivative on €y for all i.
Then one has

o) = { S KT o) | g )

0, otherwise
The important part is that 2y can be divided into sets A, ---, A;, such that g(x) is
monotone on each A;. We can ignore the “excepional set” A since P(X € A,) = 0.
Theorem 2.4: Probability Integral Transformation
Let X have continuous cdf Fy(x) and define the random variable Y as
Y = Fy(x). Then Y is uniformly distributed on (0,1), 1.e. P(Y < y) =y, for
O<y<l.

, Y € Qy

2.2 Expected Values

The expected value, or expectation, of a random variable is merely its average val-
ue, where we speak of “average” values as one that is weighted according to the pro-
bability distribution. The expected value of a distribution can be thought of as a
measure of center, as we think of averages as being middle values. By weighting the
values of the random variable according to the probability distribution, we hope to
obtain a number that summarizes a typical or expected value of an observation of the
random variable.
Definition: Expected Value (mean)

The expected value or mean of a random variable g(X ), denoted by Eg(X), is

| jooo g()fy(x)dx, , if X is continuous
ergx g()fx(x) = erﬂx gx)P(X = x), if X is discrete

provided that the integral or sum exists. If E | g(X)| = oo, we say that Eg(X)
does not exist.
The process of taking expectations is a linear operation, which means that the exp-
ectation of a linear function of X can be easily evaluated by nothing that for any
constant a and b, that

Eg(X) =

E(aX+b) =aEX +b. (2.1)
For example, if X ~ Binomial(n, p), so that EX = np, then
E(XX—np)=EX—np =np—np =0.

The expectation operator, in fact, has many properties that can help relax calculati-
onal effort. Most of these properties follow from the properties of the integral or sum,
and are summarized in the following theorem:

Theorem 2.5:
Let X be a random variable and let a, b, and ¢ be constants. Then for any
function g,(x) and g,(x) whose expectations exist, one has
(1)  E(agi(X) +bgy(X) + ¢) = abg (X) + bEg,(X) + .
(i) Ifg;(x) > OVx then Eg,(X) > 0.
(i) Tf g,(x) > g2()Vx then Eg,(X) > Egy(X).
(iv) Ifa <gi(x) <bVxthena <Eg(X) <b.
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When evaluating expectations of nonlinear function of X, we can proceed in one or
two ways. From the definition of Eg(X), we could directly calculate
(o]

Eg(X) = j gy (dx.

—0

But we could also find the pdf f;(y) of Y = g(X) and we would have
Eg(X)=EY = J Fy(ydy.

2.3 Moments and Moment Generating Functions
The various moments of a distribution are an important class of expectation:
Definition: Moment
For each integer n, the n-th moment of a random variable X (or Fy(x)),
denoted as y,, is defined by u, = EX".
Definition: Central Moment
The n-th central moment of X, denoted as ,, is defined by y, = E(X — p)",
where y = u; = EX, the expected value of X.
Aside from the mean EX, perhaps the most important moment is the second central
moment, more commonly known as the variance.
Definition: Variance
The variance of a random variable X is its second central moment, denoted as
VarX, is defined by VarX = E(X — EX)>.
Definition: Standard Deviation
The standard deviation of X is the positive square root of VarX, i.e. it is defined

by 4/ VarX.

The variance gives a measure of the degree of spread of a distribution around its
mean. For example, the quantity E(X — b)?> is minimized when b = EX. Now we
consider the absolute size of this minimum. The interpretation atttached to the
variance is that larger values mean X is more variable. At the extreme, if

VarX = E(X — EX)?> =0,

then X is equal to EX with probability 1, and there is no variation in X. The standard
deviation has the same qualitative interpretation: Small value means that X is very
likely to be close to EX, and large values mean X is very variable. The standard
deviation is easier to interpret in that measurement unit on the standard deviation is
the same as that for the original variable X. The measurement unit on the variance is
the square of the original unit.
Theorem 2.6:

If X is a random variable with finite variance, then for any constants a and b,

Var(aX + b) = a*VarX.
Proof:

According to the definition, one has

Var(aX + b) = E((aX + b) — E(aX + b))’
= E(aX — aEX)? (E(aX + b) = aEX + b).
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= a’E(X — EX)? = a*VarX.
[]

It is sometimes easier to use an alternative formula for the variance, given by
VarX = EX? — (EX)?,
which is easily established by noting that
VarX = E(X — EX)* = E(X? — 2XEX + (EX)?)
=EX? - 2(EX)? + (EX)?
(EQXEX) = 2E(XXEX) = 2E(X)E(X) = 2(EX)? since EX is a constant)
=EX? - (EX)>
We now introduce a new function that is associated with a probability distribution,
the moment generating function (mgf). As its name suggests, the mgf can be used to
generate moments. In practice, it is easier in many cases to calculate moments
directly than to use the mgf. However, the main use of the mgf is not to generate
moments, but to help in characterizing a distribution. This property can lead to some
extremely powerful results when used properly.
Definition: Moment Generating Function (mgf)
Let X be a random variable with cdf Fy. The moment generating function of X
(of Fy), denoted by My(t), is defined to be My(¢) = Ee'™, provided that the
expectation exists for 7 in some neighbourhod of 0. That is, 36 > 0 such that
Vt € (=6,0), Ee™ exists. If the expectation does not exist in a neighborhood
of 0, we say that the mgf does not exist.
More explicitly, we can write the mgf of X as

My (1) = J e™f(x)d x, X is continuous,

or
M, (1) = Z e"P(X = x), X is discrete.
X
It is very easy to see how the mgf generates moments. We summarize the result in
the following result:

Theorem 2.7:
d
If X has mgf My(1), then EX" = M{"(0), where M{(0) := —My(1)| .
dm =0

That is to say, the n-th moment is equal to the n-th derivative of My(¢)
evaluated at = 0.

n

Proof:
Assume that we can differentiate under the integral sign, we have
d d (% © d
— M, () = — e xdx=J —e™) fi(x)d x
< My == [_oo fiodx = | (e

= J (xe™)fy(x)dx =: EXe'.
Thus, one has )

= EXe™X

=0
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Proceeding in an analogous manner, the result follows.
[]

As previously mentioned, the major usefulness of the mgf is not in its ability to ge-
nerate moments, rather, its usefulness stems from the fact that, in many cases, the mgf
can characterize a distribution. There are, however, some technical difficulties
associated with using moments to characterize a distribution, which we will now
investigate.

If the mgf exists, it characterizes an infinite set of moments. The natural question is
whether characterizing the infinite set of moments uniquely determines a distribution
function. The answer to this question, unfortunately, is no. Characterizing the set of
moments is not enough to determine a distribution uniquely because there may be
two distinct random variables having the same moments.

The problem of uniqueness of moments does not occur if the random variables ha-
ve bounded support. If that is the case, then the infinite sequence of moments does
uniquely determine the distribution. Furthermore, if the mgf exists in a neighborhood
of 0, then the distribution is uniquely determined, no matter what its support. Thus,
existence of all moments is not equivalent to existence of the mgf. The following
theorem shows how a distribution is characterized.

Theorem 2.8:
Let Fy(x) and Fy(y) be two cdfs all of whose moments exist. Then
(1)  If X and Y have bounded support, then Fy(u) = Fy(u) for all u &
EX" = EY’ for all intergers r = 0,1,2,---.
(i)  If the mgfs exist and My (¢) = My(t) Vt € (—=06,0), where 6 > 0, then
Fy(u) = Fy(u) for all u.

In the next theorem, which deals with a sequence of mgfs that converges, we do n-
ot treat the bounded support case separately. Note that the uniqueness assumption is
automatically satisfied since the limiting mgf exists in a neighborhood of 0.

Theorem 2.9: Convergence of MGFs
Suppose that {X;} is a countable sequence of random variables each with mgf

Mxi(f)- Assume that lim Mxi(t) = My (1)Vt € (—6,0) and My () is an mgf.

1—>00
Then there exists a unique cdf Fy whose moments are determined by My ()

and, Vx where Fy(x) is continuous, one has lim F x.(x) = Fy(x). That is,

convergence, for t € (-9, ), of mgfs to an mgf implies convergence of cdfs.
The proofs of Theorem 2.8 and Theorem 2.9 rely on the theory of Laplace transf-

orms. The defining equation for My(f) = [ e f,(x)d x defines a Laplace transform,

i.e. My(¢) is the Laplace transform of fy(x). A key fact about Laplace transforms is
their uniqueness. If My (1) = [ e fi(x)dx is valid Vt € (-6, ), then given My (t)

—o0

there is only one function fy(x) satisfies My(¢) = [ e f(x)d x. Given this fact, the

two previous theorems are quite reasonable.
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The possible nonuniqueness of the moment sequence is an annoyance. If we show
that a sequence of moments converges, we will not be able to conclude formally that
the random variables converge. To do so, we would have to verify the uniqueness of
the moment sequence, a generaly horrible job. However, if the sequence of mgfs
converges in a neighborhood of 0, then the random variables converges. Thus, we can
consider the convergence of mgfs as a sufficient but not necessary condition for the
sequence of random variables to converge.

Theorem 2.10:

For any constants a and b, the mgf of the random variable a X + b is given by

M,y (1) = e"" Mi(at).
Proof:

By definition,

MaX+b(t) — [E(e(aX+b)t) — [E(e(aX)tebt) — ebt[E(e(at)X) — €thX(le).
[]
2.4 Differentiabting under an Integral Sign

In the previous subsection we encountered an instance in which we desired to inte-
rchange the order of integration and differentiation. This situation is encountered
frequently in theoretical statistics. The purpose of this subsection is to characterize
conditions under which this operation is legitimate. We will also discuss interch-
anging the order of differentiation and summation.

Many of these conditions can be established using standard theorems for calculus
and detailed proofs can be found in most calculus books. Thus, detailed proofs will
not be presented here.

We first want to establish the method of calculating

d ‘»b(ﬁ)
— f(x,0)dx, (2.2)
do a(6)

where —oo < a(f),b(0) < oo V6. The rule for differentiating (2.2) is called
Leibnitz’s Ruls and is an application of the Fundamental Theorem of Calculus and
the chain rule.
Theorem 2.11: Leibnitz’s Rule
Iff(x,0), a(@), and b(0) are differentiable with respect to 8, then we have
b(

d ("
%L f(x,0)dx

0)
d d b©)
=f(b(0),0)—b(0) — 0),0)—a(0) + — f(x,0)dx.
f(b©®) )d(9 ) —f(a(0) >d9a( ) L(Q) aef(x )dx
Remark:
Note that if a(€) and b(0) are constant, we have a special case of Leibnitz’s

Rl'ir (x,8)d —Ji( 0)d
ule: 10 f(x,0)dx = d@fx’ X. I

a a
Thus, in general, if we have the integral of a differentiable function over a finite ra-

nge, differentiation of the integral poses no problem. If the range of integration is
infinite, however, problems can arise.
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Note that the interchange of derivative and integral in the above equation equates a
partial derivative with an ordinary derivative. Formally, this must be the case since
the LHS is a function of only @ while the integrand on the RHS is a function of both 6
and x.

The question of whether interchanging the order of differentiation and integration
is justified is really a question of whether the limits and integration can be intercha-
nged, since a derivative is a special kind of limit. Recall that if f(x, @) is differentiab-

le, then
0 ,O+6)—f(x,0
—f(x,@):limf(x +6)—f(x )’
09 o—0 fo)
so we have
® 9 © ,0+0)—f(x,0
J_mﬁf(x,e)dx=£mg%(f(x +; Jx ))dx,

while we have . -
iJ f(x,0)dx = limJ <f(x, O+0)-/x.0)
do)_ 5-0)_ 0
Therefore, if we can justify the interchanging of the order of limits and integration,
differentiation under the integral sign will be justified. Treatment of this problem in
full generality will, unfortunately, necessiate the use of measure theory. However, the
statements and conclusions of some important results can be given. The following
theorems are all corollaries of Lebesgue’s Dominated Convergence Theorem:
Theorem 2.12:
Suppose the function 4 (x, y) is continuous at y, for each x and there exists a

function g(x) such that
@) 1hGey)| < gx)Vx,y,

)dx.

(i1) gx)dx < oo.
Then lim " h(x,y)dx = J lim A(x, y)dx.
=¥ J _oo o0 Y70

The key condition in this theorem is the existence of a dominating function g(x),
with a finite integral, which ensures that the integrals cannot be too badly behaved.
We can now apply this theorem to the case we are considering by identifying A (x, y)
f(x,0+0)—f(x,0)

0

with the difference

Corollary 2.12.1:
Suppose that f(x, ) is differentiable at 6 = 6, i.e.
x,0,+0)—f(x,0 0
i [0+ =08 0
5—0 0 060 6=0,
exists Vx and there exists a function g(x, 6,) and a constant §, > 0 such that

N i 5; TS0 | gV and (6] < 6,

Page 18 of 73



(i1) " g(x,6y)dx < oo.
Then )

d [ © 5
E[—m fx,0)dx . = "_oo (%f(x,e) |9=60)dx. (2.3)

The conclusion of Corollary 2.12.1 is cumbersome, but it is important to realize
that although we seem to be treating @ as a variable, the statement of the theorem is
for one value of §. That is, for each value 6, for f(x, @) is differentiable at 6, and
satisfies (1) and (i1), the order of integration and differentiation can be interchanged.

Often the distinction between 6 and 6, is not stressed since (2.3) is written
(6]

d [® Y
%Lo Flx.0)dx = J_oo = fx.O)dx. 2.4)

Typically, f(x, @) is differentiable at all 6, not at just one value 6. In this case, con-
dition (1) of Corollary 2.12.1 can be replaced by another condition that often proves
easier to verify. By an application of the Mean Value Theorem, it follows that, for
fixed x and 6, and |5]| < 9,

f(xa 00 + 6) f(x’ 60) _ if(x,@)
0 00 0=00+5*(x)
for some number 6*(x), where |6*(x)| < 9,. Therefore, (i) will be satisfied if we find
a g(x, @) that satisfies (ii) and

 fx.0)]
[ x,
00 0=0'

< g(x,0) V@ suchthat |0'— 0| <5, (2.5

Note that in (2.5) 9, is implicitly a function of 6. This is permitted since the theo-
rem is applied to each value of 8 individually. From (2.5) we have the corollary:
Corollary 2.12.2:

Suppose that f(x, @) is differentiable in € and there exists a function g(x, 8)
such that

o,
(i |5 fwo)|

(ii) g(x,0)dx < .

J—o0

< gx,0) V@' such that |0'— 0| < 9,

(o]

d % 0
Then %J_OO f(x,0)dx = J Ef(x,@)dx.

—00
Justification for taking the derivative inside the summation is more straightforward
than the integration case. The following theorem provides the details.
Theorem 2.13:

Suppose that the series Z h(6, x) converges V@ in an interval (a, b) of real

x=0
numbers and
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0

(1) Eh(ﬁ, X) is continuous in @ for all x.
(i1) Z %h(e, x) converges uniformly on every closed bounded subinterval
x=0
of (a, b).
Th d ih(@ ) i 0h(9 )
en — ,X) = ) —h(0,x).
do = = 00

The condition of uniform convergence is the key one to verify in order to establish
that the differentiation can be taken inside the summation. We close this subsection
with a theorem similar to Theorem 2.13, but treats the case of interchanging the
order of summation and integration.

Theorem 2.14:

(6]
Suppose that the series Z h(6, x) converges uniformly on [a, b] and for each
x=0
x, h(0, x) is a continuous function of 8. Then

o0

r i h(0, x)dO = Z th(e, x)do.

a x=0 x=0"4

3.1 Discrete Distributions
Recall that a random variable X is said to have a discrete distribution if the range of
X, the sample space, is countable. In most situations, the random variable has integer-
valued outcomes.
Definition: Discrete Uniform Distribution

A random variable X has a discrete Uniform(1,N ) distribution if

1
P(X=x|N)= N forx = 1,2,---, N, where N is a specified integer. This
distribution puts equal mass on each of the outcomes 1,2,:--, N.

We write P(X = x|N) = N since the distribution is dependent on values of the

parameters.
Fact 3.1:
k k
k(k+1 k(k+ 12k + 1
iz D g 3 KER DR D)
i=1 i=1 6
Moments for Discrete Uniform Random Variable:
M EX EN: P(X |N) EN: ! N+1
ean: = X =X = X— = .
i=1 x=1 N 2

N
1 N+1.2
Variance: VarX = EX? — (EX)’ = ) x’——
(e Ll

N+ DWN-1)
- 12 '
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Remark:
This distribution can be generalized so that the sample space is any range of

1
integers, Ny, Ny + 1,---, N;, with pmf P(X = x| N,, N,) = .
g 0> Vo 1 p ( | No, Ny (N, — N+ 1) ]

Definition: Bernoulli Distribution

A Bernoulli trial is an experiment with two, and only two, possible outcomes.

A random variable X has a Bernoulli( p) distribution if

1, with probability p
B {0, with probability 1 — p

Moments for Bernoulli Random Variable:

Mean: EX=p

Variance: VarX = p(1 — p).
Definition: Binomial Distribution

The binomial distribution is based on the idea of a Bernoulli trial. A random

variable is said to be a Binomial(n, p) random variable if

n
rr= i = ( >py(1 —p)" wherey =0,1,2,---,n
y
Theorem 3.2: Binomial Theorem

1L n . .
Vx,y € R and n > 0 an integer one has (x + y)" = Z ( _>x’y"".
i
i=0

where 0 < p < 1.

Moments for Binomial Random Variable:

Mean: EX = np.
Variance: VarX = np(1 — p).
MGF: My(t) = (pe' + (1 = p))".

Definition: Poisson distribution
The Poisson distribution has a single parameter 4, sometimes called the

intensity parameter. A random variable X, taking values in the nonnegative
—Ax
e A

integers, has a Poisson(4) distribution if P(X = x| 1) = forx =0,1,--

Moments for Poisson Random Variables:
00 e—/u’x 00 —ﬂ/’{x 00 Yo 1

Mean: [EX=Zx —er _’12
= x-=1)!

Variance:  VarX = A.
MGF: My (t) = ehe'=1),
Definition: Negative Binomial Distribution
In a sequence of independent Bernoulli(p) trials, let the random variable X
denote the trial at which the rth success occuse, where r is a fixed integer.

IfPX =x|r,p) = <x 1>pr(1 —p)y " forx =r,r+1,--- then X is said to
r_
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be a Negative Binomial(7, p) random variable.
The negative binomial distribution is sometimes defined in terms of the random va-
riable Y =X —r.
Moments of Negative Binomial Random Variable:

Mean: EY=r

Variance: VarY =

Definition: Geometric Distribution
The geometric distribution is a special case of the negative binomial
distribution. A random variable X is said to has geometric distribution if
PX =x|p)=p(1l—p)'forx =12,

Moments of Geometric Random Variable:

1
Mean: EX =—.

P

. l1-p
Variance: VarX = .

p2

Remark:
The geometric distribution has an interesting property known as the
“memoryless” property. For integers s > 1, it is the case that
PX >s|X >1t) =P(X > s — 1), i.e. the geometric distribution “forgets”
what has occured.

3.2 Continuous Distributions
Definition: Continuous Uniform Distribution
The continuous uniform distribution is defined by spreading mass uniformly
1.
over an interval [a, b]. Its pdf is given by f(x|a,b) =  b-a’ ifx € la. b].
0, otherwise
Moments of Continuous Uniform Random Variable:

b
X dx = +a'
b—a 2
b+a
b= (b—a)
—_—dx = —.

b—a 12

b
Mean: EX = J

Variance: VarX = J

a

Definition: Gamma Function
(6]

If a 1s a positive constant, the integral [ 1%~ le~'dt is finite. The gamma
0

(6]

function I'(a) = ‘A 1% le~dt.
0
The gamma function satisfies many useful relationships, in particular, one has that

I'la+ 1) =al(a), fora > 0. (3.1)
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This can be verified through integration by parts. Moreover, we have I'(1) = 1, we
have for any integer n > 0, I'(n) = (n — 1)!. Furthermore, as a useful special case,

1
we have F(E) =/7.

Since the integrand ['(a) = [ 1%~ le~'dt is positive, it follows immediately that
0 a—1_—t
1) = ,0< 1< o0, 3.2
o T@) 3.2)

is a pdf. The full gamma family, however, has two paramaters and can be derived by
changing variables to get the pdf of the random variable X = T, where f is a
positive constant. Upon doing this, we get the Gamma(a, #) family,

fexla,p) = o = T x* e 0 < x < c0,a>04>0. (3.3)

The parameter @ is known as the shape parameter, since it most influences the
peakedness of the distribution, while the parameter S is called the scale parameter,
since most of its influence is on the spread of the distribution.
Definition: Gamma Distribution

The gamma distribution is Gamma(a, ) with the pdf defined as in (3.3).
Moments of Gamma Random Variables:

Mean: EX = ap.
Variance:  VarX = af’.
1« 1
MGF: My(t) = (——) fort < —.
1 —pt p

There are a number of important special cases of the gamma distribution. If we set
a = p/2, where p is an integer, and # = 2, then the gamma pdf becomes
1
_ (p/2)-1,—x/2
fx|p) F(p/2)2p/2x e 0 <x < o0, (3.4)

which is the chi squared pdf with p degrees of freedom.
Definition: Chi Squared Distribution

A random variable is said to have a chi squared distribution with p degrees of

freedom if it has pdf as in (3.4).
Moments of Chi Squared Random Variables:

Mean: [EXzaﬁz%-Zzp.
Variance:  VarX = aff’> = % .22 =12p.

1 a 1 pl2 l
l—ﬁt) = <1—2t) ,fort < >

Another important special case of the gamma distribution is obtained when we set
a = 1. We then have

MGEF: My (1) = (

1 —x/p
f(x|ﬂ)=ze 0 < x < oo, (3.5)

which is the exponential pdf with scale parameter f.
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Definition:
A random variable is said to have an exponential distribution if its pdf is in the

L
form f(x|f) = —e 0 < x < .

Take A := —, we now describe its moments:

Moments of Exponential Random Variable:

1
Mean: EX =—.
A

Variance: VarX = —.
22

The normal distribution, sometimes called the Gaussian distribution, plays a central
role in a large body of statistics. There are three main reasons for this. First, the
normal distribution and distributions associated with it are very tractable analytically.
Second, the normal distribution has the familiar bell shape, whose symmetry makes it
an appealing choice for many population models. Although there are many other
distributions that are also bell-shaped, most do not possess the analytic tractability of
the normal. Third, there is the Central Limit Theorem, which shows that, under
mild conditions, the normal distribution can be used to approximate a large variety of
distributions in large samples.

Definition: Normal Distribution
The normal distribution has two parameters, ¢ and o2, which are its mean and
variance. The pdf of the normal distribution with mean u and variance o2 is
given by

fx|p, 0% = e_(x_”)Z/(z"z), —00 < x < 00. (3.6)

2o

We denote X ~ N(u, 02) as X has a normal distribution with mean x4 and variance
o2, the random variable Z := (X — u)/o has a N(0,1) distribution, aslo known as the
standard normal.

Moments of Gaussian Random Variable:

Mean: EX = pu.
Variance: VarX = o2
MGF: My(t) = eHH5a’t?,

Definition: Beta Distribution
The beta family of distributions is a continuous family on (0,1) indexed by
two parameters. The Beta(a, ) has pdf

fix|a,p) = 11 -0 10<x<lLa,p>0 (3.7
B(a,p) 1
where B(a, /) denotes the beta function B(a, ) := J x 11 = x)fldx.
0

Remark:
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F'(@I'(p)

The beta function is related to the gamma function B(a, ) =

Ca+p)
Moments of Beta Random Variables:
a
Mean: EX = )
a+p

ap
@+ a+p+1)
Definition: Cauchy Distribution
The Cauchy distribution is a symmetric, bell-shaped distribution on (— o0, c0)
with pdf

Varianace: VarX =

1 1
0)=— ,— 00 < x,0 < o0. 3.8
f&10) = gy~ @ <mO < (3.8)

Remark:
The mean of the Cauchy distribution does not exist. In fact, no moments of the
Cauchy distributions exist, or, all absolute moments are oo. In particular, the
moment generating function does not exist. I
Definition: Lognormal Distribution
If X is a random variable whose log is normally distribued, 1.e.
log X ~ N(u, 6%), then we say X has a lognormal distribution. The pdf is

f&xp,0%) =

1 21952
_e—(logx—,u) /2o )’0 <x<o0,—o0<pU<o0,0 > 0.

\/Zw X
Moments of Lognormal Random Variables:
Mean: EX = et+@™/2),
Variance:  VarX = e2(#+0%) _ o2uto?,
Definition: Double Exponential Distribution
The double exponential distribution is formed by reflecting the exponential
distribution around its mean. The pdfis

1
fx|p,0) = 2—e_|x_”|/", —00 <x<00,—00<u<o0,0>0.
1%

Moments of Double Exponential Distribution:
Mean: EX = pu.
Variance:  VarX = 2072
3.3 Exponential Families
Definition: Exponential Family
A family of pdfs or pmfs is called an exponential family if it can be expressed
as

k
F(x10) = h@)c@)exp{ Y wi(O)r(x)}. (3.9)
i=1
where h(x) > 0, #;(x), ---, f;(x) are real-valued functions of the observation x
(they cannot depend on 6), and c(0) > 0, w(0), -+-, w,(0) are real-valued
functions of the possibly vector-valued parameter € (they cannot depend on x).
Remark:
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The continuous families — normal, gamma, and beta, the discrete families —
binomial, Poisson, and negative binomial, are all exponential families. I
Theorem 3.3:

If X is a random variable with pdf or pmf of the form (3.9), then

K ow.(0) 0
E L (X)) = ——log c(6). (3.10)
(275 1) ==5

and

K ow(0 0? k02w
Var(Z Wil )ti(X)):——logC(Q)—[E(Z ;:91(2)
J

i=1 agj 09]2 i=1

Although the equations are so ugly, when applied to specific cases they can work
out quite nicely. Their advantage is that we can replace integration or summation by
differentiation, which is often more straightforward.

In general, the set of x values for which f(x|8) > 0 cannot depend on @ in an exp-
onential family. The entire definition of the pdf or pmf must be incorporated into the
form (3.9). This is most easily accomplished by incoporating the range of x into the
expression for f(x | @) through the use of an indicator function.

Definition: Indicator Function
The indicator function of a set A, most often denoted by /,(x), is the function

1) = {1,x €A

1(X)).  (3.11)

Ox & A
An exponential family is sometimes reparameterized as
k
Feelm) = h(o)c*mexp{ D nt(x)}. (3.12)

i=1
Here the h(x) and f(x) functions are the same as in the original parameterization

o0 k
(3.9). The set Z = {77 =Ny, M) J h(x)exp{ an-ti(x)}dx < oo} is called
oo i=1

the natural parameter space for the family. The natural parameterization and the
natural parameter space have many useful mathematical properties, for example, #
is convex.

In (3.9) it is often the case that the dimension of the vector € is k, the number of
terms in the sum of the exponent. This need not be so, and it is possible for the
dimension of the vector € to be less than k. Such an exponential family is called a
curved exponential family.

Defnition: Curved Exponentia Family
A curved exponential family is a family of densities of the form (3.9) for which
the dimension of the vector 6, dim € < k. If dim § = k the family is a full
exponential family.

Although the fact that the parameter space is a lower-dimensional space has some
influence on the properties of the family, we will see that curved families still enjoy
many of the properties of full families. In particular, Theorem 3.3 applies to curved
exponential families. For more introuduction to the exponential families, see
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Lehmann (1986, Section 2.7) or Lehmann and Casella (1998, Section 1.5 and Note
1.10.6).

4.1 Joint and Marginal Distributions
Definition: Random Vector
An n-dimensional random vector is a function from a sample space S to R”.

Suppose, for example, that with each point in a sample space we associate an orde-
red pair of numbers, i.e. a point (x,y) € R2. Then we have defined a two-dimensional
(or bivariate) random vector (X, Y).

A random vector is called a discrete random vector when it has a countable number
of possible values. For a discrete random vector, the function f(x,y) defined by
f(x,y) =P(X = x,Y =y) can be used to compute any probabilities defined in terms
of (X, 7).

Definition: Joint Probability Mass Function
Let (X, Y) be a discrete bivariate random vector. Then the function f(x, y) from
R? to R defined by f(x,y) = P(X = x, Y = y) is called the joint probability
mass function or joint pmf of (X, Y). If it is necessary to stress the fact that fis
the joint pmf of the vector (X, Y') rather than some other vector, the notattion
Jxy(x,y) will be used.

The joint pmf of (X, Y') completely defines the probability distribution of the rand-
om vector (X, V), just as the pmf of a discrete univariate random variable completely.
The joint pmf can be used to compare the probability of any event defined in terms of
(X,Y). Let A be any subset of R%. Then P((X,Y) € A) = Z f(x,y).

(r.y)EA

Expectations of functions of random vectors are computed just as with univariate
random variable. Let g(x,y) be a real-valued function defined for all possible values
(x,y) of the discrete random vector (X, Y). Then g(X, Y) is itself a random variable
and its expected value Eg(X,Y) is given by Eg(X,Y) = Z glx,f(x,y).

(x.y)ER?
Moreover, for g,(x,y) and g,(x,y) being two functions and a, b, ¢ being constants,
then E(ag,(x,y) + bg,(x,y) + ¢) = aEg(X, Y ) + bEg,(x,y) + c.
Definition: Marginal PMF
Let (X, Y') be a discrete bivariate random vector with joint pmf fy ,(x, y). Then

the marginal pmfs of X and Y, as fy(x) = P(X = x) and fy(y) = P(Y = y), are
given by () = D fx y(x.y) and fy(y) = ) fiy(x.Y).

yeR xeR
The marginal pmf of X or Y is the same as the pmf of X and Y as we have mention-

ed before. The marginal pmf of X or ¥ can be used to compute probabilities or expec-
tations that involve only X or Y. But to compute a probability or expectation that
simultaneously involves both X and Y, we must use the joint pmf of X and Y.
Remark:

The marginal distributions of X and Y, described by the marginal pmfs fy(x)

and fy(y), do not completely describe the joint distribution of X and Y. Indeed,
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there are many different joint distributions that have the same marginal
distributions. Thus, it is hopeless to try to determine the joint pmf, fy y(x, y),

from the knowledge of only the marginal pmfs, f,(x) and fy(y). I
To this point we have discussed discrete bivariate random vectors. We can also co-

nsider random vectors whose components are continuous random variables. The
probability distribution of a continuous random vector is usually described using a
density function, as in the univariate case.
Definition: Joint Probability Density Function

A function f(x, y) from R? into R is called a joint probability density function

or joint pdf of the continuous bivariate random vector (X, Y') if, for every

ACR,P(X,Y)€EA) = J [f(x,y)dxdy-
A
A joint pdf is used just like a univariate pdf except now the integrals are double int-

egrals over sets in the plane. The notation simply means that the limits of
A
integration are set so that the function is integrated over all (x,y) € A. Expectations

of functions of continuous random vectors are defined as in the discrete case with
integrals replacing sums and the pdf replacing the pmf. That is, if g(x,y) is a real-
valued function, then the expectated value of g(X, Y') is defined to be

[Eg(x,Y>=J J ¢ (e Vf (6, y)dxdy. @“.1)

It is important to realize that the joint pdf is defined for all (x, y) € R?. The pdf may
equal 0 on a large set A if P((X,Y) € A) = 0 but the pdf is defined for the points in
A.
Definition: Marginal PDF

The marginal probability functions of X and Y are also defined as in the

discrete case with integrals replacing sums. That is,
(6]

Jx(x) = [ J@x,y)dy, =00 < x < 00; fy(y) = J J&x,y)dx, —co <y < 0.
The joint probability distribution of (X, Y) can be completely described with the
joint cdf rather than with the joint pmf or joint pdf.
Definition: Joint CDF
The joint cdf is the function F(x,y) defined by F(x,y) = P(X < x,Y <y)
for all (x,y) € R
The joint cdf is usually not very handy to use for a discrete random vector. But for

a continuous bivariate random vector we have the important relationship, as in the
y

X
univariate case, F(x,y) = [ [ f(s,t)dtds. Recall the bivariate Fundamental

o O°F(x,y) o
Theorem of Calculus, this implies that “ordv = f(x,y) at continuity points of
Xoy

f(x,y). The relationship is useful in situations where an expression for F(x,y) can be
found. The mixed partial derivative can be computed to find the joint pdf.
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4.2 Conditional Distributions and Independence

Often when two random variables, (X, Y'), are observed, the values of the two vari-
ables are related. Information about the value of X gives us some information about
the value of Y even if it does not tell us the value of ¥ directly. Conditional probabili-
ties regarding Y given knowledge of the X value can be computed using the joint
distribution of (X, Y). Sometimes, however, knowledge about X gives us no inform-
ation about Y. We will discuss these topics concerning conditional probabilities in this

subsection.
Definition: Conditional Probability Mass Function

Let (X, Y) be a discrete bivariate random vector with joint pmf f(x, y) and
marginal pmfs fy(x) and fy(y).

For any x such that P(X = x) = fyx(x) > 0, the conditional pmf of ¥ given that
X = x is the function of y denoted by f(y|x) and defined by

10 =By =y[x =5 = L2

Jx()

For any y such that P(Y = y) = fy(y) > 0, the conditional pmf of X given that
Y = y is the function of x denoted by f(x|y) and defined by

fx,y)
fxly) X =x| y) 20

Definition: Conditional Probability Density Function

Let (X, Y') be a continuous bivariate random vector with joint pdf f(x, y) and

marginal pdfs fy(x) and fy(y).
For any x such that fy(x) > 0, the conditional pdf of Y given that X = x is the

function of y denoted by f(y|x) and defined by f(y|x) = f;x(, );) :

x X
For any y such that fy(y) > 0, the conditional pdf of X given that Y =y is the
function of x denoted by f(x|y) and defined by f(x|y) = ];(x(, );) .

)4

Definition: Conditional Expected Value

If g(Y) is a function of Y, then the conditional expected value of g(Y') given
that X = x is denoted by E(g(Y) | x) and is given by

E@mm=2gwwmmm@mm=ngmm@mm
y —o0

discrete and the continuous cases, respectively.

Definition: Independent Random Variables

Let (X, Y) be a bivariate random vector with joint pdf or pmf f(x, y) and
marginal pdfs or pmfs fy(x) and fy(y). Then X and Y are called independent

random variables if, Vx,y € R, f(x,y) = fx(x)fy ().

If X and Y are independent, the conditional pdf of ¥ given X = x is

S, y) _ S fy(y)

Jx(x) - Jx(x)
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regardless of the value of x. Thus, forany A C R and x € R,

PYeAlx) = J FOlx)dy = J fyWdy =P(Y € A).
A A
The knowledge that X = x gives us no additional information about Y.

Lemma 4.1: Criterion for Independent
Let (X, Y) be a bivariate random vector with joint pdf or pmf f(x, y). Then X
and Y are independent random variables < there exist functions g(x) and A (y)
such that Vx,y € R, f(x,y) = g(x)h(y).

Proof:
‘e
Taking g(x) = fy(x) and h(y) = hy(y) yields this direction.
“=7
Let us prove the case for continuous random variables, while for discrete case
we only need to replace the integrals with sums.

Consider now J g(x)dx = c and } h(y)dy = d, where the constants ¢

and d satisfy

cd = ([ g(x)dx>(f h(y)dy)

o0
—00 (6]

J J g)h(y)dxdy (Fubini’s Theorem)

J J f(x,y)dxdy = 1. (Since f(x, y) joint pdf)

Furthermore, the marginal pdfs are given by

()

fxx) = J gh(y)dy = g(x)d and fy(y) = J gh(y)dx = h(y)c.

—o0

Thus, we have f(x,y) = g@)h(y) = g)h(y)cd = fr(Ofy(y).
[]
Certain probabilities and expectations are easy to calculate if X and Y are indepen-
dent, as the following theorem states:
Theorem 4.2:
Let X and Y be independent random variables. Then
(i) ForanyA,BCR,P(Xe€ A,Ye B)=PX € AP(Y € B).
(i)  If g(x) is a function only of x and /(y) is a function only of y. Then
E(g(X)h(Y)) = (Eg(X))EA(Y)).

Proof:
(i1):
For continuous random variables, part (i1) is proved by nothing but
EGCONT) = || econoisenyday

Page 30 of 73



= J [ gh(Vfxx)fy(y)dxdy (Independent)

—0

=j h(y)fy(y)J ¢ (O)fy(Odxdy

(r g(X)fx(x)dx><[jo By (3)dy ) (Fubini)

= (Eg(X))(Eg(Y)).
The result for discrete case is valid by replacing the integrals by sums.
(1):
Let C := {(x,y)|x € A,y € B} and let g(x) be the indicator function of the
set A while letting /(y) being the indicator function of the set B. Then
PXeAYeB)=P(X,Y)e C)=E(gX)h(Y))
= (Eg(X))(ER(Y)) =P(X € A)P(Y € B).
[]
Theorem 4.3:
Let X and Y be independent random variables with mgf M,(¢) and M, (7). Then
the mgf of the random variable Z = X + Y is given by M,(¢) = M, (:)My(?).
Proof:
Using the definition of mgf and the result of Theorem 4.2, we have
M,(t) = Ee'? = Ee'*Y) = E(eXe™) = (Ee™)(Ee!) = My (t)My(2).
[]

4.3 Bivariate Transformations

In 2.1, methods of finding the distribution of a function of random variable were
discussed. In this subsection we extend these ideas to the case of bivariate random
vectors. Let us first state a results of Normal and Poisson random variables.

Theorem 4.4: Normal Transformation
Let X ~ N(u, 0%) and Y ~ N(y, v%) be independent random variables. Then the
random variale Z = X 4+ Y has a N(u + 7, 62 + ©?) distribution.
Theorem 4.5: Poisson Transformation
If X ~ Poisson(@) and Y ~ Poisson(4) and X and Y are independent, then
X + Y ~ Poisson(@ + 1).

In fact, if two random variables are independent, then the transformations of them
with the other not included, is also a random variable, and, are also independent.
Theorem 4.6:

Let X and Y be independent random variables. Let g(x) be a function only of x
and A(y) be a function only of y. Then the random variables U = g(X) and
V = h(Y) are independent.
Proof:
We will prove the case for consinuous, the discrete case follows analogously.
Assume that U and Y are continuous random variables. For any u € R and
v € R,wedefineA, := {x|g(x) <u}and B, = {y|h(y) < v}. Then the joint
cdf of (U, V) is given by
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Fyy(u,v) =PU <u,V<v) (Definition of cdf)
=PXeA,Y€EB) (Definition of U and V)
=PX e A,)P(Y € B,). (Theorem 4.2 (1))
The joint pdf of (U, V) is

= F = dl]j’X A dIP’Y B
fu@w) = ——Fy ) = (P € 4,) ) (P €B,)).

According to Lemma 4.1, independence follows.

[

4.4 Hierarchical Models and Mixture Distributions
In the case we have seen so far, a random variable has a single distribution, possib-
ly depending on parameters. While, in general, a random variable can have only one
distribution, it is often easier to model a situation by thinking of things in a hierarchy.
Sometimes, calculation can be greatly simplified by using the following theorem.
Recall that E(X |y) is a function of y and E(X | Y) is a random variable whose value
depends on the value of Y.
Theorem 4.7: Conditional Expectation Identity
If X and Y are any two random variables. Then EX = E(E(X | Y)).
Proof:
Let f(x, y) denote the joint pdf of X and Y. By definition, we have

E = ”xﬂx,y)dxdy = mxf(xmdx]fY(y)dy,

where f(x|y) and f(y) are the conditional pdf of X given Y = y and the
marginal pdf of ¥, respectively. Notice that the integral in the bracket is the
conditional expectation E(X | y), rewrite the above equation

EX = IIE(le)fY(y)dy = E(EX|Y)),

as we desired. Replacing the integrals by sums yields the discrete case.
[]

The term mixture distribution in the title of this subsection refers to a distribution
arising from a hierarchical structure. Although there is no standardized definition for
this term, we will use the following definition, which seems to be a popular one.
Definition: Mixture Distribution

A random variable X is said to have a mixture distribution if the distribution of
X depends on a quantity that also has a distribution.

We have dealt with the expectation, now let us deal with the calculation of the vari-
ance. We can make use of a formula for conditional variances, similar to the one we
did for conditional expectations.

Theorem 4.8: Conditional Variance Identity
For any two random variables X and Y, VarX = E(Var(X | Y))+ Var(E(X | Y)).
Proof:
By definition, one has
VarX = E(X — EX)?) = E(X - E(X|Y) + EXX|Y) — EX?)
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= E(X-EX|Y)?) +E(EX|Y) - EX)?)
+2E((X - EX|Y))(E(X|Y) - EY)).
We leave the step in prove that 2E((X — E(X|Y)) (E(X|Y) —EY)) =0to
the reader. The above equation, by definition,
E((X—EX|Y))?) = E(Var(X |Y)), E((E(X|Y) — EX)?) = Var(E(X | Y)).

[

4.5 Covariance and Correlation

In earlier subsections, we have discussed the absence or presence of a relationship
between two random variables, independence or nonindependence. But if there is a
relationship, the relationship may be strong or weak. In this subsection we discuss
two numerical measures of the strength of a relationship between two random
variables, the covariance and correlation.

If there is no misleading, we shall always use, for two random variables X and Y,
Uy = EXand 6)2( := VarX, py := LY, 612, := VarY, where 0 < 0)2(, 6% < 0.
Definition: Covariance

The covariance of X and Y is the value Cov(X,Y) := [E((X — pux)(Y — ,uy)).

Definition: Correlation

. . Cov(X,Y) .
The correlation of X and Y is the value pyy = ———————. The value pyy is
OxOy

also called the correlation coefficient.

While the covariance could be any number, the correlation is always between -1
and 1, with the values -1 and 1 indicating a perfect linear relationship between X and
Y. We now prove another version of covariance.

Theorem 4.9:
For any random variables X and Y, Cov(X,Y) = EXY — uyuy.
Proof:
Cov(X,Y) = BE(X — px)(Y — piy)
= EXY — uyY — puy Y X + py piy) (Expand the product)
= EXY — uyEY — puyEX + pxpty (¢, 1y are constants)

= EXY — pxpy — pypix + pxpty = EXY — pixpiy.
[

In the next three theorems we describe some of the fundamental properties of cova-
riance and correlaion.
Theorem 4.10:

If X and Y are independent random variables, then Cov(X, Y) = 0 and
pxy = 0.
Proof:
Since X and Y are independent, one has EXY = (EX )(EY ). Thus,
Cov(X,Y)=EXY—-(EX)EY)=0.
It follows that pyy, = 0 as well.

Remark:
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The converse is not true in general, there are some nonindependent random
variables X and Y with Cov(X, Y) = 0 and pyy = 0. I
Covariance plays an important role in understanding the variation in sums of rand-

om variables, as the next theorem suggests.
Theorem 4.11:

If X and Y are any two random variables and a and b are any two constants,

then

Var(aX + bY) = a*VarX + b>VarY + 2abCov(X,Y).
If X and Y are further assumed to be independent, then
Var(aX + bY) = a*VarX + b*VarY.
Covariance and correlation measure only a particular kind of linear relationship th-
at will be described in the following theorem.
Theorem 4.12:
For any random variables X and Y.
() -1<py<L
(i)  |pyyl = 1<% Ja # 0 and b constants such that P(Y = aX + b) = 1.
If pyy = 1,thena > 0, if pyy = — 1, thena < 0.

Later we will prove the Cauchy-Schwartz inequality which has a direct consequen-
ce that pyy 1s bounded between -1 and 1.

The intuition of Theorem 4.12 is that, if there is a line y = ax + b with a # 0,
such that the values of (X, Y') have a high probability of being near the line, then the
correlation between X and Y will be near 1 or -1. But if no such line exists, the
correlation will be near 0.

We close this subsection by introducing a very important bivariate distribution in
which the correlation coefficient arises naturally as a parameter.

Definition: Bivariate Normal pdf
Let —co < iy, py, 0y, 6y < 00 and —1 < p < 1. The bivariate normal pdf with
means py and puy, variances 0')2( and 0)2,, and correlation p is the bivariate pdf
given by

f@.y) = (220301 /1 = p?)
((x_ﬂX)z_zp(x_//‘X)(y _/"Y)_'_(y_/"Y)z)}
UX GY O'Y

1
s
for —oco < x,y < o0.
This formula is disgusting but often used. We now give some properties of it:
Properties:
(i)  The marginal distribution of X (resp. Y) is N(uy, 0)2() (resp. N(py, 012,)).
(11)  The correlation between X and Y is pyy = p.
(iii)) For any constants a and b, the distribution a X + bY is
N(apy + bpy, a*o3b*c3 + 2abpoyoy).

4.6 Multivariate Distributions
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Now we extend the discussion so far for bivariate random variables into the case of
more, finite, or even countable random variables. Namely, we call X a random vector
if X = (X;, ---, X,,) with each entry being a random variable,

Definition: Joint pmf
The joint pmf of the random vector X = (X, ---, X,)) 1s a function defined by
S =fxp, o x) =PX, =x, -, X, =x,) V(x,--,x,) € R"

The marginal pdf or pmf of any subset of the coordinates of (X, ---, X,) can be co-
mputed by integrating or summing the joint pdf or pmf over all possible values of the
other coordinates.

The conditional pdf or pmf of a subset of the coordinates of (X, ---, X,) given the
values of the remaining coordinates is obtained by dividing the joint pdf or pmf by
the marginal pdf or pmf of the remaining coordinates.

We now introduce an important family of discrete multivariate distributions. This
family generalizes the binomial family to the situation in whcih each trial has n
distinct possible outcomes rather than two.

Definition: Multinomial Distributions
Let n and m be positive integers and let py, ---, p, be numbers satisfying
n

0<p, <1,wherei =1,---,nand Zpi = 1. Then the random vector

i=1
(Xy, -++, X,,) has a multinomial distribution with m trials and cell probabilities
Dy, > P, if the joint pmf of (X, ---, X)) is given by

X

m! e pit
Sy, x,) = pfl e pin=m! I I —— on the set of (x;, -+, x,,)
xleeeex,! i x;!

n
such that each x; is a nonnegative integer and Z X; =m.
i=1
!

m!
The factor , , 1s called the multinomial coefficient. It is the number of
_X] Do eee xn !

ways that m objects can be divided into n groups with x; in the first group, x, in the
second group, ..., and x, in the nth group. A generalization of the Binomial Theorem
1s the Multinomial Theorem.
Theorem 4.13: Multinomial Theorem

Let m and n be positive integers. Let A be the set of vectors x = (x;, -+, x,))

n
such that each x; is a nonnegative integer and Z x; = m. Then, for any real
i=1

m m' X
numbers py, -+, p,, one has (p; + -« + p,)" = Z ' e pin,

x‘ooooox!
xeA 1 n

This theorem shows that a multinomial pmf sums to 1. The set A is the set of points
with positive probability hence the sum of the pmf over all those points is, by this
theorem, (p; + -+ +p,)" = 1" = 1.
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Recall the statistical independence we introduced before is between two random
variables, we now extend them to countable case, and we then state the generalized
results we see earlier.

Definition: Mutually Independent
Let X, ---, X, be random vectors with joint pdf or pmf f(x;, ---, x,,). Let fx (x;)
denote the marginal pdf or pmf of X;. Then X, ---, X, are called mutually
independent random vectors if for every (x;, ---, x,)), one has
n

JO, = x) = fy (o) - o - fx () = Hin(xl-). If the X,’s are all one-
i=1
dimensional, then X, ---, X, are called mutually independent random variables.
Theorem 4.14: Expectation
Let X;, ---, X, be mutually independent random variables. Let g, ---, g, be real-
valued functions such that g;(x;) is a function only of x; for i = 1,---, n. Then
E(g,(X) - - g,(X,) = (Eg(X)) - -+ - Eg,(X,)).
Theorem 4.15: MGF
Let Xj, -+, X,, be mutually independent random variables with mgfs
MXl(t), o, Mxn(t). LetZ = X, + --- + X . Then the mgf of Z is
My(1) = My (t) - -+ - My (7). In particular, if X, ---, X, all have the same
distribution with mgf My(t), then My(1) = (My(1))".
Corollary 4.16:
Let Xi, ---, X, be mutually independent random variables with mgfs
My (1), -+, My (1). Let ay, -+, a, and by, ---, b, be fixed constants. Let
Z = (a\X; + b)) + - + (a,X, + b,). Then the mgf of Z is given by
My(1) = (e"ZP) My (ay1) - -+ My (a,0).

Proof:
From the definition, the mgf of Z is
M,(t) = Ee'?
— [Eetz (a; X;+b;)
= (et(zbi)>[E(e“’1X1 L) (Properties of exponential)

= <et(zbi))MX1(a1t) - - My (a,t) (Theorem 4.15)
result follows.

[

Undoubtedly, the most important application of Corollary 4.16 is to the case of

normal random variables. A linear combination of independent normal random
variables is normally distributed.

Corollary 4.16.1:
Let X,, -+, X,, be mutually independent random variables with X; ~ N(u;, 67).
Letay, +--,a,and by, -+, b, be fixed constants Then
n

Z=Y (aX+b)~N Z(aptl+b) 2
i=1
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Proof:
Recall that the mgf of a N(u, 0%) random variable is M(¢) = eht+atl2,
Substituting into the expression of Corollary 4.16 yields
M) = (et(Z bi))eﬂ1a1t+612012t2/2 Ceer . pHnAnttogagti2
— e(z(ai,ui+bi)t+(zaizaiz)tz/2’
the mgf of the indicated normal distribution.
[
Theorem 4.17: Criterion for Independence
Let X, ---, X,, be random vectors. Then X, ---, X, are mutually independent
random vectors < there exists functions g;(x;), fori = 1,---, n, such that the
joint pdf or pmf of (X, ---, X,) can be written as
S, x,) = g1(x) - o0 - g,(x,).
Theorem 4.18:
Let X, ---, X,, be independent random vectors. Let g;(x;) be a function only of
x; fori = 1,---,n. Then the random variables U; = g,(X;) fori = 1,---, n, are
mutually independent.

4.7 Inequalities

One of the most important task for us in either probability or statistics, is to find
that if, for example, the variation of a given random variable, with high probability
(say 99%), is bounded by a certain number. To this end, a lot of inequalities are
needed. In this subsection, we shall introduce some important inequalities. Note that
the inequalities are divided into categories numerical and functional, the former one
is determined by “numbers” while the second one is determined by the “operating
functions” according to the name.
Lemma 4.19:

Let a and b be positive numbers, and let p and g be any positive numbers

I 1 1 1
(necessarily greater than 1) such that — + — = 1. Then —a” + —b? > ab
P 9 p q

with equality if and only if a” = b9.
One of the most important variations for the Lemma 4.19 is the famous Holder’s
inequality.
Theorem 4.20: Holder’s Inequality

Let X and Y be any two random variables and let l + l = 1 for both p and ¢
P 4
greater than 1. Then |EXY | < E|XY| < (E|X|P)P(E|Y|?)Va.

In fact, this is the idea derived from functional analysis, where we have a norm for
the vectors having this property. Perhaps the most famous special case of Holder’s
inequality is that for which p = g = 2. This is called the Cauchy-Schwarts Inequality.
Theorem 4.21: Cauchy-Schwartz Inequality

For any two random variables X and ¥,

|EXY| <E|XY| < (E|X|")"XE|Y[*)"2.
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Our next named inequality is similar in spirit to Holder’s inequality, and, in fact,
follows from it.
Theorem 4.22: Minkowski’s Inequality
Let X and Y be any two random variables. Then for 1 < p < o0, one has
EIX+Y )P <EIXIHP+(E|YIP)P.
Now we introduce the functional inequalities, these inequalities rely on the proper-
ty of convexity. For example, one of the most famous Jensen’s Inequality.
Definition: Convex
A function g(x) is convex if VO < 4 < 1 and Vx,y,
gUAx+ (1 =2y <Agx)+ (1 —-Ng(y).
Theorem 4.23: Jensen’s Inequality
For any random variable X, if g(x) is a convex function, then Eg(X) > g(EX).
With equality holds < for every line a + bx that is tangent to g(x) at x = EX,
P(gX)=a+bX)=1.

One immediate application of Jensen’s Inequality is to show that EX? > (EX)?.
Since g(x) = x? is convex. Moreover, if x is positive, then 1/x is convex; hence
E(1/X) > 1/EX.

We close our section with an inequality that merely exploits the definition of covar-
iance, but sometimes proves to be useful. If X is a random variable with finite mean u
and g(x) is a nondecreasing function, then E(g(X)(X — u)) > 0.

Theorem 4.24: Covariance Inequality
Let X be any random variable and g(x) and /(x) any functions such that
Eg(X), Eh(X), and E(g(X)h(X)) exist. Then
(1)  If g(x) is nondecreasing and /4 (x) is nonincreasing then
E(g(X)h(X)) < (Eg(X))(EA(X)).
(i)  If g(x) and h(x) are either both nondecreasing or both nonincreasing,
then E(g(X)h(X)) = (Eg(X))(EA(X)).

The intuition behind the inequality is easy. In case (i) there is a negative correlation
between g and & while in case (ii) there is a positive one. The inequalities merely
reflect this fact. The usefulness of the Covariance Inequality is that it allows us to
bound an expectation without higher-order moments.

5.1 Basic Concepts of Random Samples
Definition: Independent and Identically Distribued (i.i.d.)
The random variables X, ---, X, are called a random sample of size n from the
population f(x) if X;, ---, X,, are mutually independent random variables and the
marginal pdf or pmf of each X is the same function f(x). Alternatively,
X, -+, X, are called independent and identically distributed random variables
with pdf or pmf f(x). This is commonly abbreviated to i.i.d. random variables.
When a sample X, ---, X, is drawn, some summary of the values 1s usually compu-
ted. Any well-defined summary may be expressed mathematically as a function
T'(xy, -+, x,) whose domain includes the sample space of the random vector
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(Xy, ---, X,,). The function T may be real-valued or vector-valued; thus the summary is
a random variable (resp. random vector), ¥ = T(X,, ---, X,).

Since the random sample X, ---, X, has a simple probabilistic structure, the distrib-
ution of Y is particularly tractable. Because this distribution is usually derived from
the distribution of the variables in the random sample, it is called the sampling
distribution of Y. This distinguishes the probability distribution of ¥ from the distri-
bution of the population, 1.e. the marginal distribution of each X..

Definition: Statistic
Let X, ---, X,, be a random sample of size n from a population and let
T'(x;, -+, x,) be a real-valued or vector-valued function whose domain includes
the sample space of (X, ---, X,)). Then the random variable or random vector
Y :=T(X,, -+, X,) is called a statistic. The probability distribution of a statistic
Y is called the sampling distribution of Y.

Remark:
The definition of a statistic is very broad, with the only restriction being that a
statistic cannot be a function of a parameter. I

Most of the terminologies we have encountered so far are statistics, e.g. recall the
mean u and the variance o>. We now generalize these concepts to the form, that as a
function of the random variable (resp. random vector), s and 67 are themselves ran-
dom variables.

Definition: Sample Mean
The sample mean is the arithmetic average of the Value in a random sample.

. - Xt +X,
It 1s usually denoted by X := =— Z

Definition: Sample Variance

1 < -
The sample variance is the statistic defined by S? = p— 2 X, —X ).
n —_—
i=1

Definition: Sample Standard Deviation

The sample standard deviation is the statistic defined by S := /2.

We now state and prove a very useful numerical result involving the sample mean

and the sample variance.
Theorem 5.1: Numerical Identity

Let x, - be any numbers and X = (x; + --- +x,)/n. Then

(i) mmZ(x—a)2 Z(x—x)2

() (nn—1)s?= Z (xl.—)?)2 = in — nx’
i=1 i=1

Proof:
o: i
Z (x; — a)? = Z (x;—Xx+Xx— a)? (Add and subtract X)
i=1 i=1
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. zn:(xi—f)2+2zn:(xi—f)(f—a)+Zn:()—C—a)Z
T i=1 i=1

=Y -+ G- oY) -7) + Y, @ - ar
! i=1 i=1

n n
= Z (x;,—Xx )+ Z (X —a)* (Definition of X)
i=1 i=1
We now minimize over a on both sides:
n n n
min Y (x; — a)* = min <Z (=X + Y (- a)z)
‘= ¢ = i=1
n
= min 2 (X —a)> (Minimized when a = X)
=
(i1):
With the same approach but this time we seta = 0 in Z (x; — a)?, one has
n n i=1
Z xi2 = Z (x;— X+ %)? (Add and subtract X)
i=1 i=1

n

n n n
=Y (5 —XP+2) (%) T+ ) ¥ (Expand)
i# ni=1 i=1
= Z (x,—Xx Y+ 2 x2. (Cross term is zero)
i=1 i=1
n

Similarly, we expand Z (x; — X)? with the cross term vanishes, one has

i=1
Z(xi—f)2= le.z— 2)?2= le.z—nfz. (5.1)
i=1 i=1 i=1 i=1
2 1 C —\2 .
Lastly for(n — 1)s =(n—-1) - p— Z (x; — X ) by definition, we have,
" i=1 n n
by (5.1), established the identity (n — 1)s2 = Z (r; —X)% = Z X2 —nx.
i=1 i=1
[]

Theorem 5.1 is useful in both computationally and theoretically because it allows
us to express s in terms of sums that are easy to handle.
Lemma 5.2: Functional Identity
Let X;, -+, X,, be a random sample from a population and let g(x) be a function
such that Eg(X,) and E(VarX,) both exist. Then,
n

(i) E) g(X)=nEg(X).

i=1
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Proof:

(i) Var ) g(X)) = nVarg(X)).

i=1

(1):
Since the X;’s are identically distributed, it follows that Eg(X;) is the same for
n

all the index i, hence E Z g(X;) = nEg(X,). Note that we have, in fact
; . i=1
E Z g(X) = 2 Eg(X,) = nEg(X,) where the middle equality is valid since
i=1 i=1
the expecation is a linear operator, hence the independence for X;’s is not

needed for (i) to be valid. Indeed, (1) is valid for any collection of n identically
distributed random variables.

(i1):
Varz gX;) = ﬂE( Z gX,) — L 2 g(Xl-)>2 (Definition of Var)
i=1 i=1 i=1

2
- [E< Z (g(X) — Eg (X,-))> (Property of Expectation)
i=1
In this last expression there are n” terms. First, there are n terms

((g(Xl-) — [Eg(Xl-))z, fori = 1,---, n, and for each, we have
E((g(X; — Eg(X,.))2 = Varg(X)) (Definition of Var)
= Varg(X,) (Identically Distributed)
The reamaining n(n — 1) terms are all of the form

(8(X) —Eg(X)) (gX) — Eg(X)), i #J.
For each term, one has
E((s0X) - Eg(X)) (20X) — Eg(X))) ) = Cov(g(X). g(X)) =0
due to the definition of covariance and independence. Result follows.

[

Remark:

In obtaining the second result, we have used independence, in fact,
independence is a necessary condition for (i1) to hold. I

Theorem 5.3:

Let Xj, ---, X, be a random sample from a population with mean u and variance
62 < 0. Then
(i) EX=u.
2
.. = O
(i) VarX = —.
n

(iii) ES? =62

The relationships (i) and (ii) bwtween a statistic and a population parameter are ex-
amples of unbiased statistics. The statistic X is an unbiased estimator of y and S? is an

unbiased estimator for o~.

2
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Theorem 5.4:
Let X, .-+, X,, be a random sample from a population with mgf My(z). Then the
mgf of the sample mean is Mx(¢) = (MX(t/ n))n.

Of course this theorem is useful only if the expression for M(¢) is a familiar mgf.
Cases when this is true are somewhat limited, when it is not applicable, the following
convolution formula is useful.

Theorem 5.5: Convolution Formula
If X and Y are independent continuous random variables with pdfs fy(x) and

fy(¥), then the pdf of Z = X + Yis f,(z) = [ HW)fy(z —w)dw.

Recall the exponential family we mentioned in Section 4. When sampling is from
an exponential family, some sums from a random sample have sampling distributions
that are easy to derive. The statistics 7}, ---, T, in the next theorem are important
summary statistics.

Theorem 5.6:
Suppose that X, -+, X, is a random sample from a pdf or pmff(x|8), where

k
f(x]0) = h(x)c(@)exp{ Z wi(0)t,(x) } is a member of an exponential family.
i=1

k
Define the statistics T}, -+, T by T,(X,, -+, X,) = ) t;(X;) fori = 1+, k. If
j=1
the set {(wl (@), -+, wi (0)) | 0 e @} contains an open subset of R, then the

distribution of (7, ---, T},) is an exponential family of the form
k
2
Friy, 1 |0) = H(uy, -+, 1) (c(0)) exp{ Y w,.(e)u,.}.
i=1

Note that in the pdf or pmf of (7, ---, T},), the functions c(€) and w,(@) are the sa-

me as in the original family even though the function H(u, ---, %) is different from
h(x).

5.2 Sampling from the Normal Distributions

In this subsection we shall deal with the properties of sample quantities drawn fr-
om a normal population — still one of the most widely used statistical models.
Sampling from a normal population leads to many useful properties of sample
statistics and also to many well-known sampling distributions.

We have already seen how to calculate the means and the variances of X and S? in
general. Now, under the additional assumption of normality, we can derive their full
distributions, and more. The properties of X and S? are summarized in the following
theorem.

Lemma 5.7: Facts about Chi Squared Random Variables
We use the notation ;(5 to denote a chi squared random variable with p degrees

of freedom. Then
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(i) IfZisaN(0,1) random variable then Z% ~ )(12
(i) IfX,,--, X, are independent and X; ~ y, Vi. Then
X4t X~
This lemma is used to prove the following theorem, which we leave the proof to
the readers.
Theorem 5.8:
Let X;, ---, X, be a random sample from a N(y, 02) distribution, and let

_ 1 _
X=—) X,and §? = X, — X )% Then
(a) X and S? are independent random variables.
2
(b) X hasa N(u,——) distribution,
n
(n — 1)S? . AR
(c) — has a chi squared distribution with n — 1 degrees of freedom.
o

Lemma 5.9:

2 . .
Let X] ~ N (,uj, o; ), forj = 1,---, n, independent. For constants a; and brj where

j=1,-,ni=1,---,k,and r = 1,---,m, where k + m < n, define
n n

U, = Z a;X;and V, := Z b,;X;. Then one has
J=1 J=1
(a)  The random variables U; and V, are independent < Cov(U;, V,) = 0.
n

Furthermore, Cov(U,;, V,) = Z aijbrjajz.
j=1
(b)  The random vectors (U, ---, U,) and (V}, ---, V, ) are independent <
U, 1s independent of V., for all pairs i and r.

This lemma shows that, if we start with independent normal random variables, cov-
ariance and independence are equivalent for linear functions of these random
variables. Thus, we can check independence for normal variables by merely checking
the covariance term, a much simpler calculation. Moreover, (b) allows us to infer
overall independence of normal vectors by just checking pairwise independence, a
property that does not hold for general random variables.

5.3 Convergence Concepts
We start with one of the weakest types of convergence, the convergence in probabi-
lity, which is a special case of convergence in measure.
Definition: Converge in Probability
A sequence of random variables, X, X,, --+, converges in probability to a
random variable X if Ve > 0, one has Iim P(|X, — X | > €) =0, or,

n—oo
b
equivalently, lim P(|X, — X | < ¢&) = 1. We denote it as X, 22 x.

n—»oo

The X, X,, -+ are typically not independent and identically distributed random vari-
ables, as in a random sample.
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Frequently, statisticians are concerned with situations in which the limiting random
variable is a constant and the random variables in the sequence are sample means (of
some sort). The most famous result of this type is the following.

Theorem 5.10: Weak Law of Large Numbers (WLLN)
Let X;, X,, --- be i.i.d. random variables with EX; = u and VarX; = 62 < co.

- I < —
Define X, := _ZXi' Then Ve > 0, lim P(|X, —u| <¢e) =1;1ie.
n

‘ n—oco
i=1

b Prob u

n

The WLLN quite elegantly states that, under general conditions, the sample mean
approaches the population mean as n — oco. In fact, there are more general versions
of the WLLN, where we need to assume only that the mean is finite. The one we
employ here is applicable in most practical situations.

A natural extension of converge in probability relates to functions of random varia-
bles. That is, if the sequence X, X,, :-- converges in probability to a random variable
X or to a constant a, can we make any conclusions about the sequence of random
variables h(X,), h(X;), -+ for some reasonably behaved function 4? The next theorem
shows that we can.

Theorem 5.11:
Suppose that X, X,, --- converges in probability to a random variable X and
that £ is a continuous function. Then h(X,), h(X,), -+ converges in probability
to h(X).

One other interpretation for Theorem 5.11 is that the continuous mappings preser-
ves the convergence, this is true by its property that the preimage of an open set is
still open.

A type of convergence that is stronger than convergence in probability 1s almost su-
re convergence. This type of convergence is similar to pointwise convergence of a
sequence of functions, except that the convergence need not occur on a set with
probability O.

Definition: Almost Surely Convergence
A sequence X[, X,,, --- of random variables converges almost surely to a
random variable X if Ve > OP(lim | X, — X | <¢) = 1.

n—-oo

A very interesting example in showing that almost surely convergence is stronger
than convergence in probability is that, if f — f, then a necessary and sufficient
condition for the identity,

lim sup f,(x) = sup lim f (x), (5.2)

=00 p—>oo n— oo N
being valid for all the choice of x is the almost surely convergence. However, if we
relax the condition into convergence in probability, this is not always the case.
One good interpretation is that the almost surely convergence, the set

A= {x| Ve > 036 > O such that | f,(x)) — f(x,)| < 6 Vx|, x, where |x; —x,]| < 8}

has a probability measure of zero. Therefore it guarantees that during the process of

its convergence, the ordering of the original space does not vary too much, hence the
Page 44 of 73



interchange is valid. Moreover, this is also valid when we change the sup into
inf, max, and min. This order preserving property is, perhaps one of the reasons why
the almost surely convergence is stronger than the convergence in probability. Of
course, we are assuming that the original space is well-ordering.

Remark:

We shall denote that f, converges to f almost surely by the notation f, a5 f.

Note that
almost surely convergence = Convergence in Probability
almost surely convergence < Convergence in Probability. [
There are examples that some random variables converge in probability but fails to
be almost surely convergent, one may consult [1] for details. Note that even though
the converse direction fails to be true, when a sequence converges in probability, it is
still possible to find a subsequence that is almost surely convergent. This is the idea
of the strong law of large numbers:
Theorem 5.12: Strong Law of Large Numbers (SLLN)
Let X, X5, -- be i.i.d. random variables with EX; = y and VarX, = 62 < o,

n
define X, := l ZXi' Then Ve > 0, one has that P( lim | X, — pu| <e) =1,
g e
i.e. X, converges almost surely to u.
Proof:
To prove SLLN is to prove that the divergence part has a probability measure
0. For the sequence to diverge, there must exist a 6 > 0 such that Vn € N,
there exist k > n such that | X, — | > 8. We shall denote this set as

As= " J{IX—ul > 5},

n>1k>n
which has an upper bound (w.r.t. the probability measure) given by

P(A;) < IP’( U {l)_(k —ul| > 5} (Removing Intersections)

k>n
< Z P{|X,—p|>6}) (Theorem 1.5 (ii), Boole’s)
k>n
<2. Z ckfor0<c <1 (Left as exercise)
k>n "
=nm2-;7 — 0. (Since 0 < ¢ < 1)
n—oo —C

[

Not only the convergence for the probability measures derives useful information
about the sample but also its distributions, this concept is also called the weak conve-
rgence. Unlike the other three, whether a sequence of random variables (elements)
conver-ges in distribution or not depends only on their distributions.

Definition: Convergence in Distribution
A sequence of random variables X, X,, :+- converges in distribution to a
random variable X if lim F Xn(x) = Fy(x) Vx where Fy(x) is continuous.

n—-oo
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Note that although we talk of a sequence of random variables converging in distri-
bution, it is really the cdfs, that converge, not the random variables themselves, thus it
makes a major difference from the almost surely convergence and the convergence in
probability. However, it is implied by the other types of convergence. We now state a
result without proof and construct a relation diagram among these three types of con-
vergence.

Theorem 5.13:
If the sequence X, X,, -+ converges in probability to a random variable X, then
the sequence also converges in distribution to X.
This theorem tells why the convergence in distribution is also called the “weak”

convergence.
Remark:
=
Convergence in Probability #  Almost Surely Convergence
2 2

Convergence in Distribution I

In some special case, Theorem 5.13 has a converse that turns out to be useful. We
now state this result without proof.

Theorem 5.14:
The sequence of random variables X, X,, -+ converges in probability to a
constant u < the sequence also converges in distribution to u.

The sample mean is one of the statistics whose large-sample behavior is quite imp-
ortant. In particular, we want to investigate its limiting distribution. This is summari-
zed in one of the most startling theorems in statistics, the Central Limit Theorem
(CLT).

Theorem 5.15: Central Limit Theorem (CLT)
Let X, X,, -+ be a sequence of 1.1.d. random variables whose mgfs exist in a

neighbourhood of 0. Let EX; = p and VarX; = 62 > 0 be both finite. Define

\/_( — K

=— Z X; and let G, (x) denote the cdf of ———————. Then,
i=1
o 2
V — o0 < x < o0, one has that lim G, (x) = [ e 2dy, ie.
n—oo — o 271-

\/;()_(n - /’t)

CLT is valid in much more general way than it is stated. The only assumption on
the parent distribution is that it has finite variance.

An approximation tool that can be used in conjunction with the CLT is known as
the Slutsky’s Theorem.
Theorem 5.16: Slutsky’s Theorem

has a limiting standard normal distribution.

If X,, - X in distribution and Y, Pr_ob) a where a 1s a constant. Then

(1)  Y,X, — aXin distribution.
(1) X,+Y, = X+ ain distribution.
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It has to be stressed out that the difference between the convergence of a sequence
of random variables and the convergence of its corrsponding probability mappings
are different in many senses. One of the most important, or, intuitive one, is that the
convergence of the random variables themselves means that the distributions conve-
rges as well. More precisely, it is that the accumulation finally collides into one,
hence it is a matter of the CDF.

The convergence statements, as well as the inequalities, play important roles in m-
odern probability theory and statistics. In the next chapters, we shall see their
practical use under, one of the thing we concern the most, the data reduction.

6.1 The Sufficiency Principle

Recall that in studying linear algebra, it is sometimes hard to deal with rather big
vector spaces, even its vector subspaces; to that end, we find it useful to work only
through a small collection of elements that contain all the information of the vector
space, hence we introduced the basis, as well as subbasis.

Same problems may arise when we are dealing with a big set of data. We wish, the-
refore, to use a small collection that contains all the information of the original data.
However, not every data reduction methods could discard no information, so we wish
to have one that preserve as much as possible. We shall introduce three data reduction
methods in this subsection. The sufficiency principle promotes a method that preserve
the information while achieving summrization of the data. The likelihood principle
describes a a function of the parameter, determined by the observed sample, that
contains all the information about @ that is available from the sample.

Definition: Sufficient statistic
A statistic 7(X) is a sufficient statistic for 0 if the conditional distribution of
the sample X given the value of 7(X) does not depend on 6.
Theorem 6.1: Criterion for Sufficient Statistic
If p(x| @) is the joint pdf or pmf of X and g(z| ) is the pdf or pmf of T(X),
p(x|0

—————isconstant as a
q(T(x)|0)

then T'(X) is a sufficient statistic for 8 if Vx € X,

function of 6.
Theorem 6.2: Factorization Theorem
Let f(x| @) denote the joint pdf or pmf of a sample X. A statistic 7(X) is a
sufficient statistic for @ < there exist functions g(z| ) and i (x) such that,
for all sample points x and all parameter points 6, f(x|0) = g(T(x) | @)h(x).
It is easy to find a sufficient statistic for an exponential family of distributions usin-
g the factorization theorem.
Theorem 6.3:
Let X|, .-+, X, be i.i.d. observations from a pdf or pmf f(x | @) that belongs to
k

an experimental family given by f(x|0) = h(x)c(0 )exp{ Z wi(G)ti(x)} where

i=1
0 = (0., 0,). ford < k. Then T(X) = (D ,(X), -+, Y 1,(X;)) is a
j=1 j=1
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sufficient statistic for 6.

Remark:
T(X) = X is always a sufficient statistic. Moreover, every one-to-one function
of a sufficient statistic is a sufficient statistic. I

Because of the numerous sufficient statistics in a problem, we might ask whether
one sufficient statistic is any better than another. Recall that the purpose of a sufti-
cient statistic is to achieve data reduction without loss of information about the
parameter €; thus, a statistic that achieves the most data reduction while still
remaining all the information about & might be considered preferable. The definition
of such a statistic 1s the minimal sufficient statistic.

Definition: Minimal Sufficient Statistic
A sufficient statistic 7(X) is called a minimal sufficient statistic if, for any
other sufficient statistic 7'(X ), T'(x) is a function of 77(X).

That is to say, T'(x) = T'(y) = T(x) = T(y), or, equivalently, if {B,|t' € T} are
the partition sets of 7'(X) and {A, |t € T} are the partition sets for 7'(x), then every
B, 1s a subset of A,. Thus, the partition associated with a minimal sufficient statistic,
is the coarsest possible partition for a sufficient statistic, and a minimal sufficient
statistic achieves the greatest possible data reduction for a sufficient statistic.
Theorem 6.4: Criterion for Minimal Sufficient Statistic

Let f(x| @) be the pmf or pdf of a sample X. Suppose that there exist a function

1s constant

T (x) such that for every two sample points x and y, the ratio 010
y

as a function of @ & T'(x) = T(y). Then T'(X) is a minimal sufficient statistic

for 6.

However, a minimal sufficient statistic is not unique. Any one-to-one function of a

minimal sufficient statistic is also a minimal sufficient statistic.

Definition: Ancillary Statistic
A statistic S(X') whose distribution does not depend on the parameter 6 is
called an ancillary statistic.

Alone, an ancillary statistic contains no information about 8. An ancillary statistic
1S an observation on a random variable whose distribution is fixed and knwon,
unrelated to 6. Paradoxically, an ancillary statistic, when used in conjunction with
other statistics, sometimes does contain valuable information for inferences about 6.

Ancillary statistic is not necessary to be independent from the minimal sufficient
statistic. Indeed, an ancillary statistic can sometimes give important information for
inference about 8. For many important situations, however, a minimal sufficient
statistic is independent of any ancillary statistic.

Definition: Complete Statistic
Let (2] 0) be a family of pdfs or pmfs for a statistic 7(X ). The family of
distributions is called complete if Eyg(7') = 0V then Py(g(T') =0) =1

V. Equivalently, 7(X) is called a complete statistic.
We now use completeness to state a condition under which a minimal sufficient st-
atistic is independent of every ancillary statistic.
Theorem 6.5: Basu’s Theorem
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If T(X) is a complete and minimal sufficient statistic, then T(X) is
independent of every ancillary statistic.

Basu’s theorem is useful since it allows us to determine the independence of two
statistics without ever finding their joint distribution. However, to use Basu’s
theorem, one needs to show that a statistic is complete, which could be a tedius work.
Fortunately, most problems we are concerned with satisfy the following theorem.
Theorem 6.6: Complete Statistic in the Exponential Family

Let Xi, ---, X,, be 1.1.d. observations from an exponential family with pdf or pmf

k
of the form f(x|0) = h(x)c(@)exp{ Y w/(0)4(x)}, where 0 = (6, -+, )).
J=1

Then the statistic 7(X) := (Z H(X;), -, Z tk(Xi)) is complete if
i=1 i=1
{(wl(G), “ee, wk(G)) |0 € (9} contains an open set in R,

The proof of this theorem depends on the uniqueness of a Laplace transform. It sho-
uld be noted that the minimality of the sufficient statistic was not used in the proof of
Basu’s theorem. Indeed, the theorem is true with this word omitted, since a fundame-
ntal property of a complete statistic is that it is minimal. However, the condition that
it contains an open set is necessarily needed.

Theorem 6.7:
If a minimal sufficient statistic exists, then any complete statistic is also a
minimal sufficient statistic.
So even though the word “minimal” is redundant in the statement of Basu’s theore-
m, it was stated in this way as a reminder that the statistic 7(X) in the theorem is a
minimal sufficient statistic.

6.2 The Likelihood Principle

In this subsection we study a specific, important statistic called the likelithood func-
tion that also can be used to summarize data. There are many ways to use the
likelihood function but the main consideration in this subsection is an argument
which indicates that if certain other principles are accepted, the likelihood function
must be used as a data reduction device.

Definition: Likelihood Function
Let f(x | @) denote the joint pdf or pmf of the sample X = (X, --+, X,)). Then,
given that X = x is observed, the function of € defined by L(0|x) = f(x|0) is
called the likelihood function.

In this form, it is intuitively that the likelihood function has relationships with the
original distribution function f(x|#). It turns out that our instinct is true. The
comparison between likelihood function implies the comparison between the corresp-
onding probability measures.

Suppose that X is a continuous real-valued random variable with continuous pdf in
x. Then,Ve > 0, Py(x — e < X < x + ¢) is approximately 2ef(x|0) = 2eL(0, x) by
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Pel(X—S<X<X+€) L6, |x)

Po(x—e<X<x+e) L6,]x)
observation into the following remark.
Remark:
Likelihood functions behave very much as the pmf or pdf. The only distinction
is that pdf and pmf f(x | @) consider @ as fixed and x as the variable while the
likelihood functions behave the other way around. I
Fact 6.8: Likelihood Principle
If x and y are two sample points such that L(@ | x) is proportional to L(0]y), i.e.
there exists a constant C such that L(€ | x) = C(x, y)L(0,y)VO € O. Then the
conclusion drawn from x and y are identical.

The likelihood principle specifies how the likelihood function should be used as a
data reduction device. When C(x,y) = 1, the likelihood principle tells us that two
sample points x and y result in the same likelihood function then they convey the
same information about 6. Likelihood principle may go even further, it states that
even if two sample points have only proportional likelihoods, then they contain
equivalent information about 6.

Definition: Evidence
Define an experiment E to be a triple (X, ©, { f(x|0)}), where X is a random
vector with pmf f(x | @) for some € € ©. An experimenter, knowing what
experiment £ was performed and having observed a particular sample X = x,
will make some inference or draw some conclusion about 6. This conclusion
we denote as Ey(E, X ), which stands for the evidence about 6 arising from E
and x.

Fact 6.9: Formal Sufficiency Principle
Consider experiment £ = (X, O, { f(x|#}) and suppose T7'(X) is a sufficient
statistic for . If x and y are sample points such that 7'(x) = T(y) then
Ey(E,x) = Ey/(E,y).

The formal sufficiency principle says that the two experiments are identically the

same once their summarization over the data coincide.

Fact 6.9: Conditionality Principle
Suppose that £, := (X, 0, {fi(x|6)}) and E, := (X,, ©,, { /,(x,]60)}) are two
experiments, where only the unknown parameter € need be common between
the two experiments. Consider the mixed experiment in which the random

1
variable J is observed where P(J = 1) = P(J =2) = ) (independent of

definition. Therefore, . Let us summarize this

0, x;, or x,), and then the experiment E; is performed. Formally, the experiment
performed is E* = (X*,0, { f*(x*|0)}), where X* = (], X;) and

: 1 :
F5*10) = £4(( ) |0) = 5.510). Then, Ey(E*, (], ) = Ey(E;, ).

The conditional principle simply states that if one or two experiments is randomly
chosen and the chosen experiment is done, yielding data x, the information about 6
depends only on the experiment performed. That is, it is the same information as
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would have been obtained if it were decided (non-randomly) to do that experiment
from the beginning, and data x had been observed. The fact that this experiment was
performed, rather than some other, has not increased, decreased, or changed any
knowledge of 0.
Fact 6.10: Formal Likelihood Principle
Suppose that we have two experiments, £, = (X}, ©, {f;(x;16)}) and
E, = (X,,0,, {/,(x,]0)}), where the unknown parameter @ is the same in both
experiments. Suppose that x;* and xJ* are sample points from E, and E,,
respectively such that L(60 | x;k) = C(x*, x;‘)L @| xl*) for all @ and for some
constant C' that may depend on x;* and X3 but not on 0. Then
Ey(E|, x{) = Ey(Ey, XJ).

The formal likelihood principle is different from the likelihood principle we saw
before because the formal likelihood principle concerns two experiments while the
likelihood principle concerns one.

Fact 6.11: Likelihood Principle Corollary
IfE = {X,0,{f(x]|0)}) is an experiment, then Ey(E, x) should depend on E
and x only through L(6, x).

We now state and investigate the Birnbaum’s theorem whose result turns out to be

somewhat surprising.

Theorem 6.12: Birnbaum’s Theorem
Formal Sufficiency Principle + Conditional Principle <& Formal Likelihood
Principle.

Many common statistical procedure violates the formal likelihood principple, hen-
ce by Birnbaum’s Theorem, we are then violating either the sufficiency principle or
the conditional principle. It must be realized that before considering the sufficiency
principle, or the likelihood principle, we must be comfortable with the model.

7.1 Methods of Finding Estimators

This section is divided into two parts. The first part deals with methods for finding
estimators, and the second part deals with evaluating these (and other) estimators. In
general these two activities are intertwined. Often the methods of evaluating estim-
ators will suggest new ones.

Definition: Point Estimator
A point estimator is any function W(X,, -+, X)) of a sample; i.e. any statistic is
a point estimator.

Note that an estimator is a function of the sample, while an estimate is the realized
value of an estimator. It is useful to have some techniques that will at least give us
some reasonable candidates for consideration.

There are four different ways of finding estimators we shall mention in this subs-
ection. They are: the methods of moments, maximum likelihood estimators (MLE),
the Bayes Estimators, and the EM algorithm. We follow this order in introduction.

The method of moments is, perhaps, the oldest method of finding point estimators,
it has the virtue of being quite simple to use and almost always yields some sort of
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estimate. In many cases, unfortunately, this method yields estimators that may be
improved upon. However, it is a good place to start when old methods prove
intractable.
Algorithm 7.1: Methods of Moments
Let X;, ---, X,, be a sample from population with pdf or pmf f(x|6,, ---, 6,).
Methods of moments estimators are found by equating the first k sample
moments to the corresponding k population moments, and solving the resulting
system of simultaneously equatlons More prec1sely, define

mi=y B

The population moments y; will typically be function of 6, -+, 6;, namely
(0, -+, 6;). The method of moments estimators @, -+, 6,) of (0, -+, 8,)

is obtained by solving the following system of equations for (6, -+-, 6;) in
terms of (my, -+, my).

my = (0, -, 6y,

my = w30y, -+, 6y),

my = (0, -+, ).

The method of moments can be very useful in obtaining approximations to the dist-
ribution of statistics. This technique, is sometimes called the moment matching, gives
us an approximation that is based on matching moments of distributions. In theory,
the moments of distribution of any statistics could be matched, however, in practical
terms, it 1s best to have distributions that are similar.

The method of maximum likelihood, on the other hand, is by far the most popular
technique for deriving estimators. Recall that if X, ---, X, are an 1.1.d. sample from a
pupulation with pdf or pmff(x|6,, ---, 6,), the likelihood function is defined by

LO1x) = L@y, -+, Oy, -+, x)—Hf(xwl, 6.

Definition: Maximum Likelihood Estimator (MLE)
For each sample point x, let 9(x) be a paramater value at which L(@|x) attains
its maximum as a function of @, with x fixed. A maximum likelihood estimator
(MLE) of the parameter 8 based on a sample X is é(X ). In short, it is the value
of 6 that maximizes the likelihood function.

Notice that, by this construction, the range of the MLE coincides with the range of
the parameter. We also use the abbreviation MLE to stand for Maximum Likelihood
Estimate when we are talking about the realized value of the estimator. Intuitively, the
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MLE is a reasonable choice for an estimator. The MLE is the parameter point for
which the observed sample is most likely. In general, the MLE is a good point
estimator, processing some of the optimality properties.

It could be a little confusing that how can maximizing over the likelihood function
gives us the best approximation, since intuitively, L(0|x) = f(x|8) is how the likeli-
hood function is defined, how can maximizing the “distribution” raise the probabili-
ty? The key distinction here is that the likelihood function is a function of the
parameters, treating the data as fixed, while the probability distribution is a function
of the data, given specific parameter values. The likelihood function doesn't represent
a probability distribution over data points; it measures the fit between the data and the
parameter values. So, when we talk about maximizing the likelihood, we mean
finding parameter values that make the observed data most probable under the given
statistical model. It's not about making the data itself more probable but rather about
finding the parameter values that make the observed data most consistent with the
assumed model. In other words, maximizing the likelihood is about choosing the
parameter values that align with the data we've observed. It is a way to find the "best-
fitting" parameters that explain the data in a probabilistic sense based on the model
we have specified.

Now the problem turns out to be an “optimization” one. In finding the maximum,
one common practice is to have the first derivative being zero, however, this is a
necessary condition but not a sufficient one. Moreover, the zeros of the first
derivative locate only extreme points in the interior of the domain of a function.
Furthermore, if the extrema occurs at the boundary then the first derivative may not
be 0, thus the boundary points must be checked separately for extrema.

We also wish the translation invariance to be one of the properties of the MLE. It is
unfortunately that sometimes a slightly change of the sample will produce a vastly
change between MLEs, which makes its use suspects.

Let us start with the first problem: finding the global maximum. This is always har-
d since guranteeing the globality is very tedius. Instead of differentiation, one general
technique is taking the global upper bound. Followed from some properties of the
convexity, it turns out that the log MLE, log L(€]|x), which is convex, is easier to
work with, and since the log function is strictly increasing on (0,00), the extrema of
L(0|x) and log L (6 | x) must coincide.

Remark:
If L(0|x) cannot be maximized analytically, it may be possible to use a
computer and maximize L (6 |x) numericall. I

Now for the second problem, a very useful property of MLEs is its invariance pro-
perty. Informally, the invariance property of MLEs says that if 0 is the MLE of 6,
then r(é) is the MLE of 7(8) for some function 7. If the mapping 8 — 7(0) is one-to-
one, then we are done. In this case optimizing over 8 has no difference in optimizing
over 7(6). However, not all functions are one-to-one. Thus we need a more general
theorem and in fact a more general definition of the likelihood function for 7(8).
Definition: Induced Likelihood Function

Define for 7(0) the induced likelihood function L* given by
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L*(n|x):= sup L(@]|x).
{017(0)=n}

The value # that maximizes L*(y | x) will be called the MLE of # = 7(@), and it can
be seen by the definition that the maximum of L* and L coincide. Hence it follows,
no matter bijective or not the 7 is, the translation invariance is always valid.

Theorem 7.2: Invariant Property of MLEs
If § is the MLE of 0, then for any function 7(6), the MLE of 7(8) is r(@).
Proof:
Let 7] be the value that maximizes the induced likelihood function L*(# | x).
WTS I. L*( | x) = L*(z(0) | x).
By definition, the maximum of L and L* coincide, therefore, it follows that
L*(fp|x) =sup sup L(@|x)=supL(@|x)= L(élx),
1 (6lz@)=n) 0
where the last equality is by the definition of 8. On the other hand, we have
L@|x)= sup L(@|x) (@isthe MLE)
{01z(0)=7(0)}
= L*(z(0) | x). (Definition of L*)

Hence, 7(6) is the MLE of 7(6) and the invariance follows.
[
Remark:
The invariance property for MLE is still valid for the multivariate case. |

Note that in most instances, MLE cannot be solved for explicitly and must be foun-
d by numerical methods. When facing such problems, it is often wise to spend a little
extra time investigating the stability of the solution.

Now we move to the discussion of the Bayes Estimators. The Bayesian approach to
statistics 1s fundamentally different from the classical ones. In the calssical approach
to the parameter, €, is thought to be an unknown, but fixed, quanitity. A random
sample X, ---, X, is drawn from a population indexed by € and, based on the

n
observed values in the sample, knowledge about the value of € is obtained. In the

Bayesian approach 6 is considered to be a quantity whose variation can be described
by a probability distribution called the prior distribution, which is based on the
experimenters’ belief. A sample is then taken from a population indexed by € and the
prior distribution is updated with this sample information. The updated prior is called
the posterior distribution.

Note that the posterior distribution is a conditional distribution, conditional upon o-
bserving the sample. The posterior distribution is now used to make statements about
0, which is still considered as a random quantity. For instance, the mean of the
posterior distribution can be used as a point estimate of 6.

In general, for any sampling distribution, there is a natural family of prior distribu-
tions, called the conjugate family.

Definition: Conjugate Family
Let & denote the class of pdfs or pmfs f(x| @) indexed by 8. A class I1 of prior
distributions is a conjugate family for & if the posterior distribution is in the
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class Il Vf € &, all priors in I1, and all x € Q.
Loosely speaking, one may interprete the conjugate family as that it is closed under
taking Bayesian estimators.
Example 7.1: Normal Bayes Estimators
Let X ~ N(0, 6%) and suppose that the prior distribution on € is N(u, 72). Here
we assume that 62, y, and 72 are known. The posterior distribution of @ is also
normal, with mean and variance given by

E@|x) =

N c Var(@|x) o272

12+02x 02+12ﬂ’ e o2+ 12

Notice that Normal families are their own conjugate families.

Again use the posterior mean, we have the Bayes estimator of 8 is E(0 | X).

The Bayes estimator is, again, a linear combination of the prior and the sample

means.
Remark:

Notice that as 72, the prior variance, is allowed to tend to infinity, the Bayes

estimator tends toward the sample mean. We can interpret this as saying that,

as the prior information becomes more vague, the Bayes estimator tends to

give more weight to the sample information. On the other hand, if the prior

information is good, so that 6> > 72, then more weight is given to the prior

mean. I

A last method that we will look at for finding estimators is inherently different in

its approach and specifically designed to find MLEs. Rather than detailing a proc-
edure for solving for the MLE, we specify an algorithm that is guaranteed to
converge to the MLE. This algorithm is called the EM (Expectation-Maximization)
algorithm. It is based on the idea of replacing one difficult likelihood maximization
with a sequence of easier maximizations whose limit is the answer to the original
problem. It is particularly suited to “missing data” problems, as the very fact that
there are missing data can sometimes make calculations cumbersome. However, we
will see that filling in the “missing data” will often make the calculation go more
smoothly.

7.2 Methods of Evaluating Estimators

The methods discussed in the previous subsection have outlined reasonable techni-
ques for finding point estimators of parameters. A difficulty that arises, however, is
that since we can usually apply more than one of these methods in a particular
situation, we are often faced with the task of choosing between estimators. Of course,
it is possible that different methods of finding estimators will yield the same answer,
which makes evaluation a bit easier, but, in many cases, different methods will lead to
different estimators.

The general topic of evaluating statistical procedures is part of the branch of statist-
ics known as decision theory. However, no procedure should be considered until
some clues about its performance have been gathered. In this subsection we introduce
some basic criteria for evaluating estimators, and examine several estimators against
these criteria.
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We first investigate finite-sample measures of the quality of an estimator, beginni-

ng with its mean squared error.

Definition: Mean Squared Error (MSE)
The mean squared error of an estimator W of a parameter 6 is the function of 6
defined by E,(W — 6)2.

The MSE measures the average squared difference between the estimator W and t-
he parameter 8, a somewhat reasonable measure of performance for a point estimator.
For example, any increasing function of the absolute distance | W — 8| would serve
to measure the goodness of an estimator (Mean Absolute Error, for example,
E, (| W—8]), is a reasonable alternative), but MSE has at least two advantages over
the other distance measures:

(1) MSE is quite tractable analytically.
(i1) MSE has the interpretation
Eo(W — 6)? = VargW + (E,W — 0)%:= Var,W + (BiasyW )%

Therefore we derive the concepts “biased” and “unbiased” in a very natural way,

they are defined as follows.

Definition: Bias
The bias of a point estimator W of a parameter € is the difference between the
expected value of W and 6. That is, BiasyW := E,2W — 6.

Definition: Unbiased
An estimator whose bias is identically (in 8) equal to 0 is called unbiased and
satisfies E,W = 0 VO € ©.

MSE incorporates two components, one measuring the variability of the estimator
(precision) and the other measuring its bias (accuracy). An estimator that has good
MSE properties has small combined variance and bias.

To find an estimator with good MSE properties, we need to find estimators that co-
ntrol both variance and bias. Clearly, unbiased estimators do a good job in controlling
bias. For an unbiased estimator, one has E,(W — 0)? = VargW. That is, if the estima-
tor is unbiased, then its MSE equal to its variance.

Remark:
Although many unbiased estimators are also reasonable, controlling bias does
not necessarily control the MSE. In particular, it is sometimes the case that a
trade-off occurs between the variance and the bias in such a way that a small
increase in bias could result in a larger decrease in variance, resulting in an
improvement in MSE. |
Disadvantage: MSE
It can be argued that the MSE, while being reasonable for location parameter,
1s not reasonable to scale parameters since MSE penalizes equally for
overestimation and underestimation, which is fine in the location case; in the
scale case however, 0 1s a natural lower bound, so the estimation is not
symmetric.

In many cases, the MSEs of two estimators will cross each other, showing that ea-
ch estimator is better with respect to the other in only a small portion of the parameter
space. However, even this partial information can sometimes provide guidelines for
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choosing between given estimators. In some worse cases however, only more inform-
ation is gathered but no absolute answer is obtained.

One of the reason is that the class of all estimators is too large as a class. So instead
of stucking in MSE, we have another alternative that is to reduce the size of this
class. A popular way of restricting the class of estimators is to consier only unbiased
estimators.

If W, and W, are both unbiased estimators of a parameter 0, i.e. E,2W, = E,W, = 0
then their MSE are equal to their variances, so we should choose the estimator with
the smaller variance. If we can find an unbiased estimator with uniformly smallest
variance — a best unbiased estimator — then we are done.

Suppose that there is an estimator W* of @ with E,2W* = 7(0) # 0 and we are inte-
rested in investigating the worth of W*. Consider the class of estimators given by

C,. = {W|EW = 17(0)}.
For all the choice of W, W, € C_, Biasy(W,) = Bias,y(W,) so one has
Eo(W; — 0)* — Eo(W, — 0)* = Varg(W;) — Varg(W,)

and MSE comparisons, within the class C,, can be based on variance alone. Thus,
although we speak in terms of unbiased estimators, we really are comparing
estimators with the same expected value 7(8).
Definition: Best Unbiased Estimator (BUE)

An estimator W#* is a best unbiased estimator of 7(0) if it satisfies

E,W* = 7(0)V0, and for any other estimator W with E,2W = 7(0).
Definition: Uniform Minimum Variance Unbiased Estimators (UMVUE)

A BUE W* is said to be a uniform minimum variance unbiased estimator if for

any other estimator W with E,W = 7(0), one always has VaryW* < VaryW V0.

Suppose that, for estimating a parameter 7(6) of a distribution f(x| @), we can spe-
cify the lower bound, say B(@), on the variance of any unbiased estimator of 7(6). If
we can find an unbiased estimator W* such that VargW* = B(0), then we have found
the BUE. This is the approach taken with the use of the Cramér-Rao lower bound.
Theorem 7.3: Cramér-Rao Inequality

Let X;, .-+, X, be a sample with pdf f(x|8), and let W(X) = W(X,, ---, X)) be
any estimator satisfying

: d 0
0 —SEWX) = [Q o5 Y F (x|0)dx

(i) VargW(X) < oo0.
d 2
(Z5EaW(X))
J 2\’

o (2 log £(X10))°)

If we add the assumption of independent samples, the calculatin of the lower boun-
d could be simplified. The expectation in the denominator becomes a univariate
calculation, as the following corollary implies.

Corollary 7.3.1: Cramér-Rao Inequality, 1.1.d. case
Let X;, -+, X,, be an i.i.d. sample with pdf f(x | #) and let

Then VargW(X) >
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W(X) = W(X,, ---, X, be any estimator such that

od e
() —EW(X) = [QX —WOf (x| 0)dx

(i) VargW(X) < 0.
(LEW(X))

o
n[E9<(a% log f(X]0)) )
Note that the Cramér-Rao lower bound does not only work for the continuous ran-

0
dom variables but also the discrete ones. The quantity UE9<(£ log f(X |9))2> is

Then VargW(X) >

called the information number, or Fisher information of the sample. This terminology
reflects the fact that the information number gives a bound on the variance of the
BUE of 0. As the information number increases, the bound on the variance of BUE
gets smaller.

For any differentiable function 7(6), we now have a lower bound on the variance
of any estimator W such that E,2W = 7(0). The bound depends only on 7(€) and
f(x]0) and is a uniform lower bound for the variance. Any candidate estimator
satistying E,W = 7(0) and attaining this lower bound is a BUE of 7(80).

Remark:
Even if the Cramér-Rao is applicable, there is no guarantee that the bound is
sharp. That 1s to say, the value of the Cramér-Rao lower bound may be strictly
smaller than the variance of any unbiased estimator.

In fact, the most we can say by applying Cramér-Rao is that there exists a parame-
ter 7(#) with an unbiased estimator that achieves the Cramér-Rao lower bound;
however, in other typical situations, for other parameters, the bound may not be
attainable. Hence we need results dealing with its attainment.

Corollary 7.3.2: Attainment of Cramér-Rao Lower Bound
Let X{, .-+, X, be i.i.d. f(x | @) where f(x | @) satisfies the conditions of Cramér-
n

Rao Theorem. Let L(0 | x) := H f(x;]16) denote the likelihood function. If
i=1

W(X) = W(X,, ---, X)) is any unbiased estimator of 7(@), then W(X) attains

the Cramér-Rao lower bound if and only if

0
a(0)(W(x) —(9)) = 5 l0gL@10)

for some function a(8).

The attainment of the Cramér-Rao lower bound still leaves some questions unans-
wered. Firstly, what if the f(x| @) does not satisfy the assumptions of the Cramér-
Rao Theorem? Secondly, what if the bound is still unattainable for legal estimators?

One way of answering these questions is to search for methods that are more wide-
ly applicable and yield sharper (i.e. greater) lower bounds. Much research has been
done on this topic, with perhaps the most famous one is Chapman and Robbins
(1951). We leave this to interested readers and we now introduce the study of BUE
from another view, using the concept of sufficiency.
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In the previous discussion, the concept of sufficiency was not used in our search f-
or unbiased estimates. We will now see the consideration of sufficiency is a powerful
tool indeed. The main result of this method relates the sufficient statistic to unbiased
estimate. Recall that EX = [E([E(XI Y)) and VarX = Var([E(Xl Y)) + |E<Var(X| Y)).
Theorem 7.4: Rao-Blackwell

Let W be any unbiased estimator of 7(€) and let T be a sufficient statistic for 6.
Define ¢(T) := E(W |T). Then
()  Egp(T) = 7(0).
(i)  Vargp(T) < VargW Vo.
That is , @(T') is a uniformly better unbiased estimator of 7(0).
Therefore, conditioning any unbiased estimator on a sufficient statistic will result in
a uniform improvement, so we need consider only statistics that are functions of a
sufficient statistic in our search for best unbiased estimator.

In fact, conditioning on anything will result in an improvement, but the problem is
that the resulting quantity will probably depend on 6 and therefore not be an estima-
tor.

We now state and prove a powerful result stating that a best unbiased estimator is
unique.

Theorem 7.5:
If W is a best unbiased estimator of 7(6) then W is unique.
Proof:
Suppose that W’ is another best unbiased estimator, and consider the estimator

1
W* = E(W+ W’). Note that E,W* = 7(0) and
1 1 1 1 1
VargW#* = Varg(EW + EW/) = ZVargW + ZVargW’ + ECOVQ(W, W")

1 1 1 1
< ZVargW + ZVargW’ + 3 (VargW- VargW’) > (Cauchy-Schwartz)

= VaryW. (VargW = VaryW’ by assumption)
But if the above inequality is strict, then the best unbiasedness of W is
contradicted, so we must have equality for all 6. Since the inequality is an
application of Cauchy-Schwartz we can have equality only if
W' = a(0)W + b(8). Now applying properties of covariance, we have
Covy(W, W') = Covyg(W,a(0)W + b(6))
= Varg(W,a(0)W) = a(0)VarygW,
but Covy(W, W’) = VaryW hence a(f) = 1. Since E,W’ = 7(60) we must have
b(0) = 0 therefore W = W’, uniqueness follows.
[]
To see when an unbiased estimator is best unbiased, we might ask how could we
improve upon a given unbiased estimator? The relationship of an unbiased estimator
W with unbiased estimators of 0 (i.e. E,U = 0V0) is crucial in evaluating whether W

is best unbiased. This relationship, in fact, characterizes the best unbiasedness.
Theorem 7.6:
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If E,W = 7(0), W is the best unbiased estimator of 7(6) < W is uncorrelated
with all unbiased estimators of 0.

Remark: Random Noise
Note that an unbiased estimator of 0 is nothing more than random noise; 1.e.
there is no information in an estimator of 0. Therefore, if an estimator could be
improved by adding random noise to it, the estimator probably is defective. ||

Although we now have an interesting characterization of BUEs, its usefulness is li-
mited in application. It is often a difficult task to verify that an estimator is uncorrela-
ted with all unbiased estimators of O since it is usually difficult to describe all
unbiased estimators of 0.

It is worthwhile to note once again that what is important is the completeness of th-
e family of distributions of the sufficient statistic. Completeness of the original family
is of no consequence. This follows from the Rao-Blackwell Theorem, which says that
we can restrict attention to functions of a sufficient statistic, so all expectations will
be taken with respect to its distribution.

We sum up the relationship between completeness and best unbiasedness in the fol-
lowing theorem.

Theorem 7.7:
Let T be a complete sufficient statistic for a parameter 6 and let ¢ (T") be any
estimator based only on 7. Then ¢(T) is the unique BUE of its expected value.

In many situations, there will be no obvious candidate for an unbiased estimator of
a function 7(€), much less a candidate for BUE. However, in the presence of comple-
teness, Theorem 7.7 tells us that if we can find any unbiased estimator, then we can
find the best unbiased estimator.

Theorem 7.8: Lehmann-Scheffé
Unbiased estimators based on complete sufficient statistics are unique.

The last method we introduce in this subsection is the loss function optimality. So
far, our evaluations of point estimators have been based on their MSE, which is a
special case of a function called a loss function. The study of the performance, and
the optimality, of estimators evaluated through loss functions is a branch of decision
theory.

Definition: Action Space
After the data X = x is observed, where X ~ f(x|8) for 8 € ©, a decision
regarding 6 is made. The set of all allowable actions are then called the action
space, denoted as <.

Remark:
Often in point estimation problems & is equal to ®, the parameter space, but
this will change in other problems such as hypothesis testing. |

The loss function in a point estimation problem reflects the fact that if an action a
is close to @, then the decision a is reasonable and little loss is incurred. Therefore the
loss function is a nonnegative function that generally increases as the distance
between a and 6 increases. If 6 is real-valued, two commonly used loss functions are

Absolute Error Loss, L(8,a) = |a — 0],
and
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Squared Error Loss, L(0,a) = (a — 0).
Definition: Risk Function
In a loss function or decision theoretic analysis, the quality of an estimator is
quantified in its risk function; i.e. for an estimator 6(x) of @, the risk function, a
function, a function of , is R(0, ) := E,L(0, 6(X)).

Since the true value of @ is unknown, we would like to use an estimator that has a
small value of R(6, &) for all values of 6. This would mean that, regardless of the true
value of @, the estimator will have a small expected loss. If the qualities of two
different estimators, 6; and 6,, are to be compared, then they will be compared by
comparing their risk functions R(8, 6,) and R(6,6,). If R(0,6,) < R(6, 5,) for all &
then 6, 1s preferred. More typically, the two risk functions will cross. Then the
judgement as to which estimator is better may not be so clear-cut.

8.1 Methods of Finding Hypothesis Tests

We have studied in last section a method of inference called point estimation. Now
we move to another inference method called the hypothesis testing. We follow the
same structure as we did in the last section to start with finding and then evaluating.
Definition: Hypothesis

A hypothesis is a statement about a population parameter.

The definition of a hypothesis is rather general, but the improvement point is that a
hypothesis makes a statement about the population. The goal of a hypothesis test is to
decide, based on a sample from the population, which of two complementary
hypotheses is true.

Definition: Null and Alternative Hypothesis
The two complementary hypotheses in a hypothesis testing problem are called
the null hypothesis and the alternative hypothesis. They are denoted by H,, and
H,, respectively.

In a hypothesis testing problem, after observing the sample the experimenter must
decide either to accept H, as true or to reject H,, as false and decide H| is true.
Definition: Hypothesis Testing Procedure/ Hypothesis Test

A hypothesis testing procedure or hypothesis test is a rule that specifies
(1)  For which sample values the decision is made to accept H,, as true.
(1)  For which sample values H,, 1s rejected and H, is accepted as true.

The subset of the sample space for which H,, will be rejected is called the rejection
region or critical region. The complement of the rejection region is called the accepta-
nce region.

The likelihood ratio method of hypothesis testing is related to the maximum likeli-
hood estimators and likelihood ratio tests are as widely applicable as maximum
likelihood estimation. Recall that if X, ---, X, 1s a random sample from a population
with pdf or pmf f(x | @) (6 may be a vector), the likelihood function is defined as

n

L©O|x;, - x,) = LO]x) =f(x|0) = [ | F(xi ).
i=1
Let ® denote the entire parameter space. Likelihood ratio tests are defined as follows.
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Definition: Likelihood Ratio Test Statistic
The likelihood ratio test statistic for testing Hy, : 0 € © versus H, : 6 € O is
SUpg, L(@|x)

Alx) = .
supg L(0|x)
Definition: Likelihood Ratio Test (LRT)
A likelihood ratio test (LRT) is any test that has a rejection region of the form
{x|A(x) < c} where c is any constant such that 0 < ¢ < 1.

Recall that in the MLE, the maximization of the likelihood function is, not about
making the data itself more probable but rather about finding the parameter values
that make the observed data most consistent with the assumed model. The motivation
for the LRT is quite the same.

It coule be best interpreted in the situation in which f(x | @) is a pmf of a discrete -
andom variable. In this case, the numeraotr is maximized over the whole parameter
space ® while the denominator is maximized over the ®. The less the ratio is shows
that more consistent our model is.

Connectio with MLEs:
If we think of maximizing over both the entire parameter space and a subset of
the parameter space, then the correspondence between the LRTs and MLEs
become very clear. Suppose that 0, an MLE of 0, exists; 0 is obtained by doing
an unrestricted maximization of L(8 | x). We can also consider the MLE of 6,
call I éo: obtained by doing the restriced maximization, assuming that ® is the
parameter space. That is, 90 = 9O(x) is the value of 6 € O, that maximizes

o L6 x)
L(0|x). Then, the LRT statistics is given by A(x) = ————.
L(@]x)

For a sufficient statistic of a random sample X, namely 7'(X ), we know that all the
information about 6 could be found in 7/(X), the test based on 7 should be as good as
the test based on the complete sample X. In fact, the tests are equivalent.

Theorem 8.1:
If T(X) is a sufficient statistic for 8 and A*(¢) and A(x) are the LRT statistics
based on 7" and X, respectively. Then A*(T'(x)) = A(x) Vx € Q.

Proof:
According to the Factorization Theorem, the pdf or pmf of X can be written
as f(x|0) = g(T(x)|0)h(x), where g(t|0) is the pdf or pmf of T and A (x) does
not depend on 6. Thus,

supe, L(O]x)  supg, f(x]0)

supe L(]x) ~ supe f(x]6)
supe, £(T(0) | 0)h(x) o
= (T 1s sufficient)
supg g(T(x) | 0)h(x)
supg, &(T'(x)|0)
= (h does not depend on 6)
supg g(T'(x)|0)

Ax) :=
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_ supg, L*(O| T(x)) |
= (g 1s the pdf or pmf of 7T)
supg L*(0| T(x))

=: A*¥(T(x)).

[

Now we move to the Bayesian tests. One way a Bayesian hypothesis tester may ch-
oose to use the posterior distribution is to decide to accept H,, as true if
PO € 0,|X) > PO € 65| X)
and to reject H,, otherwise. In the terminology of the previous sections, the test statist-
ic, a function of the sample, is P(6 € ©;|X) and the rejection region is given by

1
{x| P € 0y|x) > E} Alternatively, if the Bayesian hypothesis testers wish to

guard against falsely rejecting H,, he must decide to reject Hy, only if P(6 € O] X)
is greater than some certain large number, say, 0.99.

In some situations, tests for complicated null hypothesis can be developed from te-
sts for simpler null hypothesis. We will discuss two methods to close this subsection.
Algorithm 8.2: Union-Intersection Method

The Union-Intersectio method of test construction might be useful when the
null hypothesis is conveniently expressed as an intersection. Namely,
H,:0¢€ ﬂ ©,, where I is an arbitrary index set. Suppose that tests are

yel
available for each of the problems of testing H;,, : 6 € ©, versus H}, : 0 € ©

Say the rejection region for the test of Hy, is {x | T,(x) € R,}. Then the

c
v

rejection region for the union-intersection test is U {x|T,(x) €R,}.
yell

The rationale is simple. If any one of the hypothesis H,,, is rejected then H, should
be rejected. On the other hand, H; is true only if each of the hypothesis H, is

accepted as true.

In some cases a simple expression for the rejection region of a Union-Intersection
test can be found. In particular, suppose that each of the individual test has a rejection
region of the form {x|7,(x) > c}, where ¢ does not depend on . The rejection region

for the union-intersection test can be expressed as
U {x|T,(x) > ¢} = {x|sup T,(x) > c}.

yel rer
Thus the test statistic for testing Hy is T(x) = sup Ty(x).
yell

The Union-Intersection method of test construction is useful if the null hypothesis
is conveniently expressed as an intersection. Another method, the Intersection-Union
method, may be useful if the null hypothesis is conveniently expressed as a union.
Algorithm 8.3: Intersection-Union Method

Suppose we wish to test the null hypothesis H, : 0 € U ®,. Suppose that for
yell
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eachy €T, {x|T,(x) € R,} is the rejection region for a test of H, : 0 € O,
versus H,, : 6 € ©). Then the rejection region for the Intersection-Union test

of H, versus H, is ﬂ {x|T,(x) € R,}. H is false if and only if all of the H,), is
yel'
false, so H; can be rejected if and only if each of the individual hypothesis H,),
can be rejected.
Again, the Intersection-Union test can be greatly simplified if the rejection regions
for the individual hypothesis are all of the form {x| T,(x) = c}, where ¢ is indepen-

dent of y. In such cases, the rejection region of H, is
(N (*IT,00 2 ¢} = {x] inf T,(x) >},
yer yel’

Here, the Intersection-Union test statistic is inf 7 (x), and the test rejects H,, for large
yell

values of this statistic.

8.2 Methods of Evaluating Tests

In deciding to accept or reject the null hypothesis H,, an experimenter might be m-
aking a mistake. Usually, hypothesis tests are evaluated and compared through their
probabilities of making mistakes. In this subsection we discuss how these error
probabilities can be controlled. In some cases, it can even be determined which tests
have the smallest possible error probabilities.

We will go through five methods in this subsection, they are: (1) Error Probabiliti-
es and Power Function, (2) Most Powerful Tests, (3) Sizes of Union-Intersection and
Intersection-Union Tests, and (4) p-Values. We now start with the first one.

A hypothesis test of Hj, : 0 € O, versus H| : 6 € O might make one or two types
of errors. These two types of errors traditionally have been given the names Type I
Error and Type II Error.

Definition: Type I Error
If 8 € O, but the hypothesis test incorrectly decides to reject H,,, then the test
has made a Type I Error.

Definition: Type II Error
If 0 € O but the hypothesis test incorrectly decides to accept Hy, then the test
has made a Type II Error.

Suppose that R denotes the rejection region for a test. Then for 6 € O, the test wi-
Il make a mistake if x € R, so the probability of a Type I Error is Py(X € R). For
0 € Oy, the probability of a Type II Error is P,(X € R®). This switching from R to R®

is a bit confusing but if we realize that Py(X € R°) = 1 — Py(X € R). This consider-
ation leads to the following definition of the power function.
Definition: Power Function
The power function of a hypothesis test with rejection region R is the function
of 6 defined by
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robability of a Type I Error, 0 € ®
B(O) = P,X € R) = {p yora P 0

Remark:
The ideal power function is 0 VO € O and 1 VO € ©. Except in trivial
situations, this ideal cannot be attained. Qualitively, a good test has power
function near 1 for most 6 € O and near 0 for most 6 € O, I

Typically, the power function of a test will depend on the sample size n. If n can be
chosen by the experimenter, consideration of the power function might be helpful in
determining what sample size is appropriate for an experiment.

For a fixed sample size, it is usually impossible to make both types of error proba-
bilities arbitrarily small. In searching for a good test, it is common to restrict conside-
ration to tests that control the Type I Error probability at a specified level. Within this
class of tests we then search for tests that have Type Il Error probability that is as
small as possible. The following two terms are useful when discussing tests that
control Type I Error probabilities.

Definition: Size a Test
For 0 < a < 1, a test with power function $(8) is a size a test if
sup f(0) = a.
€0,
Definition: Level a Test
For 0 < a < 1, a test with power function (8) is a size a test if

sup f(0) < a.
0€0,

Some authors do not make distinction between these two definitions. We made the
distinction here to stress out the fact that sometimes having a size a test is difficult, so
in practical terms, one should make compromises with the alternative level a test.
Remark:

Typical a level tests use @ = 0.01, 0.05, and 0.10, but be aware that in fixing
the level a test, the experimenter is controlling only the Type I Error. An
LRT is one rejects Hy if A(X) < ¢, for example. I

Other than a levels, there are other features of a test that might also be of concern.
For example, we would like a test to be more likely to reject H;) if & € O than if
0 € 0. This property is called unbiased.

Definition: Unbiased Power Function
A test with power function () is unbiased if $(6") > p(0")V0’ € O and
Vo' € 0,.

In most problems there are many unbiased tests. Likewise, there are many size o
tests, LRTs, etc. In some cases we have imposed enough restrictions to narrow the
consideration to one test. In other cases there remain many tests from which to
choose. We discussed only the one that rejects H, for large values of 7. In the

following discussion we will discuss other criteria for selecting one out of a class of
tests, criteria that are all related to the power functions of the tests.

one minus the probability of a Type Il Error, 0 € ©f
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We have seen that the a tests could control the probability of a Type I Error, i.e. le-
vel a tests have Type I Error probabilities at most a for all 6 € ®,. A good test in
such a class would also have a small Type II Error probability, i.e. a large power
function for & € O, If one test has a smaller Type II Error probability than all other
tests in the class, it would certainly be a strong contender for the best test in the class,
a notion that is formalized in the next definition.

Definition: Uniformly Most Powerful (UMP) Test
Let € be a class of tests for testing H,, : € € O versus H; : 0 € ©. A test in

class &, with power function (), is a uniformly most powerful class & test
if f(0) > p'(0)VO € Ojand V' € 6.

In this subsection, the class & will be the class of all level a tests. The test describ-
ed in the above definition is then called a UMP level a test. For this test to be
interesting, restriction to the class € must involve some restriction on the Type I
Error probability. A minimization of the Type II Error probability without some
control of the Type I Error is not very interesting.

The requirements in this definition are so strong that UMP does not exist in many
realistic problems. But in problems that have UMP tests, a UMP test might well be
considered the best test in the class. Thus, we would like to be able to identify UMP
tests if they exist. The following famous theorem clearly describes which tests are
UMP level a tests in the situation where the null and alternative hypotheses both
consist of only one probability distribution for the sample.

Theorem 8.4: Neymann-Pearson Lemma

Consider testing H, : 8 = 6, versus H, : 8 = 8, where the pdf or pmf

corresponding to 6, is f(x|6;), i = 0,1, using a test with rejection region R such

that

i) x€ER, iff(x|0)) > kf(x|6y),

(i) xe€R, iff(x]6) <kf(x|6y).

forsome k > O0and a = IPQO(X € R). Then

(a)  Any test that satisfies (i) and (i1) is a UMP level a test.  (Sufficiency)

(b)  If there exists a test satisfies (i) and (ii) with £ > 0, then every UMP
level a test is a size a test and every UMP level a test satisfies the first
condition except perhaps on a set with probability measure 0, i.e. on a
set A such that Py (X € A) = Py (X € A) = 0. (Necessity)

The following corollary connects the Neyman-Pearson Lemma to sufficiency.
Corollary 8.4.1:

Under the same settings as in Theorem 8.4. Suppose that 7'(X) is a sufficient
statistic for @ and g(z | 8;) is the pdf or pmf of T corresponding to 6; for i = 0,1.
Then any test based on 7" with rejection region S is a UMP level a test if it
satisfies

(1) €S, ifgt|6) > kg(t|6y),

(2) 1€S%ifgt|0)) < kg(t|6y),

for some k > 0, where a = Py (T € S).
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Hypotheses, such as H, and H, in the Neyman-Pearson Lemma, that specify only
one possible distribution for the sample X are called simple hypotheses. In most
realistic problems however, the hypotheses of interest specify more than one possible
distribution for the sample. Such hypotheses are called composite hypotheses. Since
the definition of UMP requires the test to be most powerful against each individual
0 € O, the Neyman-Pearson Lemma can be used to find UMP tests in problems
involving composite hypotheses.

In particular, hypotheses that assert that a univariate parameter is large, for exampl-
e, H:0 >0, orsmall, e.g. H: 0 < 0,, are called one-sided hypotheses. Hypotheses
that assert that a parameter is either large or small, e.g. H : 8 # 6,, are called two-
sided hypotheses. A large class of problems that admit UMP level a test involve one-
sided hypotheses and pdfs or pmfs with the monotone likelihood raito property,
which is given below.

Definition: Monotone Ratio Likelihood Ratio (MLR)
A family of pdfs or pmfs {g(¢|0)|6 € O} for a univariate random variable T
with real-valued parameter 6 has a monotone likelihood ratio (MLR) if, for
every 6, > 6,, g(t|6,)/g(t]6,) is monotone (nonincreasing or nondecreasing)
function of  on {r| g(¢]|6,) > O or g(¢|6,) > 0}. Note that ¢/0 is defined as oo
if0 < c.

Many common families of distributions have an MLR. For example, the normal (k-
nown variance, unknown mean), the Poisson, and binomial all have an MLR. Indeed,
any regular exponential family with g(¢|0) = h(t)c(0)e"®" has an MLR if w(0) is a
nondecreasing function.

Theorem 8.5: Karlin-Rubin
Consider testing H,, : 6 < 6, versus H; : 6 > 6,. Suppose that T is a sufficient
statistic for € and the family of pdfs or pmfs {g(z|0) |6 € O}of T has an MLR
then for any £, the test that rejects H, < T > 1, is a UMP level a test where
o= IP’@O(T > 1)

By an analogous argument, it can be shown that under the conditons of Karlin-
Rubin, the test that rejects Hy: 0 > 0, in favor of H,: 0 < 6, © T <, is a UMP
level a test with a = IP’@O(T < 1p).

Now we move to the third topic in this subsection. Recall that because of the simp-
le way in which they are constructed, the sizes of union-intersection tests (UIT) and
intersection-union tests (IUT) can often be bounded above by the sizes of some other
tests. Such bounds are useful if a level a test is wanted, but the size of UIT or IUT is
too difficult to evaluate. We now discuss these bounds.

First consider UITs. Recall that in this situation, we are testing a null hypothesis of
the form H,: 0 € ©,, where O, := ﬂ('*)y. To be specific, let 4,(x) be the LRT

yell
statistic for testing H,, : 0 € ©, versus H,, : 6 € 0}, and let A(x) be the LRT statistic

for testing Hy, : 0 € © versus H| : 6 € 0. Then we have the following relationships
between the overall LRT and the UIT based on 4,(x).
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Theorem 8.6:
Consider testing Hy : 0 € © versus H; : 0 € Oj where O, := ﬂ 0, and 1,(x)
yell

is defined as above. Define T'(x) := inf 4,(x), and form the UIT with rejection
yell

region {x|1,(x) < ¢ forsomey € I'} = {x|T(x) < c}. Also consider the usual

LRT with rejection region {x|A(x) < c}. Then

(@) T(x) > A(x) for all x.

(b) If fr(x) and B,(x) are the power functions for the tests based on 7 and 4,
respectively, then f(0) < 5,(0) for every 0 € ©.

(c) Ifthe LRT is a level a test, then the UIT is a level « test.

Since the LRT is uniformly more powerful in the above theorem than UIT, we mig-
ht ask why we should use the UIT. One reason is that UIT has a smaller Type I Error
probability for every 8 € ©,. Moreover, if H,, is rejected, we may wish to look at the
individual tests of H), to see why, for which UIT provides us an access.

We now investigate the sizes of IUTs. A simple bound for the size of an IUT is rel-
ated to the sizes of the individual tests that are used to define the IUT. Recall that in
this situation the null hypothesis is expressible as a union, i.e. we are testing

Hy: 0 € O, versus H, : 0 € ©F, where ©) = |_]©,
yel’
An IUT has a rejection region of the form R = ﬂ R, where R, is the rejection region
yell
foratestof Hy, : 0 € ©,.
Theorem 8.7:
Let a, be the size of the test of H),, with rejection region R,. Then the TUT with

rejection region R = ﬂ R, isalevel @ = sup a, test.
yel yell
Typically, the individual rejection regions R, are chosen so that @, = a Vy. In such

a case, Theorem 8.7 states that the resulting IUT is a level a test. Moreover, this
theorem provides an upper bound for the size of an IUT, is somewhat more useful
than Theorem 8.6, which provides an upper bound for the size of a UIT.
Remark:
Theorem 8.6 applied only to UITs constructed from LRTs while Theorem 8.7
applies to any IUT. |
The bound in Theorem 8.6 is the size of the LRT, which, in a complicated proble-
m, may be difficult to compute. In Theorem 8.7 however, the LRT need not be used

to obtain the upper bound. Any test H),, with unknown size @, can be used, and then

the upper bound on the size of the IUT is given in terms of the known sizes @,y € I

After a hypothesis test is done, the conclusions must be reported in some statistic-
ally meaningful way. One method of reporting the results of a hypothesis test is to
report the size, a, of the test used and the decision to reject H;y or accept H,,. The size
of the test carrise important information. If « 1s small, the decision to reject H, 1s
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fairly convincing, but if a is large, the decision to reject H;, 1s not very convincing
since the test has a large probability of incorrectly making that decision. Another way
of reporting the results of a hypothesis test is to report the value of a certain kind of
test statistic called a p-value.
Definition: p-Value
A p-value p(X) is a test statistic satisfying 0 < p(x) < 1 for every sample
point x. Small values of p(X) give evidence that H, is true. A p-value is valid
if Vo € Opandevery 0 <a <1, Py(p(X) < a) L .

If p(X) is valid it is then easy to construct a level a test based on p(X). The test
that rejects H,, if and only if p(X) < a is a level a test. An advantage to reporting a
test result via a p-value is that each reader can choose the o and then can compare the
reported p(x) to a and know whether these data lead to acceptance or rejection of H,,.
Morover, the smaller the p-value, the stronger the evidence for rejecting H,,. Hence, a
p-value reports the results of a test on a more continuous scale, rather than just
accepting H,, or Rejecting H,,.

The most common way to define a valid p-value is given by the following result.
Theorem 8.8:
Let W(X) be a test statistic such that large values of W give evidence that H| 1s

true. For each sample point x, define p(x) = sup Py(W(X) > W(x)). Then,
6€0,

p(X) is valid.

9.1 Methods of Finding Interval Estimators

We have seen in Section 7 for the inference of a single value as the value of 6. In
this subsection we focus on extending this concept to an interval. As before, this
section is divided into two parts, in Section 9.1 we introduce the methods of finding
interval estimators and in Section 9.2 we shall talk about the methods in evaluating
them.

Definition: Interval Estimate, Interval Estimator
An interval estimate of a real-valued parameter € is any pair of functions,
L(x, -+, x,) and U(xy, -+, x,)), of a sample that satisfy L(x) < U(x) Vx € Q.
If X = x is observed, the inference L(x) < 6 < U(x) is made. The random
interval (L(X ), UX )) is called an interval estimator.

The purpose of using an interval estimator rather than a point estimator is to have
some guarantee of capturing the parameter of interest. The certainty of this guarantee
is quantified in the following definitions.

Definition: Coverage Probability
For an interval estimator (L(X ), UX )) of a parameter 6, the coverage

probability of (L(X), U(X)) is the probability that the random interval
(L(X ), UX )) covers the true parameter 6. In symbols, it is denoted by either
Py(0 € (LCO,UC)) ) or P (0 € (LXO,UCO) |0).

Definition: Confidence Coefficient
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For an interval estimator (L(X ), UX )) of a parameter 6, the confidence
coefficient of (L X), UX )) is the infimum of the coverage probability, i.e.

inf Po( (LOO,UC)) ).

Interval estimators together with a measure of confidence (usually a confidence co-
efficient) are sometimes called confidence intervals. A confidence set with confidence
coefficient equal to some value, say 1 — @, is simply called a 1 — a confidence set.

There is a very strong correspondence between hypothesis testing and interval esti-
mation. In fact, we can say in general that every confidence set corresponds to a test
and vice versa.

The hypothesis test fixes the parameter and asks what sample values (the acceptan-
ce region) are consistent with the fixed value. The confidence set fixes the sample
and asks what parameter values (the confidence interval) make this sample value
most plausible. This correspondence between acceptance region and confidence
intervals hold in general. We state it in the following theorem.

Theorem 9.1:
For each 6, € 0O, let A(6,) be the acceptance region of a level a test of
H, : 0 = 6,. For each x € Qy define C(x) := {6,]6, € A(x)}. Then the
random set C(X) is a 1 — a confidence set. Conversely, let C(X)bea l — a
confidence set. For any 6, € © define A(6,)) = {x|6, € C(x)}. Then A(f, is
the acceptance region of a level a test of Hy : 6 = 6.

Note that the coverage probability for {aX,bX} and {X + ¢, X + d} are different
for a, b, c,and d constants. One important difference is that the coverage probability
of the interval {a X, bX} could be expressed by the quantity X /60, a random variable
whose distribution does not depend on the parameter, while {X + ¢, X + d} depends
on 6. The quantity X /6 is known as a pivotal quantity, or simply pivot.

Definition: Pivot
A random variable Q(X,0) = Q(X,, -+, X,,, 0) is a pivot if the distribution of
Q(X, 0) is dependent on all parameters. That is, if X ~ F(x|@) then Q(X, 0)
has the same distribution for all values of 6.
Theorem 9.2: Pivoting a Continuous CDF
Let T be a statistic with continuous cdf Fi(¢|0). Let a; + a, =: a with
0 < a < 1 be fixed values. Suppose that for each t € T, the functions 6, ()
and 0;,(7) can be defined as follows:
(i) If Fy(¢]0) is a decreasing function of @ for each ¢, define 6, (r) and 6;,(t)
by Fy(t|0,(1)) = ayand F(¢|0,(1)) = 1 — a,.
(i)  If Fp(¢] @) is an increasing function of @ for each ¢, define 6, () and
Oy(1) by Fr(t|0y(1)) = 1 — a, and Fy(2]6,(2)) = a;.
Then the random inverval (QL(T), QU(T)) is a 1 — a confidence interval for 6.
Theorem 9.3: Pivoting a Discrete CDF
Let T be a discrete statistic with cdf Fip(¢|0) = P(T <t|0). Leta; + a, =: a
with O < a < 1 be fixed values. Suppose that for each ¢t € I, the functions
0, (t) and ;,(¢) can be defined as follows:
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(i) IfFy(¢]8) is a decreasing function of @ for each ¢, define 6, (¢) and 6;,(t)
by P(T < t|6y(t)) = a; and P(T > t]6,(1)) = a,.

(i) If Fp(¢] @) is an increasing function of € for each ¢, define 6, (¢) and
Oy () by P(T > t|0y(t)) = ayand P(T <t 6,(2)) = a,.

Then the random inverval (QL(T), 9U(T)) is a 1 — a confidence interval for 6.

9.2 Methods of Evaluating Interval Estimators
Directly from the definition of the interval estimator, we could tell that with the

smaller the “length” is, we have a better estimator; on the other hand, if the interval
covers the parameter with high probability, we can say the estimator is good.
Therefore there are two scales to describe the performance of the estimators.
Definition: Unimodal

A pdf f(x) is unimodal if there exists x* such that f(x) is nondecreasing for

x < x* and f(x) is nonincreasing for x > x*.
Theorem 9.4:

Let f(x) be a unimodal pdf. If the interval [a, b] satisfies

b
(1) J' fx)dx=1-a.
(i) f(a) =f(b) > 0.

(i) a < x* < b, where x* is a mode of f(x).
Then [a, b] is the shortest among all intervals that satisfies (i).

In some cases, especially when working outside of the location problem, we must
be careful in the application of this theorem. In scale cases in particular, the theorem
may not directly applicable, but a variant may be.

Since there is a one-to-one correspondence between confidence sets and tests of h-
ypothese, there is some correspondence between optimality of tests and optimality of
confidence sets. Usually, test-related optimality properties of confidence sets do not
directly relate to the size of the set but rather to the probability of the set covering
false values.

The probability of covering false values, or the probability of false coverage, indir-
ectly measures the size of a confidence set. Intuitively, smaller sets cover fewer
values and, hence, are less likely to cover false values.

Definition: Uniformly Most Accurate (UMA) Confidence Set
A 1 — a confidence set that minimizes the probability of false coverage over a
class of I — a confidence set is called a uniformly most accurate (UMA)
confidence set.

Theorem 9.5: UMA Lower Confidence Bound
Let X ~ f(x|0) where 0 is a real-valued parameter. For each 6, € ©, let
A*(0,) be the UMP level a acceptance region of a test of H;, : 6 = 0, versus
H, : 0 > 0,. Let C*(x) be the 1 — a confidence set formed by inverting the

UMP acceptance regions. Then for any other 1 — a confidence set C,
Py(0' € C*(X)) < Py@ € C(X)) forall 0’ < 0.
Definition: Unbiased

Page 71 of 73



A1 — a confidence set C(x) is unbiased if Py(0' € C(X)) <1 —a VO # 0.
Sets that minimize the probability of false coverage are called Neyman-shortest.
The fact that there is a length connotation to this name is somewhat justified by the
following theorem.
Theorem 9.6: Pratt
Let X be a real-valued random variable with X ~ f(x| @) where 0 is a real-
valued parameter. Let C(x) = (L(X ), UX )) be a confidence interval for 0. If

L(x) and U(x) are both increasing functions of x, then for any value 6%,

Ey- (Length(C(X))) = J Py«(0 € C(X))do.
00

The result is that the expected length of C(x) is equal to a sum (integral) of the pro-
babilities of the false coverage, the integral being taken over all false values of the
parameter 6.

The goal of obtaining a smallest confidence set with a specified coverage probabil-
ity can also be attained using Bayesian criteria. If we have a posterior distribution
(0| x) the posterior distribution of @ given X = x, we would like to find the set C(x)
that satisfy

(1) J 7(@|x)dx =1—-a,
C(x)

(i) Size(C(x)) < Size(C'(x)),

for any set C'(x) satisfying n(@|x)dx > 1 — a. If we take our measure of size
C'(x)
to be length, then we apply Theorem 9.4 and obtain the following result.
Corollary 9.7:
If the posterior density 7z (8| x) is unimodal, then for a given value of a, the
shortest credible interval for 8 is given by

{0|7(0|x) > k} where r(@|x)df =1 - a.
{017(01x)=k}
The credible set in this corollary is called a highest posterior density (HPD) region,
as it consists of the values of the parameter for which the posterior density is highest.
Notice the similarity in form between the HPD region and the likelihood region.
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