
Lecture Notes on Statistical Inference

Tianyu Zhang 
1

	 	 Table of Contents:

	 	 1 Probability Theory

	 	 	 1.1 Set Theory

	 	 	 1.2 Basic of Probability Theory

	 	 	 1.3 The Calculus of Probabilities

	 	 	 1.4 Conditionaly Probability

	 	 	 1.5 Random Variables

	 	 2 Transformations and Expectations

	 	 	 2.1 Distributions of Functions of a Random Variable

	 	 	 2.2 Expected Values

	 	 	 2.3 Moments and Moment Generating Functions

	 	 	 2.4 Differentiabting under an Integral Sign

	 	 3 Common Families of Distributions

	 	 	 3.1 Discrete Distributions

	 	 	 3.2 Continuous Distributions

	 	 4 Random Vectors

	 	 	 4.1 Joint and Marginal Distributions

	 	 	 4.2 Conditional Distributions and Independence

	 	 	 4.3 Bivariate Transformations

	 	 	 4.4 Hierarchical Models and Mixture Distributions

	 	 	 4.5 Covariance and Correlation

	 	 	 4.6 Multivariate Distributions

	 	 	 4.7 Inequalities

	 	 5 Properties of Random Samples

	 	 	 5.1 Basic Concepts of Random Samples

	 	 	 5.2 Sampling from the Normal Distributions

	 	 	 5.3 Convergence Concepts

	 	 6 Principles of Data Reduction

	 	 	 6.1 The Sufficiency Principle

	 	 	 6.2 The Likelihood Principle

	 	 7 Point Estimation

	 	 	 7.1 Methods of Finding Estimators

	 	 	 7.2 Methods of Evaluating Estimators

	 	 8 Hypothesis Testing

	 	 	 8.1 Methods of Finding Hypothesis Tests

	 	 	 8.2 Methods of Evaluating Tests

	 	 9 Interval Estimation

	 	 	 9.1 Methods of Finding Interval Estimators

	 	 	 9.2 Methods of Evaluating Interval Estimators

	 	 Reference


 BIMSA, bidenbaka@gmail.com1

Page  of 1 73

mailto:bidenbaka@gmail.com


1.1 Set Theory

    One of the main objectives of statistics is to draw conclusions about a population 
of objects by conducting an experiment. The first step in this endeavor is to identify 
the possible outcomes or, in statistical terminology, the sample space.

Definition: Sample Space

	 The set, , of all possible outcomes of a particular experiment is called the 

	 sample space for the experiment.

    Once the sample space has been defined, we are in a position to consider collectio-
ns of possible outcomes of an experiment.

Definition: Event

	 An event is any collection of possible outcomes of an experiment, i.e. any 

	 subset of . 

    Let  be an event, i.e. a subset of . Note that since  is a subset of itself, therefore 
it is possible for . We say that the event  occurs if the outcome of the 
experiment is in the set . When speaking of probabilities, we generally speak of the 
probability of an event, rather than a set. But we may use the terms interchangably.

    We first need to define formally the following two relationships, which allow us to 
order and equate sets:

	 	 	 	 	 	 	 	 (1.1)	 

	 	 	 	 .	 	 	 	 (1.2)

    Given any two events (or sets)  and , we have the following elementary set ope-
rations:

	 	 	            .		 	 	 (1.3)

	 	 	           .	 	 	 (1.4)

	 	 	 	       .	 	 	 	 (1.5)

Theorem 1.1:

	 For any three events and , defined on a sample space , one has:

	 (i)	 , .	 	 	 (Commutative)

	 (ii)	 , .

	 	 	 	 	 	 	 	 	 	 (Associative)

	 (iii)	 , .

	 	 	 	 	 	 	 	 	 	 (Distributive)

	 (iv)	 , .	 	 (DeMorgan’s Law)

   The operations of union and intersection can be extended to infinite collections of 
sets as well. If  is a countable collection of sets, all defined on a sample 
space , then one has


	 	 	 	 ,	 	 	 (1.6)


	 	 	 	 .	 	 	 (1.7)


    We can even generalize this into the union (resp. the intersection) of arbitrarily ma-
ny sets, i.e., the index set may be uncountable.


S

S
A S S

A = S A
A

A ⊆ B ⇔ x ∈ A ⇒ x ∈ B
A = B ⇔ A ⊆ B and B ⊆ A

A B

A ∪ B := {x |x ∈ A or x ∈ B}
A ∩ B := {x |x ∈ A and x ∈ B}

Ac := {x |x ∉ A, x ∈ S}

A, B, C S
A ∪ B = B ∪ A A ∩ B = B ∩ A
A ∪ (B ∪ C ) = (A ∪ B) ∪ C A ∩ (B ∩ C ) = (A ∩ B) ∩ C

A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ) A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C )

(A ∪ B)c = Ac ∩ Bc (A ∩ B)c = Ac ∪ Bc

A1, A2, ⋯
S

∞

⋃
i=1

Ai = {x ∈ S |x ∈ Ai for some i}
∞

⋂
i=1

Ai = {x ∈ S |x ∈ Ai ∀i}
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	 	 	      .	 	 (1.8)


	 	 	      .	 	 (1.9)


    Finally, we discuss the idea of a partition of the given sample space.

Definiton: Disjoint, Pairwise Disjoint

	 Two events  and  are disjoint (or mutually exclusive) if . The 

	 events  are said to be pairwise disjoint (mutually exclusive) if

	  .

   Note that the disjoint sets are sets with no points in common. If one draws a Venn 
diagram for two disjoint sets, the sets do not overlap. The collection  
for , consists of pairwise disjoint sets. Note further that .

Definition: Partition

	 If  are pairwise disjoint and , then the collection 

	  forms a partition of .


1.2 Basics of Probability Theory

    For each event  in the sample space  we want to associate with  a number bet-
ween zero and one that will be called the probability of , denoted by . It would 
seem natural to define the domain of  as all subsets of ; that is, for each  we 
define  as the probability that  occurs. Note that in measure theory, there are 
two different approach to define a measure, whether on a -ring or on a -algebra, 
they concepts and the definitions on both are identically the same, the choice of using 

-ring or -algebra is based on the author’s preferrence. We shall use the approach by 
the -algebra.

Definition: -algebra/Borel Field

	 A collection of subsets of  is called a -algebra (or Borel field), denoted by 

	 , if it satisfies the following three properties:

	 (i)	 .

	 (ii)	 If  then .


	 (iii)	 If  then .


    The empty set  is a subset of any set. Thus, . Property (i) states that this 
subset is always in a -algebra. Since , properties (i) and (ii) imply that  is 
also in . Moreover, by DeMorgan’s Laws it follows that  is closed under 
countable intersections. That is, if , then  by property 

(ii), and therefore . However, using DeMorgan’s Law, we have


	 	 	 	 	 .


⋃
α∈Γ

Aα := {x ∈ S |x ∈ Aα for some α ∈ Γ}

⋂
α∈Γ

Aα := {x ∈ S |x ∈ Aα for some α ∈ Γ}

A B A ∩ B = ∅
A1, A2, ⋯

Ai ∩ Aj = ∅ ∀i ≠ j

Ai := [i, i + 1)
i = 0,1,2,⋯ ∪∞

i=0 Ai = [0,∞)

A1, A2, ⋯ ∪∞
i=1 Ai = S

A1, A2, ⋯ S

A S A
A ℙ(A)

P S A ⊆ S
ℙ(A) A

σ σ

σ σ
σ

σ
S σ

ℬ
∅ ∈ ℬ

A ∈ ℬ Ac ∈ ℬ

A1, A2, ⋯ ∈ ℬ
∞

⋃
i=1

Ai ∈ ℬ

∅ ∅ ⊂ S
σ S = ∅c S

ℬ ℬ
A1, A2, ⋯ ∈ ℬ Ac

1, Ac
2, ⋯ ∈ ℬ

∞

⋃
i=1

Ac
i ∈ ℬ

(
∞

⋃
i=1

Ac
i )c =

∞

⋂
i=1

Ai
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Thus, again by property (ii), .


    Associated with sample space  we can have many different -algebras. For exam-
ple, the collection of the two sets  is a -algebra, usually called the trivial 
-algebra. The only -algebra we will be concerned with is the smallest -algebra that 
contains all of the open sets in a given sample space .

Definition: Probability Function

	 Given a sample space  and an associated -algebra , a probability function 	 

	 is a function  with domain  that satisfies

	 (i)	 .	 	 	 (Positive Semidefinite)

	 (ii)	 .


	 (iii)	 If  are pairwise disjoint, then .


	 	 	 	 	 	 	 	 (Countably Additive)

    The three properties are usually referred to as the Axioms of Probability (or refer to 
Kolmogorov Axioms). Any function  that satisfies the Axioms of Probability is 
called a probability function. The axiomatic definition makes no attempt to tell what 
particular function  to choose; it merely requires  to satisfy the axioms. For any 
sample space many different probability functions can be defined. Which one (s) 
reflects what is likely to be observed in a particular experiment is still to be 
discussed.

    We need general methods of defining probability functions that we know will alw-
ays satisfy Kolmogorov’s Axioms. We do not want to have to check the Axioms for 
each new probability function. The following gives a common method of defining a 
legitimate probability function.

Theorem 1.2:

	 Let  be a finite set. Let  be any -algebra of subsets of . Let

	  be nonnegative number that sum to . For any , define  

	 by . Then  is a probability function on . This remains true 


	 if  is a countable set.

Proof:

	 We will give the proof for the finite case while the countable case holds by 

	 induction. For any , , since every . Thus, 


	 positive homogeneity follows. Moreover, we have


	 	 	 	 	 .


	 Thus the second axiom follows. Let now  denote pairwise disjoint

	 events. Then


∞

⋂
i=1

Ai ∈ ℬ

S σ
{∅, S} σ σ

σ σ
S

S σ ℬ
ℙ ℬ

ℙ(A) ≥ 0∀A ∈ ℬ
ℙ(S ) = 1

A1, A2, ⋯ ∈ ℬ ℙ(
∞

⋃
i=1

Ai) =
∞

∑
i=1

ℙ(Ai)

ℙ

ℙ ℙ

S = {s1, ⋯, sn} ℬ σ S
p1, ⋯, pn 1 A ∈ ℬ ℙ(A)

ℙ(A) = ∑
{i|si∈A}

pi ℙ ℬ

S = {s1, s2, ⋯}

A ∈ ℬ ℙ(A) = ∑
{i|si∈A}

pi ≥ 0 pi ≥ 0

ℙ(S ) = ∑
{i|si∈S}

pi =
n

∑
i=1

pi = 1

A1, ⋯, Ak
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	 	        .


	 The above equality is valid: The first and the third equalities are true by the 

	 definition of . The disjointedness of the ’s ensures that the second 

	 equality fails to be false since the same ’s appear exactly once on each side of

	 the equality. Therefore the countable additivity follows.

	 	 	 	 	 	 	 	 	 	 	 	 	 


1.3 The Calculus of Probabilities

    From the Axioms of Probability we can build up many properties of the probability 
function, properties that are quite helpful in the calculation of more complicated 
probabilities. Some of these manipulations will be discussed in this subsection.

    We start with some (fairly self-evident) properties of the probability function when 
applied to a single event.

Theorem 1.3:

	 If  is a probability function and  is any set in . Then

	 (i)	 .

	 (ii)	 .

	 (iii)	 .

Proof:	 

	 We shall prove (iii) first since it is the easiest part.

	 (iii):

	 The sets  and  form a partition of the sample space, i.e. . 

	 Therefore,

	 	 	 	 	 	 	 	 	 (1.10)

	 by the second axiom. Also,  and  are disjoint, so by the third axxiom,

	 	 	 	       .	 	 	 (1.11)

	 Combining (1.10) and (1.11) yields (iii).

	 (ii):

	 Since , (ii) follows directly from (iii).

	 (i):

	 To prove (i), we use a similar argument on . Since  and  are 

	 disjoint, one has 

	 	 	 	 ,

	 therefore .

	 	 	 	 	 	 	 	 	 	 	 	 	 

    Theorem 1.3 contains properties that are so basic that they also have the flavor of 
axioms, although we have formally proved them using only the original three 
Kolmogorov Axioms. The next theorem, which is similar in spirit of Theorem 1.3, 
contains statements that are not so self-evident.

Theorem 1.4:

	 If  is a probability function and  and  are any sets of . Then

	 (i)	 .

	 (ii)	 .


ℙ(
k

⋃
i=1

Ai) = ∑
{ j|sj∈⋃k

i=1 Ai}

pj =
k

∑
i=1

∑
{ j|sj∈Ai}

pj =
k

∑
i=1

ℙ(Ai)

ℙ(A) Ai
pj

□

ℙ A ℬ
ℙ(∅) = 0
ℙ(A) ≤ 1
ℙ(Ac) = 1 − ℙ(A)

A Ac S = A ∪ Ac

ℙ(A ∪ Ac) = P(S ) = 1
A Ac

ℙ(A ∪ Ac) = P(A) + P(Ac)

ℙ(Ac) ≥ 0

S = S ∪ ∅ S ∅

1 = ℙ(S ) = ℙ(S ∪ ∅) = ℙ(S ) + ℙ(∅)
ℙ(∅) = 0

□

ℙ A B ℬ
ℙ(B ∩ Ac) = ℙ(B) − ℙ(A ∩ B)
ℙ(A ∪ B) = ℙ(A) + ℙ(B) − ℙ(A ∩ B)
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	 (iii)	 If , then .

Theorem 1.5:

	 If  is a probability function, then


	 (i)	  for any partition .


	 (ii)	  for any sets .	 (Boole’s Inequality)


1.4 Conditionaly Probability

Definition: Conditionaly Probability

	 If  and  are two events in  and , then the conditional probability


	 of  given , written as , is .


   Note that what happens in the conditional probability calculation is that  becomes 
the sample space then . The intuition is that our original sample space  
has been updated to . All further occurrences are then calibrated with respect to their 
relation to . In particular, note that what happens to conditional probabilities of 
disjoint sets. Suppose that  and  are disjoint, then . It then follows 
that .

    Rewriting the formula of conditional probability yields the form

	 	 	 	 	 .	 	 	 (1.12)

Since  by the symmetry of the operation “ ”, it follows that we 
can further express (1.12) into the form

	 	 	 	 .	 	 (1.13)

Therefore we have a useful formula


	 	 	 	 	 ,	 	 	 (1.14)


which gives a formulfor turning around the conditional probabilities. (1.14) is often 
called Bayes’ Rule. We now introduce a more general form.

Theorem 1.6: Bayes’ Rule

	 Let  be a partition of the sample space, and let  be any set. Then,

	 for each , one has that


	 	 	 	 .


   Therefore, a simple calculation yields a transformation between conditioned sets, 

i.e. one has .


   In some cases it may happen that the occurrence of a particular event, , has no 
effect on the probability of another event. That is, . If this is the case, 
then by Bayes’ Rule, one has that 


A ⊆ B ℙ(A) ≤ ℙ(B)

ℙ

ℙ(A) =
∞

∑
i=1

ℙ(A ∩ Ci) C1, C2, ⋯

ℙ(
∞

⋃
i=1

Ai) ≤
∞

∑
i=1

ℙ(Ai) A1, A2, ⋯

A B S ℙ(B) > 0

A B ℙ(A |B) ℙ(A |B) =
ℙ(A ∩ B)

ℙ(B)
B

ℙ(B |B) = 1 S
B

B
A B ℙ(A ∩ B) = 0

ℙ(A |B) = ℙ(B |A) = 0

ℙ(A ∩ B) = ℙ(A |B)ℙ(B)
ℙ(A ∩ B) = ℙ(B ∩ A) ∩

ℙ(A ∩ B) = ℙ(B ∩ A) = ℙ(B |A)ℙ(A)

ℙ(A |B) = ℙ(B |A)
ℙ(A)
ℙ(B)

A1, A2, ⋯ B
i = 1,2,⋯

ℙ(Ai |B) =
ℙ(B |Ai)ℙ(Ai)

∑∞
j=1 ℙ(B |Aj)ℙ(Aj)

ℙ(B |Ai) =
∑∞

j=1 ℙ(B |Aj)ℙ(Aj)

ℙ(Ai |B)ℙ(Ai)
B

ℙ(A |B) = ℙ(A)
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	 	 	 .


It follows that, since , that . This is 
precisely when  has no effect on , and we call this the statistically independent.

Definition: Statistically Independent

	 Two events  and  are said to be statistically independent if 

	 .

   Note that the independence could have been equivalently defined by either the form 

 or the form , with further stating that  or 
, respectively. The advantage of the above definition is that it treats the 

events symmetrically and will be easier to generalize to more than two events.

Theorem 1.7:

	 If  and  are independent events, then the following pairs are also 

	 independent:

	 (i)	  and .

	 (ii)	  and .

	 (iii)	  and .

    The proof of this theorem is left as an exercise since it is only an elementary appli-
cation of the above results. Now let us generalize the statistically independent to the 
case involving more than two events.

Definition: Mutually Independent

	 A collection of events  are mutually independent if for any 


	 subcollection , one has .


1.5 Random Variables

    Recall that random variables are measurable functions from the sample space to re-
al numbers. There are two most important quantities associated with a random vari-
able , namely the expectation (also called the mean), and the variance. We shall 
denote them throughout this note by  and .

    In fact, the expectation  of a random variable  on a probability space  
is the Lebesgue integral of the function . This makes all theorems on 
Lebesgue integration applicable in probability theory, for expectations of random 
variables.

    One more thing to note is that the change of sample space from  to  is for a reas-
on. In defining a random variable, we have also defined a new sample space. Suppose 
we have a sample space  with a probability function  and we define 
a random variable  with range . We can define a probability 
function  on  by 

	 	 	 	 .	 	 (1.15)

The same thing happens when  is countable. When  is not countable,  is 
defined by, for any set ,


ℙ(B |A) = ℙ(A |B)
ℙ(B)
ℙ(A)

= ℙ(A)
ℙ(B)
ℙ(A)

= ℙ(B)

ℙ(B |A)ℙ(A) = ℙ(A ∩ B) ℙ(A ∩ B) = ℙ(A)ℙ(B)
B A

A B
ℙ(A ∩ B) = ℙ(A)ℙ(B)

ℙ(A |B) = ℙ(A) ℙ(B |A) = ℙ(B) ℙ(B) > 0
ℙ(A) > 0

A B

A Bc

Ac B
Ac Bc

A1, ⋯, An

Ai1, ⋯, Aik ℙ(
k

⋂
j=1

Aij) =
k

∏
j=1

ℙ(Aij)

X
𝔼X Var(X ) := 𝔼(X − 𝔼X )2

𝔼X X (Ω, Σ, ℙ)
X : Ω → ℝ

S Ω

S = {s1, ⋯, sn} ℙ
X Ω = {x1, ⋯, xm}

ℙX Ω
ℙX(X = xi) = ℙ({sj ∈ S |X(sj) = xi})

Ω Ω ℙX
A ⊆ Ω
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	 	 	 	 .		 	 (1.16)

    With every random variable , we associate a function called the cumulative distri-
bution of .

Definition: Cumulative Distribution Function (CDF)

	 The cumulative distribution function or cdf of a random variable , denoted by

	 , is defined by  .

Theorem 1.8:

	 The function  is a cdf if and only if the followings hold:

	 (i)	  and .


	 (ii)	  is a nondecreasing function of .

	 (iii)	  is right-continuous, i.e. , .


   The right continuity is a direct result from its definition . When 
one has  in contrast,  is left-continuous. One can turn Theorem 
1.8 to an alternative definition for cdf.

    Whether a cdf is continuous or has jumps corresponds to the associated random va-
riable being continuous or not. In fact, the association is such that it is convenient to 
define continuous random variables in this way.

Definition: Continuous, Discrete

	 A random variable  is continuous if  is a continuous function of .

	 A random variable  is discrete if  is a step function of .

    We close this subsection with a theorem formally stating that  completely deter-
mines the probability distribution of a random variable . This is true if  is 
defined only for events  in  the smallest sigma algebra containing all the intervals 
of reals in all forms ( ). If probabilities are defined 
for a larger class of events, it is possible for two random variables to have the same 
distribution function but not the same probability for every event. We shall not deal 
with this problem in this note, hence we need to restrict ourselves into good settings.

Definition: Identically Distributed

	 The random variable  and  are identically distributed if for every set  in

	  one has .

    Note that two random variables that are identically distributed are not necessarily 
equal.

Theorem 1.9:

	 The random variables  and  are identically distributed  .

Proof:

	 “ ”:

	 Since  and  are identically distributed, for any set , by definition,

	 . In particular, , the set  is in , hence

	 	     .

	 “ ”:

	 Showing this direction requires heavy use of sigma algebras; we will not go 

	 into these details. It suffices to say that it is necessary to prove only that the


ℙX(X ∈ A) = ℙ({s ∈ S |X(s) ∈ A})
X

X

X
FX(x) FX(x) = ℙX(X ≤ x) ∀x ∈ S

F(x)
lim

x→−∞
F(x) = 0 lim

x→+∞
F(x) = 1

F(x) x
F(x) ∀x0 ∈ Ω lim

x↓x0

F(x) = F(x0)

FX(x) = ℙX(X ≤ x)
FX(x) = ℙX(X < x) FX

X FX(x) x
X FX(x) x

FX
X ℙ(X ∈ A)

A ℬ
(a, b), (a, b], [a, b), [a, b], a, b ∈ ℝ

X Y A
ℬ ℙ(X ∈ A) = ℙ(Y ∈ A)

X Y ⇔ FX(x) = FY(x)∀x

⇒
X Y A ∈ ℬ

ℙ(X ∈ A) = ℙ(Y ∈ A) ∀x (−∞, x] ℬ
FX(x) = ℙ(X ∈ (−∞, x]) = ℙ(Y ∈ (−∞, x]) = FY(x)

⇐
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	 two probability functions agree on all intervals (Chung 1974, Section 2.2).

	 	 	 	 	 	 	 	 	 	 	 	 	 

    Associated with a random variable  and its cdf  is another function, called eith-
er the probability density function (pdf) or probability mass function (pmf). The 
terms pdf and pmf refer, respectively, to the continuous and discrete cases. Both pdfs 
and pmfs are concerned with “point probabilities” of random variables.

Definition: Probability Mass Function (PMF)

	 The probability mass function (pmf) of a discrete random variable  is given

	 by  .

   A widely accepted convention, which we shall adopt, is to use the uppercase letter 
for the cdf and the corresponding lowercase letter for the pmf or pdf.

   We must be a little more careful in our definition of a pdf in the continuous case. If 
we naively try to calculate  for a continuous random variable, we get the 
following: Since  , one has

	 	     .	 	 (1.17)

Therefore 

	 	 	 


by the continuity of . However, if we understand the purpose of the pdf, its 
definition shall not be ambiguous.

    In the discrete case, we can sum over values of the pmf to get the cdf. The analogo-
us procedure in the continuous case is to substitute integrals for sums, and we get


	 	 	 	 .	 	 	 (1.18)


Using the Fundamental Theorem of Calculus, if  is continuous, we have the 
further relationship


	 	 	 	 	 .	 	 	 	 	 (1.19)


Note that the analogy with the discrete case is almost exact. We “add up” the “point 
probabilities”  to obtain interval probabilities. Let us summarize this into the 
formal definition.

Definition: Probability Density Function (PDF)

	 The probability density function (pdf), , of a continuous random variable


	  is the function that satisfies  .


Remark:

	 The expression “  has a distribution given by ” is abbreviated 

	 symbolically by “ ,” where we read the symbol “ ” as “is distributed 

	 as.” We can similarly write  or, if  and  have the same distribution,

	 .

    In the continuous case we can somewhat cavalier about the specification of interval 
probabilities. Since  if  is a continuous random variable, it follows

	      .


□
X FX

X
fX(x) = ℙ(X = x) ∀x

ℙ(X = x)
{X = x} ⊆ {x − ε < X ≤ x} ∀ε > 0

ℙ(X = x) ≤ ℙ(x − ε < X ≤ x) = FX(x) − FX(x − ε)

0 ≤ ℙ(X = x) ≤ lim
ε↓0

(FX(x) − FX(x − ε)) = 0

FX

ℙ(X ≤ x) = FX(x) = ∫
x

−∞
fX(t)dt

fX(x)

d
d x

FX(x) = fX(x)

fX(x)

fX(x)

X FX(x) = ∫
x

−∞
fX(t)dt ∀x

X FX(x)
X ∼ FX(x) ∼

X ∼ fX(x) X Y
X ∼ Y

ℙ(X = x) = 0 X
ℙ(a < x < b) = ℙ(a < X ≤ b) = ℙ(a ≤ X < b) = ℙ(a ≤ X ≤ b)
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   It should be clear that the pdf (or pmf) contains the same information as the cdf. 
This being the case, we can use either one to solve problems and should try to choose 
the simpler one.

Theorem 1.10: 

	 A function  is a pdf (or pmf) of a random variable  if and only if

	 (i)	 .


	 (ii)	  (pmf), or,  (pdf).


Proof:

	 If  is a pdf (or pmf), then the two properties are immediate from the 


	 definitions. In particular, for a pdf, one has .


	 The converse implication is equally easy to prove. Once one has , one

	 can define  and result follows from Theorem 1.8.

	 	 	 	 	 	 	 	 	 	 	 	 	 

    From a purely mathematical viewpoint, any nonnegative function with a finite pos-
itive integral (or sum) can be turned into a pdf or pmf. For example, if  is any 
nonnegative function that is positive on a set , 0 otherwise, and


	 	 	 	        


For some , then the function  is a pdf of a random variable  
taking values in .


    Actually,  does not always hold since  may be continuous 

but it may not be differentiable. In fact, there exist continuous random variables for 
which the integral relationship does not exist for any . These cases are rather 
pathological and we shall not discuss them in this note. Thus, in this text, we shall 

always assume that  holds for any continuous random variable. 

In more advanced literature a random variable is called absolutely continuous if the 
integral relationship holds.


2.1 Distributions of Functions of a Random Variable

   If  is a random variable with cdf , then any function of , namely , is 
also a random variable. Often  is of interest itself and we write  to 
denote the new random variable . Since  is a function of , we can describe the 
probabilistic behavior of  in terms of . That is, for any set , 

	 	 	 	 	 .

hence the distribution of  depends on the functions  and . Depending on the cho-
ice of , it is sometimes possible to obtain a tractable expression for this probability.


fX(x) X
fX(x) ≥ 0∀x

∑
x

fX(x) = 1 ∫
+∞

−∞
fX(x)d x = 1

fX(x)

1 = lim
x→∞

FX(x) = ∫
+∞

−∞
fX(t)dt

fX(x)
FX(x)

□

h(x)
A

∫{x∈A}
h(x)d x = K < ∞

K > 0 fX(x) = h(x)/K X
A

FX(x) = ∫
x

−∞
fX(t)dt FX(x)

fX(x)

FX(x) = ∫
x

−∞
fX(t)dt

X FX(x) X g(X )
g(X ) Y = g(X )
g(X ) Y X

Y X A
ℙ(Y ∈ A) = ℙ(g(X ) ∈ A)

Y FX g
g
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    Formally, if we write , the function  defines a mapping from the origi-
nal sample space of  to a new sample space, if we denote them by  and , 
respectively. Then 

	 	 	 	 	 	 .

   We associate with  an inverse mapping, denoted by , which is a mapping from 
subsets of  to subsets of , and is defined by


.

    Hence for any set , one has

	 .

This defines the probability distribution of . It is straightforward to show that this 
probability distribution satisfies the Kolmogorov Axioms.

    If we assume  is a discrete random variable, then  is countable. The sample sp-
ace for  is , which is also a countable set. 
Thus,  is also a discrete random variable. The pmf of  is


 for .


and  if . In this case, finding the pmf of  is identifying , for 
each , and summing the appropriate probabilities.

Example 2.1: Binomial Transformation

	 Recall that for nonnegative integers  and  such that , one has the 


	 formula of  choose  being .


	 A discrete random variable  has a binomial distribution if its pmf is of the 

	 form


	 	 	 ,


	 where  is a positive integer and . Consider the random variable 

	 , where . Now we have  and it follows

	 that . Since , we have , thus


	 	 


	 	         . (Since ).


	 From  we arrive at .	 	 	 ||

    If  and  are now continuous random variables, then in some cases it is possible 
to find simple formulas for the cdf and pdf of  in terms of the cdf and pdf of  and 
the corresponding function . The cdf of  is





	 	 	 	         .


y = g(x) g(x)
X ΩX ΩY

g : ΩX → ΩY
g g−1

ΩY ΩX
g−1(A) = {x ∈ ΩX |g(x) ∈ A}

A ⊆ ΩY
ℙ(Y ∈ A) = ℙ(g(X ) ∈ A) = ℙ({x ∈ ΩX |g(x) ∈ A}) = ℙ(X ∈ g−1(A))

Y

X ΩX
Y = g(X ) ΩY := {y |y = g(x), x ∈ ΩX}

Y Y
fY(y) = ℙ(Y = y) = ∑

x∈g−1(y)

ℙ(X = x) = ∑
x∈g−1(y)

fX(x) y ∈ ΩY

fY(y) = 0 y ∉ ΩY Y g−1(y)
y ∈ ΩY

n r n ≥ r

n r (n
r) =

n!
r!(n − r)!

X

fX(x) = ℙ(X = x) = (n
x)px(1 − p)n−x, x = 0,1,⋯, n

n 0 ≤ p ≤ 1
Y = g(X ) g(x) = n − x ΩX = {0,1,⋯, n}

ΩY = {y |y = g(x), x ∈ ΩX} y = n − x x = n − y

fY(y) = ∑
x∈g−1(y)

fX(x) = fX(n − y) = ( n
n − y)pn−y(1 − p)n−(n−y)

= (n
y)(1 − p)y pn−y (n

y) = ( n
n − y)

X ∼ Binomial(n, p) Y ∼ Binomial(n,1 − p)
X Y

Y X
g Y = g(X )

FY(y) = ℙ(Y ≤ y) = ℙ(g(X ) ≤ y))

= ℙ({x ∈ ΩX |g(x) ≤ y}) = ∫{x∈ΩX|g(x)≤y}
fX(x)d x
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    When the transformation are made, it is important to keep track of the sample spac-
es of the random variables; otherwise, much confusion can arise. When the transfo-
rmation is from  to  by , it is most convenient to use


 and .

The pdf of the random variable  is positive only on the set  and 0 elsewhere. 
Such a set is called the support set of a distribution, or, more informally, the support 
of a distribution. This terminology can also apply to a pmf, or, in general, to any non-
negative function.

Theorem 2.1:

	 If  and  are random variables such that  has cdf  and  with

	  and .

	 (i)	 If  increasing on , then  for .

	 (ii)	 If  is decreasing on  and  is a continuous random variable. Then

	 	  for .

    If the pdf of  is continuous, it can be obtained by differentiating the cdf. That is

Theorem 2.2:

	 Let  have pdf  and , where  is monotone. Assume that

	  and . Suppose that

	  is continuous on  and  has a continuous derivative on . Then


	 the pdf of  is .


Proof:

	 According to Theorem 2.1 and chain rule, one has


	 	 .


	 Result follows.

	 	 	 	 	 	 	 	 	 	 	 	 	 

    In many applications, the function  may be neither increasing nor decreasing; he-
nce the above results will not apply in general. However, it is often the case that  
will be monotone over certain invervals and that allows us to get an expression for 

.

Theorem 2.3:

	 Let  have pdf , let , and define the sample space

	  and . Suppose there 

	 exists a partition  of  such that  and  is 

	 continuous on each . In addition, suppose there exist functions 

	 defined on , respectively, such that

	 (i)	  for .

	 (ii)	  is monotone on .

	 (iii)	 The set  is the same for all .


X Y g(X )
ΩX = {x | fX(x) > 0} ΩY = {y |y = g(x) for some x ∈ ΩX}

X ΩX

X Y X FX(x) Y = g(X )
ΩX = {x | fX(x) > 0} ΩY = {y |y = g(x) for some x ∈ ΩX}

g ΩX FY(y) = FX(g−1(y)) y ∈ ΩY
g ΩX X

FY(y) = 1 − FX(g−1(y)) y ∈ ΩY
Y

X fX(x) Y = g(X ) g
ΩX = {x | fX(x) > 0} ΩY = {y |y = g(x) for some x ∈ ΩX}
fX(x) ΩX g−1(y) ΩY

Y fY(y) = {fX(g−1(y)) d
dy g−1(y) , y ∈ ΩY

0, otherwise

fY(y) =
d

dy
FY(y) =

fX(g−1(y)) d
dy g−1(y), g is increasing

−fX(g−1(y)) d
dy g−1(y), g is decreasing

□
g

g

Y = g(X )

X fX(x) Y = g(X )
ΩX = {x | fX(x) > 0} ΩY = {y |y = g(x) for some x ∈ ΩX}

A0, A1, ⋯, Ak ΩX ℙ(X ∈ A0) = 0 fX(x)
Ai g1(x), ⋯, gk(x)

A1, ⋯, Ak
g(x) = gi(x) x ∈ Ai
gi(x) Ai

ΩY = {y |y = gi(x) for some x ∈ ΩX} i
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	 (iv)	  has a continuous derivative on  for all .

	 Then one has


	 	 	 .


   The important part is that  can be divided into sets , such that  is 
monotone on each . We can ignore the “excepional set”  since .

Theorem 2.4: Probability Integral Transformation

	 Let  have continuous cdf  and define the random variable  as 

	 . Then  is uniformly distributed on , i.e. , for

	 .


2.2 Expected Values

    The expected value, or expectation, of a random variable is merely its average val-
ue, where we speak of “average” values as one that is weighted according to the pro-
bability distribution. The expected value of a distribution can be thought of as a 
measure of center, as we think of averages as being middle values. By weighting the 
values of the random variable according to the probability distribution, we hope to 
obtain a number that summarizes a typical or expected value of an observation of the 
random variable.

Definition: Expected Value (mean)

	 The expected value or mean of a random variable , denoted by , is


	 


	 provided that the integral or sum exists. If , we say that  

	 does not exist.

   The process of taking expectations is a linear operation, which means that the exp-
ectation of a linear function of  can be easily evaluated by nothing that for any 
constant  and , that

	 	 	 	 	 .	 	 	 	 (2.1)

For example, if , so that , then 

	 	 	 	 .

    The expectation operator, in fact, has many properties that can help relax calculati-
onal effort. Most of these properties follow from the properties of the integral or sum, 
and are summarized in the following theorem:

Theorem 2.5:

	 Let  be a random variable and let  be constants. Then for any 

	 function  and  whose expectations exist, one has

	 (i)	 .

	 (ii)	 If  then .

	 (iii)	 If  then .

	 (iv)	 If  then .


g−1
i ΩY i

fY(y) = {∑k
i=1 fX(g−1

i (y)) d
dy g−1

i (y) , y ∈ ΩY

0, otherwise
ΩX A1, ⋯, Ak g(x)

Ai A0 ℙ(X ∈ A0) = 0

X FX(x) Y
Y = FX(x) Y (0,1) ℙ(Y ≤ y) = y
0 < y < 1

g(X ) 𝔼g(X )

𝔼g(X ) =
∫ ∞

−∞
g(x)fX(x)d x, , if X is continuous

∑x∈ΩX
g(x)fX(x) = ∑x∈ΩX

g(x)ℙ(X = x),  if X is discrete 

𝔼 |g(X ) | = ∞ 𝔼g(X )

X
a b

𝔼(aX + b) = a𝔼X + b
X ∼ Binomial(n, p) 𝔼X = np

𝔼(X − np) = 𝔼X − np = np − np = 0

X a, b,  and c
g1(x) g2(x)

𝔼(ag1(X ) + bg2(X ) + c) = a𝔼g1(X ) + b𝔼g2(X ) + c
g1(x) ≥ 0∀x 𝔼g1(X ) ≥ 0
g1(x) ≥ g2(x)∀x 𝔼g1(X ) ≥ 𝔼g2(X )
a ≤ g1(x) ≤ b ∀x a ≤ 𝔼g(X ) ≤ b
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   When evaluating expectations of nonlinear function of , we can proceed in one or 
two ways. From the definition of , we could directly calculate


.


But we could also find the pdf  of  and we would have


.


2.3 Moments and Moment Generating Functions

    The various moments of a distribution are an important class of expectation:

Definition: Moment

	 For each integer , the -th moment of a random variable  (or ),

	 denoted as , is defined by .

Definition: Central Moment

	 The -th central moment of , denoted as , is defined by , 

	 where , the expected value of .

    Aside from the mean , perhaps the most important moment is the second central 
moment, more commonly known as the variance.

Definition: Variance

	 The variance of a random variable  is its second central moment, denoted as

	 Var , is defined by Var . 

Definition: Standard Deviation

	 The standard deviation of  is the positive square root of Var , i.e. it is defined 

	 by .

   The variance gives a measure of the degree of spread of a distribution around its 
mean. For example, the quantity  is minimized when . Now we 
consider the absolute size of this minimum. The interpretation atttached to the 
variance is that larger values mean  is more variable. At the extreme, if 

	 	 	 	 	 Var ,

then  is equal to  with probability 1, and there is no variation in . The standard 
deviation has the same qualitative interpretation: Small value means that  is very 
likely to be close to , and large values mean  is very variable. The standard 
deviation is easier to interpret in that measurement unit on the standard deviation is 
the same as that for the original variable . The measurement unit on the variance is 
the square of the original unit.

Theorem 2.6:

	 If  is a random variable with finite variance, then for any constants  and ,

	 .

Proof:

	 According to the definition, one has

	 	 	 Var 

	 	 	 	 	 		 ( ).


X
𝔼g(X )

𝔼g(X ) = ∫
∞

−∞
g(x)fX(x)d x

fY(y) Y = g(X )

𝔼g(X ) = 𝔼Y = ∫
∞

−∞
fY(y)dy

n n X FX(x)
μ′￼n μ′￼n = 𝔼Xn

n X μn μn = 𝔼(X − μ)n

μ = μ′￼1 = 𝔼X X
𝔼X

X
X X = 𝔼(X − 𝔼X )2

X X
VarX

𝔼(X − b)2 b = 𝔼X

X
X = 𝔼(X − 𝔼X )2 = 0

X 𝔼X X
X

𝔼X X

X

X a b
Var(aX + b) = a2VarX

(aX + b) = 𝔼((aX + b) − 𝔼(aX + b))2

= 𝔼(aX − a𝔼X )2 𝔼(aX + b) = a𝔼X + b
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	 	 	 	 	 .

	 	 	 	 	 	 	 	 	 	 	 	 	 

    It is sometimes easier to use an alternative formula for the variance, given by

	 	 	 	 	 ,

which is easily established by noting that

	 	 	 Var 

	 	 	         	 

	 (  since  is a constant)

	 	 	         .

    We now introduce a new function that is associated with a probability distribution, 
the moment generating function (mgf). As its name suggests, the mgf can be used to 
generate moments. In practice, it is easier in many cases to calculate moments 
directly than to use the mgf. However, the main use of the mgf is not to generate 
moments, but to help in characterizing a distribution. This property can lead to some 
extremely powerful results when used properly.

Definition: Moment Generating Function (mgf)

	 Let  be a random variable with cdf . The moment generating function of 

	 (of , denoted by , is defined to be , provided that the 

	 expectation exists for  in some neighbourhod of . That is,  such that

	 ,  exists. If the expectation does not exist in a neighborhood 

	 of , we say that the mgf does not exist.

    More explicitly, we can write the mgf of  as


,  is continuous,


or 

,  is discrete.	 


    It is very easy to see how the mgf generates moments. We summarize the result in 
the following result:

Theorem 2.7:


	 If  has mgf , then , where .


	 That is to say, the -th moment is equal to the -th derivative of  

	 evaluated at .

Proof:

	 Assume that we can differentiate under the integral sign, we have


	 	 	 


	 	 	 	     .


	 Thus, one has


.


= a2𝔼(X − 𝔼X )2 = a2VarX
□

VarX = 𝔼X2 − (𝔼X )2

X = 𝔼(X − 𝔼X )2 = 𝔼(X2 − 2X𝔼X + (𝔼X )2)
= 𝔼X2 − 2(𝔼X )2 + (𝔼X )2

𝔼(2X𝔼X ) = 2𝔼(X𝔼X ) = 2𝔼(X )𝔼(X ) = 2(𝔼X )2 𝔼X
= 𝔼X2 − (𝔼X )2

X FX X
FX) MX(t) MX(t) = 𝔼etX

t 0 ∃δ > 0
∀t ∈ (−δ, δ ) 𝔼etX

0
X

MX(t) = ∫
∞

−∞
etxfX(x)d x X

MX(t) = ∑
x

etxℙ(X = x) X

X MX(t) 𝔼Xn = M(n)
X (0) M(n)

X (0) :=
dn

dtn
MX(t)

t=0
n n MX(t)

t = 0

d
dt

MX(t) =
d
dt ∫

∞

−∞
etxfX(x)d x = ∫

∞

−∞
( d

dt
etx)fX(x)d x

= ∫
∞

−∞
(xetx)fX(x)d x =: 𝔼XetX

d
dt

MX(t)
t=0

= 𝔼XetX
t=0

= 𝔼X
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	 Proceeding in an analogous manner, the result follows.

	 	 	 	 	 	 	 	 	 	 	 	 	 

    As previously mentioned, the major usefulness of the mgf is not in its ability to ge-
nerate moments, rather, its usefulness stems from the fact that, in many cases, the mgf 
can characterize a distribution. There are, however, some technical difficulties 
associated with using moments to characterize a distribution, which we will now 
investigate.

    If the mgf exists, it characterizes an infinite set of moments. The natural question is 
whether characterizing the infinite set of moments uniquely determines a distribution 
function. The answer to this question, unfortunately, is no. Characterizing the set of 
moments is not enough to determine a distribution uniquely because there may be 
two distinct random variables having the same moments.

   The problem of uniqueness of moments does not occur if the random variables ha-
ve bounded support. If that is the case, then the infinite sequence of moments does 
uniquely determine the distribution. Furthermore, if the mgf exists in a neighborhood 
of 0, then the distribution is uniquely determined, no matter what its support. Thus, 
existence of all moments is not equivalent to existence of the mgf. The following 
theorem shows how a distribution is characterized.

Theorem 2.8:

	 Let  and  be two cdfs all of whose moments exist. Then

	 (i)	 If  and  have bounded support, then  for all   

	 	  for all intergers .

	 (ii)	 If the mgfs exist and  , where , then

	 	  for all .

    In the next theorem, which deals with a sequence of mgfs that converges, we do n-
ot treat the bounded support case separately. Note that the uniqueness assumption is 
automatically satisfied since the limiting mgf exists in a neighborhood of 0.

Theorem 2.9: Convergence of MGFs

	 Suppose that  is a countable sequence of random variables each with mgf

	 . Assume that  and  is an mgf. 


	 Then there exists a unique cdf  whose moments are determined by  

	 and,  where  is continuous, one has . That is, 


	 convergence, for , of mgfs to an mgf implies convergence of cdfs.

  The proofs of Theorem 2.8 and Theorem 2.9 rely on the theory of Laplace transf-

orms. The defining equation for  defines a Laplace transform, 

i.e.  is the Laplace transform of . A key fact about Laplace transforms is 

their uniqueness. If  is valid , then given  

there is only one function  satisfies . Given this fact, the 

two previous theorems are quite reasonable.


□

FX(x) FY(y)
X Y FX(u) = FY(u) u ⇔

𝔼Xr = 𝔼Yr r = 0,1,2,⋯
MX(t) = MY(t) ∀t ∈ (−δ, δ ) δ > 0

FX(u) = FY(u) u

{Xi}
MXi

(t) lim
i→∞

MXi
(t) = MX(t)∀t ∈ (−δ, δ ) MX(t)

FX MX(t)
∀x FX(x) lim

i→∞
FXi

(x) = FX(x)

t ∈ (−δ, δ )

MX(t) = ∫
∞

−∞
etxfX(x)d x

MX(t) fX(x)

MX(t) = ∫
∞

−∞
etxfX(x)d x ∀t ∈ (−δ, δ ) MX(t)

fX(x) MX(t) = ∫
∞

−∞
etxfX(x)d x
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   The possible nonuniqueness of the moment sequence is an annoyance. If we show 
that a sequence of moments converges, we will not be able to conclude formally that 
the random variables converge. To do so, we would have to verify the uniqueness of 
the moment sequence, a generaly horrible job. However, if the sequence of mgfs 
converges in a neighborhood of 0, then the random variables converges. Thus, we can 
consider the convergence of mgfs as a sufficient but not necessary condition for the 
sequence of random variables to converge.

Theorem 2.10:

	 For any constants  and , the mgf of the random variable  is given by

	 .

Proof:

	 By definition, 

	 	 .

	 	 	 	 	 	 	 	 	 	 	 	 	 


2.4 Differentiabting under an Integral Sign

   In the previous subsection we encountered an instance in which we desired to inte-
rchange the order of integration and differentiation. This situation is encountered 
frequently in theoretical statistics. The purpose of this subsection is to characterize 
conditions under which this operation is legitimate. We will also discuss interch-
anging the order of differentiation and summation.

  Many of these conditions can be established using standard theorems for calculus 
and detailed proofs can be found in most calculus books. Thus, detailed proofs will 
not be presented here.

    We first want to establish the method of calculating


	 	 	 	 	    ,	 	 	 	 (2.2)


where  . The rule for differentiating (2.2) is called 
Leibnitz’s Ruls and is an application of the Fundamental Theorem of Calculus and 
the chain rule.

Theorem 2.11: Leibnitz’s Rule

	 If , , and  are differentiable with respect to , then we have


	 


	 	 .


Remark:

	 Note that if  and  are constant, we have a special case of Leibnitz’s 


	 Rule: .	 	 	 	 	 	 ||


   Thus, in general, if we have the integral of a differentiable function over a finite ra-
nge, differentiation of the integral poses no problem. If the range of integration is 
infinite, however, problems can arise.


a b aX + b
MaX+b(t) = ebtMX(at)

MaX+b(t) = 𝔼(e(aX+b)t) = 𝔼(e(aX )tebt) = ebt𝔼(e(at)X) = ebtMX(at)
□

d
dθ ∫

b(θ)

a(θ)
f (x, θ )d x

−∞ < a(θ ), b(θ ) < ∞ ∀θ

f (x, θ ) a(θ ) b(θ ) θ
d

dθ ∫
b(θ)

a(θ)
f (x, θ )d x

= f(b(θ ), θ) d
dθ

b(θ ) − f(a(θ ), θ) d
dθ

a(θ ) + ∫
b(θ)

a(θ)

∂
∂θ

f (x, θ )d x

a(θ ) b(θ )
d

dθ ∫
b

a
f (x, θ )d x = ∫

b

a

∂
∂θ

f (x, θ )d x
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    Note that the interchange of derivative and integral in the above equation equates a 
partial derivative with an ordinary derivative. Formally, this must be the case since 
the LHS is a function of only  while the integrand on the RHS is a function of both  
and .

    The question of whether interchanging the order of differentiation and integration 
is justified is really a question of whether the limits and integration can be intercha-
nged, since a derivative is a special kind of limit. Recall that if  is differentiab-
le, then


,


so we have 


,


while we have


.


Therefore, if we can justify the interchanging of the order of limits and integration, 
differentiation under the integral sign will be justified. Treatment of this problem in 
full generality will, unfortunately, necessiate the use of measure theory. However, the 
statements and conclusions of some important results can be given. The following 
theorems are all corollaries of Lebesgue’s Dominated Convergence Theorem:

Theorem 2.12:

	 Suppose the function  is continuous at  for each  and there exists a

	 function  such that

	 (i)	 ,


	 (ii)	 .


	 Then .


   The key condition in this theorem is the existence of a dominating function , 
with a finite integral, which ensures that the integrals cannot be too badly behaved. 
We can now apply this theorem to the case we are considering by identifying  

with the difference .


Corollary 2.12.1:

	 Suppose that  is differentiable at , i.e.


	 	 	 


	 exists  and there exists a function  and a constant  such that


	 (i)	  and .


θ θ
x

f (x, θ )

∂
∂θ

f (x, θ ) = lim
δ→0

f (x, θ + δ ) − f (x, θ )
δ

∫
∞

−∞

∂
∂θ

f (x, θ )d x = ∫
∞

−∞
lim
δ→0

( f (x, θ + δ ) − f (x, θ )
δ )d x

d
dθ ∫

∞

−∞
f (x, θ )d x = lim

δ→0 ∫
∞

−∞
( f (x, θ + δ ) − f (x, θ )

δ )d x

h(x, y) y0 x
g(x)

|h(x, y) | ≤ g(x)∀x, y

∫
∞

−∞
g(x)d x < ∞

lim
y→y0 ∫

∞

−∞
h(x, y)d x = ∫

∞

−∞
lim
y→y0

h(x, y)d x

g(x)

h(x, y)
f (x, θ + δ ) − f (x, θ )

θ

f (x, θ ) θ = θ0

lim
δ→0

f (x, θ0 + δ ) − f (x, θ0)
δ

=
∂
∂θ

f (x, θ )
θ=θ0

∀x g(x, θ0) δ0 > 0
f (x, θ0 + δ ) − f (x, θ0)

δ
≤ g(x, θ0)∀x |δ | < δ0
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	 (ii)	 .


	 Then


	 	 	  .	 (2.3)


    The conclusion of Corollary 2.12.1 is cumbersome, but it is important to realize 
that although we seem to be treating  as a variable, the statement of the theorem is 
for one value of . That is, for each value  for  is differentiable at  and 
satisfies (i) and (ii), the order of integration and differentiation can be interchanged. 
Often the distinction between  and  is not stressed since (2.3) is written


	 	 	      .	 	 	 (2.4)


    Typically,  is differentiable at all , not at just one value . In this case, con-
dition (i) of Corollary 2.12.1 can be replaced by another condition that often proves 
easier to verify. By an application of the Mean Value Theorem, it follows that, for 
fixed  and , and ,





for some number , where . Therefore, (i) will be satisfied if we find 
a  that satisfies (ii) and


	 	      such that .	 (2.5)	 	 


    Note that in (2.5)  is implicitly a function of . This is permitted since the theo-
rem is applied to each value of  individually. From (2.5) we have the corollary:

Corollary 2.12.2:	 

	 Suppose that  is differentiable in  and there exists a function  

	 such that 


	 (i)	   such that 


	 (ii)	 .


	 Then .


    Justification for taking the derivative inside the summation is more straightforward 
than the integration case. The following theorem provides the details.

Theorem 2.13:


	 Suppose that the series  converges  in an interval  of real 


	 numbers and


∫
∞

−∞
g(x, θ0)d x < ∞

d
dθ ∫

∞

−∞
f (x, θ )d x

θ=θ0

= ∫
∞

−∞
( ∂

∂θ
f (x, θ )

θ=θ0
)d x

θ
θ θ0 f (x, θ ) θ0

θ θ0
d

dθ ∫
∞

−∞
f (x, θ )d x = ∫

∞

−∞

∂
∂θ

f (x, θ )d x

f (x, θ ) θ θ0

x θ0 |δ | ≤ δ0
f (x, θ0 + δ ) − f (x, θ0)

δ
=

∂
∂θ

f (x, θ )
θ=θ0+δ*(x)

δ*(x) |δ*(x) | ≤ δ0
g(x, θ )

∂
∂θ

f (x, θ )
θ=θ′￼

≤ g(x, θ ) ∀θ′￼ |θ′￼− θ | ≤ δ0

δ0 θ
θ

f (x, θ ) θ g(x, θ )

∂
∂θ

f (x, θ )
θ=θ′￼

≤ g(x, θ ) ∀θ′￼ |θ′￼− θ | ≤ δ0

∫
∞

−∞
g(x, θ )d x < ∞

d
dθ ∫

∞

−∞
f (x, θ )d x = ∫

∞

−∞

∂
∂θ

f (x, θ )d x

∞

∑
x=0

h(θ, x) ∀θ (a, b)
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	 (i)	  is continuous in  for all .


	 (ii)	  converges uniformly on every closed bounded subinterval


	 	 of .


	 Then .


    The condition of uniform convergence is the key one to verify in order to establish 
that the differentiation can be taken inside the summation. We close this subsection 
with a theorem similar to Theorem 2.13, but treats the case of interchanging the 
order of summation and integration.

Theorem 2.14:


	 Suppose that the series  converges uniformly on  and for each


	 ,  is a continuous function of . Then 


	 	 	 	 .


3.1 Discrete Distributions

    Recall that a random variable  is said to have a discrete distribution if the range of 

, the sample space, is countable. In most situations, the random variable has integer-
valued outcomes.

Definition: Discrete Uniform Distribution

	 A random variable  has a discrete Uniform  distribution if


	  for , where  is a specified integer. This 


	 distribution puts equal mass on each of the outcomes .


   We write  since the distribution is dependent on values of the 

parameters.

Fact 3.1:


	  and .


Moments for Discrete Uniform Random Variable:


	 Mean:		 .


	 Variance:	 Var 


	 	 	         .


∂
∂θ

h(θ, x) θ x
∞

∑
x=0

∂
∂θ

h(θ, x)

(a, b)
d

dθ

∞

∑
x=0

h(θ, x) =
∞

∑
x=0

∂
∂θ

h(θ, x)

∞

∑
x=0

h(θ, x) [a, b]

x h(θ, x) θ

∫
b

a

∞

∑
x=0

h(θ, x)dθ =
∞

∑
x=0

∫
b

a
h(θ, x)dθ

X
X

X (1,N )

ℙ(X = x |N ) =
1
N

x = 1,2,⋯, N N

1,2,⋯, N

ℙ(X = x |N ) =
1
N

k

∑
i=1

i =
k(k + 1)

2

k

∑
i=1

i2 =
k(k + 1)(2k + 1)

6

𝔼X =
N

∑
i=1

xℙ(X = x |N ) =
N

∑
x=1

x
1
N

=
N + 1

2

X = 𝔼X2 − (𝔼X )2 =
N

∑
x=1

x2 1
N

− (N + 1
2 )2

=
(N + 1)(N − 1)

12
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Remark:

	 This distribution can be generalized so that the sample space is any range of 


	 integers, , with pmf .	 ||


Definition: Bernoulli Distribution

	 A Bernoulli trial is an experiment with two, and only two, possible outcomes. 

	 A random variable  has a Bernoulli  distribution if 


	  where .


Moments for Bernoulli Random Variable:

	 Mean:		 

	 Variance:	 .

Definition: Binomial Distribution

	 The binomial distribution is based on the idea of a Bernoulli trial. A random

	 variable is said to be a Binomial  random variable if


	  where .


Theorem 3.2: Binomial Theorem


	  and  an integer one has .


Moments for Binomial Random Variable:	

	 Mean:		 .

	 Variance:	 .

	 MGF:		 .

Definition: Poisson distribution	

	 The Poisson distribution has a single parameter , sometimes called the 

	 intensity parameter. A random variable , taking values in the nonnegative


	 integers, has a Poisson  distribution if  for .


Moments for Poisson Random Variables:


	 Mean:		 


	 	 	      .


	 Variance:	 Var .

	 MGF:		 .

Definition: Negative Binomial Distribution

	 In a sequence of independent Bernoulli  trials, let the random variable 

	 denote the trial at which the th success occuse, where  is a fixed integer.


	 If  for  then  is said to 


N0, N0 + 1,⋯, N1 ℙ(X = x |N0, N1) =
1

(N1 − N0 + 1)

X (p)

X = {1, with probability p
0, with probability 1 − p

0 ≤ p ≤ 1

𝔼X = p
VarX = p(1 − p)

(n, p)

ℙ(Y = y |n, p) = (n
y)py(1 − p)n−y y = 0,1,2,⋯, n

∀x, y ∈ ℝ n ≥ 0 (x + y)n =
n

∑
i=0

(n
i )xiyn−i

𝔼X = np
VarX = np(1 − p)
MX(t) = (pet + (1 − p))n

λ
X

(λ) ℙ(X = x |λ) =
e−λλx

x!
x = 0,1,⋯

𝔼X =
∞

∑
x=0

x
e−λλx

x!
=

∞

∑
x=1

x
e−λλx

x!
= λe−λ

∞

∑
x=1

λx−1

(x − 1)!

= λe−λ
∞

∑
y=0

λy

y!
= λ

X = λ
MX(t) = eλ(et−1)

(p) X
r r

ℙ(X = x |r, p) = (x − 1
r − 1)pr(1 − p)x−r x = r, r + 1,⋯ X
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	 be a Negative Binomial  random variable.

    The negative binomial distribution is sometimes defined in terms of the random va-
riable . 

Moments of Negative Binomial Random Variable:


	 Mean:	 	 .


	 Variance:	 .


Definition: Geometric Distribution

	 The geometric distribution is a special case of the negative binomial 

	 distribution. A random variable  is said to has geometric distribution if

	  for .

Moments of Geometric Random Variable:


	 Mean:		 .


	 Variance:	 .


Remark:	 

	 The geometric distribution has an interesting property known as the 

	 “memoryless” property. For integers , it is the case that

	 , i.e. the geometric distribution “forgets” 

	 what has occured.


3.2 Continuous Distributions

Definition: Continuous Uniform Distribution

	 The continuous uniform distribution is defined by spreading mass uniformly


	 over an interval . Its pdf is given by .


Moments of Continuous Uniform Random Variable:


	 Mean:		 .	 


	 Variance:	 .


Definition: Gamma Function


	 If  is a positive constant, the integral  is finite. The gamma 


	 function . 


    The gamma function satisfies many useful relationships, in particular, one has that

	 	 	 	 , for .	 	 	 	 (3.1)


(r, p)

Y = X − r

𝔼Y = r
(1 − p)

p

VarY =
r(1 − p)

p2

X
ℙ(X = x | p) = p(1 − p)x−1 x = 1,2,⋯

𝔼X =
1
p

VarX =
1 − p

p2

s > t
ℙ(X > s |X > t) = ℙ(X > s − t)

[a, b] f (x |a, b) = {
1

b − a ,  if x ∈ [a, b]
0, otherwise

𝔼X = ∫
b

a

x
b − a

d x =
b + a

2

VarX = ∫
b

a

(x − b + a
2 )2

b − a
d x =

(b − a)2

12

α ∫
∞

0
tα−1e−tdt

Γ(α) = ∫
∞

0
tα−1e−tdt

Γ(α + 1) = αΓ(α) α > 0
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This can be verified through integration by parts. Moreover, we have , we 
have for any integer , . Furthermore, as a useful special case, 

we have .


    Since the integrand  is positive, it follows immediately that


	 	 	 	 , ,	 	 	 	 (3.2)


is a pdf. The full gamma family, however, has two paramaters and can be derived by 
changing variables to get the pdf of the random variable , where  is a 
positive constant. Upon doing this, we get the  family, 


	 , .	 (3.3)


The parameter  is known as the shape parameter, since it most influences the 
peakedness of the distribution, while the parameter  is called the scale parameter, 
since most of its influence is on the spread of the distribution.

Definition: Gamma Distribution

	 The gamma distribution is  with the pdf defined as in (3.3).

Moments of Gamma Random Variables:

	 Mean:		 .

	 Variance:	 Var .


	 MGF:		  for .


   There are a number of important special cases of the gamma distribution. If we set 
, where  is an integer, and , then the gamma pdf becomes


	 	 	 ,	 	 (3.4)


which is the chi squared pdf with  degrees of freedom.

Definition: Chi Squared Distribution

	 A random variable is said to have a chi squared distribution with  degrees of 

	 freedom if it has pdf as in (3.4).

Moments of Chi Squared Random Variables:

	 Mean:		 .


	 Variance:	 Var .


	 MGF:		 , for .


   Another important special case of the gamma distribution is obtained when we set 
. We then have


	 	 	 	 ,	 	 	 	 (3.5)


which is the exponential pdf with scale parameter .


Γ(1) = 1
n > 0 Γ(n) = (n − 1)!

Γ(
1
2

) = π

Γ(α) = ∫
∞

0
tα−1e−tdt

f (t) =
tα−1e−t

Γ(α)
0 < t < ∞

X = βT β
Gamma(α, β )

f (x |α, β ) =
1

Γ(α)βα
=

1
Γ(α)βα

xα−1e−x/β 0 < x < ∞, α > 0,β > 0

α
β

Gamma(α, β )

𝔼X = αβ
X = αβ2

MX(t) = ( 1
1 − βt )α t <

1
β

α = p /2 p β = 2

f (x | p) =
1

Γ(p /2)2p/2
x( p/2)−1e−x/2,0 < x < ∞

p

p

𝔼X = αβ =
p
2

⋅ 2 = p

X = αβ2 =
p
2

⋅ 22 = 2p

MX(t) = ( 1
1 − βt )α = ( 1

1 − 2t )p/2 t <
1
2

α = 1

f (x |β ) =
1
β

e−x/β,0 < x < ∞

β
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Definition:

	 A random variable is said to have an exponential distribution if its pdf is in the 


	 form .


    Take , we now describe its moments:


Moments of Exponential Random Variable:


	 Mean:		 .


	 Variance:	 Var .


    The normal distribution, sometimes called the Gaussian distribution, plays a central 
role in a large body of statistics. There are three main reasons for this. First, the 
normal distribution and distributions associated with it are very tractable analytically. 
Second, the normal distribution has the familiar bell shape, whose symmetry makes it 
an appealing choice for many population models. Although there are many other 
distributions that are also bell-shaped, most do not possess the analytic tractability of 
the normal. Third, there is the Central Limit Theorem, which shows that, under 
mild conditions, the normal distribution can be used to approximate a large variety of 
distributions in large samples.

Definition: Normal Distribution

	 The normal distribution has two parameters,  and , which are its mean and

	 variance. The pdf of the normal distribution with mean  and variance  is 

	 given by


	 	 	 , .	 	 (3.6)


    We denote  as  has a normal distribution with mean  and variance 
, the random variable  has a  distribution, aslo known as the 

standard normal.

Moments of Gaussian Random Variable:

	 Mean:		 .

	 Variance:	 .

	 MGF:		 .

Definition: Beta Distribution

	 The beta family of distributions is a continuous family on  indexed by

	 two parameters. The Beta  has pdf 


	 	 	 ,	      (3.7)


	 where  denotes the beta function .


Remark:


f (x |β ) =
1
β

e−x/β,0 < x < ∞

λ :=
1
β

𝔼X =
1
λ

X =
1
λ2

μ σ2

μ σ2

f (x |μ, σ2) =
1

2πσ
e−(x−μ)2/(2σ2) −∞ < x < ∞

X ∼ N(μ, σ2) X μ
σ2 Z := (X − μ)/σ N(0,1)

𝔼X = μ
VarX = σ2

MX(t) = eμt+ 1
2 σ2t2

(0,1)
(α, β )

f (x |α, β ) =
1

B(α, β )
xα−1(1 − x)β−1,0 < x < 1,α, β > 0

B(α, β ) B(α, β ) := ∫
1

0
xα−1(1 − x)β−1d x
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	 The beta function is related to the gamma function .	 ||


Moments of Beta Random Variables:

	 Mean:		 .


	 Varianace:	 .


Definition: Cauchy Distribution

	 The Cauchy distribution is a symmetric, bell-shaped distribution on  

	 with pdf 


	 	 	 .	 	 (3.8)


Remark:

	 The mean of the Cauchy distribution does not exist. In fact, no moments of the

	 Cauchy distributions exist, or, all absolute moments are . In particular, the 		
	 moment generating function does not exist.	 	 	 	 	 	 ||

Definition: Lognormal Distribution

	 If  is a random variable whose log is normally distribued, i.e. 

	 , then we say  has a lognormal distribution. The pdf is


	 .


Moments of Lognormal Random Variables:

	 Mean:		 .

	 Variance:	 Var .

Definition: Double Exponential Distribution

	 The double exponential distribution is formed by reflecting the exponential

	 distribution around its mean. The pdf is


	 , , , .


Moments of Double Exponential Distribution:

	 Mean:		 .

	 Variance:	 .


3.3 Exponential Families

Definition: Exponential Family

	 A family of pdfs or pmfs is called an exponential family if it can be expressed 	 

	 as 


	 	 	 	 , 	 	 (3.9)


	 where ,  are real-valued functions of the observation  

	 (they cannot depend on ), and ,  are real-valued 

	 functions of the possibly vector-valued parameter  (they cannot depend on ).

Remark:


B(α, β ) =
Γ(α)Γ(β )
Γ(α + β )

𝔼X =
α

α + β

VarX =
αβ

(α + β )2(α + β + 1)

(−∞, ∞)

f (x |θ ) =
1
π

1
1 + (x − θ )2

, − ∞ < x, θ < ∞

∞

X
log X ∼ N(μ, σ2) X

f (x |μ, σ2) =
1

2πσ

1
x

e−(log x−μ)2/(2σ2),0 < x < ∞, − ∞ < μ < ∞, σ > 0

𝔼X = eμ+(σ2/2)

X = e2(μ+σ2) − e2μ+σ2

f (x |μ, σ) =
1

2σ
e−|x−μ|/σ −∞ < x < ∞ −∞ < μ < ∞ σ > 0

𝔼X = μ
VarX = 2σ2

f (x |θ ) = h(x)c(θ )exp{
k

∑
i=1

wi(θ )ti(x)}
h(x) ≥ 0 t1(x), ⋯, tk(x) x

θ c(θ ) ≥ 0 w1(θ ), ⋯, wk(θ )
θ x
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	 The continuous families — normal, gamma, and beta, the discrete families — 	 

	 binomial, Poisson, and negative binomial, are all exponential families.		 ||

Theorem 3.3:

	 If  is a random variable with pdf or pmf of the form (3.9), then


	 	 	 .	 	 	 (3.10)


	 and


	 .	 (3.11)


   Although the equations are so ugly, when applied to specific cases they can work 
out quite nicely. Their advantage is that we can replace integration or summation by 
differentiation, which is often more straightforward.

    In general, the set of  values for which  cannot depend on  in an exp-
onential family. The entire definition of the pdf or pmf must be incorporated into the 
form (3.9). This is most easily accomplished by incoporating the range of  into the 
expression for  through the use of an indicator function.

Definition: Indicator Function

	 The indicator function of a set , most often denoted by , is the function


	 . 


   An exponential family is sometimes reparameterized as


	 	 	 	 .	 	 	 (3.12)


Here the  and  functions are the same as in the original parameterization 

(3.9). The set  is called 

the natural parameter space for the family. The natural parameterization and the 
natural parameter space have many useful mathematical properties, for example,  
is convex.

   In (3.9) it is often the case that the dimension of the vector  is , the number of 
terms in the sum of the exponent. This need not be so, and it is possible for the 
dimension of the vector  to be less than . Such an exponential family is called a 
curved exponential family. 
Defnition: Curved Exponentia Family

	 A curved exponential family is a family of densities of the form (3.9) for which

	 the dimension of the vector , . If  the family is a full 

	 exponential family.

   Although the fact that the parameter space is a lower-dimensional space has some 
influence on the properties of the family, we will see that curved families still enjoy 
many of the properties of full families. In particular, Theorem 3.3 applies to curved 
exponential families. For more introuduction to the exponential families, see 

X

𝔼(
k

∑
i=1

∂wi(θ )
∂θj

ti(X )) = −
∂

∂θj
log c(θ )

Var(
k

∑
i=1

∂wi(θ )
∂θj

ti(X )) = −
∂2

∂θ2
j

log c(θ ) − 𝔼(
k

∑
i=1

∂2wi(θ )
∂θ2

j
ti(X ))

x f (x |θ ) > 0 θ

x
f (x |θ )

A IA(x)

IA(x) := {1,x ∈ A
0,x ∉ A

f (x |η) = h(x)c*(η)exp{
k

∑
i=1

ηiti(x)}
h(x) ti(x)

ℋ := {η = (η1, ⋯, ηk) ∫
∞

−∞
h(x)exp{

k

∑
i=1

ηiti(x)}d x < ∞}
ℋ

θ k

θ k

θ dim θ < k dim θ = k
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Lehmann (1986, Section 2.7) or Lehmann and Casella (1998, Section 1.5 and Note 
1.10.6).


4.1 Joint and Marginal Distributions

Definition: Random Vector

	 An -dimensional random vector is a function from a sample space  to .

    Suppose, for example, that with each point in a sample space we associate an orde-
red pair of numbers, i.e. a point . Then we have defined a two-dimensional 
(or bivariate) random vector .

    A random vector is called a discrete random vector when it has a countable number 
of possible values. For a discrete random vector, the function  defined by 

 can be used to compute any probabilities defined in terms 
of .

Definition: Joint Probability Mass Function

	 Let  be a discrete bivariate random vector. Then the function  from

	  to  defined by  is called the joint probability 

	 mass function or joint pmf of . If it is necessary to stress the fact that  is

	 the joint pmf of the vector  rather than some other vector, the notattion 

	  will be used.

    The joint pmf of  completely defines the probability distribution of the rand-
om vector , just as the pmf of a discrete univariate random variable completely. 
The joint pmf can be used to compare the probability of any event defined in terms of 

. Let  be any subset of . Then .


   Expectations of functions of random vectors are computed just as with univariate 
random variable. Let  be a real-valued function defined for all possible values 

 of the discrete random vector . Then  is itself a random variable 
and its expected value  is given by . 

Moreover, for  and  being two functions and  being constants, 
then .

Definition: Marginal PMF

	 Let  be a discrete bivariate random vector with joint pmf . Then 

	 the marginal pmfs of  and , as  and , are 

	 given by  and .


    The marginal pmf of  or  is the same as the pmf of  and  as we have mention-
ed before. The marginal pmf of  or  can be used to compute probabilities or expec-
tations that involve only  or . But to compute a probability or expectation that 
simultaneously involves both  and , we must use the joint pmf of  and .

Remark:

	 The marginal distributions of  and , described by the marginal pmfs  

	 and , do not completely describe the joint distribution of  and . Indeed,


n S ℝn

(x, y) ∈ ℝ2

(X, Y )

f (x, y)
f (x, y) = ℙ(X = x, Y = y)

(X, Y )

(X, Y ) f (x, y)
ℝ2 ℝ f (x, y) = ℙ(X = x, Y = y)

(X, Y ) f
(X, Y )

fX,Y(x, y)
(X, Y )

(X, Y )

(X, Y ) A ℝ2 ℙ((X, Y ) ∈ A) = ∑
(x,y)∈A

f (x, y)

g(x, y)
(x, y) (X, Y ) g(X, Y )

𝔼g(X, Y ) 𝔼g(X, Y ) = ∑
(x,y)∈ℝ2

g(x, y)f (x, y)

g1(x, y) g2(x, y) a, b, c
𝔼(ag1(x, y) + bg2(x, y) + c) = a𝔼g1(X, Y ) + b𝔼g2(x, y) + c

(X, Y ) fX,Y(x, y)
X Y fX(x) = ℙ(X = x) fY(y) = ℙ(Y = y)

fX(x) = ∑
y∈ℝ

fX,Y(x, y) fY(y) = ∑
x∈ℝ

fX,Y(x, y)

X Y X Y
X Y

X Y
X Y X Y

X Y fX(x)
fY(y) X Y
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	 there are many different joint distributions that have the same marginal 

	 distributions. Thus, it is hopeless to try to determine the joint pmf, , 		
	 from the knowledge of only the marginal pmfs,  and .	 	 	 ||

    To this point we have discussed discrete bivariate random vectors. We can also co-
nsider random vectors whose components are continuous random variables. The 
probability distribution of a continuous random vector is usually described using a 
density function, as in the univariate case.

Definition: Joint Probability Density Function

	 A function  from  into  is called a joint probability density function 

	 or joint pdf of the continuous bivariate random vector  if, for every 


	 , .


    A joint pdf is used just like a univariate pdf except now the integrals are double int-

egrals over sets in the plane. The notation  simply means that the limits of 

integration are set so that the function is integrated over all . Expectations 
of functions of continuous random vectors are defined as in the discrete case with 
integrals replacing sums and the pdf replacing the pmf. That is, if  is a real-
valued function, then the expectated value of  is defined to be


	 	 	 	 .	 	 (4.1)


It is important to realize that the joint pdf is defined for all . The pdf may 
equal 0 on a large set  if  but the pdf is defined for the points in 

.

Definition: Marginal PDF

	 The marginal probability functions of  and  are also defined as in the 

	 discrete case with integrals replacing sums. That is,


	 , ; , .


   The joint probability distribution of  can be completely described with the 
joint cdf rather than with the joint pmf or joint pdf. 

Definition: Joint CDF

	 The joint cdf is the function  defined by  

	 for all . 

    The joint cdf is usually not very handy to use for a discrete random vector. But for 
a continuous bivariate random vector we have the important relationship, as in the 

univariate case, . Recall the bivariate Fundamental 

Theorem of Calculus, this implies that  at continuity points of 

. The relationship is useful in situations where an expression for  can be 
found. The mixed partial derivative can be computed to find the joint pdf.


fX,Y(x, y)
fX(x) fY(y)

f (x, y) ℝ2 ℝ
(X, Y )

A ⊆ ℝ2 ℙ((X, Y ) ∈ A) = ∫A ∫ f (x, y)d xdy

∫ ∫A
(x, y) ∈ A

g(x, y)
g(X, Y )

𝔼g(X, Y ) = ∫
∞

−∞ ∫
∞

−∞
g(x, y)f (x, y)d xdy

(x, y) ∈ ℝ2

A ℙ((X, Y ) ∈ A) = 0
A

X Y

fX(x) = ∫
∞

−∞
f (x, y)dy −∞ < x < ∞ fY(y) = ∫

∞

−∞
f (x, y)d x −∞ < y < ∞

(X, Y )

F(x, y) F(x, y) = ℙ(X ≤ x, Y ≤ y)
(x, y) ∈ ℝ2

F(x, y) = ∫
x

−∞ ∫
y

−∞
f (s, t)dtds

∂2F(x, y)
∂x∂y

= f (x, y)

f (x, y) F(x, y)
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4.2 Conditional Distributions and Independence

    Often when two random variables, , are observed, the values of the two vari-
ables are related. Information about the value of  gives us some information about 
the value of  even if it does not tell us the value of  directly. Conditional probabili-
ties regarding  given knowledge of the  value can be computed using the joint 
distribution of . Sometimes, however, knowledge about  gives us no inform-
ation about . We will discuss these topics concerning conditional probabilities in this 
subsection.

Definition: Conditional Probability Mass Function

	 Let  be a discrete bivariate random vector with joint pmf  and 

	 marginal pmfs  and . 

	 For any  such that , the conditional pmf of  given that 

	  is the function of  denoted by  and defined by 


	 . 


	 For any  such that  , the conditional pmf of  given that

	  is the function of  denoted by  and defined by


	 .


Definition: Conditional Probability Density Function

	 Let  be a continuous bivariate random vector with joint pdf  and

	 marginal pdfs  and . 

	 For any  such that , the conditional pdf of  given that  is the 


	 function of  denoted by  and defined by .


	 For any  such that , the conditional pdf of  given that  is the


	 function of  denoted by  and defined by .


Definition: Conditional Expected Value

	 If  is a function of , then the conditional expected value of  given 

	 that  is denoted by  and is given by


	  and  in the 


	 discrete and the continuous cases, respectively.

Definition: Independent Random Variables

	 Let  be a bivariate random vector with joint pdf or pmf  and 

	 marginal pdfs or pmfs  and . Then  and  are called independent

	 random variables if, , .

    If  and  are independent, the conditional pdf of  given  is


	 	 	 	 ,	 	 (4.2)


(X, Y )
X

Y Y
Y X
(X, Y ) X

Y

(X, Y ) f (x, y)
fX(x) fY(y)

x ℙ(X = x) = fX(x) > 0 Y
X = x y f (y |x)

f (y |x) = ℙ(Y = y |X = x) =
f (x, y)
fX(x)

y ℙ(Y = y) = fY(y) > 0 X
Y = y x f (x |y)

f (x |y) = ℙ(X = x |Y = y) =
f (x, y)
fY(y)

(X, Y ) f (x, y)
fX(x) fY(y)

x fX(x) > 0 Y X = x

y f (y |x) f (y |x) =
f (x, y)
fX(x)

y fY(y) > 0 X Y = y

x f (x |y) f (x |y) =
f (x, y)
fY(y)

g(Y ) Y g(Y )
X = x 𝔼(g(Y ) |x)

𝔼(g(Y ) |x) = ∑
y

g(y)f (y |x) 𝔼(g(Y ) |x) = ∫
∞

−∞
g(y)f (y |x)dy

(X, Y ) f (x, y)
fX(x) fY(y) X Y

∀x, y ∈ ℝ f (x, y) = fX(x)fY(y)
X Y Y X = x

f (y |x) =
f (x, y)
fX(x)

=
fX(x)fY(y)

fX(x)
= fY(y)

Page  of 29 73



regardless of the value of . Thus, for any  and , 


	 	 	 .


The knowledge that  gives us no additional information about .

Lemma 4.1: Criterion for Independent

	 Let  be a bivariate random vector with joint pdf or pmf . Then 

	 and  are independent random variables  there exist functions  and  

	 such that , .

Proof:

	 “ ”:

	 Taking  and  yields this direction.

	 “ ”:

	 Let us prove the case for continuous random variables, while for discrete case 

	 we only need to replace the integrals with sums.


	 Consider now  and , where the constants  


	 and  satisfy


	 	 	 


	 	 	     	 	 (Fubini’s Theorem)


	 	 	     .	 (Since  joint pdf)


	 Furthermore, the marginal pdfs are given by


	 	  and .


	 Thus, we have .

	 	 	 	 	 	 	 	 	 	 	 	 	 

    Certain probabilities and expectations are easy to calculate if  and  are indepen-
dent, as the following theorem states:

Theorem 4.2:

	 Let  and  be independent random variables. Then

	 (i)	 For any , .

	 (ii)	 If  is a function only of  and  is a function only of . Then

	 	 .

Proof:

	 (ii):

	 For continuous random variables, part (ii) is proved by nothing but


	 	 


x A ⊆ ℝ x ∈ ℝ

ℙ(Y ∈ A |x) = ∫A
f (y |x)dy = ∫A

fY(y)dy = ℙ(Y ∈ A)

X = x Y

(X, Y ) f (x, y) X
Y ⇔ g(x) h(y)

∀x, y ∈ ℝ f (x, y) = g(x)h(y)

⇐
g(x) = fX(x) h(y) = hY(y)

⇒

∫
∞

−∞
g(x)d x = c ∫

∞

−∞
h(y)dy = d c

d

cd = (∫
∞

−∞
g(x)d x)(∫

∞

−∞
h(y)dy)

= ∫
∞

−∞ ∫
∞

−∞
g(x)h(y)d xdy

= ∫
∞

−∞ ∫
∞

−∞
f (x, y)d xdy = 1 f (x, y)

fX(x) = ∫
∞

−∞
g(x)h(y)dy = g(x)d fY(y) = ∫

∞

−∞
g(x)h(y)d x = h(y)c

f (x, y) = g(x)h(y) = g(x)h(y)cd = fX(x)fY(y)
□

X Y

X Y
A, B ⊆ ℝ ℙ(X ∈ A, Y ∈ B) = ℙ(X ∈ A)ℙ(Y ∈ B)

g(x) x h(y) y
𝔼(g(X )h(Y )) = (𝔼g(X ))(𝔼h(Y ))

𝔼(g(X )h(Y )) = ∫
∞

−∞ ∫
∞

−∞
g(x)h(y)f (x, y)d xdy
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	 	 	 	  	  (Independent)


	 	 	 	  	


	 	 	 	  	 (Fubini)


	 	 	 	  .

	 The result for discrete case is valid by replacing the integrals by sums.

	 (i):

	 Let  and let  be the indicator function of the 

	 set  while letting  being the indicator function of the set . Then

	 	 	 

	 	 	 	 	         .

	 	 	 	 	 	 	 	 	 	 	 	 	 

Theorem 4.3:

	 Let  and  be independent random variables with mgf  and . Then 

	 the mgf of the random variable  is given by .

Proof:	 	 

	 Using the definition of mgf and the result of Theorem 4.2, we have

	 	 .

	 	 	 	 	 	 	 	 	 	 	 	 	 


4.3 Bivariate Transformations

   In 2.1, methods of finding the distribution of a function of random variable were 
discussed. In this subsection we extend these ideas to the case of bivariate random 
vectors. Let us first state a results of Normal and Poisson random variables.

Theorem 4.4: Normal Transformation

	 Let  and  be independent random variables. Then the

	 random variale  has a  distribution.

Theorem 4.5: Poisson Transformation

	 If  and  and  and  are independent, then

	 .

    In fact, if two random variables are independent, then the transformations of them 
with the other not included, is also a random variable, and, are also independent.

Theorem 4.6:

	 Let  and  be independent random variables. Let  be a function only of  

	 and  be a function only of . Then the random variables  and 

	  are independent.

Proof:

	 We will prove the case for consinuous, the discrete case follows analogously.

	 Assume that  and  are continuous random variables. For any  and 

	 , we define  and . Then the joint

	 cdf of  is given by


= ∫
∞

−∞ ∫
∞

−∞
g(x)h(y)fX(x)fY(y)d xdy

= ∫
∞

−∞
h(y)fY(y)∫

∞

−∞
g(x)fX(x)d xdy

= (∫
∞

−∞
g(x)fX(x)d x)(∫

∞

−∞
h(y)fY(y)dy)

= (𝔼g(X ))(𝔼g(Y ))

C := {(x, y) |x ∈ A, y ∈ B} g(x)
A h(y) B

ℙ(X ∈ A, Y ∈ B) = ℙ((X, Y ) ∈ C ) = 𝔼(g(X )h(Y ))
= (𝔼g(X ))(𝔼h(Y )) = ℙ(X ∈ A)ℙ(Y ∈ B)

□

X Y MX(t) MY(t)
Z = X + Y MZ(t) = MX(t)MY(t)

MZ(t) = 𝔼etZ = 𝔼et(X+Y ) = 𝔼(etXetY) = (𝔼etX)(𝔼etY) = MX(t)MY(t)
□

X ∼ N(μ, σ2) Y ∼ N(γ, τ2)
Z = X + Y N(μ + γ, σ2 + τ2)

X ∼ Poisson(θ ) Y ∼ Poisson(λ) X Y
X + Y ∼ Poisson(θ + λ)

X Y g(x) x
h(y) y U = g(X )

V = h(Y )

U Y u ∈ ℝ
v ∈ ℝ Au := {x |g(x) ≤ u} Bv = {y |h(y) ≤ v}

(U, V )
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	 	 	 	 	 (Definition of cdf)

	 	 	 	       	 (Definition of  and )

	 	 	 	       .	 (Theorem 4.2 (i))

	 The joint pdf of  is 	 	 


.


	 According to Lemma 4.1, independence follows.

	 	 	 	 	 	 	 	 	 	 	 	 	 


4.4 Hierarchical Models and Mixture Distributions

    In the case we have seen so far, a random variable has a single distribution, possib-
ly depending on parameters. While, in general, a random variable can have only one 
distribution, it is often easier to model a situation by thinking of things in a hierarchy.

   Sometimes, calculation can be greatly simplified by using the following theorem. 
Recall that  is a function of  and  is a random variable whose value 
depends on the value of .

Theorem 4.7: Conditional Expectation Identity

	 If  and  are any two random variables. Then .

Proof:

	 Let  denote the joint pdf of  and . By definition, we have


	 	 	 ,


	 where  and  are the conditional pdf of  given  and the 

	 marginal pdf of , respectively. Notice that the integral in the bracket is the 

	 conditional expectation , rewrite the above equation


	 	 	 	 ,


	 as we desired. Replacing the integrals by sums yields the discrete case.

	 	 	 	 	 	 	 	 	 	 	 	 	 

   The term mixture distribution in the title of this subsection refers to a distribution 
arising from a hierarchical structure. Although there is no standardized definition for 
this term, we will use the following definition, which seems to be a popular one.

Definition: Mixture Distribution

	 A random variable  is said to have a mixture distribution if the distribution of 

	  depends on a quantity that also has a distribution.

    We have dealt with the expectation, now let us deal with the calculation of the vari-
ance. We can make use of a formula for conditional variances, similar to the one we 
did for conditional expectations.

Theorem 4.8: Conditional Variance Identity

	 For any two random variables  and , .

Proof:

	 By definition, one has

	 	 


FU,V(u, v) = ℙ(U ≤ u, V ≤ v)
= ℙ(X ∈ Au, Y ∈ Bv) U V
= ℙ(X ∈ Au)ℙ(Y ∈ Bv)

(U, V )

fU,V(u, v) =
∂2

∂u∂v
FU,V(u, v) = ( d

du
ℙ(X ∈ Au))( d

dv
ℙ(Y ∈ Bv))

□

𝔼(X |y) y 𝔼(X |Y )
Y

X Y 𝔼X = 𝔼(𝔼(X |Y ))

f (x, y) X Y

𝔼 = ∫ ∫ x f (x, y)d xdy = ∫ [∫ x f (x |y)d x]fY(y)dy

f (x |y) fY(y) X Y = y
Y

𝔼(X |y)

𝔼X = ∫ 𝔼(X |y)fY(y)dy = 𝔼(𝔼(X |Y ))

□

X
X

X Y VarX = 𝔼(Var(X |Y ))+Var(𝔼(X |Y ))

VarX = 𝔼((X − 𝔼X )2) = 𝔼(X − 𝔼(X |Y ) + 𝔼(X |Y ) − 𝔼X2)
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	 	 	   .

	 We leave the step in prove that  to 		
	 the reader. The above equation, by definition,

	 , .

	 	 	 	 	 	 	 	 	 	 	 	 	 


4.5 Covariance and Correlation

   In earlier subsections, we have discussed the absence or presence of a relationship 
between two random variables, independence or nonindependence. But if there is a 
relationship, the relationship may be strong or weak. In this subsection we discuss 
two numerical measures of the strength of a relationship between two random 
variables, the covariance and correlation.

   If there is no misleading, we shall always use, for two random variables  and , 

 and , , , where .

Definition: Covariance

	 The covariance of  and  is the value Cov .

Definition: Correlation


	 The correlation of  and  is the value . The value  is


	 also called the correlation coefficient.

   While the covariance could be any number, the correlation is always between -1 
and 1, with the values -1 and 1 indicating a perfect linear relationship between  and 

. We now prove another version of covariance.

Theorem 4.9:

	 For any random variables  and , .

Proof:

	 	 Cov 

	 	 	        		 (Expand the product)

	 	 	        		 (  are constants)

	 	 	        .

	 	 	 	 	 	 	 	 	 	 	 	 	 

    In the next three theorems we describe some of the fundamental properties of cova-
riance and correlaion.

Theorem 4.10:

	 If  and  are independent random variables, then Cov  and 

	 .

Proof:

	 Since  and  are independent, one has . Thus,

	 	 	 Cov .

	 It follows that  as well.	 

	 	 	 	 	 	 	 	 	 	 	 	 	 

Remark:


= 𝔼((X − 𝔼(X |Y ))2) + 𝔼((𝔼(X |Y ) − 𝔼X )2)
+2𝔼((X − 𝔼(X |Y ))(𝔼(X |Y ) − 𝔼Y ))

2𝔼((X − 𝔼(X |Y ))(𝔼(X |Y ) − 𝔼Y )) = 0

𝔼((X − 𝔼(X |Y ))2) = 𝔼(Var(X |Y )) 𝔼((𝔼(X |Y ) − 𝔼X )2) = Var(𝔼(X |Y ))
□

X Y
μX := 𝔼X σ2

X := VarX μY := 𝔼Y σ2
Y := VarY 0 < σ2

X, σ2
Y < ∞

X Y (X, Y ) := 𝔼((X − μX)(Y − μY))

X Y ρXY =
Cov(X, Y )

σXσY
ρXY

X
Y

X Y Cov(X, Y ) = 𝔼XY − μX μY

(X, Y ) = 𝔼(X − μX)(Y − μY)
= 𝔼(XY − μXY − μYY X + μX μY)
= 𝔼XY − μX𝔼Y − μY𝔼X + μX μY μX, μY
= 𝔼XY − μX μY − μY μX + μX μY = 𝔼XY − μX μY

□

X Y (X, Y ) = 0
ρXY = 0

X Y 𝔼XY = (𝔼X )(𝔼Y )
(X, Y ) = 𝔼XY − (𝔼X )(𝔼Y ) = 0

ρXY = 0
□
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	 The converse is not true in general, there are some nonindependent random 

	 variables  and  with  and .	 	 	 	 ||

   Covariance plays an important role in understanding the variation in sums of rand-
om variables, as the next theorem suggests.

Theorem 4.11:

	 If  and  are any two random variables and  and  are any two constants, 

	 then 

	 	 	 Var .

	 If  and  are further assumed to be independent, then

	 	 	 	 Var .

    Covariance and correlation measure only a particular kind of linear relationship th-
at will be described in the following theorem.

Theorem 4.12:

	 For any random variables  and .

	 (i)	 .

	 (ii)	    and  constants such that .

	 	 If , then , if , then .

    Later we will prove the Cauchy-Schwartz inequality which has a direct consequen-
ce that  is bounded between -1 and 1.

   The intuition of Theorem 4.12 is that, if there is a line  with , 
such that the values of  have a high probability of being near the line, then the 
correlation between  and  will be near 1 or -1. But if no such line exists, the 
correlation will be near 0.

    We close this subsection by introducing a very important bivariate distribution in 
which the correlation coefficient arises naturally as a parameter.

Definition: Bivariate Normal pdf

	 Let  and . The bivariate normal pdf with

	 means  and , variances  and , and correlation  is the bivariate pdf 

	 given by


	 	 


	 	 


	 for .

    This formula is disgusting but often used. We now give some properties of it:

Properties:

	 (i)	 The marginal distribution of  (resp. ) is  (resp. ).

	 (ii)	 The correlation between  and  is .

	 (iii)	 For any constants  and , the distribution  is 

	 	 .


4.6 Multivariate Distributions


X Y Cov(X, Y ) = 0 ρXY = 0

X Y a b

(aX + bY ) = a2VarX + b2VarY + 2abCov(X, Y )
X Y

(aX + bY ) = a2VarX + b2VarY

X Y
−1 ≤ ρXY ≤ 1
|ρXY | = 1 ⇔ ∃a ≠ 0 b ℙ(Y = aX + b) = 1

ρXY = 1 a > 0 ρXY = − 1 a < 0

ρXY
y = a x + b a ≠ 0

(X, Y )
X Y

−∞ < μX, μY, σX, σY < ∞ −1 < ρ < 1
μX μY σ2

X σ2
Y ρ

f (x, y) = (2πσXσY 1 − ρ2)−1

⋅ exp{ −
1

2(1 − ρ2) ((
x − μX

σX
)2 − 2ρ(

x − μX

σX
)(

y − μY

σY
) + (

y − μY

σY
)2)}

−∞ < x, y < ∞

X Y N(μX, σ2
X) N(μY, σ2

Y)
X Y ρXY = ρ

a b aX + bY
N(aμX + bμY, a2σ2

Xb2σ2
Y + 2abρσXσY)
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    Now we extend the discussion so far for bivariate random variables into the case of 
more, finite, or even countable random variables. Namely, we call  a random vector 
if  with each entry being a random variable, 

Definition: Joint pmf

	 The joint pmf of the random vector  is a function defined by

	  .

    The marginal pdf or pmf of any subset of the coordinates of  can be co-
mputed by integrating or summing the joint pdf or pmf over all possible values of the 
other coordinates. 

   The conditional pdf or pmf of a subset of the coordinates of  given the 
values of the remaining coordinates is obtained by dividing the joint pdf or pmf by 
the marginal pdf or pmf of the remaining coordinates.

   We now introduce an important family of discrete multivariate distributions. This 
family generalizes the binomial family to the situation in whcih each trial has  
distinct possible outcomes rather than two.

Definition: Multinomial Distributions

	 Let  and  be positive integers and let  be numbers satisfying 


	 , where  and . Then the random vector 


	  has a multinomial distribution with  trials and cell probabilities

	  if the joint pmf of  is given by


	  on the set of  


	 such that each  is a nonnegative integer and .


  The factor  is called the multinomial coefficient. It is the number of 

ways that  objects can be divided into  groups with  in the first group,  in the 
second group, …, and  in the th group. A generalization of the Binomial Theorem 
is the Multinomial Theorem.

Theorem 4.13: Multinomial Theorem

	 Let  and  be positive integers. Let  be the set of vectors  


	 such that each  is a nonnegative integer and . Then, for any real


	 numbers , one has .


    This theorem shows that a multinomial pmf sums to 1. The set  is the set of points 
with positive probability hence the sum of the pmf over all those points is, by this 
theorem, .


X
X = (X1, ⋯, Xn)

X = (X1, ⋯, Xn)
f (x) := f (x1, ⋯, xn) = ℙ(X1 = x1, ⋯, Xn = xn) ∀(x1, ⋯, xn) ∈ ℝn

(X1, ⋯, Xn)

(X1, ⋯, Xn)

n

n m p1, ⋯, pn

0 ≤ pi ≤ 1 i = 1,⋯, n
n

∑
i=1

pi = 1

(X1, ⋯, Xn) m
p1, ⋯, pn (X1, ⋯, Xn)

f (x1, ⋯, xn) =
m!

x1! ⋅ ⋯ ⋅ xn!
px1

1 ⋅ ⋯ ⋅ pxn
n = m!

n

∏
i=1

pxi
i

xi!
(x1, ⋯, xn)

xi

n

∑
i=1

xi = m

m!
x1! ⋅ ⋯ ⋅ xn!

m n x1 x2
xn n

m n A x = (x1, ⋯, xn)

xi

n

∑
i=1

xi = m

p1, ⋯, pn (p1 + ⋯ + pn)m = ∑
x∈A

m!
x1! ⋅ ⋯ ⋅ xn!

px1
1 ⋅ ⋯ ⋅ pxn

n

A

(p1 + ⋯ + pn)m = 1m = 1
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   Recall the statistical independence we introduced before is between two random 
variables, we now extend them to countable case, and we then state the generalized 
results we see earlier.

Definition: Mutually Independent

	 Let  be random vectors with joint pdf or pmf . Let  

	 denote the marginal pdf or pmf of . Then  are called mutually 

	 independent random vectors if for every , one has


	 . If the ’s are all one-


	 dimensional, then  are called mutually independent random variables.

Theorem 4.14: Expectation

	 Let  be mutually independent random variables. Let  be real-

	 valued functions such that  is a function only of  for . Then

	 .

Theorem 4.15: MGF

	 Let  be mutually independent random variables with mgfs 

	 . Let . Then the mgf of  is 

	 . In particular, if  all have the same 

	 distribution with mgf , then .

Corollary 4.16:

	 Let  be mutually independent random variables with mgfs 

	 . Let  and  be fixed constants. Let 

	 . Then the mgf of  is given by

	 .

Proof:

	 From the definition, the mgf of  is

	 	  

	 	 	 

	 	 	 	 (Properties of exponential)

	 	 	 	 (Theorem 4.15)

	 result follows.

	 	 	 	 	 	 	 	 	 	 	 	 	 

  Undoubtedly, the most important application of Corollary 4.16 is to the case of 
normal random variables. A linear combination of independent normal random 
variables is normally distributed.

Corollary 4.16.1:

	 Let  be mutually independent random variables with . 

	 Let  and  be fixed constants. Then	 


	 .


X1, ⋯, Xn f (x1, ⋯, xn) fXi
(xi)

Xi X1, ⋯, Xn
(x1, ⋯, xn)

f (x1, ⋯, xn) = fX1
(x1) ⋅ ⋯ ⋅ fXn

(xn) =
n

∏
i=1

fXi
(xi) Xi

X1, ⋯, Xn

X1, ⋯, Xn g1, ⋯, gn
gi(xi) xi i = 1,⋯, n

𝔼(g1(X1) ⋅ ⋯ ⋅ gn(Xn)) = (𝔼g1(X1) ⋅ ⋯ ⋅ 𝔼gn(Xn))
X1, ⋯, Xn

MX1
(t), ⋯, MXn

(t) Z = X1 + ⋯ + Xn Z
MZ(t) = MX1

(t) ⋅ ⋯ ⋅ MXn
(t) X1, ⋯, Xn

MX(t) MZ(t) = (MX(t))n

X1, ⋯, Xn
MX1

(t), ⋯, MXn
(t) a1, ⋯, an b1, ⋯, bn

Z = (a1X1 + b1) + ⋯ + (anXn + bn) Z
MZ(t) = (et(∑ bi))MX1

(a1t) ⋅ ⋯MXn
(ant)

Z
MZ(t) = 𝔼etZ

= 𝔼et∑ (ai Xi+bi)

= (et(∑ bi))𝔼(eta1X1 ⋅ ⋯ ⋅ etanXn)
= (et(∑ bi))MX1

(a1t) ⋅ ⋯ ⋅ MXn
(ant)

□

X1, ⋯, Xn Xi ∼ N(μi, σ2
i )

a1, ⋯, an b1, ⋯, bn

Z =
n

∑
i=1

(aiXi + bi) ∼ N(
n

∑
i=1

(aiμi + b),
n

∑
i=1

a2
i σ2

i )
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Proof:

	 Recall that the mgf of a  random variable is . 

	 Substituting into the expression of Corollary 4.16 yields

	 	 	 

	 	 	          ,

	 the mgf of the indicated normal distribution.

	 	 	 	 	 	 	 	 	 	 	 	 	 

Theorem 4.17: Criterion for Independence

	 Let  be random vectors. Then  are mutually independent 

	 random vectors  there exists functions , for , such that the

	 joint pdf or pmf of  can be written as 

	 .

Theorem 4.18:

	 Let  be independent random vectors. Let  be a function only of 

	  for . Then the random variables  for , are

	 mutually independent.


4.7 Inequalities

   One of the most important task for us in either probability or statistics, is to find 
that if, for example, the variation of a given random variable, with high probability 
(say 99%), is bounded by a certain number. To this end, a lot of inequalities are 
needed. In this subsection, we shall introduce some important inequalities. Note that 
the inequalities are divided into categories numerical and functional, the former one 
is determined by “numbers” while the second one is determined by the “operating 
functions” according to the name.

Lemma 4.19:

	 Let  and  be positive numbers, and let  and  be any positive numbers 


	 (necessarily greater than 1) such that . Then 	 


	 with equality if and only if .

   One of the most important variations for the Lemma 4.19 is the famous Hölder’s 
inequality.

Theorem 4.20: Hölder’s Inequality


	 Let  and  be any two random variables and let  for both  and 


	 greater than 1. Then .

    In fact, this is the idea derived from functional analysis, where we have a norm for 
the vectors having this property. Perhaps the most famous special case of Hölder’s 
inequality is that for which . This is called the Cauchy-Schwarts Inequality.

Theorem 4.21: Cauchy-Schwartz Inequality

	 For any two random variables  and , 	 

	 	 	 .


N(μ, σ2) M(t) = eμt+σ2t2/2

Mz(t) = (et(∑ bi))eμ1a1t+σ2
1 a2

1 t2/2 ⋅ ⋯ ⋅ eμnant+σ2
n a 2

n t2/2

= e(∑ (ai μi+bi)t+(∑ a2
i σ2

i )t2/2

□

X1, ⋯, Xn X1, ⋯, Xn
⇔ gi(xi) i = 1,⋯, n

(X1, ⋯, Xn)
f (x1, ⋯, xn) = g1(x1) ⋅ ⋯ ⋅ gn(xn)

X1, ⋯, Xn gi(xi)
xi i = 1,⋯, n Ui = gi(Xi) i = 1,⋯, n

a b p q
1
p

+
1
q

= 1
1
p

ap +
1
q

bq ≥ ab

ap = bq

X Y
1
p

+
1
q

= 1 p q

|𝔼XY | ≤ 𝔼 |XY | ≤ (𝔼 |X |p )1/p(𝔼 |Y |q )1/q

p = q = 2

X Y
|𝔼XY | ≤ 𝔼 |XY | ≤ (𝔼 |X |2 )1/2(𝔼 |Y |2 )1/2
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   Our next named inequality is similar in spirit to Hölder’s inequality, and, in fact, 
follows from it.

Theorem 4.22: Minkowski’s Inequality

	 Let  and  be any two random variables. Then for , one has

	 	 	 .

    Now we introduce the functional inequalities, these inequalities rely on the proper-
ty of convexity. For example, one of the most famous Jensen’s Inequality.

Definition: Convex

	 A function  is convex if  and , 	 	 	 

	 	 	 .

Theorem 4.23: Jensen’s Inequality

	 For any random variable , if  is a convex function, then .

	 With equality holds  for every line  that is tangent to  at ,

	 .

  One immediate application of Jensen’s Inequality is to show that . 
Since  is convex. Moreover, if  is positive, then  is convex; hence 

.

    We close our section with an inequality that merely exploits the definition of covar-
iance, but sometimes proves to be useful. If  is a random variable with finite mean  
and  is a nondecreasing function, then .

Theorem 4.24: Covariance Inequality

	 Let  be any random variable and  and  any functions such that 

	 , , and  exist. Then

	 (i)	 If  is nondecreasing and  is nonincreasing then 

	 	 .

	 (ii)	 If  and  are either both nondecreasing or both nonincreasing, 	 

	 	 then .

    The intuition behind the inequality is easy. In case (i) there is a negative correlation 
between  and  while in case (ii) there is a positive one. The inequalities merely 
reflect this fact. The usefulness of the Covariance Inequality is that it allows us to 
bound an expectation without higher-order moments.


5.1 Basic Concepts of Random Samples

Definition: Independent and Identically Distribued (i.i.d.)

	 The random variables  are called a random sample of size  from the 

	 population  if  are mutually independent random variables and the

	 marginal pdf or pmf of each  is the same function . Alternatively, 

	  are called independent and identically distributed random variables 

	 with pdf or pmf . This is commonly abbreviated to i.i.d. random variables.

    When a sample  is drawn, some summary of the values is usually compu-
ted. Any well-defined summary may be expressed mathematically as a function 

 whose domain includes the sample space of the random vector 

X Y 1 ≤ p < ∞
(𝔼 |X + Y |p )1/p ≤ (𝔼 |X |p )1/p + (𝔼 |Y |p )1/p

g(x) ∀0 < λ < 1 ∀x, y
g(λ x + (1 − λ)y) ≤ λg(x) + (1 − λ)g(y)

X g(x) 𝔼g(X ) ≥ g(𝔼X )
⇔ a + bx g(x) x = 𝔼X

ℙ(g(X ) = a + bX ) = 1
𝔼X2 ≥ (𝔼X )2

g(x) = x2 x 1/x
𝔼(1/X ) ≥ 1/𝔼X

X μ
g(x) 𝔼(g(X )(X − μ)) ≥ 0

X g(x) h(x)
𝔼g(X ) 𝔼h(X ) 𝔼(g(X )h(X ))

g(x) h(x)
𝔼(g(X )h(X )) ≤ (𝔼g(X ))(𝔼h(X ))

g(x) h(x)
𝔼(g(X )h(X )) ≥ (𝔼g(X ))(𝔼h(X ))

g h

X1, ⋯, Xn n
f (x) X1, ⋯, Xn

Xi f (x)
X1, ⋯, Xn

f (x)
X1, ⋯, Xn

T(x1, ⋯, xn)
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. The function  may be real-valued or vector-valued; thus the summary is 
a random variable (resp. random vector), .

    Since the random sample  has a simple probabilistic structure, the distrib-
ution of  is particularly tractable. Because this distribution is usually derived from 
the distribution of the variables in the random sample, it is called the sampling 
distribution of . This distinguishes the probability distribution of  from the distri-
bution of the population, i.e. the marginal distribution of each .

Definition: Statistic

	 Let  be a random sample of size  from a population and let 

	  be a real-valued or vector-valued function whose domain includes

	 the sample space of . Then the random variable or random vector 

	  is called a statistic. The probability distribution of a statistic

	  is called the sampling distribution of .

Remark:

	 The definition of a statistic is very broad, with the only restriction being that a 

	 statistic cannot be a function of a parameter.	 	 	 	 	 	 ||

    Most of the terminologies we have encountered so far are statistics, e.g. recall the 
mean  and the variance . We now generalize these concepts to the form, that as a 
function of the random variable (resp. random vector),  and  are themselves ran-
dom variables.

Definition: Sample Mean

	 The sample mean is the arithmetic average of the value in a random sample.


	 It is usually denoted by .


Definition: Sample Variance


	 The sample variance is the statistic defined by .


Definition: Sample Standard Deviation

	 The sample standard deviation is the statistic defined by .

    We now state and prove a very useful numerical result involving the sample mean 
and the sample variance.

Theorem 5.1: Numerical Identity

	 Let  be any numbers and . Then


	 (i)	 .


	 (ii)	 .


Proof:

	 (i):


	 	 	 	 (Add and subtract )


(X1, ⋯, Xn) T
Y = T(X1, ⋯, Xn)

X1, ⋯, Xn
Y

Y Y
Xi

X1, ⋯, Xn n
T(x1, ⋯, xn)

(X1, ⋯, Xn)
Y := T(X1, ⋯, Xn)
Y Y

μ σ2

μ σ2

X :=
X1 + ⋯ + Xn

n
=

1
n

n

∑
i=1

Xi

S2 =
1

n − 1

n

∑
i=1

(Xi − X )2

S := S2

x1, ⋯, xn x = (x1 + ⋯ + xn)/n

min
a

n

∑
i=1

(xi − a)2 =
n

∑
i=1

(xi − x )2

(n − 1)s2 =
n

∑
i=1

(xi − x )2 =
n

∑
i=1

x2
i − n x2

n

∑
i=1

(xi − a)2 =
n

∑
i=1

(xi − x + x − a)2 x
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	 	 	 	 	 (Definition of )


	 We now minimize over  on both sides:


	    	  


	 	 	 	        	 (Minimized when )


	 (ii):


	 With the same approach but this time we set  in , one has


	 	 	 (Add and subtract )


	 	 	 		 (Expand)


	 	 	 .		 (Cross term is zero)


	 Similarly, we expand  with the cross term vanishes, one has


	 	 	 .	 	 (5.1)


	 Lastly for  by definition, we have,


	 by (5.1), established the identity .


	 	 	 	 	 	 	 	 	 	 	 	 	 

    Theorem 5.1 is useful in both computationally and theoretically because it allows 
us to express  in terms of sums that are easy to handle.

Lemma 5.2: Functional Identity

	 Let  be a random sample from a population and let  be a function

	 such that  and  both exist. Then,


	 (i)	 .


=
n

∑
i=1

(xi − x )2 + 2
n

∑
i=1

(xi − x )(x − a) +
n

∑
i=1

(x − a)2

=
n

∑
i=1

(xi − x )2 + (x − a)((
n

∑
i=1

xi) − x) +
n

∑
i=1

(x − a)2

=
n

∑
i=1

(xi − x )2 +
n

∑
i=1

(x − a)2 x

a

min
a

n

∑
i=1

(xi − a)2 = min
a (

n

∑
i=1

(xi − x )2 +
n

∑
i=1

(x − a)2)
= min

a

n

∑
i=1

(x − a)2 a = x

a = 0
n

∑
i=1

(xi − a)2

n

∑
i=1

x2
i =

n

∑
i=1

(xi − x + x )2 x

=
n

∑
i=1

(xi − x )2 + 2
n

∑
i=1

(xi − x ) ⋅ x +
n

∑
i=1

x2

=
n

∑
i=1

(xi − x )2 +
n

∑
i=1

x2

n

∑
i=1

(xi − x )2

n

∑
i=1

(xi − x )2 =
n

∑
i=1

x2
i −

n

∑
i=1

x2 =
n

∑
i=1

x2
i − n x2

(n − 1)s2 = (n − 1) ⋅
1

n − 1

n

∑
i=1

(xi − x )2

(n − 1)s2 =
n

∑
i=1

(xi − x )2 =
n

∑
i=1

x2
i − n x2

□

s2

X1, ⋯, Xn g(x)
𝔼g(X1) 𝔼(VarX1)

𝔼
n

∑
i=1

g(Xi) = n𝔼g(X1)
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	 (ii)	 Var .


Proof:

	 (i):

	 Since the ’s are identically distributed, it follows that  is the same for 


	 all the index , hence . Note that we have, in fact


	  where the middle equality is valid since 


	 the expecation is a linear operator, hence the independence for ’s is not 

	 needed for (i) to be valid. Indeed, (i) is valid for any collection of  identically

	 distributed random variables.

	 (ii):


	 	 Var   (Definition of Var)


	 	 	 	 	   (Property of Expectation)


	 In this last expression there are  terms. First, there are  terms 

	 , for , and for each, we have

	 	 	 (Definition of Var)

	 	 	 	 	    	 (Identically Distributed)

	 The reamaining  terms are all of the form 

	 	 	 	 , .

	 For each term, one has

	 	 


	 due to the definition of covariance and independence. Result follows.	 

	 	 	 	 	 	 	 	 	 	 	 	 	 

Remark:

	 In obtaining the second result, we have used independence, in fact, 

	 independence is a necessary condition for (ii) to hold.	 	 	 	 ||

Theorem 5.3:

	 Let  be a random sample from a population with mean  and variance

	 . Then

	 (i)	 .


	 (ii)	 .


	 (iii)	 .

    The relationships (i) and (ii) bwtween a statistic and a population parameter are ex-
amples of unbiased statistics. The statistic  is an unbiased estimator of  and  is an 
unbiased estimator for .


n

∑
i=1

g(Xi) = nVarg(X1)

Xi 𝔼g(Xi)

i 𝔼
n

∑
i=1

g(Xi) = n𝔼g(X1)

𝔼
n

∑
i=1

g(Xi) =
n

∑
i=1

𝔼g(Xi) = n𝔼g(X1)

Xi
n

n

∑
i=1

g(Xi) = 𝔼(
n

∑
i=1

g(Xi) − 𝔼
n

∑
i=1

g(Xi))
2

= 𝔼(
n

∑
i=1

(g(Xi) − 𝔼g(Xi)))
2

n2 n
((g(Xi) − 𝔼g(Xi))2 i = 1,⋯, n

𝔼((g(Xi) − 𝔼g(Xi))2 = Varg(Xi)
= Varg(X1)

n(n − 1)
(g(Xi) − 𝔼g(Xi))(gXj) − 𝔼g(Xj)) i ≠ j

𝔼((g(Xi) − 𝔼g(Xi))(g(Xj) − 𝔼g(Xj))) = Cov(g(Xi), g(Xj)) = 0

□

X1, ⋯, Xn μ
σ2 < ∞

𝔼X = μ

VarX =
σ2

n
𝔼S2 = σ2

X μ S2

σ2
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Theorem 5.4:

	 Let  be a random sample from a population with mgf . Then the

	 mgf of the sample mean is .

    Of course this theorem is useful only if the expression for  is a familiar mgf. 
Cases when this is true are somewhat limited, when it is not applicable, the following 
convolution formula is useful.

Theorem 5.5: Convolution Formula

	 If  and  are independent continuous random variables with pdfs  and 


	 , then the pdf of  is .


    Recall the exponential family we mentioned in Section 4. When sampling is from 
an exponential family, some sums from a random sample have sampling distributions 
that are easy to derive. The statistics  in the next theorem are important 
summary statistics.

Theorem 5.6:

	 Suppose that  is a random sample from a pdf or pmf , where


	  is a member of an exponential family.


	 Define the statistics  by  for . If 


	 the set  contains an open subset of , then the 

	 distribution of  is an exponential family of the form


	 .


    Note that in the pdf or pmf of , the functions  and  are the sa-
me as in the original family even though the function  is different from 

.


5.2 Sampling from the Normal Distributions

   In this subsection we shall deal with the properties of sample quantities drawn fr-
om a normal population — still one of the most widely used statistical models. 
Sampling from a normal population leads to many useful properties of sample 
statistics and also to many well-known sampling distributions.

    We have already seen how to calculate the means and the variances of  and  in 
general. Now, under the additional assumption of normality, we can derive their full 
distributions, and more. The properties of  and  are summarized in the following 
theorem.

Lemma 5.7: Facts about Chi Squared Random Variables

	 We use the notation  to denote a chi squared random variable with  degrees

	 of freedom. Then


X1, ⋯, Xn MX(t)
MX(t) = (MX(t /n))n

MX(t)

X Y fX(x)

fY(y) Z = X + Y fZ(z) = ∫
∞

−∞
fX(w)fY(z − w)dw

T1, ⋯, Tk

X1, ⋯, Xn f (x |θ )

f (x |θ ) = h(x)c(θ )exp{
k

∑
i=1

wi(θ )ti(x)}
T1, ⋯, Tk Ti(X1, ⋯, Xn) =

k

∑
j=1

ti(Xj) i = 1,⋯, k

{(w1(θ ), ⋯, wk(θ )) θ ∈ Θ} ℝk

(T1, ⋯, Tk)

fT(u1, ⋯, uk |θ ) = H(u1, ⋯, uk)(c(θ ))2exp{
k

∑
i=1

wi(θ )ui}
(T1, ⋯, Tk) c(θ ) wi(θ )

H(u1, ⋯, uk)
h(x)

X S2

X S2

χ2
p p
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	 (i)	 If  is a  random variable then .

	 (ii)	 If  are independent and  . Then 

	 	 .

    This lemma is used to prove the following theorem, which we leave the proof to 
the readers.

Theorem 5.8:

	 Let  be a random sample from a  distribution, and let 


	  and . Then


	 (a)	  and  are independent random variables.


	 (b)	  has a  distribution.


	 (c)	  has a chi squared distribution with  degrees of freedom.


Lemma 5.9:

	 Let , for , independent. For constants  and  where

	 , , and , where , define


	  and . Then one has


	 (a)	 The random variables  and  are independent  .


	 	 Furthermore, .


	 (b)	 The random vectors  and  are independent 

	 	  is independent of  for all pairs  and .

    This lemma shows that, if we start with independent normal random variables, cov-
ariance and independence are equivalent for linear functions of these random 
variables. Thus, we can check independence for normal variables by merely checking 
the covariance term, a much simpler calculation. Moreover, (b) allows us to infer 
overall independence of normal vectors by just checking pairwise independence, a 
property that does not hold for general random variables.


5.3 Convergence Concepts

    We start with one of the weakest types of convergence, the convergence in probabi-
lity, which is a special case of convergence in measure.

Definition: Converge in Probability

	 A sequence of random variables, , converges in probability to a 

	 random variable  if , one has , or, 


	 equivalently, . We denote it as .


   The  are typically not independent and identically distributed random vari-
ables, as in a random sample.


Z N(0,1) Z2 ∼ χ2
1

X1, ⋯, Xn Xi ∼ χ2
pi

∀i
X1 + ⋯ + Xn ∼ χ2

p1+⋯+pn

X1, ⋯, Xn N(μ, σ2)

X =
1
n

n

∑
i=1

Xi S2 =
1

n − 1

n

∑
i=1

(Xi − X )2

X S2

X N(μ,
σ2

n
)

(n − 1)S2

σ2
n − 1

Xj ∼ N(μj, σ2
j ) j = 1,⋯, n aij brj

j = 1,⋯, n i = 1,⋯, k r = 1,⋯, m k + m ≤ n

Ui :=
n

∑
j=1

aijXj Vr :=
n

∑
j=1

brjXj

Ui Vr ⇔ Cov(Ui, Vr) = 0

Cov(Ui, Vr) =
n

∑
j=1

aijbrjσ2
j

(U1, ⋯, Uk) (V1, ⋯, Vm) ⇔
Ui Vr i r

X1, X2, ⋯
X ∀ε > 0 lim

n→∞
ℙ( |Xn − X | ≥ ε) = 0

lim
n→∞

ℙ( |Xn − X | < ε) = 1 Xn
prob

X

X1, X2, ⋯
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    Frequently, statisticians are concerned with situations in which the limiting random 
variable is a constant and the random variables in the sequence are sample means (of 
some sort). The most famous result of this type is the following.

Theorem 5.10: Weak Law of Large Numbers (WLLN)

	 Let  be i.i.d. random variables with  and . 


	 Define . Then , ; i.e. 


	 .


   The WLLN quite elegantly states that, under general conditions, the sample mean 
approaches the population mean as . In fact, there are more general versions 
of the WLLN, where we need to assume only that the mean is finite. The one we 
employ here is applicable in most practical situations.

    A natural extension of converge in probability relates to functions of random varia-
bles. That is, if the sequence  converges in probability to a random variable 

 or to a constant , can we make any conclusions about the sequence of random 
variables  for some reasonably behaved function ? The next theorem 
shows that we can.

Theorem 5.11:

	 Suppose that  converges in probability to a random variable  and 

	 that  is a continuous function. Then  converges in probability

	 to .

   One other interpretation for Theorem 5.11 is that the continuous mappings preser-
ves the convergence, this is true by its property that the preimage of an open set is 
still open.

    A type of convergence that is stronger than convergence in probability is almost su-
re convergence. This type of convergence is similar to pointwise convergence of a 
sequence of functions, except that the convergence need not occur on a set with 
probability 0.

Definition: Almost Surely Convergence

	 A sequence  of random variables converges almost surely to a 

	 random variable  if  .


   A very interesting example in showing that almost surely convergence is stronger 
than convergence in probability is that, if   , then a necessary and sufficient 
condition for the identity,

	 	 	 	 ,	 	 	 (5.2)


being valid for all the choice of  is the almost surely convergence. However, if we 
relax the condition into convergence in probability, this is not always the case. 

    One good interpretation is that the almost surely convergence, the set




has a probability measure of zero. Therefore it guarantees that during the process of 
its convergence, the ordering of the original space does not vary too much, hence the 

X1, X2, ⋯ 𝔼Xi = μ VarXi = σ2 < ∞

Xn :=
1
n

n

∑
i=1

Xi ∀ε > 0 lim
n→∞

ℙ( |Xn − μ | < ε) = 1

Xn
Prob μ

n → ∞

X1, X2, ⋯
X a

h(X1), h(X2), ⋯ h

X1, X2, ⋯ X
h h(X1), h(X2), ⋯

h(X )

X1, Xn, ⋯
X ∀ε > 0 ℙ( lim

n→∞
|Xn − X | < ε) = 1

fn → f

lim
n→∞

sup
n→∞

fn(x) = sup
n→∞

lim
n→∞

fn(x)

x

A := {x ∀ε > 0∃δ > 0 such that | fn(x1) − f (x2) | < δ ∀x1, x2 where |x1 − x2 | < ε}
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interchange is valid. Moreover, this is also valid when we change the  into 
, and . This order preserving property is, perhaps one of the reasons why 

the almost surely convergence is stronger than the convergence in probability. Of 
course, we are assuming that the original space is well-ordering.

Remark:

	 We shall denote that  converges to  almost surely by the notation .


	 Note that 

	 	 	 almost surely convergence  Convergence in Probability

	 	 	 almost surely convergence  Convergence in Probability.	 ||

    There are examples that some random variables converge in probability but fails to 
be almost surely convergent, one may consult [1] for details. Note that even though 
the converse direction fails to be true, when a sequence converges in probability, it is 
still possible to find a subsequence that is almost surely convergent. This is the idea 
of the strong law of large numbers:

Theorem 5.12: Strong Law of Large Numbers (SLLN)

	 Let  be i.i.d. random variables with  and , 


	 define . Then , one has that ,


	 i.e.  converges almost surely to .

Proof:

	 To prove SLLN is to prove that the divergence part has a probability measure 

	 0. For the sequence to diverge, there must exist a  such that , 

	 there exist  such that . We shall denote this set as


,


	 which has an upper bound (w.r.t. the probability measure) given by

	 	   	 (Removing Intersections)


	 	 	 	 (Theorem 1.5 (ii), Boole’s)


	 	 	  for 	 (Left as exercise)


	 	 	 .	 	 (Since )


	 	 	 	 	 	 	 	 	 	 	 	 	 

   Not only the convergence for the probability measures derives useful information 
about the sample but also its distributions, this concept is also called the weak conve-
rgence. Unlike the other three, whether a sequence of random variables (elements) 
conver-ges in distribution or not depends only on their distributions.

Definition: Convergence in Distribution

	 A sequence of random variables  converges in distribution to a 

	 random variable  if   where  is continuous.


sup
inf , max min

fn f fn
a.s. f

⇒
⇍

X1, X2, ⋯ 𝔼Xi = μ VarXi = σ2 < ∞

Xn :=
1
n

n

∑
i=1

Xi ∀ε > 0 ℙ( lim
n→∞

|Xn − μ | < ε) = 1

Xn μ

δ > 0 ∀n ∈ ℕ
k > n |Xk − μ | > δ

Aδ := ⋂
n≥1

⋃
k≥n

{|Xk − μ | > δ}

ℙ(Aδ) ≤ ℙ(⋃
k≥n

{|Xk − μ | > δ}
≤ ∑

k≥n

ℙ({ |Xk − μ | > δ})

≤ 2 ⋅ ∑
k≥n

ck 0 < c < 1

= lim
n→∞

2 ⋅
cn

1 − c
= 0 0 < c < 1

□

X1, X2, ⋯
X lim

n→∞
FXn

(x) = FX(x) ∀x FX(x)
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    Note that although we talk of a sequence of random variables converging in distri-
bution, it is really the cdfs, that converge, not the random variables themselves, thus it 
makes a major difference from the almost surely convergence and the convergence in 
probability. However, it is implied by the other types of convergence. We now state a 
result without proof and construct a relation diagram among these three types of con-
vergence.

Theorem 5.13:

	 If the sequence  converges in probability to a random variable , then

	 the sequence also converges in distribution to .

  This theorem tells why the convergence in distribution is also called the “weak” 
convergence.

Remark:

	 	 	 	 	 	 

	 Convergence in Probability	 	 Almost Surely Convergence

	 	 	 	      	 	 	 	 

	 	 	 	 Convergence in Distribution	 	 	 	 	 ||

    In some special case, Theorem 5.13 has a converse that turns out to be useful. We 
now state this result without proof.

Theorem 5.14:

	 The sequence of random variables  converges in probability to a 

	 constant   the sequence also converges in distribution to .

    The sample mean is one of the statistics whose large-sample behavior is quite imp-
ortant. In particular, we want to investigate its limiting distribution. This is summari-
zed in one of the most startling theorems in statistics, the Central Limit Theorem 
(CLT).

Theorem 5.15: Central Limit Theorem (CLT)

	 Let  be a sequence of i.i.d. random variables whose mgfs exist in a 

	 neighbourhood of 0. Let  and  be both finite. Define


	  and let  denote the cdf of . Then, 


	 , one has that , i.e.


	  has a limiting standard normal distribution.


   CLT is valid in much more general way than it is stated. The only assumption on 
the parent distribution is that it has finite variance.

   An approximation tool that can be used in conjunction with the CLT is known as 
the Slutsky’s Theorem.

Theorem 5.16: Slutsky’s Theorem

	 If  in distribution and  where  is a constant. Then


	 (i)	  in distribution.

	 (ii)	  in distribution.


X1, X2, ⋯ X
X

⇐
⇏

⇓ ⇓

X1, X2, ⋯
μ ⇔ μ

X1, X2, ⋯
𝔼Xi = μ VarXi = σ2 > 0

Xn =
1
n

n

∑
i=1

Xi Gn(x)
n(Xn − μ)

σ

∀ − ∞ < x < ∞ lim
n→∞

Gn(x) = ∫
x

−∞

1

2π
e−y2/2dy

n(Xn − μ)
σ

Xn → X Yn
Prob a a

YnXn → aX
Xn + Yn → X + a
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    It has to be stressed out that the difference between the convergence of a sequence 
of random variables and the convergence of its corrsponding probability mappings 
are different in many senses. One of the most important, or, intuitive one, is that the 
convergence of the random variables themselves means that the distributions conve-
rges as well. More precisely, it is that the accumulation finally collides into one, 
hence it is a matter of the CDF.

    The convergence statements, as well as the inequalities, play important roles in m-
odern probability theory and statistics. In the next chapters, we shall see their 
practical use under, one of the thing we concern the most, the data reduction.


6.1 The Sufficiency Principle

   Recall that in studying linear algebra, it is sometimes hard to deal with rather big 
vector spaces, even its vector subspaces; to that end, we find it useful to work only 
through a small collection of elements that contain all the information of the vector 
space, hence we introduced the basis, as well as subbasis.

    Same problems may arise when we are dealing with a big set of data. We wish, the-
refore, to use a small collection that contains all the information of the original data. 
However, not every data reduction methods could discard no information, so we wish 
to have one that preserve as much as possible. We shall introduce three data reduction 
methods in this subsection. The sufficiency principle promotes a method that preserve 
the information while achieving summrization of the data. The likelihood principle 
describes a a function of the parameter, determined by the observed sample, that 
contains all the information about  that is available from the sample.

Definition: Sufficient statistic

	 A statistic  is a sufficient statistic for  if the conditional distribution of

	 the sample  given the value of  does not depend on .

Theorem 6.1: Criterion for Sufficient Statistic

	 If  is the joint pdf or pmf of  and  is the pdf or pmf of , 


	 then  is a sufficient statistic for  if ,  is constant as a


	 function of .

Theorem 6.2: Factorization Theorem

	 Let  denote the joint pdf or pmf of a sample . A statistic  is a 

	 sufficient statistic for   there exist functions  and  such that,

	 for all sample points  and all parameter points , .

    It is easy to find a sufficient statistic for an exponential family of distributions usin-
g the factorization theorem.

Theorem 6.3:

	 Let  be i.i.d. observations from a pdf or pmf  that belongs to


	 an experimental family given by  where


	 , for . Then  is a 


θ

T(X ) θ
X T(X ) θ

p(x |θ ) X q(t |θ ) T(X )

T(X ) θ ∀x ∈ X
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	 sufficient statistic for .

Remark:

	  is always a sufficient statistic. Moreover, every one-to-one function 

	 of a sufficient statistic is a sufficient statistic.	 	 	 	 	 ||

    Because of the numerous sufficient statistics in a problem, we might ask whether 
one sufficient statistic is any better than another. Recall that the purpose of a suffi-
cient statistic is to achieve data reduction without loss of information about the 
parameter ; thus, a statistic that achieves the most data reduction while still 
remaining all the information about  might be considered preferable. The definition 
of such a statistic is the minimal sufficient statistic.

Definition: Minimal Sufficient Statistic

	 A sufficient statistic  is called a minimal sufficient statistic if, for any 

	 other sufficient statistic ,  is a function of .

    That is to say, , or, equivalently, if  are 
the partition sets of  and  are the partition sets for , then every 

 is a subset of . Thus, the partition associated with a minimal sufficient statistic, 
is the coarsest possible partition for a sufficient statistic, and a minimal sufficient 
statistic achieves the greatest possible data reduction for a sufficient statistic.

Theorem 6.4: Criterion for Minimal Sufficient Statistic

	 Let  be the pmf or pdf of a sample . Suppose that there exist a function


	  such that for every two sample points  and , the ratio  is constant


	 as a function of   . Then  is a minimal sufficient statistic 

	 for .

    However, a minimal sufficient statistic is not unique. Any one-to-one function of a 
minimal sufficient statistic is also a minimal sufficient statistic.

Definition: Ancillary Statistic

	 A statistic  whose distribution does not depend on the parameter  is 

	 called an ancillary statistic.

    Alone, an ancillary statistic contains no information about . An ancillary statistic 
is an observation on a random variable whose distribution is fixed and knwon, 
unrelated to . Paradoxically, an ancillary statistic, when used in conjunction with 
other statistics, sometimes does contain valuable information for inferences about .

    Ancillary statistic is not necessary to be independent from the minimal sufficient 
statistic. Indeed, an ancillary statistic can sometimes give important information for 
inference about . For many important situations, however, a minimal sufficient 
statistic is independent of any ancillary statistic.

Definition: Complete Statistic

	 Let  be a family of pdfs or pmfs for a statistic . The family of 

	 distributions is called complete if  then 

	 . Equivalently,  is called a complete statistic.

    We now use completeness to state a condition under which a minimal sufficient st-
atistic is independent of every ancillary statistic.

Theorem 6.5: Basu’s Theorem


θ
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	 If  is a complete and minimal sufficient statistic, then  is 

	 independent of every ancillary statistic.

    Basu’s theorem is useful since it allows us to determine the independence of two 
statistics without ever finding their joint distribution. However, to use Basu’s 
theorem, one needs to show that a statistic is complete, which could be a tedius work. 
Fortunately, most problems we are concerned with satisfy the following theorem.

Theorem 6.6: Complete Statistic in the Exponential Family

	 Let  be i.i.d. observations from an exponential family with pdf or pmf


	 of the form , where . 


	 Then the statistic  is complete if  


	  contains an open set in .

   The proof of this theorem depends on the uniqueness of a Laplace transform. It sho-
uld be noted that the minimality of the sufficient statistic was not used in the proof of 
Basu’s theorem. Indeed, the theorem is true with this word omitted, since a fundame-
ntal property of a complete statistic is that it is minimal. However, the condition that 
it contains an open set is necessarily needed.

Theorem 6.7:

	 If a minimal sufficient statistic exists, then any complete statistic is also a 

	 minimal sufficient statistic.

    So even though the word “minimal” is redundant in the statement of Basu’s theore-
m, it was stated in this way as a reminder that the statistic  in the theorem is a 
minimal sufficient statistic.


6.2 The Likelihood Principle

    In this subsection we study a specific, important statistic called the likelihood func-
tion that also can be used to summarize data. There are many ways to use the 
likelihood function but the main consideration in this subsection is an argument 
which indicates that if certain other principles are accepted, the likelihood function 
must be used as a data reduction device.

Definition: Likelihood Function

	 Let  denote the joint pdf or pmf of the sample . Then, 

	 given that  is observed, the function of  defined by  is 

	 called the likelihood function.

   In this form, it is intuitively that the likelihood function has relationships with the 
original distribution function . It turns out that our instinct is true. The 
comparison between likelihood function implies the comparison between the corresp-
onding probability measures.

    Suppose that  is a continuous real-valued random variable with continuous pdf in 
. Then, ,  is approximately  by 
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definition. Therefore, . Let us summarize this 

observation into the following remark.

Remark:

	 Likelihood functions behave very much as the pmf or pdf. The only distinction

	 is that pdf and pmf  consider  as fixed and  as the variable while the 

	 likelihood functions behave the other way around.	 	 	 	 	 ||

Fact 6.8: Likelihood Principle

	 If  and  are two sample points such that  is proportional to , i.e.

	 there exists a constant  such that . Then the

	 conclusion drawn from  and  are identical.		 	 	 

    The likelihood principle specifies how the likelihood function should be used as a 
data reduction device. When , the likelihood principle tells us that two 
sample points  and  result in the same likelihood function then they convey the 
same information about . Likelihood principle may go even further, it states that 
even if two sample points have only proportional likelihoods, then they contain 
equivalent information about .

Definition: Evidence

	 Define an experiment  to be a triple , where  is a random 

	 vector with pmf  for some . An experimenter, knowing what 

	 experiment  was performed and having observed a particular sample , 

	 will make some inference or draw some conclusion about . This conclusion 

	 we denote as , which stands for the evidence about  arising from  

	 and .

Fact 6.9: Formal Sufficiency Principle

	 Consider experiment  and suppose  is a sufficient

	 statistic for . If  and  are sample points such that  then 

	 .

    The formal sufficiency principle says that the two experiments are identically the 
same once their summarization over the data coincide.

Fact 6.9: Conditionality Principle

	 Suppose that  and  are two

	 experiments, where only the unknown parameter  need be common between 

	 the two experiments. Consider the mixed experiment in which the random 	 


	 variable  is observed where  (independent of 


	 ), and then the experiment  is performed. Formally, the experiment

	 performed is , where  and 


	 . Then, .


    The conditional principle simply states that if one or two experiments is randomly 
chosen and the chosen experiment is done, yielding data , the information about  
depends only on the experiment performed. That is, it is the same information as 
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would have been obtained if it were decided (non-randomly) to do that experiment 
from the beginning, and data  had been observed. The fact that this experiment was 
performed, rather than some other, has not increased, decreased, or changed any 
knowledge of .

Fact 6.10: Formal Likelihood Principle

	 Suppose that we have two experiments,  and 

	 , where the unknown parameter  is the same in both

	 experiments. Suppose that  and  are sample points from  and , 

	 respectively such that  for all  and for some 

	 constant  that may depend on  and  but not on . Then

	  .

    The formal likelihood principle is different from the likelihood principle we saw 
before because the formal likelihood principle concerns two experiments while the 
likelihood principle concerns one.

Fact 6.11: Likelihood Principle Corollary

	 If  is an experiment, then  should depend on 

	 and  only through .

    We now state and investigate the Birnbaum’s theorem whose result turns out to be 
somewhat surprising.

Theorem 6.12: Birnbaum’s Theorem

	 Formal Sufficiency Principle  Conditional Principle  Formal Likelihood 

	 Principle.

    Many common statistical procedure violates the formal likelihood principple, hen-
ce by Birnbaum’s Theorem, we are then violating either the sufficiency principle or 
the conditional principle. It must be realized that before considering the sufficiency 
principle, or the likelihood principle, we must be comfortable with the model.


7.1 Methods of Finding Estimators

    This section is divided into two parts. The first part deals with methods for finding 
estimators, and the second part deals with evaluating these (and other) estimators. In 
general these two activities are intertwined. Often the methods of evaluating estim-
ators will suggest new ones.

Definition: Point Estimator

	 A point estimator is any function  of a sample; i.e. any statistic is 

	 a point estimator.

    Note that an estimator is a function of the sample, while an estimate is the realized 
value of an estimator. It is useful to have some techniques that will at least give us 
some reasonable candidates for consideration.

   There are four different ways of finding estimators we shall mention in this subs-
ection. They are: the methods of moments, maximum likelihood estimators (MLE), 
the Bayes Estimators, and the EM algorithm. We follow this order in introduction.

    The method of moments is, perhaps, the oldest method of finding point estimators, 
it has the virtue of being quite simple to use and almost always yields some sort of 
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estimate. In many cases, unfortunately, this method yields estimators that may be 
improved upon. However, it is a good place to start when old methods prove 
intractable.

Algorithm 7.1: Methods of Moments

	 Let  be a sample from population with pdf or pmf . 

	 Methods of moments estimators are found by equating the first  sample 

	 moments to the corresponding  population moments, and solving the resulting 

	 system of simultaneously equations. More precisely, define


, ,


,





.


	 The population moments  will typically be function of , namely

	 . The method of moments estimators  of 

	 is obtained by solving the following system of equations for  in 

	 terms of .


	 ,

	 ,


	 

	 .


    The method of moments can be very useful in obtaining approximations to the dist-
ribution of statistics. This technique, is sometimes called the moment matching, gives 
us an approximation that is based on matching moments of distributions. In theory, 
the moments of distribution of any statistics could be matched, however, in practical 
terms, it is best to have distributions that are similar.

    The method of maximum likelihood, on the other hand, is by far the most popular 
technique for deriving estimators. Recall that if  are an i.i.d. sample from a 
pupulation with pdf or pmf , the likelihood function is defined by


	 	 .


Definition: Maximum Likelihood Estimator (MLE)

	 For each sample point , let  be a paramater value at which  attains

	 its maximum as a function of , with  fixed. A maximum likelihood estimator 

	 (MLE) of the parameter  based on a sample  is . In short, it is the value 

	 of  that maximizes the likelihood function.

    Notice that, by this construction, the range of the MLE coincides with the range of 
the parameter. We also use the abbreviation MLE to stand for Maximum Likelihood 
Estimate when we are talking about the realized value of the estimator. Intuitively, the 
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MLE is a reasonable choice for an estimator. The MLE is the parameter point for 
which the observed sample is most likely. In general, the MLE is a good point 
estimator, processing some of the optimality properties.

    It could be a little confusing that how can maximizing over the likelihood function 
gives us the best approximation, since intuitively,  is how the likeli-
hood function is defined, how can maximizing the “distribution” raise the probabili-
ty? The key distinction here is that the likelihood function is a function of the 
parameters, treating the data as fixed, while the probability distribution is a function 
of the data, given specific parameter values. The likelihood function doesn't represent 
a probability distribution over data points; it measures the fit between the data and the 
parameter values. So, when we talk about maximizing the likelihood, we mean 
finding parameter values that make the observed data most probable under the given 
statistical model. It's not about making the data itself more probable but rather about 
finding the parameter values that make the observed data most consistent with the 
assumed model. In other words, maximizing the likelihood is about choosing the 
parameter values that align with the data we've observed. It is a way to find the "best-
fitting" parameters that explain the data in a probabilistic sense based on the model 
we have specified.

   Now the problem turns out to be an “optimization” one. In finding the maximum, 
one common practice is to have the first derivative being zero, however, this is a 
necessary condition but not a sufficient one. Moreover, the zeros of the first 
derivative locate only extreme points in the interior of the domain of a function. 
Furthermore, if the extrema occurs at the boundary then the first derivative may not 
be 0, thus the boundary points must be checked separately for extrema.

    We also wish the translation invariance to be one of the properties of the MLE. It is 
unfortunately that sometimes a slightly change of the sample will produce a vastly 
change between MLEs, which makes its use suspects.

    Let us start with the first problem: finding the global maximum. This is always har-
d since guranteeing the globality is very tedius. Instead of differentiation, one general 
technique is taking the global upper bound. Followed from some properties of the 
convexity, it turns out that the log MLE, , which is convex, is easier to 
work with, and since the log function is strictly increasing on , the extrema of 

 and  must coincide.

Remark:	 

	 If  cannot be maximized analytically, it may be possible to use a 

	 computer and maximize  numericall.	 	 	 	 	 	 ||

    Now for the second problem, a very useful property of MLEs is its invariance pro-
perty. Informally, the invariance property of MLEs says that if  is the MLE of , 
then  is the MLE of  for some function . If the mapping  is one-to-
one, then we are done. In this case optimizing over  has no difference in optimizing 
over . However, not all functions are one-to-one. Thus we need a more general 
theorem and in fact a more general definition of the likelihood function for .

Definition: Induced Likelihood Function

	 Define for  the induced likelihood function  given by 


L(θ |x) = f (x |θ )
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   The value  that maximizes  will be called the MLE of , and it can 
be seen by the definition that the maximum of  and  coincide. Hence it follows, 
no matter bijective or not the  is, the translation invariance is always valid.

Theorem 7.2: Invariant Property of MLEs

	 If  is the MLE of , then for any function , the MLE of  is .

Proof:

	 Let  be the value that maximizes the induced likelihood function .

	 WTS I: .

	 By definition, the maximum of  and  coincide, therefore, it follows that


,


	 where the last equality is by the definition of . On the other hand, we have

	 	 	 	 (  is the MLE)


	 	 	 	  .	 	 (Definition of )

	 

	 Hence,  is the MLE of  and the invariance follows.

	 	 	 	 	 	 	 	 	 	 	 	 	 

Remark:

	 The invariance property for MLE is still valid for the multivariate case.	 ||

    Note that in most instances, MLE cannot be solved for explicitly and must be foun-
d by numerical methods. When facing such problems, it is often wise to spend a little 
extra time investigating the stability of the solution.

    Now we move to the discussion of the Bayes Estimators. The Bayesian approach to 
statistics is fundamentally different from the classical ones. In the calssical approach 
to the parameter, , is thought to be an unknown, but fixed, quanitity. A random 
sample  is drawn from a population indexed by  and, based on the 
observed values in the sample, knowledge about the value of  is obtained. In the 
Bayesian approach  is considered to be a quantity whose variation can be described 
by a probability distribution called the prior distribution, which is based on the 
experimenters’ belief. A sample is then taken from a population indexed by  and the 
prior distribution is updated with this sample information. The updated prior is called 
the posterior distribution.

    Note that the posterior distribution is a conditional distribution, conditional upon o-
bserving the sample. The posterior distribution is now used to make statements about 

, which is still considered as a random quantity. For instance, the mean of the 
posterior distribution can be used as a point estimate of .

    In general, for any sampling distribution, there is a natural family of prior distribu-
tions, called the conjugate family.

Definition: Conjugate Family

	 Let  denote the class of pdfs or pmfs  indexed by . A class  of prior

	 distributions is a conjugate family for  if the posterior distribution is in the 
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	 class  , all priors in , and all .

    Loosely speaking, one may interprete the conjugate family as that it is closed under 
taking Bayesian estimators.

Example 7.1: Normal Bayes Estimators

	 Let  and suppose that the prior distribution on  is . Here 

	 we assume that , and  are known. The posterior distribution of  is also 

	 normal, with mean and variance given by 


	 	 	 , Var .


	 Notice that Normal families are their own conjugate families.

	 Again use the posterior mean, we have the Bayes estimator of  is . 

	 The Bayes estimator is, again, a linear combination of the prior and the sample 

	 means.

Remark:

	 Notice that as , the prior variance, is allowed to tend to infinity, the Bayes 

	 estimator tends toward the sample mean. We can interpret this as saying that, 

	 as the prior information becomes more vague, the Bayes estimator tends to 

	 give more weight to the sample information. On the other hand, if the prior 

	 information is good, so that , then more weight is given to the prior 

	 mean.		 	 	 	 	 	 	 	 	 	 	 ||

    A last method that we will look at for finding estimators is inherently different in 
its approach and specifically designed to find MLEs. Rather than detailing a proc-
edure for solving for the MLE, we specify an algorithm that is guaranteed to 
converge to the MLE. This algorithm is called the EM (Expectation-Maximization) 
algorithm. It is based on the idea of replacing one difficult likelihood maximization 
with a sequence of easier maximizations whose limit is the answer to the original 
problem. It is particularly suited to “missing data” problems, as the very fact that 
there are missing data can sometimes make calculations cumbersome. However, we 
will see that filling in the “missing data” will often make the calculation go more 
smoothly.


7.2 Methods of Evaluating Estimators

    The methods discussed in the previous subsection have outlined reasonable techni-
ques for finding point estimators of parameters. A difficulty that arises, however, is 
that since we can usually apply more than one of these methods in a particular 
situation, we are often faced with the task of choosing between estimators. Of course, 
it is possible that different methods of finding estimators will yield the same answer, 
which makes evaluation a bit easier, but, in many cases, different methods will lead to 
different estimators.

    The general topic of evaluating statistical procedures is part of the branch of statist-
ics known as decision theory. However, no procedure should be considered until 
some clues about its performance have been gathered. In this subsection we introduce 
some basic criteria for evaluating estimators, and examine several estimators against 
these criteria.
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    We first investigate finite-sample measures of the quality of an estimator, beginni-
ng with its mean squared error.

Definition: Mean Squared Error (MSE)

	 The mean squared error of an estimator  of a parameter  is the function of  

	 defined by .

    The MSE measures the average squared difference between the estimator  and t-
he parameter , a somewhat reasonable measure of performance for a point estimator. 
For example, any increasing function of the absolute distance  would serve 
to measure the goodness of an estimator (Mean Absolute Error, for example, 

, is a reasonable alternative), but MSE has at least two advantages over 
the other distance measures:

	 (i)  MSE is quite tractable analytically.	 

	 (ii) MSE has the interpretation 

	 	 .

    Therefore we derive the concepts “biased” and “unbiased” in a very natural way, 
they are defined as follows.

Definition: Bias

	 The bias of a point estimator  of a parameter  is the difference between the

	 expected value of  and . That is, .

Definition: Unbiased

	 An estimator whose bias is identically (in ) equal to 0 is called unbiased and

	 satisfies .

   MSE incorporates two components, one measuring the variability of the estimator 
(precision) and the other measuring its bias (accuracy). An estimator that has good 
MSE properties has small combined variance and bias.

    To find an estimator with good MSE properties, we need to find estimators that co-
ntrol both variance and bias. Clearly, unbiased estimators do a good job in controlling 
bias. For an unbiased estimator, one has . That is, if the estima-
tor is unbiased, then its MSE equal to its variance.

Remark:

	 Although many unbiased estimators are also reasonable, controlling bias does 	
	 not necessarily control the MSE. In particular, it is sometimes the case that a 

	 trade-off occurs between the variance and the bias in such a way that a small 

	 increase in bias could result in a larger decrease in variance, resulting in an 

	 improvement in MSE.	 	 	 	 	 	 	 	 	 ||

Disadvantage: MSE

	 It can be argued that the MSE, while being reasonable for location parameter, 

	 is not reasonable to scale parameters since MSE penalizes equally for 

	 overestimation and underestimation, which is fine in the location case; in the 

	 scale case however, 0 is a natural lower bound, so the estimation is not 

	 symmetric.

   In many cases, the MSEs of two estimators will cross each other, showing that ea-
ch estimator is better with respect to the other in only a small portion of the parameter 
space. However, even this partial information can sometimes provide guidelines for 

W θ θ
𝔼θ(W − θ )2

W
θ

|W − θ |

𝔼θ( |W − θ | )

𝔼θ(W − θ )2 = VarθW + (𝔼θW − θ )2:= VarθW + (BiasθW )2

W θ
W θ BiasθW := 𝔼θW − θ

θ
𝔼θW = θ ∀θ ∈ Θ

𝔼θ(W − θ )2 = VarθW
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choosing between given estimators. In some worse cases however, only more inform-
ation is gathered but no absolute answer is obtained.

    One of the reason is that the class of all estimators is too large as a class. So instead 
of stucking in MSE, we have another alternative that is to reduce the size of this 
class. A popular way of restricting the class of estimators is to consier only unbiased 
estimators.

    If  and  are both unbiased estimators of a parameter , i.e.  
then their MSE are equal to their variances, so we should choose the estimator with 
the smaller variance. If we can find an unbiased estimator with uniformly smallest 
variance — a best unbiased estimator — then we are done.

    Suppose that there is an estimator  of  with  and we are inte-
rested in investigating the worth of . Consider the class of estimators given by

	 	 	 	 	 .

For all the choice of , Bias Bias  so one has

	 	 	 

and MSE comparisons, within the class , can be based on variance alone. Thus, 
although we speak in terms of unbiased estimators, we really are comparing 
estimators with the same expected value .

Definition: Best Unbiased Estimator (BUE)	

	 An estimator  is a best unbiased estimator of  if it satisfies 

	 , and for any other estimator  with . 

Definition: Uniform Minimum Variance Unbiased Estimators (UMVUE)

	 A BUE  is said to be a uniform minimum variance unbiased estimator if for

	 any other estimator  with , one always has .

    Suppose that, for estimating a parameter  of a distribution , we can spe-
cify the lower bound, say , on the variance of any unbiased estimator of . If 
we can find an unbiased estimator  such that , then we have found 
the BUE. This is the approach taken with the use of the Cramér-Rao lower bound.

Theorem 7.3: Cramér-Rao Inequality

	 Let  be a sample with pdf , and let  be 

	 any estimator satisfying 


	 (i)	 


	 (ii)	 .


	 Then .


    If we add the assumption of independent samples, the calculatin of the lower boun-
d could be simplified. The expectation in the denominator becomes a univariate 
calculation, as the following corollary implies.

Corollary 7.3.1: Cramér-Rao Inequality, i.i.d. case

	 Let  be an i.i.d. sample with pdf  and let 


W1 W2 θ 𝔼θW1 = 𝔼θW2 = θ

W* θ 𝔼θW* = τ(θ ) ≠ θ
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Cτ := {W |𝔼θW = τ(θ )}
W1, W2 ∈ Cτ θ(W1) = θ(W2)

𝔼θ(W1 − θ )2 − 𝔼θ(W2 − θ )2 = Varθ(W1) − Varθ(W2)
Cτ

τ(θ )

W* τ(θ )
𝔼θW* = τ(θ )∀θ W 𝔼θW = τ(θ )

W*
W 𝔼θW = τ(θ ) VarθW* ≤ VarθW ∀θ

τ(θ ) f (x |θ )
B(θ ) τ(θ )

W* VarθW* = B(θ )

X1, ⋯, Xn f (x |θ ) W(X ) = W(X1, ⋯, Xn)

d
dθ

𝔼θW(X ) = ∫ΩX
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VarθW(X ) < ∞
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	  be any estimator such that


	 (i)	 


	 (ii)	 .


	 Then .


    Note that the Cramér-Rao lower bound does not only work for the continuous ran-

dom variables but also the discrete ones. The quantity  is 

called the information number, or Fisher information of the sample. This terminology 
reflects the fact that the information number gives a bound on the variance of the 
BUE of . As the information number increases, the bound on the variance of BUE 
gets smaller.

    For any differentiable function , we now have a lower bound on the variance 
of any estimator  such that . The bound depends only on  and 

 and is a uniform lower bound for the variance. Any candidate estimator 
satisfying  and attaining this lower bound is a BUE of .

Remark:

	 Even if the Cramér-Rao is applicable, there is no guarantee that the bound is 

	 sharp. That is to say, the value of the Cramér-Rao lower bound may be strictly

	 smaller than the variance of any unbiased estimator.

    In fact, the most we can say by applying Cramér-Rao is that there exists a parame-
ter  with an unbiased estimator that achieves the Cramér-Rao lower bound; 
however, in other typical situations, for other parameters, the bound may not be 
attainable. Hence we need results dealing with its attainment.

Corollary 7.3.2: Attainment of Cramér-Rao Lower Bound

	 Let  be i.i.d.  where  satisfies the conditions of Cramér-


	 Rao Theorem. Let  denote the likelihood function. If 


	  is any unbiased estimator of , then  attains

	 the Cramér-Rao lower bound if and only if


	 	 	 	  


	 for some function .

   The attainment of the Cramér-Rao lower bound still leaves some questions unans-
wered. Firstly, what if the  does not satisfy the assumptions of the Cramér-
Rao Theorem? Secondly, what if the bound is still unattainable for legal estimators?

    One way of answering these questions is to search for methods that are more wide-
ly applicable and yield sharper (i.e. greater) lower bounds. Much research has been 
done on this topic, with perhaps the most famous one is Chapman and Robbins 
(1951). We leave this to interested readers and we now introduce the study of BUE 
from another view, using the concept of sufficiency.


W(X ) := W(X1, ⋯, Xn)
d

dθ
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    In the previous discussion, the concept of sufficiency was not used in our search f-
or unbiased estimates. We will now see the consideration of sufficiency is a powerful 
tool indeed. The main result of this method relates the sufficient statistic to unbiased 
estimate. Recall that  and .

Theorem 7.4: Rao-Blackwell

	 Let  be any unbiased estimator of  and let  be a sufficient statistic for .

	 Define . Then 

	 (i)	 .

	 (ii)	  .

	 That is ,  is a uniformly better unbiased estimator of .

   Therefore, conditioning any unbiased estimator on a sufficient statistic will result in 
a uniform improvement, so we need consider only statistics that are functions of a 
sufficient statistic in our search for best unbiased estimator.

    In fact, conditioning on anything will result in an improvement, but the problem is 
that the resulting quantity will probably depend on  and therefore not be an estima-
tor.

    We now state and prove a powerful result stating that a best unbiased estimator is 
unique.

Theorem 7.5:

	 If  is a best unbiased estimator of  then  is unique.

Proof:

	 Suppose that  is another best unbiased estimator, and consider the estimator


	 . Note that  and


	 


	 	   	 (Cauchy-Schwartz)


	 	   . 		 (  by assumption)

	 But if the above inequality is strict, then the best unbiasedness of  is 

	 contradicted, so we must have equality for all . Since the inequality is an 

	 application of Cauchy-Schwartz we can have equality only if 

	 . Now applying properties of covariance, we have

	 	 	 Cov 

    	 	 	 	 	 ,

	 but Cov  hence . Since  we must have

	  therefore , uniqueness follows.

	 	 	 	 	 	 	 	 	 	 	 	 	 

   To see when an unbiased estimator is best unbiased, we might ask how could we 
improve upon a given unbiased estimator? The relationship of an unbiased estimator 

 with unbiased estimators of 0 (i.e. ) is crucial in evaluating whether  
is best unbiased. This relationship, in fact, characterizes the best unbiasedness.

Theorem 7.6:
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	 If ,  is the best unbiased estimator of    is uncorrelated 

	 with all unbiased estimators of .

Remark: Random Noise

	 Note that an unbiased estimator of 0 is nothing more than random noise; i.e.

	 there is no information in an estimator of 0. Therefore, if an estimator could be

	 improved by adding random noise to it, the estimator probably is defective.	 ||

    Although we now have an interesting characterization of BUEs, its usefulness is li-
mited in application. It is often a difficult task to verify that an estimator is uncorrela-
ted with all unbiased estimators of 0 since it is usually difficult to describe all 
unbiased estimators of 0. 

    It is worthwhile to note once again that what is important is the completeness of th-
e family of distributions of the sufficient statistic. Completeness of the original family 
is of no consequence. This follows from the Rao-Blackwell Theorem, which says that 
we can restrict attention to functions of a sufficient statistic, so all expectations will 
be taken with respect to its distribution.

    We sum up the relationship between completeness and best unbiasedness in the fol-
lowing theorem.

Theorem 7.7:

	 Let  be a complete sufficient statistic for a parameter  and let  be any 

	 estimator based only on . Then  is the unique BUE of its expected value.

    In many situations, there will be no obvious candidate for an unbiased estimator of 
a function , much less a candidate for BUE. However, in the presence of comple-
teness, Theorem 7.7 tells us that if we can find any unbiased estimator, then we can 
find the best unbiased estimator.

Theorem 7.8: Lehmann-Scheffé

	 Unbiased estimators based on complete sufficient statistics are unique.

    The last method we introduce in this subsection is the loss function optimality. So 
far, our evaluations of point estimators have been based on their MSE, which is a 
special case of a function called a loss function. The study of the performance, and 
the optimality, of estimators evaluated through loss functions is a branch of decision 
theory.

Definition: Action Space

	 After the data  is observed, where  for , a decision 

	 regarding  is made. The set of all allowable actions are then called the action 

	 space, denoted as .

Remark:

	 Often in point estimation problems  is equal to , the parameter space, but 

	 this will change in other problems such as hypothesis testing.	 	 	 ||

    The loss function in a point estimation problem reflects the fact that if an action  
is close to , then the decision  is reasonable and little loss is incurred. Therefore the 
loss function is a nonnegative function that generally increases as the distance 
between  and  increases. If  is real-valued, two commonly used loss functions are

	 	 	 Absolute Error Loss, ,

and 


𝔼θW = τ(θ ) W τ(θ ) ⇔ W
0

T θ φ(T )
T φ(T )

τ(θ )
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θ
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𝒜 Θ
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	 	 	 Squared Error Loss, .

Definition: Risk Function

	 In a loss function or decision theoretic analysis, the quality of an estimator is 	
	 quantified in its risk function; i.e. for an estimator  of , the risk function, a 

	 function, a function of , is .

    Since the true value of  is unknown, we would like to use an estimator that has a 
small value of  for all values of . This would mean that, regardless of the true 
value of , the estimator will have a small expected loss. If the qualities of two 
different estimators,  and , are to be compared, then they will be compared by 
comparing their risk functions  and . If  for all  
then  is preferred. More typically, the two risk functions will cross. Then the 
judgement as to which estimator is better may not be so clear-cut.


8.1 Methods of Finding Hypothesis Tests

    We have studied in last section a method of inference called point estimation. Now 
we move to another inference method called the hypothesis testing. We follow the 
same structure as we did in the last section to start with finding and then evaluating.

Definition: Hypothesis

	 A hypothesis is a statement about a population parameter.

    The definition of a hypothesis is rather general, but the improvement point is that a 
hypothesis makes a statement about the population. The goal of a hypothesis test is to 
decide, based on a sample from the population, which of two complementary 
hypotheses is true.

Definition: Null and Alternative Hypothesis

	 The two complementary hypotheses in a hypothesis testing problem are called 

	 the null hypothesis and the alternative hypothesis. They are denoted by  and 

	 , respectively.

    In a hypothesis testing problem, after observing the sample the experimenter must 
decide either to accept  as true or to reject  as false and decide  is true.

Definition: Hypothesis Testing Procedure/ Hypothesis Test

	 A hypothesis testing procedure or hypothesis test is a rule that specifies 

	 (i)	 For which sample values the decision is made to accept  as true.

	 (ii)	 For which sample values  is rejected and  is accepted as true.

   The subset of the sample space for which  will be rejected is called the rejection 
region or critical region. The complement of the rejection region is called the accepta-
nce region.

    The likelihood ratio method of hypothesis testing is related to the maximum likeli-
hood estimators and likelihood ratio tests are as widely applicable as maximum 
likelihood estimation. Recall that if  is a random sample from a population 
with pdf or pmf  (  may be a vector), the likelihood function is defined as 


.


Let  denote the entire parameter space. Likelihood ratio tests are defined as follows.


L(θ, a) = (a − θ )2
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Definition: Likelihood Ratio Test Statistic

	 The likelihood ratio test statistic for testing  versus  is


	 .


Definition: Likelihood Ratio Test (LRT)

	 A likelihood ratio test (LRT) is any test that has a rejection region of the form

	  where  is any constant such that .

  Recall that in the MLE, the maximization of the likelihood function is, not about 
making the data itself more probable but rather about finding the parameter values 
that make the observed data most consistent with the assumed model. The motivation 
for the LRT is quite the same.

   It coule be best interpreted in the situation in which  is a pmf of a discrete r-
andom variable. In this case, the numeraotr is maximized over the whole parameter 
space  while the denominator is maximized over the . The less the ratio is shows 
that more consistent our model is.

Connectio with MLEs:

	 If we think of maximizing over both the entire parameter space and a subset of 	
	 the parameter space, then the correspondence between the LRTs and MLEs 

	 become very clear. Suppose that , an MLE of , exists;  is obtained by doing 

	 an unrestricted maximization of . We can also consider the MLE of  	
	 call I , obtained by doing the restriced maximization, assuming that  is the 

	 parameter space. That is,  is the value of  that maximizes 


	 . Then, the LRT statistics is given by .


    For a sufficient statistic of a random sample , namely , we know that all the 
information about  could be found in , the test based on  should be as good as 
the test based on the complete sample . In fact, the tests are equivalent.

Theorem 8.1:

	 If  is a sufficient statistic for  and  and  are the LRT statistics 

	 based on  and , respectively. Then  .

Proof:

	 According to the Factorization Theorem, the pdf or pmf of  can be written

	 as , where  is the pdf or pmf of  and  does

 	 not depend on . Thus,


	 	 


	 	         	 	 (  is sufficient)


	 	         	 	 (  does not depend on )
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	 	         	 	 (  is the pdf or pmf of )


	 	         .

	 	 	 	 	 	 	 	 	 	 	 	 	 

    Now we move to the Bayesian tests. One way a Bayesian hypothesis tester may ch-
oose to use the posterior distribution is to decide to accept  as true if 

	 	 	 	 

and to reject  otherwise. In the terminology of the previous sections, the test statist-
ic, a function of the sample, is  and the rejection region is given by 

. Alternatively, if the Bayesian hypothesis testers wish to 

guard against falsely rejecting , he must decide to reject  only if  
is greater than some certain large number, say, 0.99.

    In some situations, tests for complicated null hypothesis can be developed from te-
sts for simpler null hypothesis. We will discuss two methods to close this subsection.

Algorithm 8.2: Union-Intersection Method

	 The Union-Intersectio method of test construction might be useful when the 

	 null hypothesis is conveniently expressed as an intersection. Namely, 

	 , where  is an arbitrary index set. Suppose that tests are 


	 available for each of the problems of testing  versus .

	 Say the rejection region for the test of  is . Then the 

	 rejection region for the union-intersection test is .


	 

   The rationale is simple. If any one of the hypothesis  is rejected then  should 
be rejected. On the other hand,  is true only if each of the hypothesis  is 
accepted as true.

    In some cases a simple expression for the rejection region of a Union-Intersection 
test can be found. In particular, suppose that each of the individual test has a rejection 
region of the form , where  does not depend on . The rejection region 
for the union-intersection test can be expressed as 

	 	 	 .


Thus the test statistic for testing  is .


   The Union-Intersection method of test construction is useful if the null hypothesis 
is conveniently expressed as an intersection. Another method, the Intersection-Union 
method, may be useful if the null hypothesis is conveniently expressed as a union.

Algorithm 8.3: Intersection-Union Method

	 Suppose we wish to test the null hypothesis . Suppose that for
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	 each ,  is the rejection region for a test of  

	 versus . Then the rejection region for the Intersection-Union test 	
	 of  versus  is .  is false if and only if all of the  is 


	 false, so  can be rejected if and only if each of the individual hypothesis 

	 can be rejected.

    Again, the Intersection-Union test can be greatly simplified if the rejection regions 
for the individual hypothesis are all of the form , where  is indepen-
dent of . In such cases, the rejection region of  is

	 	 	 .


Here, the Intersection-Union test statistic is , and the test rejects  for large 

values of this statistic.


8.2 Methods of Evaluating Tests

    In deciding to accept or reject the null hypothesis , an experimenter might be m-
aking a mistake. Usually, hypothesis tests are evaluated and compared through their 
probabilities of making mistakes. In this subsection we discuss how these error 
probabilities can be controlled. In some cases, it can even be determined which tests 
have the smallest possible error probabilities.

   We will go through five methods in this subsection, they are: (1) Error Probabiliti-
es and Power Function, (2) Most Powerful Tests, (3) Sizes of Union-Intersection and 
Intersection-Union Tests, and (4) -Values. We now start with the first one.

    A hypothesis test of  versus  might make one or two types 
of errors. These two types of errors traditionally have been given the names Type I 
Error and Type II Error.

Definition: Type I Error

	 If  but the hypothesis test incorrectly decides to reject , then the test 

	 has made a Type I Error.

Definition: Type II Error

	 If  but the hypothesis test incorrectly decides to accept , then the test 

	 has made a Type II Error.

    Suppose that  denotes the rejection region for a test. Then for , the test wi-
ll make a mistake if , so the probability of a Type I Error is . For 

, the probability of a Type II Error is . This switching from  to  
is a bit confusing but if we realize that . This consider-
ation leads to the following definition of the power function.

Definition: Power Function	 

	 The power function of a hypothesis test with rejection region  is the function 

	 of  defined by 
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	 .


Remark:

	 The ideal power function is 0  and 1 . Except in trivial 

	 situations, this ideal cannot be attained. Qualitively, a good test has power 

	 function near 1 for most  and near 0 for most .	 	 	 ||

    Typically, the power function of a test will depend on the sample size . If  can be 
chosen by the experimenter, consideration of the power function might be helpful in 
determining what sample size is appropriate for an experiment.

    For a fixed sample size, it is usually impossible to make both types of error proba-
bilities arbitrarily small. In searching for a good test, it is common to restrict conside-
ration to tests that control the Type I Error probability at a specified level. Within this 
class of tests we then search for tests that have Type II Error probability that is as 
small as possible. The following two terms are useful when discussing tests that 
control Type I Error probabilities.

Definition: Size  Test

	 For , a test with power function  is a size  test if 

	 .


Definition: Level  Test

	 For , a test with power function  is a size  test if 

	 .


    Some authors do not make distinction between these two definitions. We made the 
distinction here to stress out the fact that sometimes having a size  test is difficult, so 
in practical terms, one should make compromises with the alternative level  test.

Remark:

	 Typical  level tests use , 0.05, and 0.10, but be aware that in fixing 

	 the level  test, the experimenter is controlling only the Type I Error. An 	
	 LRT is one rejects  if , for example.	 	 	 	 	 ||

    Other than  levels, there are other features of a test that might also be of concern. 
For example, we would like a test to be more likely to reject  if  than if 

. This property is called unbiased.

Definition: Unbiased Power Function	

	 A test with power function  is unbiased if  and 

	 .

  In most problems there are many unbiased tests. Likewise, there are many size  
tests, LRTs, etc. In some cases we have imposed enough restrictions to narrow the 
consideration to one test. In other cases there remain many tests from which to 
choose. We discussed only the one that rejects  for large values of . In the 
following discussion we will discuss other criteria for selecting one out of a class of 
tests, criteria that are all related to the power functions of the tests.
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   We have seen that the  tests could control the probability of a Type I Error, i.e. le-
vel  tests have Type I Error probabilities at most  for all . A good test in 
such a class would also have a small Type II Error probability, i.e. a large power 
function for . If one test has a smaller Type II Error probability than all other 
tests in the class, it would certainly be a strong contender for the best test in the class, 
a notion that is formalized in the next definition.

Definition: Uniformly Most Powerful (UMP) Test

	 Let  be a class of tests for testing  versus . A test in

	 class , with power function , is a uniformly most powerful class  test

	 if  and .

    In this subsection, the class  will be the class of all level  tests. The test describ-
ed in the above definition is then called a UMP level  test. For this test to be 
interesting, restriction to the class  must involve some restriction on the Type I 
Error probability. A minimization of the Type II Error probability without some 
control of the Type I Error is not very interesting.

    The requirements in this definition are so strong that UMP does not exist in many 
realistic problems. But in problems that have UMP tests, a UMP test might well be 
considered the best test in the class. Thus, we would like to be able to identify UMP 
tests if they exist. The following famous theorem clearly describes which tests are 
UMP level  tests in the situation where the null and alternative hypotheses both 
consist of only one probability distribution for the sample.

Theorem 8.4: Neymann-Pearson Lemma

	 Consider testing  versus , where the pdf or pmf 

	 corresponding to  is , , using a test with rejection region  such 
	 that

	 (i)	 ,	 if ,

	 (ii)	 ,  	 if ,

	 for some  and . Then

	 (a)	 Any test that satisfies (i) and (ii) is a UMP level  test.	 (Sufficiency)

	 (b)	 If there exists a test satisfies (i) and (ii) with , then every UMP 	 	
	 	 level  test is a size  test and every UMP level  test satisfies the first

	 	 condition except perhaps on a set with probability measure 0, i.e. on a 

	 	 set  such that .	 	 (Necessity)

    The following corollary connects the Neyman-Pearson Lemma to sufficiency.

Corollary 8.4.1:

	 Under the same settings as in Theorem 8.4. Suppose that  is a sufficient

	 statistic for  and  is the pdf or pmf of  corresponding to  for .

	 Then any test based on  with rejection region  is a UMP level  test if it 

	 satisfies

	 (1)	 ,	  if ,

	 (2)	 , if ,

	 for some , where .
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    Hypotheses, such as  and  in the Neyman-Pearson Lemma, that specify only 
one possible distribution for the sample  are called simple hypotheses. In most 
realistic problems however, the hypotheses of interest specify more than one possible 
distribution for the sample. Such hypotheses are called composite hypotheses. Since 
the definition of UMP requires the test to be most powerful against each individual 

, the Neyman-Pearson Lemma can be used to find UMP tests in problems 
involving composite hypotheses.

    In particular, hypotheses that assert that a univariate parameter is large, for exampl-
e, , or small, e.g. , are called one-sided hypotheses. Hypotheses 
that assert that a parameter is either large or small, e.g. , are called two-
sided hypotheses. A large class of problems that admit UMP level  test involve one-
sided hypotheses and pdfs or pmfs with the monotone likelihood raito property, 
which is given below.

Definition: Monotone Ratio Likelihood Ratio (MLR)

	 A family of pdfs or pmfs  for a univariate random variable 

	 with real-valued parameter  has a monotone likelihood ratio (MLR) if, for 

	 every ,  is monotone (nonincreasing or nondecreasing) 

	 function of  on . Note that  is defined as 

	 if .

    Many common families of distributions have an MLR. For example, the normal (k-
nown variance, unknown mean), the Poisson, and binomial all have an MLR. Indeed, 
any regular exponential family with  has an MLR if  is a 
nondecreasing function.

Theorem 8.5: Karlin-Rubin

	 Consider testing  versus . Suppose that  is a sufficient 

	 statistic for  and the family of pdfs or pmfs of  has an MLR

	 then for any , the test that rejects    is a UMP level  test where 

	 .

  By an analogous argument, it can be shown that under the conditons of Karlin-
Rubin, the test that rejects  in favor of    is a UMP 
level  test with .

    Now we move to the third topic in this subsection. Recall that because of the simp-
le way in which they are constructed, the sizes of union-intersection tests (UIT) and 
intersection-union tests (IUT) can often be bounded above by the sizes of some other 
tests. Such bounds are useful if a level  test is wanted, but the size of UIT or IUT is 
too difficult to evaluate. We now discuss these bounds.

    First consider UITs. Recall that in this situation, we are testing a null hypothesis of 
the form , where . To be specific, let  be the LRT 

statistic for testing  versus , and let  be the LRT statistic 
for testing  versus . Then we have the following relationships 
between the overall LRT and the UIT based on .
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Theorem 8.6:

	 Consider testing  versus  where  and 


	 is defined as above. Define , and form the UIT with rejection 


	 region . Also consider the usual

	 LRT with rejection region . Then

	 (a)	  for all .

	 (b)	 If  and  are the power functions for the tests based on  and ,

	 	 respectively, then  for every .

	 (c)	 If the LRT is a level  test, then the UIT is a level  test.

    Since the LRT is uniformly more powerful in the above theorem than UIT, we mig-
ht ask why we should use the UIT. One reason is that UIT has a smaller Type I Error 
probability for every . Moreover, if  is rejected, we may wish to look at the 
individual tests of  to see why, for which UIT provides us an access.

    We now investigate the sizes of IUTs. A simple bound for the size of an IUT is rel-
ated to the sizes of the individual tests that are used to define the IUT. Recall that in 
this situation the null hypothesis is expressible as a union, i.e. we are testing

	 	  versus , where .


An IUT has a rejection region of the form  where  is the rejection region 

for a test of .

Theorem 8.7:

	 Let  be the size of the test of  with rejection region . Then the IUT with

	 rejection region  is a level  test.


    Typically, the individual rejection regions  are chosen so that . In such 
a case, Theorem 8.7 states that the resulting IUT is a level  test. Moreover, this 
theorem provides an upper bound for the size of an IUT, is somewhat more useful 
than Theorem 8.6, which provides an upper bound for the size of a UIT.

Remark:

	 Theorem 8.6 applied only to UITs constructed from LRTs while Theorem 8.7

	 applies to any IUT.		 	 	 	 	 	 	 	 	 ||

   The bound in Theorem 8.6 is the size of the LRT, which, in a complicated proble-
m, may be difficult to compute. In Theorem 8.7 however, the LRT need not be used 
to obtain the upper bound. Any test  with unknown size  can be used, and then 
the upper bound on the size of the IUT is given in terms of the known sizes .

    After a hypothesis test is done, the conclusions must be reported in some statistic-
ally meaningful way. One method of reporting the results of a hypothesis test is to 
report the size, , of the test used and the decision to reject  or accept . The size 
of the test carrise important information. If  is small, the decision to reject  is 
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fairly convincing, but if  is large, the decision to reject  is not very convincing 
since the test has a large probability of incorrectly making that decision. Another way 
of reporting the results of a hypothesis test is to report the value of a certain kind of 
test statistic called a -value.

Definition: -Value

	 A -value  is a test statistic satisfying  for every sample 

	 point . Small values of  give evidence that  is true. A -value is valid

	 if  and every , .

    If  is valid it is then easy to construct a level  test based on . The test 
that rejects  if and only if  is a level  test. An advantage to reporting a 
test result via a -value is that each reader can choose the  and then can compare the 
reported  to  and know whether these data lead to acceptance or rejection of . 
Morover, the smaller the -value, the stronger the evidence for rejecting . Hence, a 

-value reports the results of a test on a more continuous scale, rather than just 
accepting  or Rejecting .

    The most common way to define a valid -value is given by the following result.

Theorem 8.8:

	 Let  be a test statistic such that large values of  give evidence that  is 

	 true. For each sample point , define . Then, 


	  is valid.


9.1 Methods of Finding Interval Estimators

    We have seen in Section 7 for the inference of a single value as the value of . In 
this subsection we focus on extending this concept to an interval. As before, this 
section is divided into two parts, in Section 9.1 we introduce the methods of finding 
interval estimators and in Section 9.2 we shall talk about the methods in evaluating 
them.

Definition: Interval Estimate, Interval Estimator

	 An interval estimate of a real-valued parameter  is any pair of functions, 

	  and , of a sample that satisfy  .

	 If  is observed, the inference  is made. The random 

	 interval  is called an interval estimator.

    The purpose of using an interval estimator rather than a point estimator is to have 
some guarantee of capturing the parameter of interest. The certainty of this guarantee 
is quantified in the following definitions.

Definition: Coverage Probability

	 For an interval estimator  of a parameter , the coverage 

	 probability of  is the probability that the random interval 

	  covers the true parameter . In symbols, it is denoted by either


	  or .


Definition: Confidence Coefficient


α H0

p
p

p p(X ) 0 ≤ p(x) ≤ 1
x p(X ) H1 p

∀θ ∈ Θ0 0 ≤ α ≤ 1 ℙθ(p(X ) ≤ α) ≤ α
p(X ) α p(X )

H0 p(X ) ≤ α α
p α

p(x) α H0
p H0

p
H0 H0

p

W(X ) W H1
x p(x) = sup

θ∈Θ0

ℙθ(W(X ) ≥ W(x))

p(X )

θ

θ
L(x1, ⋯, xn) U(x1, ⋯, xn) L(x) ≤ U(x) ∀x ∈ ΩX

X = x L(x) ≤ θ ≤ U(x)
(L(X ), U(X ))

(L(X ), U(X )) θ
(L(X ), U(X ))

(L(X ), U(X )) θ
ℙθ(θ ∈ (L(X ), U(X ))) ℙ(θ ∈ (L(X ), U(X )) θ)

Page  of 69 73



	 For an interval estimator  of a parameter , the confidence 

	 coefficient of  is the infimum of the coverage probability, i.e.


	 .


    Interval estimators together with a measure of confidence (usually a confidence co-
efficient) are sometimes called confidence intervals. A confidence set with confidence 
coefficient equal to some value, say , is simply called a  confidence set.

    There is a very strong correspondence between hypothesis testing and interval esti-
mation. In fact, we can say in general that every confidence set corresponds to a test 
and vice versa.

    The hypothesis test fixes the parameter and asks what sample values (the acceptan-
ce region) are consistent with the fixed value. The confidence set fixes the sample 
and asks what parameter values (the confidence interval) make this sample value 
most plausible. This correspondence between acceptance region and confidence 
intervals hold in general. We state it in the following theorem.

Theorem 9.1:

	 For each , let  be the acceptance region of a level  test of 

	 . For each  define . Then the 

	 random set  is a  confidence set. Conversely, let  be a 

	 confidence set. For any  define . Then  is

	 the acceptance region of a level  test of .

    Note that the coverage probability for  and  are different 
for  constants. One important difference is that the coverage probability 
of the interval  could be expressed by the quantity , a random variable 
whose distribution does not depend on the parameter, while  depends 
on . The quantity  is known as a pivotal quantity, or simply pivot.

Definition: Pivot

	 A random variable  is a pivot if the distribution of 

	  is dependent on all parameters. That is, if  then  

	 has the same distribution for all values of .

Theorem 9.2: Pivoting a Continuous CDF

	 Let  be a statistic with continuous cdf . Let  with 

	  be fixed values. Suppose that for each , the functions  

	 and  can be defined as follows:

	 (i)	 If  is a decreasing function of  for each , define  and 

	 	 by  and .

	 (ii)	 If  is an increasing function of  for each , define  and 

	 	  by  and .

	 Then the random inverval  is a  confidence interval for .

Theorem 9.3: Pivoting a Discrete CDF

	 Let  be a discrete statistic with cdf . Let  

	 with  be fixed values. Suppose that for each , the functions 

	  and  can be defined as follows:
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	 (i)	 If  is a decreasing function of  for each , define  and 

	 	 by  and .

	 (ii)	 If  is an increasing function of  for each , define  and 

	 	  by  and .

	 Then the random inverval  is a  confidence interval for .


9.2 Methods of Evaluating Interval Estimators

  Directly from the definition of the interval estimator, we could tell that with the 
smaller the “length” is, we have a better estimator; on the other hand, if the interval 
covers the parameter with high probability, we can say the estimator is good. 
Therefore there are two scales to describe the performance of the estimators.

Definition: Unimodal

	 A pdf  is unimodal if there exists  such that  is nondecreasing for 

	  and  is nonincreasing for .

Theorem 9.4:

	 Let  be a unimodal pdf. If the interval  satisfies 


	 (i)	 .


	 (ii)	 .

	 (iii)	 , where  is a mode of .

	 Then  is the shortest among all intervals that satisfies (i).

   In some cases, especially when working outside of the location problem, we must 
be careful in the application of this theorem. In scale cases in particular, the theorem 
may not directly applicable, but a variant may be.

    Since there is a one-to-one correspondence between confidence sets and tests of h-
ypothese, there is some correspondence between optimality of tests and optimality of 
confidence sets. Usually, test-related optimality properties of confidence sets do not 
directly relate to the size of the set but rather to the probability of the set covering 
false values.

    The probability of covering false values, or the probability of false coverage, indir-
ectly measures the size of a confidence set. Intuitively, smaller sets cover fewer 
values and, hence, are less likely to cover false values. 

Definition: Uniformly Most Accurate (UMA) Confidence Set

	 A  confidence set that minimizes the probability of false coverage over a 

	 class of  confidence set is called a uniformly most accurate (UMA) 

	 confidence set.

Theorem 9.5: UMA Lower Confidence Bound

	 Let  where  is a real-valued parameter. For each , let 

	  be the UMP level  acceptance region of a test of  versus

	 . Let  be the  confidence set formed by inverting the 

	 UMP acceptance regions. Then for any other  confidence set ,

	  for all .

Definition: Unbiased
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	 A  confidence set  is unbiased if  .

   Sets that minimize the probability of false coverage are called Neyman-shortest. 
The fact that there is a length connotation to this name is somewhat justified by the 
following theorem.

Theorem 9.6: Pratt

	 Let  be a real-valued random variable with  where  is a real-

	 valued parameter. Let  be a confidence interval for . If

	  and  are both increasing functions of , then for any value ,


	 .


    The result is that the expected length of  is equal to a sum (integral) of the pro-
babilities of the false coverage, the integral being taken over all false values of the 
parameter .

    The goal of obtaining a smallest confidence set with a specified coverage probabil-
ity can also be attained using Bayesian criteria. If we have a posterior distribution 

 the posterior distribution of  given , we would like to find the set  
that satisfy 


	 (i)	 ,


	 (ii)	 Size Size ,


for any set  satisfying . If we take our measure of size 

to be length, then we apply Theorem 9.4 and obtain the following result.

Corollary 9.7:

	 If the posterior density  is unimodal, then for a given value of , the 

	 shortest credible interval for  is given by


	 	  where .


    The credible set in this corollary is called a highest posterior density (HPD) region, 
as it consists of the values of the parameter for which the posterior density is highest. 
Notice the similarity in form between the HPD region and the likelihood region.
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