Potential Theory in the Complex Plane
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1. Harmonic Functions
1.1 Harmonic and Holomorphic Functions
Harmonic functions, namely solutions of Laplace’s equation, exhibit many propert-
ies remoniscent of those of holomorphic functions. In fact, when working in a plane,
as well shell, there 1s a direct connection between the two classes. We shall unshame-
dly exploit this to accelerate the initial development of harmonic functions, under the
assumption that we already know something about holomorphic ones. Later, potential
theory will repay its debt to complex analysis in the form of many beautiful applicati-
ons.
We begin with the formal definition. A function 4 € C 2(U) means it has second d-
erivative in U.
Definition: Harmonic Function
Let U be an open subset of C. A function 2 : U — R is said to be harmonic
ifh € CXU)and Ah =0on U.
Definition: Holomorphic Function
A function f : C — C is said to be holomorphic at the point z € C if the limit
.mf(Z+h})l f(z),h cC

Ii
h—0

exists. It is said to be holomorphic if this holds for every point z € C.
Remark 1.1: Some Properties of Holomorphic Functions
(i)  Iffis holomorphic on D, then for some appropriate closed paths y in D,

f(xdz =0. (Contour Integration)
v
(1)) If fis holomorphic, then fis infinitely differentiable. (Regularity)
(iii) If fand g are holomorphic functions on D which are equal in an arbitrar-
ily small disc in D then f = g everywhere on D.
(Identity Principle) ¢
The following basic result not only furnishes numerous examples of harmonic fun-
ctions, but also provide a useful tool in deriving their elementary properties from
those of holomorphic functions. We shall use Re f to denote the real-part of f.
Theorem 1.1: Characterization of Harmonicity as Holomorphy
Let D be a domain in C.
(i)  Iffis holomorphic on D and & = Re f, then A is harmonic on D.
(1))  If A is harmonic on D, and if D is simply connected, then 27 = Re f for
some f holomorphic on D. Moreover, f is unique up to adding a constant.
Proof:
Step I: Assertion (1)
Let f := h + ik, the Cauchy-Riemann equations give that
h, = kyand hy, = — k,.
Therefore, using Cauchy-Riemann equation in the second equality gives
Ah = hy + hy, =k, — k., =0.
Thus (i1) follows from the definition of harmonicity.
Step II: Uniqueness in assertion (ii)
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If h = Re f for some holomorphic function f, say f := h + ik, then
[ =h+ik,=h.—ih, (1.1)

Thus, if f exists, then f” is completely determined by 4, and hence f is unique up
to adding a constant.
Step I1I: Existence in assertion (i)
Equation (1.1) suggests how we might construct such a function f. Define
g:D—>Cbyg:=h.—ih,Theng € C!(D) and g satisfies the Cauchy-
Riemann equations by assumption of harmonicity in A:

hy,=—hy,and h,, = hy,.
Therefore g is holomorphic on D since g € C'(D) and g satisfies the Cauchy-
Riemann equation. Fix z; € D, and define f : D — C by

f@) :=h(zg) + I gw)dw,

the integral being taken over any path in D from z;, to z. As D 1s simply conne-
cted, Cauchy’s theorem (see Remark 1.1 (1)) ensures that the integral is indep-
endent of the particular path chosen. Then fis holomorphic on D and
N f'=g=h—ih,
Denote i := Re f, we have
h, —ih, =f = h,—ih,,
so that _ _
(h—h),=0and (h —h),=0.
It follows that 7 — h is constant on D, putting z = z, shows that the constant 1s
zero, thus 4 = Re f, as desired.
[]
As a consequence, we obtain a useful result about holomorphic logarithms. Recall
that the holomorphic function has the maximum modulus principle.
Remark 1.2: Maximum Modulus Principle for Holomorphy
Let U C Cbe adomainand f : U — C be holomorphic/analytic. If | f| has a
local maximum on U then fis constant on U. o
Corollary 1.1.1: Logarithms for Holomorphic Functions
Let f be holomorphic and non-zero on a simply connected domain D in C.
Then there exists a holomorphic function g on D such that f = e5.
Proof:
Put i :=log|f| on D. Because h is locally the real part of a holomorphic fun-
ction, namely a branch of log f, it is harmonic by Theorem 1.1 (i). Now using
Theorem 1.1 (i1), there exists a holomorphic function g on D such that
h = Re g there, or in other words,
|fe=¥| = 1ff""=1onD
By Remark 1.2, fe™# is a constant C. Adding a suitable constant to g, we can
suppose that C = 1 and therefore f = e5.
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Corollary 1.1.1 (and, by implication, Theorem 1.1(i1)) may fail if D is not assum-
ed to be simply connected.
Example 1.1: Corollary 1.1.1 Fails When D Is NOT Simply Connected
The function f(z) = z is holomorphic and non-zero on the domain
D := C\{0}; but ther eis no holomorphic function g such that z = @ on D,

1
for such a g would satisfy g’(z) = —, and this would then imply that
Z

0= [ g'(x)dz = [ ldz = 2ri,
j2I=1 lzl=1 <
where the first equality holds by Remark 1.1 (i), the second equality holds
since g'(z) = 1/z, and the last equality by simply calculation. This is impos-
sible since 0 # 2ri. o
However, since discs are simply connected, every harmonic function is at least loc-
ally the real part of some holomorphic function. This leads to the following results.
Corollary 1.1.2: Regularity of Harmonic Functions
If & is a harmonic function on an open subset U of C then 7 € C*(U).
Corollary 1.1.3: Composition for Harmonic Functions via Holomorphy
Iff: U; — U, is a holomorphic map between open subsets U, and U, of C,
and if A is harmonic on U,, then / o fis harmonic on Uj.
To make our notes self-contained, we state some properties of holomorphic functi-
ons into the following remark without proof.
Remark 1.3: More Properties of Holomorphic Functions
If f and g are holomorphic on D C C then
(i) f+ gisholomorphiconDand (f+g) =f"+g"
(i)  fg is holomorphic on D and (fg)' = f'g + fg¢'.

(iii) If g(zy) # 0, then f/g is holomorphic at z, and (f/g)’ = @

(iv) Iff: D — Uand g : U — C are holomorphic then the chain rule holds
(fe8)@=¢(f)f @) VzeD. o
The result in Corollary 1.1.3 allows us to extend the notion of harmonicity to the
Riemann sphere.
Example 1.2: Extending Harmonicity to Riemann Sphere
Given a function & defined on an open neighbourhood U of co, we say £ is
harmonic on U if i o ¢! is harmonic on ¢(U), where ¢ is a conformal mapp-
ing of U onto an open subset of C. It does not matter which map ¢ is chosen:
if ¢, and ¢, are two such choices, then
(hogry=(hep;ef,
where f = ¢, © (pl_l, so by Corollary 1.1.3, i o (pl_1 is harmonic on ¢,(U) if
and only if /2o o l'is harmonic on ¢,(U). ¢
Another simple consequence of Theorem 1.1 will be of great importance later.
Theorem 1.2: Mean-Value Property of Harmonic Functions
Let /& be a harmonic function on an open neighbourhood of the disc A(w, p).

Then
4



1 2z ‘
h(w) = —[ h(w + pe'®)dé.
2r },
Proof:

Choose p’ > p so that & is a harmonic function on A(w, p’). By Theorem 1.1
(i1), there exists f holomorphic on A(w, p’) such that 4 = Re f there. Now using
Cauchy’s integral formula in the first equality and change to radial coordinate
in the second, one gets

2
J©) : J fw + pe®)de.

1
fw) = —[ Sdg =
|

2ri Emwl=p E—w 27},
Result follows upon taking real part of both sides.
[]
This section ends with two further ways in which harmonic functions behave like
holomorphic ones, an identity principle and a maximum principle. We shall deduce
the harmonic versions of both these results from their holomorphic counterparts.
Theorem 1.3: Identity Principle for Harmonic Functions
Let 2 and k be harmonic functions on a domain D in C. If 4 = k on a non-
empty open subset U of D. Then h = k throughout D.
Proof:
Without loss of generality, we may suppose that k = 0. Set g := h, — ih,. Then

as in the proof of Theorem 1.1, g is holomorphic on D, and also g = 0 on U
since i = 0 there. By Remark 1.1 (iii), it follows that g = 0 throughout D,
and hence that 2, = 0 and i, = 0 on D. Therefore £ is constant on D, and since
h = 0 on U, this constant must be zero. It follows that 1 = k = 0 on D.

[]

For holomorphic functions, a stronger form of identity principle holds: namely, if
two holomorphic functions agree on a set with a limit point in the domain D, then
they agree throughout D. However, this is not the case for harmonic functions.
Example 1.3: Stronger Identity Principle Fails for Harmonic Functions

The functions A(z) := Re z and k(z) = 0 are harmonic function on C and agree
on the imaginary axis without being equal on the whole C. o
Theorem 1.4: Maximum Principle for Harmonic Functions
Let /& be a harmonic function on a domain D in C.
(i)  If h attains a local maximum on D then 4 is constant.
(ii)  If h extends continuously to D and 4 < 0 on 0D then 4 < 0 on D.

This is perhaps a proper moment for a reminder about our convention that all clos-
ures and boundaries are taken with respect to the extended complex plane C* rather
than C. Indeed, Theorem 1.4 (ii) would otherwise be false.

Example 1.4: Without Our Convention Theorem 1.4 (ii) Fails
The harmonic function A(z) := Re z on the domain D := {z € C : Re z > 0}
extends continuouslyto Dand 2 <QonodDbuth>0onD. o

Proof of Theorem 1.4:
Step I: Assertion (1)



Suppose 4 attains a local maximum at w € D. Then for some r > 0 we have

h < h(w) on A(w, r). By Theorem 1.1 (ii) there exists a holomorphic function
fon A(w, r) such that 4 = Re fthere. Then |e/| attains a local maximum at w,
so e/ must be a constant. Therefore / is constant on A(w, r) and hence on the
whole of D by Theorem 1.3.

Step II: Assertion (i1)

As D is compact, & must attain a maximum at some point w € D. If w € 0D
then 2(w) < 0 by assumption, and so 4 < 0 on D. If w € D then by (i) we just
proved, & is constant on D, hence on D, and so once again 4 < 0 on D.

[

1.2 The Dirichlet Problem on the Disc
The Dirichlet problem is to find a harmonic function on a domain with the prescri-
bed boundary values. It is one of the greatest advantages of harmonic functions over
holomorphic ones that for “nice” domains, a solution always exists. This is a
powerful tool for many applications. We first formulate the problem.
Definition: Dirichlet Problem
Let D be a subdomain of C and let ¢ : dD — R be a continuous function. The
Dirichlet problem is to find a harmonic function /4 on D such that
lirr(; h(z) = (&) V& € aD.
71—

Theorem 1.5: Uniqueness of Solution to Dirichlet Problem
There exists at most one solution to Dirichlet problem.
Proof:
Suppose h; and &, are two solutions to the Dirichlet problem. Then i, — h, is
harmonic on D (use Remark 1.3 (i) to see this). Moreover h; — h, = 0 on 0D
by the definition of Dirichlet problem and &, — h, extends continuously to D
by Theorem 1.4 (ii). Another application of Theorem 1.4 (ii) to *(h; — h,)
respectively yields that 7; — h, = 0 on D, as desired.
[]
The question for the existence of solution to Dirichlet problem will be discussed in
the fourth chapter as we need more tools. There is a special case we can solve based
on the current knowledge.

Definition: Poisson Kernel
The Poisson kernel P : A(0,1) X 0A(0,1) — R is defined by

P(z,{) ;=Re<5+z> -z

(=) =z
where |z| < 1land |{]| = 1.
Definition: Poisson Integral
If A :=A(w,p)and ¢ : A — R is a Lebesgue integrable function. Then the
Poisson integral P : A — R is defined by

2z
P e L P LW g i0 do
29(@) =2 e Jo(w +pe)
7y p
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for z € A. More precisely, if r < pand 0 < ¢ < 2z then

V4 2 2
Pyp(w + re't) = L{ P o(w + pe')do
A 2z ), p?—2prcos(d —1)+r? '

The following result is fundamental.
Theorem 1.6: Properties of Poisson Integral
(i) P, is harmonic on A.
(i) If ¢ is continuous at {; € 0A then lim P,@(z) = ¢({).

b\
(iii) In particular, if ¢ is continuous on the whole of A then h := P ¢
solves the Dirichlet problem on A.
Proof:
Using an affine transformation if necessary, without loss of generality, we may
assume that w = O and p = 1, hence A = A(0,1).
Step I Assertion (1)
By the definition of Poisson kernel, one has, for z € A,

2r i0
Pryp(2) =Re (LJ ¢ F< (e"e)d0>,
2r ), e —z
so that P, ¢ 1s the real part of a holomorphic function and thus by Theorem 1.1
(1), Pog 1s harmonic on A.
Step II: Assertion (i1)
To prove the second assertion, we need a lemma.
Lemma 1.7: Properties of Poisson Kernel
The Poisson kernel P satisfies
1) Pz, Cz) > 0for |z| < 1land || = 1. (Non-Negative)

1 [*" .
(ii) Z—J P(z,¢d6 =1 for |z| < 1. (Normalization)
T Jo

(iii) sup P(z,{) = 0asz — {y, where |{;| =1and o > 0.
|¢—Col26
Proof:

The first assertion follows immediately from the definition of Poisson kernel.
Step I: Assertion (ii)
Expressing the given integral as a contour integral and using Cauchy’s formula
in the first an;i the second equality respctively,
T r
i[ P(z,¢%)d6 = Re <L “Zﬁ)
27 J, 2wi )y C—2 €

=Re<i" (= —1)dc>'
2ni oy N2 €
—Re@=1)=1

Step II: Assertion (ii1)
If |z—,| < 6 then



sup P(z,0) < 1—|z|2
oz (618 —z1)*

sending z — {, yields the last assertion.

[

Proof of Theorem 1.6: Continued
Once again, we may assume that A = A(0,1). Then using Lemma 1.7 (ii) and

(1) in the first and the second equality respectively gives
27

P _ _ | i0 oy _
20 = 9z) | = 27J Pz, e (p(e?) — ¢(&y))dO
0

2w

<L P(z,e" 0 _ do

< (z,e™)|pe"” — @y |do.
2n 0

Let € > 0. If ¢ is continuous at {, € dA, then there exists a 6 > 0 such that
E-Gl <62 |p@) -9 <e
by the continuity assumption. Hence, using LLemma 1.7 (i) and (ii) again one

obtains

1 i0 0 1 2 i0

— P e |pe®) = p&p|do < ——| Pz e)edo =
27 Jyeio_gy1<s 27 J

Moreover, according to Lemma 1.7 (iii), there exists 6’ > 0 such that
|z—¢| <8 => sup P(z,{)<e.
18—=C0l=6
Hence if |z — ;| < ¢’ then

1 i0 i0 1 o i0
P o)~ p|d0<—| e|pE”) - pE)|do
eyl 27 Jo

27

1 2 .
< 8<—[ |p(e®)|dO + |¢(Co)|>

2r ),
where we used Minkowski’s inequality in the second inequality. Combining
these facts, we deduce that if |z — ;| < ' then

(>
Pap(@) - 0| < e(l ¥ 2—7[[ |9 1d0 + | p(&)| )
0
Finally, since € > 0 is arbitrary, sending € | 0 yields (ii) and (iii).
[]
As an immediate consequence of this result, we obtain an analogue of the Cauchy
integral formula for harmonic functions.
Corollary 1.6.1: Poisson Integral Formula for Harmonic Functions
If & is harmonic on an open neighbourhood of the disc A(w, p) then for r < p

and0 <t <,

1 27 2 _ 2 )
J L7 h(w + pe'®)do.

h(w + re') = —
( ) 2r ), p?—2prcos(@ —t) + r?
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Proof:
Consider the Dirichlet problem on A := A(w, p) with ¢ := h|,, . According to

Theorem 1.6 (iii), & and P,h are both solutions and by Theorem 1.5 the solu-
tion is unique. Thus 7 = P h on A.
[]

Note that this result is a generalization of the mean-value property Theorem 1.2,
for which is the case when r = 0. It allows us to recapture the values of & everywhere
on A from the knowledge of 4 on dD. Exercise 4 gives an analogous formula for f on
A, where fis the essentially unique holomorphic function such that # = Re f.

The mean value property Theorem 1.2 actually characterizes harmonic functions.
This is proved in the next theorem, which also illustrates well the value of being able
to solve the Dirichlet problem.

Theorem 1.8: Mean-Value Property Characterizes Harmonic Functions
Leth : U — R be a continuous function on an open subset U C C, and
suppose that it possesses the local mean-value property, that is, given w € U,

there exists p > O such that for0 <r < p,
2z

h(w) = L[ h(w + re™)dt.
2r J,
Then £ is harmonic on D.
Proof:
It suffices to show that / is harmonic on each open disc A with A C U. Fix
such a A, and define k : A — R by
. {h—PAh on A
0 on 0A
Then k is continuous on A and has local mean-value property on A. Since A
is compact, k attains a maximum value M at some point of A. Define
A= {zeA:k(z)<M} and B := {zeA:k(z)zM}.
Then A is open since k is continuous. B is also open, for if k(w) = M then the
local mean-value property forces & to be equal to M on all sufficiently small
circles around w.
Now A and B partition the connected set A, either A = A, in which case k
attains its maximum on 0D and so M = 0; or B = A, in which case kK = M and
M = 0. Thus k < 0 and a similar argument tells us that k > 0. Hence h = P h
on A and since P,/ is harmonic by Theorem 1.6 (i), so is A.
[]
The technique we used in proving Theorem 1.8 by defining A and B will be used
in proving the maximum principle for subharmonic functions. Ineed, the reason that
this technique works is by our assumption that D is simply connected.
Combining Theorem 1.2 and Theorem 1.8 we obtain the following result.
Corollary 1.8.1: Harmonicity As Local Uniform Limit of Harmonic Functions
If {h,},> is a sequence of harmonic functions on D converging locally unifo-

rmly to a function A, then 4 is also harmonic on D.

9



A useful feature of Theorem 1.8 is that one only needs to check that the mean-
value property holds locally (that is, the value of p can depend on w). As an applica-
tion of this, we derive a form of the reflection principle for holomorphic functions.
Theorem 1.9: Reflection Principle for Holomorphic Functions

Let A := A(O,R) and write
AT = {zeA:Imz>0}andI:= {zeA:Imz=0}.
Suppose that fis a holomorphic function on A* such that Re f extends continu-
ously to A* U I with Re f = 0 on I. Then f extends holomorphically to the wh-
ole of A.
Note that no assumption is made about the continuity of Im f on /, this comes free.
Proof of Theorem 1.9:
Define h : A - R by

Re f(2), z €At
h(z) :=<0, z€1
—Ref(z), z€A”
Then £ is continuous on A and has local mean-value property on A. Thus by
Theorem 1.8, & is harmonic on A. Using Theorem 1.1 (ii), there exists a holo-
morphic function f on A such that & = Re f. Now f — f is holomorphic on A*
by Remark 1.3 (i) and takes only imaginary values, so it is constant there. Adj-

usting f appropriately, we can make this constant to be zero. Then f is the desi-
red extension of f to the whole of A.

[

1.3 Positive Harmonic Functions
In this section we shall exploit the Poisson integral formula Corollary 1.6.1 to der-

ive some useful inequalities for positive harmonic functions. By “positive” here is
meant “non-negative”, although in this context there is hardly any difference since,
by Theorem 1.4 (1), any harmonic function which attains a minimum value zero on a
domain must be identically zero throughout the domain.
Theorem 1.10: Harnack’s Inequality

Let & be a positive harmonic function on the disc A(w, p). Then for r < p and

0<t<2nx,

— ) +
rh(w) <hw+re") < uh(w).
p+r p—r
Proof:

Choose s with r < s < p. By Corollary 1.6.1 applied to & on A(w, s) in the
first equality one has

10



P27 SZ _ 7’2

. 1 .
h(w + ey = — h(w + se9)do
2z ), s*—2rscos(@ —1)+r?

1 (" s+r
S_
2r )y s—r
S+r
= h(w),

s—r
where the last inequality holds by the mean-value property of 4. Now sending
s — p gives

h(w + se'®)do

p+r

h(e + re') < h(w),

p—r
thus the desired upper bound is obtained. A similar argument gives the desired
lower bound. Thus the proof is complete.

[]
Corollary 1.10.1: Liouville Theorem

Every harmonic function on C which is bounded above or below is constant.
Proof:

It suffices to show that every positive harmonic function / on C is constant.

Givenz € C, putr :=|z| and let p > r. Applying Theorem 1.10 to / on the

disc A(0,p) gives

) < 2 ho).
p—r

Sending p — oo yields 4(z) < h(0). Thus 4 attains a maximum value at 0 and
by Theorem 1.4 (i) & is constant on C.
[]
Harnack’s inequality on discs implies an analogous result for general domains.
Corollary 1.10.2: Harnack’s Inequality on General Domains
Let D be a domain in C* and let z, w € D. Then there exists a number 7 such
that for every positive harmonic function 4 on D,
7 thw) < h(z) < th(w), (1.2)
Proof:
Given z,w € D, write z ~ w if there exists a number 7 such that (1.2) holds for
every positive harmonic function 4 on D. Then ~ is an equivalence relation on
D, and Harnack’s inequality Theorem 1.10 shows that the equivalent classes

are open sets. As D is connected, there can only be one such an equivalent
class, and this proves (1.2).

[

Prompted by the last result, we make the following definition.
Definition: Harnack Distance

Let D be a domain in C*. Given z, w € D, the Harnack distance between z
and w is the smallest number 7,,(z, w) such that for every positive harmonic
function 4 on D,

(2, W) h(w) < h(z) < 7p(z, wh(w). (1.3)

11



There 1s one case for which 7, can be computed straightaway.
Theorem 1.11: Harnack Distance Inside Discs
If A = A(w,p). Then

—-w
'L'D(z,w)=p+|Z | forz € A.
p—lz—wl
Proof:
From Harnack’s inequality Theorem 1.10, it follows that
ptlz—wl
TA(z,w) < for z € A.
p—lz—wl
On the other hand, by considering the positive harmonic function z on A given
by

—_ + —_
h(z) :=P<Z W,C) :=Re<p€ @ W))
p pe—(z—w)
for |{| = 1, the equality follows immediately.
[]

From this, one can compute or estimate 7, for other domains D by means of the fo-
llowing subordination principle. Before stating it we first recall some terminology in
complex analysis.

Definition: Memomorphic Function
A function on a domain €2 is said to be meromorphic if there exists a sequence
of points p;, p,, -+ with no limit points in € such that if we denote
Q* 1= Q\{py, pp, -}
such that f : Q* — C is holomorphic and f has holes at p, p,, --.
Remark 1.4: Properties of Meromorphic Functions
Let f, g, and & be meromorphic functions on the same domain. Then
(i) f % g is meromorphic.
(i)  fg is meromorphic.
(i) f(g+h) =fg+fh
(iv) fxO0=fandf-1=f
(v)  1/fis meromorphic. o
Definition: Conformal Map
A map f(z) := wis said to be conformal if it preserves angles between oriented
curves in magnitude as well as in orientation.
Theorem 1.12: Subordination Principle
Letf : D; — D, be a meromorphic map between domains D; and D, in C®.
Then for z,w € D;,
7, (f(@), fW)) < 7, (2, W),
with equality holds if fis a conformal mapping of D, and D,.
Proof:
Let z,w € D,. Given a positive harmonic function /4 on D,, if f is holomorphic
then by Corollary 1.1.3 & o fis harmonic on D). If f is meromorphic but not
holomorphic, then /4 o f agrees with a harmonic function on D, \{p, p,, --*},

12



which is a non-empty open set. Thus by Theorem 1.3 £ o f'is harmonic on D;.

In particular, £ o fis a positive harmonic function on D;. So by (1.3) one has
2, W) (fW) < h(f(2)) < 7, (2 WA(F(W)).

As this holds for arbitrary such a function 4, the inequality is verified.

Suppose in addition that f'is a conformal map of D, onto D,, then we can apply

the same argument to f ! and the equality follows.

[]
Corollary 1.12.1: Inverse Monotonicity for Harnack Distance under Domain
If D; C D, then
rDz(z, w) < TDI(Z, w), where z,w € D;.
Proof:
Take f : D; — D, to be the inclusion map.
[]
We can use this to study the continuity properties of 7.
Theorem 1.13: Log Harnack Distance Over is a Continuous Semimetric
If D is a subdomain of C* then log 7, is a continuous semimetric on D.
Proof:
Step I log 7, is a semimetric on D.
To show that log 7}, is a semimetric, we need to verify that for z,w € D,
. Tp(z,w) > 1 and 755(z,2) = 1. (Non-“Negative”)
. n(z, w) = (W, 2). (Symmetric)
. (2, w) < (2,2, w) for 2" € D. (Triangle Inequality)

All of these follows from the definition of 7.
Step II: log 7}, is continuous on D.
To show that log 7;, is continuous, it suffices to prove that
log7p(z,w) = O0asz = w,
because the general result then follows by the triangle inequality for log 7;,. To
this end, let w € D, and choose p > 0 so that A := A(w, p) C D. Then for
z € A we have

p+k—ww
p—lz—wl|/’

where the first inequality holds since 7,(z, w) > 1, the second inequality holds
since A C D and by Corollary 1.12.1, and the last equality holds by the defin-
ition of 7. Since p > 0 is arbitrary, sending p | 0 yields log 7(z, w) = 0 as

z — w, as desired.

0 <logtp(z,w) < logta(z,w) = 10g<

[

Remark 1.5: Reason for log 7, Being Semimetric Instead of Metric In General
It may happen that log 7,,(z, w) = 0 even when z # w, so that log z;, is not
quite a metric. For example, since the only positive harmonic function on C are
constants, it follows that log 7-(z, w) = 0 Vz,w € C. However, log 7, is a me-
tric for many domains D. o

It is now a short step to the following important theorem.
13



Theorem 1.14: Harnack’s Theorem
Let {h,},>, be harmonic functions on a domain D in C* and suppose that
h] < hZ <-.-onD.
Then either s, — oo locally uniformly or #, — h locally uniformly where 4 is
a harmonic function on D.
Proof:
Fix w € D. Given a compact subset K of D, the quantity

Ck :=sup 7p(z, w)
€K
1s finite since 7, 1s continuous (a continuous function has finite supremum

over compacts). Hence whenever n > m > 1, we have, for z € K,
hy(w) — hy(w) < Cy(h,(2) = 1y(2))

h,(w) — h,,(w) < Cx(h,(w) — h,,(W))
because i, — h; and h, — h,, are positive harmonic functions on D by assump-
tion. Now if h,(w) = oo as n — oo then s, = oo uniformly on K. As K can be
any compact subset of D, we conclude that 7, — oo locally uniformly on D.
On the other hand, if 4, (w) tends to a finite limit, then {#,},, is uniformly
Cauchy on K. Again, as K is an arbitrary compact susbet of D, it follows that
h, converges locally uniformly on D to a finite function 4, by Corollary 1.8.1
h is necessarily harmonic on D.

[

There is also a very useful variant of Harnack’s theorem in which, instead of assu-
ming that the sequence {4}, is increasing, we suppose merely that it is positive.

The price we pay is that, in general, only a subsequence will converge.

Theorem 1.15: Harnack’s Theorem for Positive Harmonic Functions
Let {h,},> be positive harmonic functions on a domain D in C®. Then either
h, — oo locally uniformly, or else some subsequence hnj — h locally uniform-
ly, where 4 is a harmonic function on D.

Proof:

We proceed the proof with three steps.
Step I: Reduce assumption to a bounded sequence {log hn(w)} .

Fix w € D. From the inequalities where z € D andn > 1,

(2, W), (W) < h,(2) < 1p(z, Wh, (W), (1.4)
it follows that if 4#,(w) — oo then also &, — oo locally uniformly on D; and if
h,(w) — 0 then also s, — 0 locally uniformly on D. Therefore, replacing
{h,},>1 by a subsequence if necessary, we can reduce to the case where the se-
quence {log hn(w)}nzl is bounded. The inequality (1.4) then implies that
{log h,},> is locally uniformly bounded on D, and so it suffices to prove that
there is a subsequence {hnj} >l such that {log hnj} >l is locally uniformly conv-
ergent on D.
Step II: 3 {hnj };>1 such that {log hnj }j>1 s locally uniformly convergent on D.

14



Let S be a countable dense subset of D. The sequence {log h, (& )} .>1 1s boun-

ded for each { € S. So by a diagonal argument we may find a subsequence
{hnj} j>1 such that {log hnj(C )} j>1 18 convergent V¢ € S. We shall show that,

for this subsequence, {log hnj }j>1 1s locally uniformly convergent on D.
Step III: {log hnj }j>1 converges locally uniformly on D

Let K be a compact subset of D, and let € > 0. For each z € K, let
V, = {z’ €D :logry(z,7) < 8},
and let VZI, e, Vzm be a finite subcover o K. Since S is dense in D, for each 7
we can pick a point {, € V, N S. Then there exists N > 1 such that for
n, ny N ¢=1,-,m,

|log 1, () — log h, (&) | < e
Now by the definition of Harnack distance, for z € V.

2y
| log 1, (2) — log h, ()| < logzp(z,¢,) < 2
with a similar argument applied to /2, , one gets

| log h, (2) = log h, (&) | < 5¢
for n;,my > N and z € K. Thus {log hnj} j>1 18 uniformly Cauchy on K and thus

uniformly convergent on K. Since this holds for any compact subset K, the loc-
ally uniformly convergence is verified.
[]
We conclude this chapter by applying some of the ideas developed in it to give a b-
eautiful recent proof of Picard’s theorem due to John Lewis.
Theorem 1.16: Picard’s Theorem
If f : C — C is a non-constant entire function. Then C\ f(C) contains at most
one point.
The proof requires a lemma on harmonic functions which is of some interest in its
own right. We shall use the notation
M,(w,r) := sup h = sup h.
A(w,r) 0A(w,r)
Lemma 1.17: Sup of Harmonic Function Is Bouned Away From Zero on Discs
Let & be harmonic on a neighbourhood of A(0,2R) with A(0) = 0. Then there
exists a disc A(w, r) C A(0,2R) such that 2(w) = 0 and
Q) My(w,r) >3""1M(0,R).
(i)  My(w,r/2) > 37 1UM, (w, ).
Of course the exact value of the constant 37! is unimportant here. The point is that
it is positive!
Proof of Lemma 1.17:
For z € A(0,2R) write 6(z) := dist(z, dA(O,ZR)), and define

Z:={z € A(0,2R) : h(z) = 0}

15



U:= U A(z,68(2)14),
EZ
y:=suph = suth(z,(S(z)/4).
U EZ
Choose w € Z such that Mh(w, 5(w)/4> > y/3 and set r := 6(w)/2. We shall
show that A(w, r) satisfies the conclusion of the lemma.
Clearly A(w,r) C A(0,2R) and h(w) = 0. Also M, (w,r/2) > y/3, so to com-
plete the proof it suffices to show that
(@ M,0.R) <3"%
(b)  M,(w,r) <31%.
Step I (a)
Take z € A(0,R) with h(z) > 0. If z € U then by continuity 4(z) < y. Now
suppose that z & U. Then (using the obvious notation for line segments in C)
there exists z' € (z,0) N U such that [z,z") N U = @. It follows that 2 > 0 on
[z,Z'). In fact, for each { € [z,7") we have & > 0 on A({, R/5). For if not, then
there exists {' € A(L, R/5) with h({") = 0. But then ' € Z and
8N >206¢)— 1=l >=R—-R/5=4R/5>4|{ -],
where the first inequality holds by triangle inequality, the second holds by ass-
umption, and the last holds since {’ € A({, R/5). This display implies that
¢ € U, which is impossible.
Thus indeed for each { € [z,7") we have & > 0 on A({, R/5). It follows from
Harnack’s inequality Theorem 1.10 that for such ¢,
sup h<3%> inf A
A(C.R/10) A(Z,R/10)
Since [z, z'] has length less than R, it can be covered by 5 overlapping discs of
radius R /10 with centers in [z, Z'). Therefore,
h(z) < (3°Yh(z’) < 3'%,
where the last inequality holds since 4 < y on U.
Step II: (b)
This is virtually identical. Take z € A(w, r) with h(z) > 0. If z € U then by
continuity 4(z) < y. Now suppose that z & U. Then there exists z’ € (z, w) N U
such that [z, z) N U = @. It follows that 4 > 0 on [z, z’). In fact, for each
€ [z,7') we have h > 0 on A(Z, r/5). For if not, then there exists
e AL, r/5) with h({') = 0. But then ' € Z and
5N >2ow) = =8| =1{=w|>22r=rl5—r=4r/5>4|0 -],
implying that { € U, which is impossible.
Thus indeed for each { € [z, z") we have & > 0 on A(C, r/5). It follows from
Harnack’s theorem Theorem 1.10 that for such £,
sup h <3? inf A
A(C,r/10) A(L,r/10)
Since [z, z'] has length less than r, it can be covered by 5 overlapping discs of
radius /10 with centers in [z, Z'). Therefore,
h(z) < (3°Yh(z)) < 3'%,
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where the last inequality holds since 2 < y on U.

[]
Proof of Theorem 1.16:

Suppose, for a contradiction, that C\ f(C) contains at least two points @ and f.
Then h :=log|f— a| and k := log| f — f| are both harmonic functions on C
and they satisfy
i) At =kt <|a-p]|
(i) max(h,k) > 10g| la —ﬁ|/2|

everywhere on C. Since f is non-constant, so is &, and so by Corollary 1.10.1
h is unbounded above and below. In particular, there exists z, € C with
h(zy) = 0, and replacing f(z) by f(z + z,) we can without loss of generality
assume that z; = 0.
Now applying Lemma 1.17 to & on each of the discs A(0,2*1) to produce new
discs A(w, r;) such that 2(w;) = 0 and
M (w;, ;) > 3711 M;,(0,2)
M, (w;, 1;12) > 371\ M (w),, 7).
Foreachj > 1 set M +j := M, (w;, ;). Since h is unbounded,
lim M, > 3~ I lim M, (0,2) =

]—)00 ]—)OO
Define two sequences of harmonic functions {£,};, and {k;} 5, on A(0,1) by
h(w; + r;z) k(w; +1;2)
hi(z) := ————and kj(z) '= ———
M; j
for [z| < 1. Then &; and k; have the following properties:
()  h(0) =
(b) M, (0,1/2) > 31,
ja =Bl
+_ o+
© b=kl <=

J
log(|a—p1/2)
J
Evidently h; < 1 Vj > 1. Using Theorem 1.15 to {1 — £} ;5 to deduce that a
subsequence of the {A;} ., converges locally uniformly to a function 1 on

A(0,1).
The functions {;} 5, are uniformly bounded above (for example by

(d) max(h;,k;) >

1+ |a—p|/M,), and so a further subsequence of these converges locally unif-

ormly to a function % on A(0,1). Both T and % are harmonic (or possibly ident-
ically —oo) and they have the following properties:

(@) h(0) =
(b’) M;(0,1/2) > 3711
() ht =k*.
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(d”) max(h k) > 0
Property (b’) implies that h(C ) > 0 for some ¢, and (c’) then tells us that h=k
1n a nelghbourhood of {. By the identity principle Theorem 1 .3 it follows that

h=% everywhere on A(0,1). From (d’) we then deduce that h>0on A(0,1),
and combining this with (a’) and the maximum principle Theorem 1.4 (i), we

conclude that 2z = 0 on A(0,1). But this is inconsistent with (b”), contradiction.
]

2. Subharmonic Functions
2.1 Upper Semicontinuous Functions

As part of their definition, subharmonic functions are going to be upper semiconti-
nuous, so before making this definition, we take a brief look at upper semicontinuous
functions in abstract.

Definition: Upper Semicontinuous
Let X be a topological space. We say that a function u : X — [—o0, 0) is
upper semicontinuous if the set {x € X : u(x) < a} isopenin X Va € R.
Definition: Lower Semicontinuous
Let X be a topological space. We say that a function u : X — (—o0, 0] is
lower semicontinuous if —u is upper semicontinuous.
A straightforward check shows that u is upper semicontinuous if and only if
lim sup u(y) < u(x) for each x € X.
y—x
In particular, u is continuous if and only if it is lower semicontinuous and upper
semicontinuous at the same time.

We shall make frequent use of the following basic compactness theorem. For the s-
akeness of simplicity we shall denote upper semicontinuity as u.s.c. and lower
semicontinuity as l.s.c. whenever necessary.

Theorem 2.1: USC Is Bounded Above and Attains Upper Bound on Compacts
Let U be an u.s.c. function on a topological space X and let K be a compact
subset of X. Then u 1s bounded above on K and attains its bound.

Proof:
The sets {{x € X:ulx)<n} } x>1 form an open cover of K, so have a finite

subcover. Hence u is bounded above on K. Let M := sup u. Then the open sets
K

1
{ {x eEX:ulkx)<M- —} }n>1 cannot cover K since it has no finite subcover
=

and thus u(x) = M for at least one x € K.
[]
The other result we shall need is an approximation theorem.
Theorem 2.2: Continuous Approximation to Bounded Above USC Functions
Let u be an u.s.c. function on a metric space (X, d) and suppose that u is boun-
ded above on X. Then there exist continuous functions
{qon X = R}nzl, where ¢, > @, > - 2 uonX
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and lim ¢, = u.

n—oo
Proof:

Without loss of generality, we may assume that u # — oo as otherwise
@, = —n.Forn > 1, define ¢, : X = R by
@,(x) ;= sup (u(y) — nd(x,y)), x eX.
yeX
Then for each n one has

(pn(x) - (pn(xl)

so ¢,, 1s continuous on D.
Moreover, ¢ > ¢, > --- > u and so in particular lim ¢, = u. On the other

hand, writing A(x, p) for the ball {y € X : d(x,y) < p}, we have
@,(x) < max ( sup u, sup(n — np))
A(x,p) X

< nd(x,x"), where x, x' € X,

forx € Xand p > 0. Thus
lim ¢, (x) < sup u, forx € X, p > 0.
o0 A(x,p)

Since u is u.s.c., sending p 1 oo yields lim ¢, < u.

n—»oo

[

2.2 Subharmonic Function

In spirit, at least, a function u is subharmonic if its Laplacian satisfies Au > 0. Ho-
wever, we shall not define subharmonicity this way. As we shall see later, one of the
greatest virtues of subharmonic functions is their flexibility, and this would be lost if
we were to assume that they are smooth.

Instead, we proceed by analogy with convex functions on R (indeed, this is a good
analogy to keep in mind throughout this book). If y € C%(R), then it is convex if and
only if w” > 0, but the convexity is actually defined via a submean property, which
also allows non-smooth functions such as w(t) := |#| to be convex. Taking this as
our model, we shall define subharmonicity using an analogous submean property in
the plane.

There is, however, one more technicality. Convex functions on open intervals are
automatically continuous, but there is no such a result for subharmonic functions. We
could demand continuity as part of our definition, but, for reasons that will become
apparent later, it is advantageous merely to ask for u.s.c..

After this preamble, we are at last ready to make the definition.

Definition: Subharmonic Function
Let U be an open subset of C. A function u : U — [— 00, 00) is said to be
subharmonic if
(1) wuisus.c..
(i)  u satisfies the local submean inequality, that is, given w € U there exists
p > 0 such that
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2z
u(w) < LI u(w + redt,0 < r < p. (2.1)
2 )y
Definition: Superharmonic Function
A function u : U — (—o0, 00] is superharmonic if —u is subharmonic.
Remark 2.1: Intepretation for Definition of Subharmonic Functions
The definition merits some comment:
(1)  The integral in (2.1) is to be interpreted as the difference of the correspo-
nding integrals of u* and u~. By Theorem 2.1, u™ is bounded on
0A(w, 1), so its integral is certainly finite. Thus the difference of the two
integrals makes sense, even though the integral of #™ may be infinite.
We shall see later that the latter only happens when u = — oo on the
whole component of U containing x. (Note that, according to our defini-
tion, # = — oo is a subharmonic function, though many authors exclude
it). (Infinity and Convention)
(i1))  Since the subharmonicity is defined via the local submean inequality
(that is, p may depend on w), it is a local property. This means that if
{U,},e;1s an open cover of U where [ is an arbitrary index set, then u
1s subharmonic on U if and only if it i1s subharmonic on each U,,.
(Subharmonicity Is a Local Property)
(i11) We observe that a function is harmonic if and only if it is at the same
time subharmonic and superharmonic.
(Characterizes Harmonicity) ¢
Theorem 2.3: Construct Subharmonic Function via Holomorphic Function
If f is holomorphic on an open set U in C. Then log| f| is subharmonic on U.
Proof:
Evidently u :=log| f| is u.s.c.. Also it satisfies the local submean property at
each w € U for which u(w) > — o0, because near such a point log | f | is actu-
ally harmonic. On the other hand, if u(w) = — oo then (2.1) is immediate.
[]

Further examples can be generated using the following elementary result, which is
an immediate result from the definition for subharmonicity.

Theorem 2.4: Some Elementary Properties for Subharmonic Functions
Let u and v be subharmonic functions on an open set U in C. Then
(1)  max(u,v) is subharmonic on U.
(i) au + pvis subharmonic on U Va, f > 0.

From (1) it follows that a subharmonic function needs not to be smooth. One might
reasonably guess that they do have to be continuous, but actually this is not true
neither. An example is given below, another will be given in section 5 of this chapter.
Example 2.1: Subharmonic Functions Need Not To Be Continuous

Consider { € C and r > 0. One has

1 (> : log|l|, ifr < ||
_ 1 it _ dl- —

2;;[0 og|re” - ¢l {logr, ifr > ||
Thus the function
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uz) = Y 27"log|z—27"|

n>1
1s subharmonic on C but u 1s discontinuous at 0. ¢

2.3 The Maximum Principle

As aresult of Theorem 1.2 and Theorem 1.8, the local mean-value property impli-
es the (global) mean-value property. To make much further progress with subharmo-
nic functions, we need a corresponding result for the submean inequality. As with
harmonic functions, we shall deduce this result with maximum principle. The import-
ance of the maximum principle lies in the fact that from local assumptions it derives
global conclusions. Indeed, many principles in potential theory involve extending a
property of the potential of a measure from a set which the measure is concentrated to
the whole space.

Such results are usually very powerful, and the maximum principle is no excepti-
on. Since it will feature prominently in what follows, we shall digress slightly in
order to study it in a little more detail, returning to the submean inequality in the next
section.

Theorem 2.5: Maximum Principle for Subharmonic Functions
Let u be a subharmonic function on a domain D in C.
(1)  If u attains a global maximum on D then u is constant.
(i) Iflimsupu(z) <0V e€adDthenu <0onD.
=¢
Remark 2.2: Max Principle for Subharmonic Fails with Global Min or Local Max
Note that in (1), u can attain a local maximum or a global minimum without
being constant on D. For example, the non-constant subharmonic function
u(z) := max(Re z,0)
does both in C. Moreover, just as in Theorem 1.4, the validity of (i1) depends
on our convention that co € dD whenever D is unbounded. o
Proof of Theorem 2.5:
Step I: Assertion (1)
Suppose that u attains a maximum value M on D. Define
A={z€D :ulzx)<M}andB :={z€ D :u(z) =M}.
Then A is open by the u.s.c. of u. Moreover, B is also open because if
u(w) = M then the local submean inequality (2.1) forces u to be equal to M on
all sufficiently small circles around w. Clearly A and B partitions D and since
D is connected either A = D or B = D. By our assumption B # @& thus B = D
and (1) follows.
Step II: Assertion (ii)
Extend u to dD by defining
u(¢) :=lim supu(z), { € aD.
7=
Then u is u.s.c. on D, which is compact, so by Theorem 2.1 u attains a maxi-
mum at some w € D. If w € dD, then by assumption u(w) < 0 thus # < 0 on
D. On the other hand, if w € D then by (i) u is constant on D, hence on D,
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thus u < 0 on D as desired.
[]
Remark 2.3: (i) in Theorem 2.5 Replaced by 0D\ { oo} with Mild Growth at Infinity
In fact, it is possible to replace dD by 0D\ {oo} in (ii) if u does not grow too
rapid at infinity. Hence it is a rather general result that makes this statement
precise. o
To this spirit, the following result guarantees the mild growth at infinity and thus
the assumption in (i) of Theorem 2.5 can be replaced by dD\ {oo}.
Theorem 2.6: Phragmén-Lindel6f Principle
Let u be a subharmonic function on an unbounded domain D in C such that
lim supu(z) <0, € oD\ {o0}.
=L
Suppose also that there exists a finite-valued superharmonic function v on D
such that
. : u(z)
lim infv(z) > 0 and lim sup —— < 0.
7— 0
Thenu <0 on D.
Proof:
Step I. Case when v > 0 on D.
Assume first that v > 0 on D. Let € > 0 and set
U, '=u—ev.
Then u, 1s subharmonic on D, and
lim supu,(z) <0 V¢ € 0D (even o),
=¢
so by Theorem 2.5 (i1) u, < 0 on D. Sending ¢ — O we getu < 0 on D.
Step II: General case
Now consider a general v. Let # > 0 and set
F,:={z€D:u(z) 2n}.
Since v is L.s.c. and lim inf v(z) > 0, it follows that v is bounded below on F.

vauds ™

—00 viZ

Adding a constant to v if necessary, we can without loss of generality assume
thatv > 0 on F,. Set

Vi={z€eD:v(z) > 0}.
Then for n € dV \{co} we have
lim sup,_, - u(z), if{ € adD\{oo
limsup(u(z)—n)ﬁ Pemg (2) _g \ }SO

o0 u() =1, iffeDnav
Applying result in the first step to u — 1 on each component of V, we get
u—n<0onV.AsF, C Vit follows that u <7 on F,, and plainly u < 7 on
D\F, so in fact u < 5 on D. Finally, since # > 0 is arbitrary, sending 7 | 0

yields the desired result.
[

Corollary 2.6.1: Maximum Principle for Subharmonic on Unbounded Domain
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Let u be a subharmonic function on an unbounded proper subdomain D of C

such that
: : u(z)
lim sup < 0 for { € dD\{oo} and lim sup <
z—¢ 7—00 log | < |
Thenu < 0on D.
Proof:
Take w € 0D and apply Theorem 2.6 with v(z) :=log|z — w]|. ]

Corollary 2.6.2: Liouville Theorem for Subharmonic Functions
Let u be a subharmonic function on C such that

: u(z)
lim sup <
i~ 10g|z]
Then u is constant on C. In particular, every subharmonic function on C which
is bounded above must be constant.
Proof:
If u = — oo then this is clear. Suppose u # — oo, choose w € C with
u(w) > — oo and apply Corollary 2.6.1 to u — u(w) on C\ {w}. Thus
u < u(w) on C and now by the maximum principle Theorem 2.5 (i) u is
constant on C.

[

For domains of a particular shape one needs to assume less about the growth near
infinity. We consider two examples: strips and sectors These give rise to the classical
forms of the Phragmén-Lindel6f principle.

Theorem 2.7: Phragmén-Lindel6f Principle for Strips

Let S, be the strip {z € C: |Rez| <2i},wherey > 0, and let u be a
I4

subharmonic function on S, such that for some constants A < oo and a <7y,
ulx +iy) < Ae® x +iy e S,-
Iflim supu(z) <0 V{ € dS,\{oo} thenu < Oon S,
>
Example 2.2:C a < y Is Necessary in Theorem 2.7
The function u(z) : Re <COS(}/Z)> = cos(yx)cosh(yy) shows that the conclus-
ion in Theorem 2.7 fails if @ = y. o
Proof of Theorem 2.7:
Choose ff such that @ < ff <y, and define v : S, — R by
v(z) ;== Re (cos(ﬂz)) = cos(fx)cosh(fy)
forz = x +iy € §,. Then v is subharmonic on §,. Moreover,
lim infv(z) > lim infcos({;—:)cosh(ﬂy) = %

7—00 [y|>o0
and

. u(z) _ . AeV!
lim sup —— < lim su =
7—>00 V(Z) [y]|>o00 COS(ﬁﬂ/zy)COSh(ﬁy)

The desired result follows from Theorem 2.6.
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[]
Corollary 2.7.1: Three-Lines Theorem

Let u be a subharmonic function on the strip S := {z : 0 < Re z < 1} such that
for some constants A < oo and a < 7,
ulx +iy) < Ae®M x +iy e S.

Mo, Reé=0
Ml’ Re§=1

If

lim sup u(z) <
7—=¢

then
ulx +iy) < My(l —x)+Mx,x +iy €.

Where the function u lies — Three Lines theorem visualization

- (black = three-lines upper bound; dashed = boundary bounds)

— u(- +i-3.0)

= Three-Lines bound: (1-x)M0 + x M1
204" Boundary bound MO (Re z = 0) = 0.0
Boundary bound M1 (Re z = 1) = 2.0

154

1.0 4

u(x+iy)

0.5 1

0.0 +

-0.5

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Re(z) = x (strip: 0 < x < 1)

(Figure 2.1: Demonstration for the three-line theorem)
Proof:

Define i : S = [—00, ) by
u(z) := u(z) — Re (Mo(l -2) +M1z), 7 €S.
Then applying (a translation of) Theorem 2.7 with y = z yields # < 0 on S.
[]

Theorem 2.8: Phragmén-Lindel6f Principle for Sectors
n 1
Let T, be the sector {z e C\{0} : |arg(z)] < > }, where y > > and let u be
Y

a subharmonic function on Ty such that for some constants A, B < oo and
a <7,

u(z) <A+B|z|%, z €T,

Proof:
Choose f with @ < <y, and definev : T, — R by
v(2) = Re (2#) = rP cos(pt), z = re' € T,
Then v is harmonic on 7, by Theorem 1.1 (i) and
lim infv(z) > lim inf r# cos<ﬁ> —

77— 00 r—>o0 2]/
and
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A+ Br*
lim sup@ < lim sup—r =0.

o V@ T e B COS(%)
Hence again the result follows from Theorem 2.6.

L]
As we mentioned earlier, the function u(z) := Re (z”) shows that the theorem is no
longer true if @ =y, but we do have the following partial result, in which, for
simplicity, we take y = 1.
Corollary 2.8.1: Phragmén-Lindel6f Principle for Half Plane
Let u be a subharmonic function on the half-plane H := {z : Re z > 0} such
that for some constants A, B < oo,
u(z) <A+B|z|,z € H.

If
: : u(x)
lim supu(z) <0 V{ € 0H\{oo} and lim sup—— = L.
7= X—00 X
Then u(z) < L(Rez) forz € H.

Proof:
Given L' > L, define u : H — [— o0, ) by
u(z) :=u(z) —L'(Rez) forz € H.
Then applying (a rotated version of) Theorem 2.8 with y = 2 on each of the
two sectors

—Tﬂ < arg(z) < 0and 0 < arg(z) < ga

we deduce that u is bounded above on H. Applying Theorem 2.8 once more
with y = 1, we have u < 0 on H. Hence

u(z) < L'(Re z2),
since L' > L is arbitrary, sending L’ | L yields the desired result.

[

2.4 Criteria for Subharmnicity
Now that the necessary tools are available, we can prove that subharmonic functio-

ns satisfy the global submean inequality. In fact, more is true: they also obey an
inequality corresponding to the Poisson integral formula, as is shown in the following
theorem.
Theorem 2.9: Criterion for U.S.C. Function to Be Subharmonic

Let U be an open subset of C, and let u : U — [— 00, 00) be an u.s.c. function.

Then the followings are equivalent:

(a)  The function u is subharmonic.

(b)  Whenever A(w,p) C U, forr < pand 0 <t < 2,

. | it p?—r? 0
ulw + re") < — u(w + pe')do.
2z ), p?—2prcos(d —1t)+ r?

(c)  Whenever D is a relatively compact subdomain of U and /4 is a harmonic
function on D satisfying
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lim sup(u — h)(z) <0, ¢ € dD.
=L
Thenu < hon D.
Proof:
(a) = (c):
Suppose u is subharmonic on U. Given D and A as assumed in (c), the function
u — h is subharmonic on D, so the result follows from the maximum principle
Theorem 2.5 (i1).
(c=>®):
Suppose that A := A(w, p) C U. By Theorem 2.2 there exist continuous funct-
ions
{0} 51,9, 0A > R, and ¢, | uondA.

By Theorem 1.6 (1), each P, ¢, is harmonic on A. Moreover by Theorem 1.6
(i1) we have

lim Pyg,(2) = 0,(&) V¢ € 0A.

Therefore using u.s.c. in the first inequality and the fact ¢, | u in the second,
lim sup (u = Py} (2) < () — ¢,(§) < 0 V¢ € 0A.
¢
From (c) it follows that u < P,@, on A. Sending n — oo and using Monotone
convergence theorem gives the desired inequality.
(b) = (a) is clear.
L]
Putting » = 0 in Theorem 2.9 (b) yields the following result.
Corollary 2.9.1: Global Submean Inequality
If u is a subharmonic function on an open set U in C, and if A(w, p) C U, then

1 27
u(w) < —J uw + pe'®)de.
27 ),

The criterion (¢) in Theorem 2.9, as well as explaining the name “subharmonic”, is
also useful in its own right. For example, since it remains invariant under conformal
mapping by the subordination principle Theorem 1.12, we immediately deduce the
following result.

Corollary 2.9.2: Subharmonicity Is Closed Under Conformal Mapping
Iff: U — U, is a conformal mapping between open subsets U, and U, of
C, and if u is subharmonic on U,, then u o f'is subharmonic on Uj.

Using this result, we can extend the definition of subharmonicity to the Riemann
sphere in just the same way as we did for harmonicity in Example 1.2. It is easily
checked that all the results in Section 2.2 remain valid for subharmonic functions
defined on an open subset of C*, as does the maximum principle Theorem 2.5.
Remark 2.4: Subharmonicity Is Closed Under General Holomorphic Functions

Corollary 2.9.2 remains true for a general holomorphic function f. One proof
is outlined in Exercise 2, and the other will be given in Theorem 2.23. o
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As an application of Theorem 2.9, we can characterize those C? functions which
are subharmonic as those with positive Laplacian. This result vindicates what we said
at the beginning of Section 2.2.

Theorem 2.10: Criterion for Subharmonicity via Positive Laplacian
Let U be an open subset of C, and let u € C 2(U). Then
u is subharmonic < Au > 0 on U.
Proof:
Step I. <
Assume first that Au > 0 on U. We shall use Theorem 2.9 (c) to prove that u
1s subharmonic. Let D be a relatively compact subdomain of U, and suppose
that A is a harmonic function on D such that
lim sup(u — h)(z) < 0 V¢ € aD.
=L
We need to show that u < i on D.
Let € > 0 and define

uiz) —h@)+¢|z|?, ifzeD
Ve(2) 1= ) .
elz|”, if oD
Then v, is u.s.c. on D, so it attains a maximum there by Theorem 2.1. But v,
cannot attain a local maximum on D because
Av,=Au+4e >0onD.
Therefore the maximum is attained on dD and hence
u—h<supe|z|* onD.

oD
Since € > (0 is arbitrary, sending € | 0 yields u — h < 0 on D as desired.

Step II: =
Conversely, suppose that u is subharmonic on U. We prove by contradiction.
Suppose Au(w) < 0 for some w € U. Then by continuity there exists p > 0
such that
Au < 0on A(w, p).
But what we have just proved in the first step, this implies that u is superharm-
onic on A(w, p), and hence harmonic there. In particular Au(w) = 0, which
contradicts with the original assumption.
[]
The next result, which nicely illustrates the flexibility of subharmonic functions,
shows that they can be “glued” together.
Theorem 2.11: Gluing Theorem
Let u be a subharmonic function on an open set U in C, and let v be a subharm-
onic function on an open subset V of U such that
lim supv(z) <u(f), e UnaV.
=L
Then % is subharmonic on U, where
~ max(u,v), onV
v {u, on U\V
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Gluing Theorem: Walk-like traces for u, v, and glued function

Function value (trace of u/v)
o

T T T T
-4 -2 0 2 4

(Figure 2.2: Demonstration of Gluing two subharmonic functions)

Proof:
The boundary condition on v ensures that 1 is u.s.c. on U. By Theorem 2.4 (i)
u satisfies the local submean inequality at each w € V, and it also does so
whenw € U\Vsince u > uon U.
[]
We conclude this section with three theorems about infinite families of subharmo-
nic functions. The first of these, for decreasing sequences, is simply but important. It
would no longer be true if we were to restrict subharmonic functions to be
continuous, and ineed is one of the principal reasons for not doing so.
Theorem 2.12: Monotone Decreasing Limit Preserves Subharmonicity
Let {u,},> be subharmonic functions on an open set U in C, and suppose that

U; > uy > +--onU. Then u := lim u, is subharmonic on U.

n—oo

Proof:
The set {z : u(z) < a} is the union of the open sets {z : u,(z) < a} for each
a € R, so itis open and thus u is u.s.c..
Moreover, if A(w, p) C U then for each n > 1 one has

2r

1 .
u,(w) < —J u,(w + pe'de.
21 ),
Sending n — oo and applying monotone convergence theorem we deduce that

u satisfies the submean inequality and is therefore subharmonic on U.

[

The corresponding result for an increasing sequence {u,}, is false because, even

it is finite, the limit # may fail to be u.s.c..
Example 2.3: Monotone Increasing Limit Does Not Preserve Subharmonicity

1
loglzl 1 A@.1), then

0, 1f 0 < <1
u(z)={ i |z|

Letu,(z) :=

—o00, 1fz=0
We will return to this topic in Section 3.4. ¢
The remaining two results generalize Theorem 2.9 (a) and (b) respectively.
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Theorem 2.13: Sup for Subharmonic Part of U.S.C. Functions Is Subharmonic
Let T be a compact topological space, let U be an open subset of C, and let
v:UXT — [—00, 00) be a function such that
(@ visus.c.onU XT.

(b) z = v(z,t)is subharmonic on U Vt € T.

Then u(z) := sup v(z, t) is subharmonic on U.
teT

Proof:
Let w € U and suppose that u(w) < a for some o € R. Then for each t € T,
v(w, ) < a, so as v is u.s.c., there exists a neighbourhood N, of  and p, > 0
such that
v <aonA(r,p,) XN,
As T is compact, it has a finite subcover N, , -+, N, . Then u < @ on Aw,p"),
where p’ = min(p, , ---, p, ). This shows that u is u.s.c. by Theorem 2.1.

Now suppose that A(w, p) C U. Then Vt € T,

1 27 )
viw, 1) < py v(w + pe'?, 1) (by submean inequality)
)
1 (> .
<—1| u(w+pedé (since u := supv)
27 ),

Taking the supremum over ¢ € T yields the desired submean inequality.
[]
Theorem 2.14: Integral Mean of Subharmonic Functions Is Subharmonic
Let (€2, u) be a measure space with ¢(€2) < oo, let U be an open subset of C,
andletv : U X Q — [—00, 00) be a function such that
(a) vis measurable on U X Q.
(b) z +— v(z,w) is subharmonic on U Vo € Q.

(c) z = supv(z,w) is locally bounded above on U.
w€eQ

Then u(z) := J v(z, w)du(w) is subharmonic on U.
Q
Proof:

It suffices to prove that u is subharmonic on each relatively compact subdo-
main D of U and then Remark 2.1 concludes the proof.
Fix such a D. Then (c) implies that sup v(z, @) is bounded above on D, so by

w
subtracting a constant if necessary, we can without loss of generality assume

that v < 0 on D X Q. This enables us to use Fatou’s lemma and Fubini’s Theo-
rem. Whenever w, — w in D, we have
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limsupu(w,) < | limsupv(w,, w)du(w) (Fatou's Lemma)
n—oo JOQ n—-o0
< | viw, w)du(w) (W, = w)
Jo
=: u(w)

It follows that u is u.s.c. on D. _
Now we prove the submean inequality, suppose A(w, p) C D then

1 271’ ) r 1 T )
—J u(w + pe'®)do = <—J v(w + pe’?, a))d0> du(w)
2r ), Jo \ 27 J,

> | viw,w)du(w) =: u(w),
Jo
where the first equality holds by Fubini’s theorem and the inequality holds by

the submean inequality for v. Therefore u satisfies the submean inequality and
it follows that u 1s subharmonic on D.

[

2.5 Integrability for Subharmonic Functions
As a subharmonic function is u.s.c., it is automaticaly bounded above on compact
sets by Theorem 2.1. More subtle is the fact that also it cannot be ‘too bounded
below’.
Theorem 2.15: Subharmonic Function Is Locally Integrable
Let u be a subharmonic function on a domain D in C with u Z — oo on D.
Then u is locally integrable on D, that is, for each compact subset K of D,

|u|dA < oo,
K
where d A denotes the 2-dimensional Lebesgue measure.

Proof:
By a simple completeness argument, it suffices to show that for each w € D,
there exists p > 0 such that

[ |lu|dA < oo. (2.2)
A(w,p)

Denote

A= {weD:EIp>Osuchthat[ |u|dA<oo}
A(w,p)

and

B = {wED:ﬂp>Osuchthat[ |u|dA<oo}.
A(w,p)

We shall show that both A and B are open, and that u = — oo on B, from which
the result follows from the connectedness of D.
Step I: A 1s open
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Letw € A, choose p > 0 such that (2.2) holds. Given w’ € A(w, p) and set
p'i=p—|w —=w|.Then AW, p’) C A(w, p), so

|lu|dA < oo
Aw'.p")
and it follows that A(w, p) C A and hence A is open.
Step II: B is open and u = — co on B
Let w € B, choose p > 0 such that A(w,2p) C D. Then by the definition of

B,
J' |u|dA = .
A(w,p)

Givenw’' € A(w,p),setp’:=p + |w' —w|. Then
Aw’,p") O A(w, p)
and u is bounded above on A(w’, p’) by Theorem 2.1. Therefore

udA = — .
Aw',p")
Now u satisfies the submean inequality
2r
uw’) < —J uw' +redo,0 <r <p'.
27},
Multiplying 2z r and integrating over r = 0 and r = p'yields
ﬂ(p/)zu(w’) < udA = — oo.

A(w',p")

Hence u = — co on A(w, p). Thus B is open and u = — oo on D.

[

From this, it follows that subharmonic functions are also integrable on circles.
Corollary 2.15.1: Subharmonic Function Is Integrable on Circles
Let u be a subharmonic function on a domain D in C with u Z — oco. If
A(w, p) C D then

1 (> .
—[ uw + pe)do > — .
2r },

Proof:
Let A(w, p) C D. Since u is bounded above on A(r, p), by subtracting a const-
ant if necessary, we may without loss of generality assume that u < 0 on
A(w, p). Using Theorem 2.9 (b) in the first inequality, if r < pand 0 <t < 27

then one has
1 "27[ pz _ r2

uw + re'y < —
( ) o Pr—2prcos(@—1t)+r?

u(w + pe®)dé
2r

2

+ 1 .
< <p r)—" u(w + pe'®)do.
p—r/2n),

Hence, if the last integral were —oo then u = — oo on A(w, p), contradicting
Theorem 2.15. Therefore the integral is necessarily finite.
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[

Another consequence of Theorem 2.15 is that subharmonic functions can only eg-
ual to —oo on relatively small sets.
Corollary 2.15.2: Subharmonic Functions Are Locally Integrable Leb-A.E.
Let u be a subharmonic function on a domain D in C with u Z — co on D.
Then E := {z € D : u(z) = — oo} is a set of Lebesgue measure zero.
Proof:
Let {K,},>; be compact sets with U K, = D. For each n one has

n>1

J |lu|dA < oo
K,

by Theorem 2.15. Thus E N K, has measure zero. Since £ = U (ENK,)) it

n>1
also has Lebesgue measure zero.

[]
The set E above is also small in other ways: one is outlined in Exercise 1 and othe-
rs will be given in Chapter 3. Of course, if u := log| f | where fis holomorphic, then
E is just the zero set of f, and is therefore countable. But as the following theorem
shows, there are subharmonic functions which are — oo on uncountable sets.
Theorem 2.16: Uncountable Set Where Subharmonics Are Not Integrable
Let K be a compact subset of C with no isolated points, let {w, },- be a count-

able dense subset of K, and let {a,}, be strictly increasing positive numbers
such that Z a, < 0. Defineu : C : [-o0, 00) by

n>1
u(z) = Zanloglz—wnl,z e C.

n>1
Then the followings are true:

(a)  uis subharmonc on C and u is not identically —oo.
(b) u = — oo on an uncountable dense subset of K.
(¢)  uis discontinuous (Lebesgue) almost everywhere on K.
Proof:
Step I (a)
Let u be the fininte measure on N given by p({n}) = a, forn > 1 and define
V:CXN - [—00,0)
by v(z,n) :=log|z—w,|. Then Vz € C,

J v(z,n)du(n) = 2 a,log|z—w,| =: u(z),

N n>1
where the first inequality holds by the definition of 4. Now by Theorem 2.14
u is subharmonic on C and u(z) > — oo Vz € C\K by Theorem 2.15 and th-
erefore u # — oo as desired.
Step II: (b)
SetE :={z € C:u(z) =— o0}.Clearly E C Kby (a),and eachw, € Eso E

32



is dense in K. Since
K\E=|J{z€K:u@)>-n)
n>1
is a countable union of closed nowhere dense! sets, it follows that K\ E is
meager? in K. If E were countable then K would be meager itself, contradict-
ing the Baire category theorem, thus E is uncountable.
Step 11 (¢)
The function u is discontinuous at empty point of E \E. Since E is dense in K,
and by Corollary 2.15.2 E has Lebesgue measure zero. It follows that u is dis-
continuous Lebesgue-almost everywhere on K.
[]
We shall return to the study of the sets where subharmonic functions are —oco in m-
ore details in Section 3.5.

2.6 Convexity for Subharmonic Functions

As we have already remarked, there are strong similarities between subharmonic f-
unctions on C and convex functions on R. In this section we examine in more detail
the relationship between two classes.

Definition: Convex Functions
Let —c0o <a < b < . A function y : (a,b) — R is said to be convex if for
allz,,t, € (a,b),
w((1 =Dt +At,) < (1= Dy (@) + Ay (ty).

It is well-known that the convex functions are continuous. Moreover, given that
/S C2<(a, b)) then y is convex if and only if w” > 0 on (a,b). We shall need a
basic inequality for convex functions.

Theorem 2.17: Jensen’s Inequality
Let —co <a < b < oandlety : (a,b) - R be a convex function. Suppose
that (€2, ) is a measure space with total measure u(€2) = 1, and suppose that
f : Q — (a,b) is u-integrable. Then

u(LﬂW)ngvw.

Set ¢ := J fdu so that ¢ € (a, b). By convexity, ifa < t; < ¢ <t, < b, then
Q

Proof:

tz_c C_tl

c) < 1)+
w(e) S Syt +

After arrangement, this implies that
vy -y o v -

1E€(a.c) c—h 1,E(c,b) Ih—c¢

w(ty).

TAset A C X is said to be nowhere dense if its closure has empty interior.

2 Aset A C X is said to be meager if it is the countable union of nowhere dense sets.
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Hence there exists a constant M such that
w(t) 2 w(c)+ Mt —c),t €(a,b).
Setting ¢ := f(w) and integrating with respect to u gives

J w(fw)duw) 2 J w()du(w) +M - j (fw) = ¢)du(w) = w(c)
Q Q Q
since the total measure (€2) = 1. The proof is completed.

[]
This enables us to generate new examples of subharmonic functions.
Theorem 2.18: Increasing Convex Composition Preserves Subharmonicity
Let—c0o <a<b < ,letu: U — [a,b)be subharmonic function on an open
set Uin C, and let  : (a,b) — R be an increasing convex function. Denote
v (a) ;= limy(¢), then y o u is subharmonic on U.

t—a
Proof:
Choose {a,},>; C (a,b) with a,, | a, and for eaach n set u,, := max(u, a,), so
u,, 1s subharmonic by Theorem 2.4 (1). Then certainly y o u, 1S upper semicon-
tinuous on U. Moreover, if A(w, p) C U then

1 (> .
yoeu,(w) < W(Z_J' u,(w + pe’e)d9> (Submean Inequality)
o

1 [ .
< —J w oo u,(w+ pe®)do
2 )y

where the second inequality holds by Jensen’s inequality Theorem 2.17 appl-

ied to the measure 2— on [0,27). Hence y o u, is subharmonic on U. Since
V4

Woeu, | uasn — oo, it follows from Theorem 2.12 that y o u is subharmonic
on U as desired.
[]
Corollary 2.18.1: Exponential of Subharmonic Function Is Subharmonic
If u is subharmonic on an open subset U of C then so is exp u.
Example 2.4: Subharmonic Functions Whose Exponential Is Subharmonic
Applying Corollary 2.18.1 to u := a log| f |, where fis holomorphic and
a > 0, then | f|% is subharmonic. ¢
It is of special interest to know under what conditions log u is subharmonic.
Theorem 2.19: Criterion for Log Functions to Be Subharmonic
Letu : U — [0,00) be a function on an open set U in C. Then the following
statements are equivalent:
(i)  logu is subharmonic on U.
(i1) u]e?]| is subharmonic on U for every (complex) polynomial g.
Proof:
(1) = (1):
Suppose first that log u is subharmonic on U. Then by Theorem 2.4 (ii) and
Theorem 1.1 (i1), log u + Re g is subharmonic on U for each polynomial g,
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taking exponentials, Corollary 2.18.1 implies that u | e?| is subharmonic.
(1) = (1):

Conversely, suppose (ii) holds. Taking g = 0, we see straightaway that u is
subharmonic, and in particular upper semicontinuous. Hence log u is also
upper semicontinuous by convexity.

It remains to check the submean inequality. Let A := A(w, p) be a disc with
A C U, and choose continuous functions ¢, : 0A — R such that ¢, | logn
on dA. For each n > 1 we can find a polynomial {g,}, such that

1
0=Regqg,— ¢, <—ondA.
n

This follows from Stone-Wierstrass Theorem (which states that any continuo-
us complex function over a compact interval can be approximated by an arbitr-
ary degree of accuracy with a sequence of polynomials).
Then we have, for { € dA, using submean inequality in the first display,
lim sup u(z) | e~ @ | < e?©e"RE 6, < 1.
=L
Since u | e~ | is assumed to be subharmonic, it follows from the maximum pr-

inciple Theorem 2.5 that u|e™%| < 1 on A. Hence
log u(w) < Re q,(w)

1 r 27 )

= — Re q,(w + pe'®)do
2z ),
1 27

. 1
< — @,(w + pe)do + —.
2r ), n

Sending n — oo and applying Monotone convergence theorem yield
v/

logu(w) < LJ log u(w + pe'®)de,
21 ),

which verifies the submean inequality and (1) follows.

]
Theorem 2.19 allows us to characterize radial subharmonic functions.

Theorem 2.20: Criterion for Radial Functions to Be Subharmonic

Letv : A(0,p) = [—00, 00) be a function which is radial (i.e., v(z) =v(|z|)

for all z) , and assume that v # — oco. Then the followings are equivalent:

(i) v is subharmonic on A(0,p).

(i)  v(r) is an increasing convex function of logr, 0 < r < p with
limv(r) = v(0).
r—0

Proof:
(1) = (1):
Applying Theorem 2.18 with u(z) := log|z| and w(7) = v(e’) gives this dire-
ction.
(1) = (u):
Assume (i). Given ry, 1, € [0,p) with r; < r,, then the maximum principle
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Theorem 2.5 (ii) applied to v on A(0O,r,) yields
v(rp) < sup v =v(n).
0A(0,ry)
Hence v is increasing on [0,p). Moreover, it follows that
lim infv(r) > v(0).

r—0
On the other hand, upper semicontinuity implies that lim sup v(r) < v(0) and
r—0

hence lim v(r) = v(0).
r—0

It remains to show that v(r) is a convex function of log r. Observe first that by
Corollary 2.15.1 v(r) > — oo for r > 0. Given ry, 1, € (0,p) with r; < r,,
choose constants a, £ such that
a+plogr =v(r)forr =r +r,.
Applying the maximum principle Theorem 2.5 (ii) to v(z) —a — f log|z| on
{z:r <|z| <r}, we get
v(ir)<a+plogr,r <r<r,.
Hence if 0 < A < 1 andlogr := (1 — A)logr, + 4 logr, then
v(ir)<a+plogr
= (1 -A)(a+plogr)+ Ala+ plogr,)

= (1 =A)v(r) + Av(r,),
which verifies the convexity.
[]
Theorem 2.20 can be used to study various integral means of subharmonic functi-
ons.
Definition: Max, Circle Mean, and Area Mean
Let u be a subharmonic function on the disc A(0,p) with u # — oo. For
0 < r < p, we define
(1)  Maximum of u over A(0,r) as M (r) := sup u(z).
|z|=r

2n
(i1)  Circular mean of u over A(0,r) as C,(r) := 2—J u(re™dt.
T Jo
1
(iii) Area mean of u over A(0,r) as B, (r) := —[ udA.
wr? A0,7)

Note that by Theorem 2.15 and Corollary 2.15.1 (i), (i1), and (iii) are well-
defined and are all finite. Moreover C,(r) and B,(r) are connected by the rela-
tion
2 r
B,(r) = ﬁj C,(s)sds. (2.3)

0
Theorem 2.21: Properties for Modes of Mean Integrals for Subharmonic Functions

Let u be a subharmonic function on the disc A(0,p) with u # — 0. For
0 <r < p,we have
(@ M,/r), C[r), and B,(r) are all increasing convex functions of log r.
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(Log-Radius Convexity of Means)

by M/[(r)>C/[r) > B,(r) >2u)for0<r <p.
(Ordering of Means)
() ling M(r) = lir% C,(r) = lirré B (r) = u(0). (Continuity at Center)

Proof:
Step I: (a)
Observe that for 0 < r < p,
M (r) = v(r) where v(z) = sup u(ze™),

te[0,27]
2

C,(r) = v(r) where v(z) = ZLJ' u(zedt,
T Jo

1 2r 1 )
B (r) = v(r) where v(z) = —J [ u(zsesdsdst.
TJo Jo
In each case v is subharmonic on A(0,p): this is proved using Theorem 2.13 in
the first case and Theorem 2.14 in the other two. Clearly each v is also radial,
and so the result follows from Theorem 2.20.
Step II: (b)
The first inequality is trivial. To derive the others, we begin with the relation
C(r)=>C,s)>2u)forr >s
2s
proved in (a). Multiplying both sides by — and integrating froms =0tos =r
r
we get
2 2
C,[(r) > —2[ C,(s)sds > u(0).
= Jo
Combining this with (2.3) yields C,(r) > B,(r) > u(0), as desired.
Step III: (c)
By (b), it suffices to show that lim sup M, () < u(0), and this is an immediate

r—0
consequence from the upper semicontinuity of u.

[

2.7 Smoothing for Subharmonic Functions
Although subharmonic functions need not to be smooth, indeed sometimes far fro-

m it, they can nevertheless always be approximated by others which are smooth. A
standard way to do this is to use convolutions.
Definition: Convolution

Let u be an open subset of C, and for r > 0 define

U,:={z € U:dist(z,0U) > r}.

Letu : U - [—o0, 20) be a locally integrable function and let ¢ : C — R be a

continuous function with supp(¢) C A(0,r). Then the convolution between u

and ¢ is the function u * ¢ : U, = R given by
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u*p)=1 uiz—wew)ydAw),z e U,
Jc
After a change of variable, we also have

u* )=\ uweiz-w)ydAw),z € U..
Jc
This shows that if ¢ € C* thenu * ¢ € C™.

Theorem 2.22: Smoothing Theorem for Subharmonic Functions
Let u be a subharmonic function on a domain D in C with u Z — oco. Let
¥ : C — R be a function satistying

(a) yecC™. (Continuous)
(b) y=>0. (Non-Negative)
) x@=x(zl). (Radial)
(d) supp(y) C A(O,1). (Concentrated on Unit Sphere)
(e) J' ydA =1. (Normalized)
C
1
For r > 0 define y,(z) := —2)(<£>, z € C. Then
r r

(1)  u*y,1s a C* subharmonic function on D for each r > 0.
(i) @*y,)luonDasr]O.
Example 2.5: Examples of Functions Described in Theorem 2.22
An example for a function y satisfying (a)-(e) in Theorem 2.22 is given by

-1 . 1
C'eXp{ 1— 4]z } itz <3

2
x(2) = 1

where C is a constant chosen so that } ydy=1. o

Proof of Theorem 2.22:
Step I Assertion (1)
By Theorem 2.15 u is locally integrable so u * y, makes sense and is C* on D,
To show it is subharmonic on D, applying Theorem 2.14 with
Q) =(C, y,dA) and v(z,w) = u(z —w)
yields the desired result.
Step II: Assertion (i1)
Now fix { € D. For 0 < r < dist(, D) we have

2n per
u*y ()= [ [ u( — se”)r_z)(<£>sdsdt.
o Jo r

Making substitutions ¢ := s/r and v(z) := u({ — z) yields
1

u*y(f)= 27[[ C (ro)y(o)odo.
0
By Theorem 2.21 (¢) C,(ro) | v(0) as r | 0. Hence by Monotone convergence

theorem, u * y.({) decreases to
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1
275[ v(0)y(0)odo = u(C)[ xdA = u(f),
0 C

where the first equality holds by v(z) := u({ — z) and assuptions (c¢) and (d),

the second equality holds by assumption (e). It follows that (u * y,) | u on D.
[]
Corollary 2.22.1: Subharmonic Function Has Smoothing On Relatively Compacts
Let u be a subharmonic function on an open set U in C, and let D be a relativ-
ely compact subdomain of U. Then there exist subharmonic functions
{u,},>1 C C(D) such thatu; > uy > «-- >uonD and lim u, = u.

n—-oo

Proof:
Ifu = — o0 on D, take u,, = — n. Otherwise, choose r > 0 such that D C U,
and take u, :=u*y,,.
[]
As an application of this result, we can extend Corollary 2.9.2 to general holomor-
phic mappings as we promised in Remark 2.4.
Theorem 2.23: Subharmonicity Is Closed under Holomorphy
Letf : U; = U, be a holomorphic map between open subsets U, U, of C. If
u is subharmonic on U, then u o f'is subharmonic on Uj.
Proof:
Let D, be a relatively compact subdomain of U,. It suffices to show that u o fis
subharmonic on D;.
Set D, : f(D,) and choose subharmonic functions
{u,},>1 C C*(D,) such that u, | u on D,.
By Theorem 2.10 Au, > 0 on D, Vn > 1. Now an easy computation gives
A, o f) = ((Au,) o f)1f1* on D;.
Hence A(u, o f) > 0 on D,, and using Theorem 2.10 once more we conclude
that u,, o f is subharmonic there. Finally, sending n 1 oo and by Theorem 2.12
u o f'is subharmonic on D;.
[]
Theorem 2.23 can also be used to prove a form of identity principle for subharmo-
nic functions which, although rather weak, is still useful. In particular it extends the
almost everywhere property to everywhere property.
Theorem 2.24: Weak Identity Principle for Subharmonic Functions
Suppose that u and v are subharmonic functions on an open set U in C such
that u = v almost everywhere on U then u = v on U.
Proof:
Step I Bounded below case
Suppose first that u and v are bounded below on U. Taking y as stated in
Theorem 2.22, we then have u * y. = v * , on U,. Sending r — 0 we conc-
lude that u = v on U.
Step II: General case
The general case follows by applying the first step to u,, := max(u, — n) and
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v, := max(v, — n) and then sending n — oo.
[]
We cannot hope for an identity principle as strong as that for harmonic functions we
proved back in Theorem 1.3. In other words, the almost everywhere condition cannot
be removed in Theorem 2.24.
Example 2.6: Almost Everywhere Condition Cannot Be Removed in Theorem 2.24
Consider u(z) := max(Re z,0) and v(z) := 0. They agree on an open subset of
C without being equal on the whole of C. ¢
In fact, as we shall see, it is this very lack of rigidity that makes subharmonic func-
tions such a useful tool.

3. Potential Theory
3.1 Potentials
Potentials play at least two roles. Firstly they provide an important source of exam-
ples of subharmonic functions, giving us the means, for instance, of constructing such
functions with various prescribed properties. Secondly, despite their apparently rather
special nature, which makes them comparatively easy to study, we shall see that
potentials turn out to be almost as general as arbitrary subharmonic functions, and for
many purposes the two classes are equivalent.
We shall define potentials only for finite measures with compact support.
Definition: Potentials (of Measures)
Let x4 be a finite Borel measure on C with compact support. Its potential is the
function P’ C — [—o0, ) defined by

pu(2) := [loglz —wlduw), z € C.

Since p,(z) is defined in this way, it is also known as the logarithmic potentials.

Theorem 3.1: Basic Properties of Potentials
Let 4 be a finite Borel measure on C with compact support. Then
()  p, is subharmonic on C and harmonic on C\supp(x).
(i)  p,2) =u(©log|z| + 0( Izl_l) as 7 — 0.

Proof:
Step I: Assertion (1)
Set K := supp(u), so u can be regarded as a measure on K. By Theorem 2.14
applied with v(z, w) :=log|z —w| on C X K, we see that p,, is subharmonic
on C. Applying Theorem 2.14 once more but with v(z,w) := —log|z — w|
on (C\K) X K, we also find that p, is superharmonic on C\K and hence harm-
onic there, this proves (1).
Step II: Assertion (i1)
Observe that for z # 0, by change of variables

p,(2) = u(Clogz| + [og | 1 - | dut)

As u has compact support, the final term is O( |z |_1 ) asn — oo.
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[

Potentials enjoy several properties over and above those displayed by general sub-
harmonic functions. We now prove two of these: the continuity principle and the
minimum principle.

Theorem 3.2: Continuity Principle for Potentials
Let 4 be a finite Borel measure on C with compact support K.
(a) If ¢y € Kthenliminfp,(z) = liminf p,(J). (Lower Bound)

=L {—=Cp.Cek
(b) Ifinaddition lim pﬂ(C ) = Pﬂ(Co) then lim Pu(2) = p (o).
{=Co.LeK g
(Continuity)
Proof:
Step I Assertion (a)
If p,({y) = — oo then by upper semicontinuity lir? Pu(z) = — oo and the result
Fad %))

is trivial. Thus, without loss of generality we may assume that p,({y) > — .
Then necessarily one has ,u({é’o)}) = (0 and so, given € > 0, there exists r > 0
such that u(A(é’o, r)) < €. Given z € C, choose { € K minimizing |{ — z|.
Then Vw € K, by triangle inequality one has

[C-wl _le—zl+lz—wl]

lz—w| |z —wl
Therefore, using change of variables in the equality and fundamental theorem
of calculus in the inequality yields

<2.

- W
P2 = p,(0) - [K log| =— | dyu(w)

Zpﬂ((j)—elogZ—J log
K\A(&p.r)
As z = {,1n C, the corresponding { — {, in K, and hence

liminfp,(z) = lim inf pﬂ(cj) —elog2 - 0.

L) {—¢o.CEK
Finally, since € > 0 is arbitrary, sending € | O yields (a).
Step II: Assertion (b)
Suppose that in addition we have  lim  p,({) = p,(y). Then by (a) one has

{—Cp. €K

lim p,(@) = p,(&).

Z—>é’0
Moreover, since p, is upper semicontinuous by Theorem 3.1, one has
llm Supp,u(z) S p,u(C())
Z—>C0
Combining these two displays gives the assertion (b).

[

Theorem 3.3: Minimum Principle for Potentials
Let x4 be a finite Borel measure on C with compact support K. If py=MonkK

then p, > M on C.
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Proof:
Denote u := — p, on C\K. Then u is subharmonic on C\K and (assuming that
u #0)u(z) > — oo asn — oo. Moreover if {, € dK, then
lim sup u(z) £ —lim infpﬂ(z) = — lim inf pﬂ(g“) <-M,
7—85,2€C\K el ) —¢o.¢€EK
where the first inequality holds by the definition of u, the middle equality holds
by Theorem 3.2 (a), and the last inequality holds by assumption.
Finally, applying the maximum principle Theorem 2.5 to u on each component
of C\K we get u < — M there. Thus p, > M on C.

[

3.2 Polar Sets
Polar sets play the role of negligible sets in potential theory, much as sets of meas-
ure zero do in measure theory. To define them, we first need to introduce the notion
of energy.
Definition: Energy (of Measures)

Let x4 be a finite Borel measure on C with compact support. Its energy /() is
defined by

I(p) = ﬂlog |z = wldu(z)dpu(w) = Jpﬂ(z)dﬂ(z)-

To explain this terminology, think of u as being a charge distribution on C. Then
P,(2) represents the potential energy at z due to y, and so the total energy of y is just

[pﬂ(z)d/,t(z), in other words, I(x). In fact, since like charges repel, most physicists

would define the energy as —I(u), but our definition would be more convenient.

It is possible that /() = — oo. Indeed some sets only support measures of infinite

energy. These sets are so important and deserve a name.

Definition: Polar Set
A subset E of C is said to be polar if I(4) = — oo for every finite Borel
measure y # 0 for which supp(u) is a compact subset of E.

Definition: Non-Polar Set
A subset E of C is said to be non-polar if it is not polar.

Definition: Nearly Everywhere Property
A property is said to hold nearly everywhere (n.e.) on a subset S of C if it holds
everywhere on S\ E, where E is some Borel polar set.

As we mentioned earlier, the polar sets serve as the “measure zero sets in measure
theory”, thus, as almost everywhere being translated to almost surely from measure
theory to probability theory, same thing happens here as we translate almost every-
where to nearly everywhere. Some authors also call nearly everywhere property as
quasi-everywhere property.

Remark 3.1: Some Properties of Polar Sets, Non-Polar Sets, and N.E. Properties
(i)  Singletons are polar (when d > 2).
(1)  Every subset of polar set is polar.
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(ii1)) Every non-polar set contains a compact non-polar subset, namely,
supp(u), for measure u, such that I(u) > — co.

(iv) If a property & holds nearly everywhere then it holds (x)-almost
everywhere. The converse is not true.

(v) Ifaproperty & holds nearly everywhere on {E,} . then it holds nearly

everywhere on E := U E,.
n>1
(vi) Ifaf; > f, nearly everywhere on E, f, > f; nearly everywhere on B, then
fi = f; nearly everywhere on E.
(vii) Borel polar sets have Hausdorff dimension zero and for all @ > 0 Borel
polar sets have a-Hausdorff measure zero. ¢
It 1s easy to see that measures of finite energy can have no atoms. In fact, more ge-
nerally, they do not charge any polar sets.
Theorem 3.4: Borel Measures with Finite Energy Do NOT Charge Any Polar Sets
Let x4 be a finite Borel measure on C with compact support, and suppose that
I(p) > — o0. Then u(E) = 0 for every Borel polar sets E.
Proof:

Let E be a Borel set such that 4(E£) > 0. We shall show that E is non-polar.
By the regularity of ¢, we can choose a compact subset K of E with u(K) > 0.
Set ji == |, andd := diam(supp(,u)). Then 4 is a finite non-zero measure
whose support is a compact subset of £ and
~ Z=w
1) = | | log|“—==|du()du(w) + u(K Plogd
Jk Ik d
[ 2w

> lo |
Jedc i d
= I(u) — u(C)*logd + u(K )*logd
> — 00,
where the first equality holds by change of variables and Theorem 3.1 (ii), the
first inequality holds since integrating over C results in some negative terms,
and the last equality holds by using Theorem 3.1 (i1) again. This proves the
claim that E is non-polar.

| du@)du(w) + u(k Plogd

[]
Corollary 3.4.1: Borel Polar Set Has Lebesgue Measure Zero

Every Borel polar set has Lebesgue measure zero.
Proof:

It suffices to show that, for p > 0, the measure du := dA | AQ.p) has energy

I(u) > — oo. For then by Theorem 3.4 every Borel polar set E has y-measure
zero, that is, E N A(0,p) has Lebesgue measure zero, and the result follows by
letting p — 0.

To this end, fix p > 0 and let du := dA |A(0’p). Then for z € A(0,p) one has
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<

[ —w
P2) = log| |[dAw) + mp* 10g2p)
JA0,p) 2p

2 2p r

> [ log(—)rdrdt + ﬂp2(2p)

J1=0Jr=0 2p
= —27p? + mp?log(2p)

where the first equality holds by Theorem 3.1 (ii) and the inequality holds

since |r| < |z —w]|. It follows from this display that

I(y) = J P(2)du(2) > (- 2zp* + np*log(2p)) zp* > — 0,
A(0,p)
as desired.

[]
Thus nearly everywhere property implies almost everywhere property and the con-
verse is not true, as we claimed in Remark 3.1 (iv). In fact an argument similar to the
proof of Corollary 3.4.1, but rather more technical, shows that Borel polar sets
actually have a-dimensional Hausdorff measure zero for each @ > 0, and thus are all
of Hausdorff dimension zero. We shall not perform the details here.
Corollary 3.4.2: Borel Polar Set [s Stable Under Countable Union
A countable union of Borel polar sets is polar. In particular, every countable
subset of C is polar.
Proof:
Suppose that {E, },- are Borel polar sets and E := U E,. Let u be a finite
n>1
Borel measure on C whose support is a compact subset of E. If I(¢) > — o0
then by Theorem 3.4 u(E,) =0 Vn > 1 thus u(E) = 0 and hence y = 0. It
follows that E is polar.

The conclusion in Corollary 3.4.2 fails if the sets are not Borel.

Example 3.1: Countable Union of Non-Borel Polar Sets May NOT Be Polar
Let S be a set and let I be a collection of infinite subsets of S such that the
cardinality of 7 is greater or equal to the cardinality of I for all T € . Then
S can be partitioned into subsets P and Q and neither of them contains any ele-
ment of I .
In particular, if 7 is the collection of all uncountable compact subsets of C
then C can be partitioned into subsets P and Q such that each compact subset
of P or Q is countable. In this case, the union of two non-Borel polar sets needs
not to be polar. ¢

Remark 3.2: Polar Sets Need Not to Be Countable
We conclude this section by remark that, though every countable set is polar,
not every polar set is countable. This will be demonstrated in Section 3.5, and
more concrete examples of uncountable polar sets will be given in Section 5.3.

o
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3.3 Equilibrium Measures

In physics, a charge placed upon a conductor will distribute itself so as to minimize
energy. In our context, this suggests lookging at probability measures y on a compact
set K which minimize /() (that is to say, when one puts charge on a conductor, the
charges spread out until they stop being able to lower the system’s electrical energy
any further). Not only are they of physical relevance, but they turn out to be math-
ematically very useful too.

Definition: Equilibrium Measure (of Compacts)
Let K be a compact subset of C, and denote S(K) the collection of all Borel
probability measures on K. If there exists v € (K ') such that
Iw) = sup I(u).
pePK)
Then v is called an equilibrium measure for K.
Theorem 3.5: Compact Sets Have Equilibrium Measure
Every compact set K in C has an equilibrium measure.

We shall see later in Section 3.7 that in fact this equilibrium measure is unique, pr-
ovided that K is non-polar. (Of course if K is polar then every u € (K) is an equil-
ibrium measure since they all satisfy /() = — 0.)

To prove Theorem 3.5, we shall need the notion of weak*-convergence of probabi-
lity measures. Some of the authors, for example Sydney and Port, call this mode of
convergence the vague convergence.

Definition: Weak* Convergence

A sequence {4, },51 C SP(X), where X is a compact metric space, is said to be
%
weak* convergent to y € (X)), denoted as u,, % u, if

n—>oo

[ pdu, — [ pdp Vo € C(X),
b'e X
where C(X) is the space of continuous functions ¢ : X — R equipped with the

usual sup norm.
In fact, every sequence {4, },>; C P(K) has a weak* convergent subsequence via
a classical diagonal argument.

Lemma 3.6: Weak* Convergence Implies Energy Upper Bound

%k
If i, weak? | in P(K) then lim sup I(u,) < I(u).

n—oo n— 00

Proof:
Given continuous functions ¢ and y on K, the definition of weak® convergence
implies that, as n — oo,

J [ @@y (w)dp,(2)dp,(w) —>[ J @@y W)du(z)du(w).
KJK KK

Now using the Stone-Weierstrass theorem (see the proof in Theorem 2.19),
one can show that every continuous function y(z, w) on K X K can be unifor-
n

mly approximated by finite sums of the form Z @2y (w), where @, y, are
J=1
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continuous functions on K. It follows that for every such y,
J { x @, wydp,(2)dp,(w) — J [ Xz, w)du(z)dpu(w)
KJK KJK

as n — oo0. Applying this with y(z, w) := max (log lz —w|, — m), where
m > 1, we obtain

lim sup I(y,,):= lim sup log|z —w|du,(2)du,(w)

n—co n—oo JKJIK

< lim sup max (log |z —w]|, — m)d,un(z)d,un(w)
n—oo JrJK

=[ J max (log|z — w|, — m)du()du(w)
KJK

where the first equality holds by the definition of energy, the inequality holds
by taking the maximum inside the integral, and the second equality holds by
the weak* convergence. The desired result now follows upon sending m — oo
and using Monotone convergence theorem.

[]
Proof of Theorem 3.5:

Let M := sup I(u), and choose a sequence {u,},>; C Z(K) such that
HEP(K)

I(n,) > M asn — oo. It can be shown that there exists a sequence { ,unk} k1
which is weak* convergent to some v € (K ). Now by Lemma 3.6,
I(v) > lim sup I(,unk) =M,
k— o0

then v is an equilibrium measure for K by definition.
[]
Physical intuition would tend to suggest that if v is an equilibrium measure for K
then p, should be constant on K (for otherwise charge would flow from one part of K
to another part, disturbing being equilibrium). This idea is confirmed by the next
theorem, and even serves to motivate the proof.
Theorem 3.7: Frostman’s Theorem
Let K be a compact set in C, and let v be an equilibrium measure for K. Then
(@) p,21(u)onC.
(b) p,=1(p) on K\E, where E is an F polar subset of K.
It can happen that the exceptional set E is non-empty. An example is demonstrated
below.
Example 3.2: Exceptional Set in Frostman’s Theorem Can Be Empty
Let K be a compact set of the form A U E, where A is a closed disc, and E is a
polar subset of C\A. Let v be an equilibrium measure for K. Then v(E) = 0
and p, is harmonic on C\A. ¢
Proof of Theorem 3.7:
If I(v) = — oo (that is, K is polar) then the result is trivial. Without loss of gen-
erality we may assume that /(v) > — oo. It suffices to prove that
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1
n K, := {zEK:py(z)ZI(v)+—}ispolar Vn > 1.
n

1
(i) L,:= {z € supp(v) : p,(2) < I(v) — —} is empty Vn > 1.
n
Step I: 1t suffices to prove (i) and (ii)
Indeed, for (i1) then implies that p, > I(v) on supp(v), and so by the minimum
principle Theorem 3.3 we get p, > I(v) on C, which gives aseertion (a).
On the other hand, if we put E := U K., then (1) and Corollary 3.4.2 together

n>1
imply that E is an F polar set. Since p, < I(v) on K \E, this gives the first part

of assertion (b). As for the second part in (b), observe that as E is polar, it must
have Lebesgue measure zero by Corollary 3.4.1, so p, = I(v) Lebesgue almost
everywhere on K, and henoce by the weak identity principle Theorem 2.24,

p, = I(v) everywhere on K. This concludes assertion (b).

Step II: (1) holds

We will prove (1) by contradiction. Suppose, if possible, that some K, 1s non-
polar. Choose y € P(K,) with I(u) > — oo. Since

I(n) = prdv,

there exists z, € supp(v) such that p,(z,) < I(v). By the upper semicontinuity
there exists r > 0 such that

1 _
p, < I(v) + — on A(zy, ).
2n

In particular,

A(zp, )N K, = @.
As 7 € supp(v), the number a := U(Z(ZO, r)) is strictly positive. Define a sig-
ned measure o on K by

U, on K,
— ) _v N
o= —, on A(zg, 1)
0, otherwise
Then for each t € (0,a), the measure
Vv,:=v+to

is positive, and therefore v, € P(K ). Moreover, noting that
I(,u)>—oo=>l(|a|>>—oo
by the defintion of 6, we have
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Iv,) —1(v) =2t Tlog |z —w|dv(w)do(z) + t* Hlog |z —w|do(w)do(2)

=2t | p(2)do(z) + O(1?)
d
= 2t<[ P(2)du(z) — J p.,(2) ac + O(t)>
K, A(zo.1) a

> 2t[<1(1/) + %) - (I(u) + Zl—n>+0(r)],

where the first equality holds by change of measure and definition of &, the
second equality holds by Theorem 3.1 (i1), the third equality holds by the defi-
nition of ¢ and integration by parts, and in the last inequality, the blue term co-

mes from the inequality p, > I(v) + — on K,, and the red term comes from the
n

1 _
inequality p, < I(v) + 7 on A(zg, r). Therefore I(v,) > I(v) provided that 7 is
n

sufficiently small, contradicting the assumption that v is an equilibrium meas-
ure. Hence each K, is necessarily polar, proving (1).

Step III: (i1) holds

We shall prove (ii) by contradiction. Suppose, if possible, that some L, is non-
empty. Pick z; € L, by the upper semicontinuity, there exists s > 0 such that

| R
p, <Iv)— - on A(zy, $).

As z; € supp(v), the number b := U(Z(zl, s)) is strictly positive. Now by (i)
and Corollary 3.4.1, v(K,) =0 Vn > 1, and so

p, < I(v) v-almost everywhere on K.
Hence

I(v) ;== [ p,dv = [ p,dv + [ p,dv
K A(z1,5) K\A(zy,5)

< (1@)-%) b+1w) - (1=b)

< I(v)
where the first equality holds by definition, the second equality holds by integ-

ration by parts, the first inequality holds since p, < I(v) — — on A(z;, s) and
n

p, < I(v) v-almost everywhere on K, and the last inequality holds since b > 0.
This display is obviously a contradiction. Hence each L, is empty, giving (b).

[

Frostman’s theorem Theorem 3.7 is very important, serving many different purpo-
ses. Indeed, it is sometimes referred to as “fundamental theorem of potential theory” -
a grandiose title but, as we shall see, one that is fully justified.
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3.4 Upper Semicontinuous Regularization
We saw in Theorem 2.12 that the limit of a decreasing sequence of subharmonic

functions 1s subharmonic. At the same time, we remarked that the corresponding
result for an increasing sequence was false, because the limit might not be upper
semicontinuous. One way round this problem is to make the limit upper semiconti-
nuous by regularizing it.
Definition: Upper Semicontinuous Regularization

Let X be a topological space, and let u : X — [—o00, 00) be a function which is

locally bounded above on X. Its upper semicontinuous regularization, denoted

as u* : X - [—o0, ), is defined by

w*(x) := lim sup u(y) = inf (sup u(y)),
y—=Xx N YEN

where x € X and the infimum is taken over all neighbourhoods N of x.

It is easily check that u* is an u.s.c. function on X such that u™* > u, and also that it
is the least such a function.

Returning to our problem about an increasing sequence of subharmonic functions, it
is perharps not too surprising to learn that provided the limit u is locally bounded
above, its u.s.c. regularization u* is u.s.c.. What is much less obvious is that u* is
very nearly equal to u. It can be proved that u = u* almost everywhere on X and in
fact mucm more than this is true.

Theorem 3.8: Brelot-Cartan Theorem
Let 7" be a collection of subharmonic functions on an open subset U of C, and

suppose that the function u := sup v is locally bounded above on U. Then
VeV
(a)  w* is subharmonic on U.

(b) wu*=uwun.e.onU.

Part (b) says that u™ = u everywhere on U outside some Borel polar set. Note how-
ever that the set {z : u*(z) # u(z)} itself may not be Borel, since 7° can be uncount-
able.

Proof of Theorem 3.8:
Step I: (a)
The upper semicontinuity of u* is trivial, it left us to prove the submean inequ-

ality. Suppose that A(w, p) C U. Then for eachv € 7,
1 T ) 1 2 )
v(w) < —J v(w + pe?)do < —[ u*(w + pe®)do,
27 J, 2r ),
where the first inequality holds by submean inequality of v and the second ine-
quality holds by the definition of u.s.c. regularization. Taking the supremum

overallv € 7, one has
2

1 .
u(w) < —[ u*(w + pe'?)de. (3.1)
2r ),

Now choose w, — w such that lim u(w,) = u*(w). If n is sufficiently large,

n—-oo

then A(w,, p) C U, so (3.1) holds with w replaced by w, throughout. Thus
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" 27T

u*(w) < — lim sup u*(w, + pe®do (Fatou's Lemma)
2r )y s
1 27 )
< p u*(w + pe'®)do (Definition of u*)
T Jo

Thus u* satisfies the submean inequality as desired.
Step II: (b)
We first consider the case when 77 is countable so that u is Borel-measurable.
Step I1.1: (b) when 7 is countable
Now the set {z € U : u(z) # u*(z)} can be written as a countable union of
Borel sets of the form
E:={zeA:u@<p<u*@)},
where A is a disc such that A C U and 8 € Q is a rational number. Thus it
suffices to show that each such a set E is polar. We shall do this by contradc-
tion.
Suppose, if possible, that for some A and f the set E is non-polar. Then E cont-
ains a compact non-polar subset K by Remark 3.1 (iii). Let v be an equilibr-
ium measure for K, and define g : C — [—00, 00) by
q:=C-(p,~ 1))+,
where C is a positive constant chosen sufficiently large so that
infg > sup u.
oA oA
(such a choice is possible since by Frostman’s theorem Theorem 3.7 and the
maximum principle Theorem 2.5 (i1), p, > I(v) on the unbounded component
of C\K.)
Then for each v € 7/, the function v — g is subharmonic on A\ K, and if
{ € 0(A\K) then

. u(¢) —infyr g, € 0A
luisgllp(v —q@)(2) < {u(C) 5 ‘e ok <0

Hence by the maximum principle Theorem 2.5 (ii), v < g on A\ K. Therefore
u < gon A\K. Moreover, u < f < gon K, in fact u < g on the whole of A,
and hence u* < g on A. This implies that ¢ > f on K, or in other words

p, > I(v) on K, which contradicts Theorem 3.7 (b). Thus E is polar, as desired.
Step 11.2: (b) when 7 is not necessarily countable

We now turn to the case when 7 is uncountable. Choose a countable base

{D;} >, of relatively compact open subsets of U. For each pair j, k > 1, there

exists vy € 7" such that

sup vy > sup u* — —.
b; b;
If we set ug := sup v, then uy < u and u} = u*. By the countable base

J.k>1
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u(;" = u, nearly everywhere on U. Hence it follows that u* = u n.e. on U.

[l

Of course, the Brelot-Cartan theroem Theorem 3.8 applies in particular to limits of
increasing sequences. There is also a corresponding result for more general sequ-
ences.

Theorem 3.9: Brelot-Cartan Theorem Applied to General Sequences
Let {u,},> be a sequence of subharmonic functions on an open set U, and
suppose that sup u,, is locally bounded above on U. If u := lim sup u,. Then

n n—-oo

(a) wu* is subharmonic on U.
(b) wu*=wun.e. onU.
(¢) Ife:U— Riscontinuous and ¢ > u then max(u,, ¢) — ¢ locally
uniformly on U as n — oo.
Proof:
Step I (a)

If A(w, p) C U then foreachn > 1,
2

1 .

u,(w) < —J u,(w + pe'®de.

2 0

Taking lim sup of both sides and using Fatou’s lemma give
n—oo

uw) < LJ' u(w + pe'®)do < L" w*(w + pe®)de.
2z ), 27 ),
The same argument as used in proving Theorem 3.8 (a) now shows that u* is
subharmonic on U.
Step II: (b)
For eachn > 1 denote v, := supu,,. Then v, | u, and v}¥ | v, say, where
>n
v > u* > u. Now by Theorem 3.8 (b), v¥ = v, n.e. for each n > 1 therefore
v = un.e. and hence u* = u n.e. on U.
Step III: (¢)
Since ¢ < max(u,, @) < max(v¥, ) for each n > 1, it suffices to prove that
max(v;*, @) — @ uniformly on compacts. As {v;*}, - is a decreasing sequence
of u.s.c. functions, by Dini’s theorem?3 this will be true provided that
lim v¥ < ¢, thus it left us to prove this inequality.

n—-oo

Step II1.1: lim v} < ¢.
n—oo

By Theorem 3.8 (a), each v is subharmonic on U, and since v;* | v, it follows
from Theorem 2.12 that v is subharmonic on U. Moreover, by (a) we just
proved, u* is subharmonic on U and by (b) we just proved b = u* n.c. and

2 2

3 Dini’s Theorem: Let K be a compact metric space. Let f : K — R be a continuous function
andf, : K - R, n > 1, be a sequence of continuous functions. If {1}, converges pointwisely
to fand if f(x) > f,,1(x) Vx € K Vn > 1 then f,, — funiformly.
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thus a.e. on U. Hence by the weak identity principle Theorem 2.24 v = u*
everywhere on U and so
lim v =v =u* < ¢p* = ¢,

n—oo

as desired.

[

3.5 Minus Infimum Sets
Earlier we have proved in Corollary 2.15.2 that if u is subharmonic on a domain

and u # — oo then the set where u = — oo has Lebesgue measure zero. We are now
in a position to prove a much stronger result. Recall that a G4 set is of the form of
countable intersection of open sets.
Theorem 3.10: Subharmonic Function Is Minus Infinity On G4 Polar Set

Let u be a subharmonic function on a domain D in C such that u # — c0. Then

E = {z €D :u(z) = — oo} is a G5 polar set.
Proof:

Since E := ﬂ {z : u(z) < —n} is clearly a G set. It left us to show that it is
n>1

.u
polar. Denote v := lim — so that

n—oo N
v(z)={0’ 7z € D\E
-0, z€FE
Now by Theorem 3.9 (a) v* is subharmonic on D, and since it evidently atta-
ins a maximum value 0 there, it follows that v* = 0 on D by Theorem 2.5 (i).
Moreover, by Theorem 3.9 (b), v = v n.e. on D. Therefore v = O n.e. on D
and £ is indeed polar by Theorem 3.9 (b) and the definition of n.e. property.
[]
This result allows us to demonstrate the existence of uncountable polar sets. For e-
xample, the set E occuring in the proof of Theorem 2.16 (b) is uncountable and by
Theorem 3.10 it is polar. More concrete examples will appear in Section 5.3.
Theorem 3.10 is sharp in the sense that every G polar set arises as the set where
some subharmonic function # = — oo. This converse, Deny’s theorem, is too hard for
us to prove here as the proof relies on the concept of condenser measure; instead we
content ourselves with the following result which, though weaker, is good enough for
most purposes.
Theorem 3.11: F  Polar Set Decomposition for Subharmonic Functions
Let E be an F, polar set, and let /' be an F_ set such that E N F' = @&. Then
there exists a subharmonic function u : C — [— 00, 00) such that
(i) u=—-—ocoonk.
(i) u>-—ocoonkF.
We shall prove this via a lemma which is of interest in its own right.
Lemma 3.12: Existence of Borel Probability Measure Charging Compact Polar Sets
Let E be a compact polar set, and let F' be a compact set disjoint from E. Then

there exists a Borel probability measure ¢ on C with compact support such that
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(i) E={ze€C:p,(z)=— oo}
(1) supp(p)NF =@.
Proof:

Step I Assertion (i1) .
Let {K,},> be a sequence of compact sets, with K, | C K|, for all n > 1 such
that

(K, =EandK,nF = 2.

n>1
For each n, let v, be an equilibrium measure for K. Note that /(z,) > — oo
since K, # @ by Frostman’s theorem Theorem 3.7 (b).
Now v, € P(K,) for all n > 1, so by a diagonal argument there exists a sub-
sequence of {v, }, that is weak*-convergent to some v € £(K). In fact,
since supp(v,) C K, for all n > 1, we must have supp(v) C E. As E is polar,
it follows that /(v) = — co0. Hence by Lemma 3.6 I(v,) - — co asn — oo,
and so, replacing {v,},~; by a further subsequence, we can suppose that

I(v,) < =2"foralln > 1.

U= i 27"y,

Then u € P(K,) so supp(u) N F i 1@ Thus the measure we constructed satis-

fies assertion (i1).

Step II: Assertion (1)

First suppose that z € E. Then z € Kn for each n > 1, so by Theorem 3.7 (b),
p, (@) =1k, <-2"

Put

Hence,

p,(2) = i 27"p, (@) < i 27(=2") = - oo,
n=1

n=1
where the first equality holds by the definition of x# and the first equality holds
since I(v,) < — 2" foralln > 1.
Now suppose that z & E. Choose n, such that z ¢ K, and put 6 := dist(z, K}, )

then for all n > n,
p,(2) 2 Jlog ddv, = log b,

and also by Theorem 3.7 (a), p, (z) 2 I(v,,) > — oo for every n > 1. Hence

ﬂo—l 0

P2 = Z 27"p, (2) 2 Z 27"y, + Z 27"logd > — o0,
n=1 n=1 n=ng

where the first equality holds by the definition of i and the first inequality by
summing by parts. Thus E = {z € C : p,(z) = — o0} as desired.

[
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We remark in passing that it is not clear from the proof above whether u can be ch-
osen so that supp(u) C E. The fact that it can (Evan’s theorem) will be proved in
Section 5.5.

Proof of Theorem 3.11:
Denote E := U E,and F := U F,, where {E,} -, and {F)}, are increas-

n>1 n>1
ing sequences of compact sets. By Lemma 3.12, for each n > 1, there exists a
Borel probability measure p, with compact support such that

E = {z €eC:p,(2)=- oo} and supp(y,) N F, = @.
Then p, is bounded above on A(0,n) and below on F),, so we can choose cons-
tants @, > 0 and f§, € R for each n such that u, := a,,p, + f, satisfying
sup u, < Oandinfu, > — 27"
A(0,n) Fy

Denote u := Z u,. Then on any bounded set, the sequence of partial sums is

n=1
eventually decreasing and so by Theorem 2.12 u is subharmonic on C. More-
over if z € E then u,(z) = — co for some n and so u(z) = — oo. This proves

the first assertion.
Finally, if z € F then u,(z) > — oo foreachn > 1 and u,(z) > — 27" for all
sufficiently large n, thus u(z) > — oo on F, proving assertion (ii).
[]
We conclude by recording an important special case of Theorem 3.11.
Corollary 3.11.1: Characterization of Closed Polar Set via Subharmonic Functions
If E is a closed polar subset of C. Then there exists a subharmonic function u
on Csuchthat E = {z € C: u(z) = — }.
Proof:
Applying Theorem 3.11 with F := C\E. ]

3.6 Removable Singularities
In each of the last three sections we have encountered theorems asserting that cert-
ain exceptional sets are polar. It is thus of special interest to determine in what ways
polar sets are “negligible”. The key to this is the following removable singularity
thoerem.
Theorem 3.13: Removable Singularity Theorem for Subharmonicity
Let U be an open subset of C, let E be a closed polar set, and let u be a subha-
rmonic function on U \ E. Suppose that each point of U N E has a neighbour-
hood N such that u is bounded above on N\ E. Then u has a unique subhar-
monic extension to the whole of U.
Proof:
Uniqueness follows from the weak identity principle Theorem 2.24 since E
has (Lebesgue) measure zero by Corollary 3.4.1.
To construct the extension, we define u on U N E by
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u(w) ;== limsup u(z) wherew € UNE.

7-w,2€U\E
The boundedness assumption ensures that u < co everywhere, and so u is u.s.c.
on U by Theorem 2.2. To check that u is subharmonic, we shall use (c) < (a)
in Theorem 2.9. Let D be a relatively compact subdomain of U, and let & be a
harmonic function on D such that

lim sup(u — h)(z) < 0 V¢ € dD.
=L

We need to show that u < i on D.
Now by Corollary 3.11.1 there exists a subharmonic function v on C such that
E ={z:v(z) = — }. For each € > 0, the function u — h + €V is certainly
subharmonic on D\ E by Theorem 2.4 (ii), and equals —co0 on E, Remark 2.1
(i1) tells us that u — i + €v is subharmonic on the whole of D. Therefore by the
maximum principle Theorem 2.5,

u—h+e <sup(ev) onD.
oD
Sending € | 0 we deduce that u < h on D\ E. From the way that u is defined

on D N E it follows that u < h on D N E too. Therefore u < h on D as desired.
[]
Corollary 3.13.1: Removable Singularity Theorem for Harmonic Functions
Let U be an open subset of C, let E be a closed polar set, and let 4 be a harm-
onic function on U \ E. Suppose that each point of U N E has a neighbourhood
N such that % is bounded on N\ E. Then & has a unique harmonic extension to
the whole of U.
Proof:
The uniqueness is clear by Theorem 1.3. As for the existence, Theorem 3.13
applying to 4 gives functions u and v which are subharmonic on U, and
which agree respectively to & and —h on U \E. Then u + v is subharmonic on
Uandu + h = 0on U\E, so by the weak identity principle Theorem 2.24
u + v = 0 on the whole of U. Therefore u is superharmonic on U and as well
as being subharmonic on U. Thus by Remark 2.1 (iii) u is the desired harmo-
nic extension of A.
[]
The removable singularity theorem Theorem 3.13 can be used to demonstrate a fu-
rther sense in which polar sets are small.
Theorem 3.14: Removing Closed Polar Set Does Not Affect Connectivity
Let D be a domain in C and let E be a closed polar set. Then D\ E is still
connected.
Proof:
Suppose that D\E = A U B, where A and B are disjoint non-empty open sets.
Define u : D\E — [—o0, ) by
0, on A
—00, onAB
By Theorem 3.13, u has a subharmonic extension to the whole of D. It then
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follows from Corollary 2.15.2 that if B # @& then u = — oo on D and so
A = @, which contradicts our assuption that both A and B are non-empty. Thus
D\E is connected.
[]
A purely topological argument now yields the following argument.
Corollary 3.14.1: Closed Polar Set Is Totally Disconnected
Every closed polar set E is totally disconnected.
Proof:
We need to show that if w € E, then its component in E is just {w}. Without
loss of generality, we may assume that w = 0. Let € > 0 and set
A := A(0,e), AT := A\[0,¢), and A~ := A\(—¢,0].
Choose w;, w, € A\E with Im(w;) > 0 and Im(w,) < 0. By Theorem 3.14
both A*\E and A™\E are connected, so we can join w, to w, by a path y* in
A*\E, and w, to w, by a path y~ in A7\ E. Then
yi=ytur”
is a closed path in A\E which winds once aroung 0. It must therefore also
wind once around every point in the same component of E as 0. Hence this
component lies inside the disc A(0,€), since & is arbitrary, sending € | 0 gives
the component to be {0}, as desired.
[]
Here is a beautiful application of these ideas to complex analysis.
Theorem 3.15: Rado-Stout Theorem
Let D be a domain of C, let E be a closed polar set, and letf : D — Cbea
continuous function which is holomorphic on D\ f~!(E). Then fis holomor-
phic on the whole of D.
Proof:
If f(D) C E, then, as f(D) is connected and E by Corollary 3.14.1 is totally
disconnected, it follows that fis constant, in which case the result is trivial.
Without loss of generality, we may assume that f(D) ¢ E. Corollary 3.11.1
tells us that there exists a subharmonic function u# on C such that
E={z:u(x) =— }.
Then u o fis subharmonic on D\ f~!(E) by Theorem 2.23, and equals —co
on f~I(E), so it is subharmonic on the whole of D by Theorem 3.13. Now
uof #—ocoonbD
thus by Theorem 3.10 f~(E) is a G5 polar set. Using Corollary 3.13.1 in
conjunction with Theorem 1.1 to Re(f) and Im( f) yields the fact that they
are harmonic in D, and hence that f € C*°(D) by Corollary 1.1.2. Since f
satisfies the Cauchy-Riemann equations on D\ E, by continuity it must also
do so on E, and hence it is holomorphic on D.
[]
Corollary 3.15.1: Preimage of Polar Set under Non-Constant Holomorphy Is Polar
Let D be a domain in C, let f be a non-constant holomorphic function on D,
and let E be a polar set. Then f~'(E) is also polar.
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Proof:
If E is closed in C, then this is an immediate consequence of the proof for
Theorem 3.15. For the general case, it suffices to show that every compact
subset of f~!(E) is polar, and this is easily deduced from the case already
proved.
[]
Note that the non-constant assumption is necessary in the above result.
Remark 3.3: Polarity Is Invariant under Conformal Mapping
In particular, it follows that the property of being a polar set is invariant under
conformal mapping. o

Thus we can extend the notion of polarity to C*, by declaring
Definition: Polar Set in C*

A set E in C® is polar if ¢(E) is polar for some conformal mapping ¢ of a
neighbourhood of E into C. It is easy to see that in fact E is polar in this sense
if and only if E\{co} is polar in the standard case.

Both the Liouville theorem Corollary 2.6.2 and the maximum principle Theorem
2.5 have extended versions, which will later be proved to be very important.
Theorem 3.16: Extended Liouville Theorem for Subharmonic Functions

Let E be a closed polar subset of C, and let u be a subharmonic function on
C\E which is bounded above. Then u is constant.
Proof:
By Theorem 3.13, u extends to be subharmonic on the whole of C. Moreover,
if M := sup u then max(u, M) = M on C\E and hence everywhere on C by
C\E
Theorem 2.24. Therefore u is bounded above on C, and by Corollary 2.6.2 we
conclude that u is constant.
[]
Remark 3.4: Converse of Extended Liouville Theorem Also Holds
Let E be a closed subset of C with the property that every subharmonic funct-
ion bounded above on C\E is constant, then E is polar. ¢
Corollary 3.16.1: Extended Liouville Theorem for Holomorphic Functions
Let E be a closed polar subset of C, and let f be a holomorphic function on
C\E such that C\ f(C\E) is non-polar. Then f'is constant.
Proof:
Choose a compact non-polar set K such that f(C\K) C C\K, and let v be an
equilibrium measure for K. Then p, is harmonic and bounded below on C\K
by Theorem 3.7 (a), so —p,, o fis harmonic and bounded above on C\E. Hence
by Theorem 3.16 —p, ° f is constant. By Theorem 3.1 (ii),

lim p,(z) = oo,

—0
this implies that f'is bounded on C\ E. Applying Theorem 3.16 once more, this
time to Re( f) and Im( f'), we deduce that fis constant.

[

Theorem 3.17: Extended Maximum Principle for Subharmonic Functions
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Let D be a domain in C, and let u be a subharmonic function on D which is
bounded above.
(a) IfdD is polar then u is constant.
(b) IfdD is non-polar and lim sup u(z) < 0 forn.e. { € dD then u < 0 on
=L
D.
Proof:
Step I: (a)
Denote E := 0D\ {oo}. Then by Remark 3.3 E is a closed polar subset of C,
so by Theorem 3.14, C\E is connected. Since D is a component of C\E, it
follows that D = C\E. Now assertion (a) follows from Theorem 3.16.
Step II: (b)
Given € > 0, define
E, = {C € 0D\ {oo} : lim sup u(z) > 8}.
=L
Then E, is a closed polar subset of C. Define v on C\E, by
. max(u,e), onD
V= {8, on C\(DUE,)
By gluing theorem Theorem 2.11 v is subharmonic on C\E,, and it is clearly
bounded above there, so by Theorem 3.16 it is constant. Since v = € on
0D\ (E, U {o0}), which is non-empty, then by Theorem 2.24 v = €. Hence
u < e on D. Finally, since € > 0 is arbitrary, sending € | 0 give assertion (b).

[

3.7 The Generalized Laplacian
By Theorem 2.10, a C? subharmonic function u satisfies that Au > 0. In this secti-
on we shall develop an appropriate generalization of this fact to arbitrary subharm-
onic functions. This turns out to be an important idea, with many applications.
Definition: C° Space
Let D be a domain in C. The space C°(D) is defined to be the space of all
C*-functions ¢ : D — R whose support supp(¢) is a compact subset of D.
If u is a C? subharmonic function on D, then, identifying Au with positive measure
AudA, it follows from Green’s theorem that

J pAu = J ulApdA, p € CX(D). (3.2)
D D

Now if u is an arbitrary subharmonic function on D with u # — oo, then by Theorem
2.15, u is locally integrable, and so the right hand side of (3.2) makes sense. We
therefore use it to define the left hand side of (3.2).
Definition: Radon Measure

A Borel measure p on a topological space X is called a Radon measure if

u(K) < oo for each compact subset of X.
Remark 3.5: Radon Measure and Riesz Representation

Each Radon Measure u on the topological space X gives rise to a linear functi-

58



onal A on C.(X) via

M@=[¢M%¢EQ@)
X
This linear functional is positive in the sense that A(¢) > 0 V¢ > 0. For

certain spaces X there is an important converse called Riesz representation
theorem:
Let X be a metric space possessing a compact exhaustion (increasing

sequence of compact subsets {K,,}, such that K, C K,;1, and their

union is the whole space X). If A is a positive linear functional on C.(X)
then there exists a unique Radon measure y on X such that

AWO=J4MuV¢€CXX) o
X
Definition: Generalized Laplacian

Let u be a subharmonic function on a domain D in C with u # — oo. The gene-
ralized Laplacian of u is the Radon measure Au on D such that (3.2) holds.

To justify this definition, we need to prove the following theorem.

Theorem 3.18: Existence and Uniqueness of the Generalized Laplacian
The generalized Laplacian for a subharmonic function u on a domain D in C
such that u # — oo exists and is unique.

The proof relies on a simple approximation lemma. We write C.(D) for the space of
all continuous functions ¢ : D — R whose support supp(¢) is a compact subset of D.
Definition: Sup Norm on C.(D)

We define the sup-norm on C.(D) by

lglle :=sup ||, p € C(D).
D

Lemma 3.19: Approximation Lemma for Element in C (D)
Let ¢ € C.(D), and let U be a relatively compact open subset of D such that
supp(¢) C U. Then
(i)  There exists {¢,},>; C C°(D) such that supp(¢,) C U foralln > 1 and
o, — ¢llo = Oasn — oo.
(i)  If in addition that ¢ > 0, then {¢,},-, in (i) can be chosen so that
@, > 0foralln > 1 as well.
Proof:
Extend ¢ to the whole of C by defining ¢ = 0 on C\D. Then if {y,}, are
the functions used in Theorem 2.22, we have, by Theorem 2.22 (i) that
@ *y. € C°(C) Vr>O0.
Moreover,
supp(¢ * z,) C {z € C : dist(z, supp(p)) < r},
so that supp(¢ * y,) C U provided that r is sufficiently small. Finally,
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lg * %, — @ll o= sup

zeC

[ (9@ =w) = 9(@)) 1, (W)d A(w) |
AQO,r)

< sup
zeC,|w|<r

where the second equality holds by Theorem 2.22 (d) and (e). Moreover,
this ||¢ * ¥, — @]l = 0 as r — 0 because ¢ is uniformly continuous on C.

Hence we may take

=) - ()|

@, =@ * x5, foreachn > 1,
where 6 > 0 is chosen sufficiently small. Moreover, with this definition, it is
clear that if ¢ > O then ¢, > O for each n > 1 as desired.
[

Proof of Theorem 3.18:

Step I: Uniqueness

We begin with the uniqueness. Suppose that y; and u, are two Radon measures

on D such that

J pdu, = [ @pdu,, p € C2(D).
D D
Then by Lemma 3.19, this equation also holds V¢ € C.(D). By the unique-

ness part of the Riesz representation theorem in Remark 3.5 we conclude that
Hi = Ko

Step II: Existence

Now we turn to the question of existence. Define A : C°(D) — R by

A(p) = [ ulApdA, p € CX(D).
D
Clearly A is a linear functional, and our first step is to show that this linear

functional is positive, that is

StepIlL1: p > 0= A(p) >0

Suppose then that ¢ € C°(D) with ¢ > 0. Choose a relatively compact open
subset U of D such that supp(¢) C U. By Corollary 2.22.1 there exist C®
subharmonic functions {U,},-, on U such that u, | u there. By Theorem 2.10

Au, > 0 for each n > 1, and so using Green’s theorem it follows that
[ u,ApdA = J @Au,dA > 0.
D

D
Sending n — oo and applying Lebesgue’s dominated convergence theorem we

conclude that
J ulApdA >0,
D

in other words A(¢) > 0. Thus A is indeed positive.

Step 11.2: Boundedness of A

Next, we show that, given a relatively compact open subset V of D, there exists
a constant C such that
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[ A@)| £ C- ¢l ¥ € CZ(D), supp(p) C V. (3.3)
To do this, take y € C°(D) such that 0 <y < 1 andy = 1 on V. Then given
@ € C°(D) with supp(¢) C V, we have

—llolloy < @ < ll@llowonD,
so0, since A is positive, it follows that

—ll@lloAW) < Al@) < ll@ll AW).
Thus (3.3) holds with C = A(y).
Step I1.3: Using Riesz representation theorem to conclude the existence
Now combining (3.3) and Lemma 3.19, we deduce that A extends to a positive
linear functional on the whole of C.(D). Therefore, by the existence part of the
Riesz representation theorem in Remark 3.5, there exists a unique Radon mea-
sure y on D such that

Ap) = [ @du, ¢ € C(D).
D
In particular,

| uspdn=| gaunoecxm,
D D

which completes the proof of the existence.
[]
The reader familiar with the distribution theory will recognize the generalized Lap-
lacian as being just the Laplacian interpreted in the distributional sense. Although no
previous knowledge of distribution theory is assumed in this book, it is helpful in
understanding several of the results. For example:
Remark 3.6: Interpreting Potential via Distribution Theory Perspective
The potential p, can be regarded as the distributional convolution of the

measure ¢ with the locally integrable function |log z|, and the latter is just

(a multiple of) the fundamental solution of the Laplacian. One might therefore

expect Ap, to be the convolution of y with a delta-function, that is, a multiple

of pu itself. That this is indeed the case is confirmed by the next result. ¢
Theorem 3.20: Poisson’s Equation in Complex Plane

Let 4 be a finite Borel measure on C with compact support. Then

Ap, =2mp.

Proof:

Given ¢ € C°(C), we have

[ pApdA = ( [ 10|z —w|du<w)>Acp<z>dA<z)
C JC \JC

= < log|z —w| A¢(Z)dA(Z)>dﬂ(W)
JC JC
where the first equality holds by the definition of the potential p, and the

second equality holds by Fubini’s theorem (The use of Fubini’s theorem is
justified, because Ag is bounded with compact support and log | z| is locally
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integrable with respect to the Lebesgue measure on C). Now if w € C, then

log|z—w|Ap(z)dA(2)
C

= lim log|z —w|Ap(z)dA(z)
e-0 ] |z—w|>e

' r21 . 6go )

= lim (qo(w +re")y —rlogr—w + re”))
e—0 ] 0 or

r=e

=2 (w),
where the first equality holds since {z : |[z—w]| > €} 1T Cas e | 0, the second
equality holds by Green’s theorem. Hence

| nvda=| 2mpdup ez
C C

as desired.

[]
Corollary 3.20.1: Local Uniqueness of Log Potential Up to Hamonic Translation

Let u; and u, be finite Borel measures on C with compact support. If
pﬂl = pﬂz +h
on an open set U, where / is harmonic on U, then
Hy |U = K2 |U-
Proof:
Since & is harmonic on U, Ah = 0 on U. Therefore
Ap )1y = @Ap, )1y
The desired result follows from Theorem 3.20.

[

As an application of this result, we can justify the statement made in Section 3.3
concerning the uniqueness of equilibrium measures.
Theorem 3.21: Compact Non-Polar Set Has Unique Equilibrium Measure
Let K be a compact non-polar subset of C. Then its equilibrium measure v is
unique, and supp(v) C d,K, the exterior boundary of K.
Proof:
Step I: 0,K 1s non-polar
Suppose d,K is polar, then by Theorem 3.14 C\d,K would be connected, and
this would imply that d,K = K, but K is non-polar by assumption, this is impo-
ssible and thus 0,K is non-polar.
Step II: Uniqueness
Let v and 7 be equilibrium measures on K and 9d,K respectively. It suffices to
prove that v = U. By Frostman’s theorem Theorem 3.7 one has
p, > I(v)onCandp, = I(v) n.e. on K.
Moreover, p, is bounded above on each bounded component of C\ K, so apply-
ing the extended maximum principle Theorem 3.17 (i1) we deduce that
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p, = I(v) on C\K.
Similarly,
py > 1(v)on C and p; = I(V) n.e. on 9,K,
and also
~ = I(V) on each bounded component of C\0,K.
Finally, on the unbounded component of C\ K, which is the same as the unbou-
nded component of C\d,K, the difference (p, — p;) is harmonic and bounded,
and so by the extended maximum principle Theorem 3.17 (i1) once again,
p,—py=1)—1V)
on each unbounded components of C\K and C\d,K. Moreover, since
P2) = pi(2) = (loglz| +o(D)) = (log|z| +o(1)) = o(1)
as z = oo. It follows that I(v) = I(v). Thus p, = p; n.e. on C, and therefore
everywhere on C by the weak identity principle Theorem 2.24. Finally, apply-
ing Corollary 3.20.1 we deduce thatv = 7.
[]
Corollary 3.21.1: Equilibrium Measure of A Is Lebesgue Measure on dA
The equilibrium measure of a closed disc A is the normalized Lebesgue
measure on 0A.
Proof:
By Theorem 3.21, the equilibrium measure is supported on dA, and since it is
unique it must be rotational invariant. This implies that it is a multiple of the
Lebesgue measure on dA.
[]
As a further application of Theorem 3.20 we can compute A(log|f|) when f is
holomorphic.
Theorem 3.22: Solution to Generalized Laplacian via Holomorphic Zero Mass
Let f be a holomorphic function on a domain D such that f # 0. Then
A(log| f|) consists of (27)-masses at the zeros of f, counted according to
multiplicity.
Proof:
Given a relatively compact open subset U of D, we can write
f@) =@—-w)-z-w)g),zeU,
where wy, -+, w, are the zeros of fin U, and g is holomorphic and non-zero on
U.Thenforz € U, i

log| f2)| = D log|z = wjl +loglg(@) | =: p,(2) + h(z),
j=1
where u consists of unit masses at wy, -+, w, and & is harmonic on U. By
Theorem 3.20,
A(log|f|) =2muon U.
As this holds for each such U, the result holds by Remark 3.1 (i1).
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The proof above shows that log| /| can be expressed locally as the sum of a poten-
tial and a harmonic function. This is actually a special case of a quite general result.
Theorem 3.23: Riesz Decomposition Theorem

Let u be a subharmonic function on a domain D in C with u Z — oo. Then,
given a relatively compact open subset U of D, we can decompose u as
u=p,+honl,

where 4 = (27)"'Au| and h is harmonic on U.
U

This is a very powerful result. It means that many problems about general subhar-
monic functions can be reduced to questions about potentials. Most of the work for
proving Theorem 3.23 has already been done. What remains to be proved is the
following lemma, which is a converse to Corollary 3.20.1.

Lemma 3.24: Weyl’s Lemma
Let u and v be subharmonic functions on a domain D in C with u,v # — 0. If
Au = Av then u = v + h for some harmonic function / on D.

Proof:
Let {¥,},0 be the functions we used in the smoothing theorem Theorem 2.22,

and for r > 0 we write
D, = {z € D : dist(z, 0D) > r}.
Then u * y, € C*(D,), and for z € D, we have
Alu* x)(@2):= [uw)A_x,(z — w)d A(w)

J

r

= |uw)A, x,(z — w)dA(w)

r

= | pAu

where the first equality holds since Laplacian is commutative under convolu-
tion, the second equality holds since Laplacian is closed under translation, and
the last equality holds by Green’s theorem and ¢(w) := y,(z — w) € C°(D).
The same calculation works with u replaced by v. Since Au = Av, it follows
that
A(u*y) =AW *y)onD,.
Therefore there exists a harmonic function 4, on D, such that
u*y.=v*y.+h.onD,.
Now by Theorem 2.22 applied to +A,, we have h.* y, = h,.on D, for each
s > 0, and hence
hr = hr *)(s =-v) *)(r*)(s = hs *)(r = hr on Dr+s’
where the third equality holds since {,},»( is commutative. Therefore there is
a single harmonic function /4 on D such that for each r > 0,
u*y.,=v*y.+honD,.
Since r > 0 is arbitrary, sending r | 0 and using Theorem 3.22 gives
u=v+honD,
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as desired.

Proof of Theorem 3.23: -
Put 4 := 2n)'Au . Then by Theorem 3.20,
Ap, =2npu = Auon U.
Applying Lemma 3.24 on each component of U, it follows that
u=p,+honl,
where /4 is harmonic on U.
[]

3.8 Thinness
Let u be a subharmonic function on a neighbourhood of { € C. Even though u may
be discontinuous at £, it is always true that

lim sup u(z) = u(f). (3.4)
7=0z#

For by u.s.c. one certainly has lim sup u(z) < u({), and if the inequality is strict, then
7=

u would violate the submean inequality on small circles around {. Thus the value of u
at { is completely determined by its values on a punctured disc around ¢. It turns out
to be useful to know to what extent the punctured disc may be replaced by a smaller
set S.
Definition: Thin and Non-Thin

Let S be a subset of C and let { € C. Then § is non-thin at { if

i) e S\{c}

(ii)  For every subharmonic function u defined on a neighbourhood of ¢,

lim sup u(z) = u(f).
z—¢.zeS\{(}

Otherwise S is said to be thin at 6.

A complete characterization of thinness is quite complicated, and must await devel-
opments in Chapter 5. However, for many purposes it is enough to be able to handle
a few important special cases, which we shall study in this section. We begin with
elementary remarks.

Remark 3.7: Elementary Properties of Thinness
(i)  Thinness is obviously a local property, that is, S is non-thin at ¢ if and
only if U N § is non-thin at { for each open neighbourhood U of {.
(Thinness is a Local Property)
(1))  Thinness is invariant under conformal mapping, so that although we
have defined thinness in the plane, we would equally well study it on
the sphere. (Thinness is Invariant under Conformal Mapping)
(111) If two sets are both thin at a particular point, then so is their union.
(Union of finitely many thin sets is thin)
(iv) From (3.4) it follows that a set S is non-thin at each point of its interior.
In particular, an open set is non-thin at every point of iteself.
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(A set is non-thin at every point of its interior)
o
Though S cannot be thin in its interior, it can be thin at some point on its boundary.
Example 3.3: A Set Can Be Thin at Its Boundary Points
Let u be a subharmonic function which is discontinuous at £, and choose a so

that
lim infu(z) < a < u(f).
—=¢
Then S := {z : u(z) < a} is an open set with { € dS and clearly S is thin at {.

o
We shall look at special types of set S, beginning with the small ones.
Theorem 3.25: F_ Polar Set Is Thin at All Points of C
An F_ polar set is thin at every point of C.
Proof:
Let S be an F_ polar set and let { € C. Then S\{{} is also an F, polar set and
is obviously disjoint from {{}, so by Theorem 3.11 (i) there exists a subharm-
onic function u on C such that u = — co on S\ {{} and u({) > — oo by
Theorem 3.11 (ii). Therefore S is thin at .
[]
As the other extreme we have the following theorem.
Theorem 3.26: Non-Trivial Connected Set Is Non-Thin at Its Closure Points
A connected set containing more than one point is non-thin at every point of its
closure.
The proof is based on a lemma which is actually a special case of the main result.
Lemma 3.27: Subharmonic “Barier” on Boundary Points
Let u be a subharmonic function on A(0,1). If u < 0 on the segment (0,1) then
u(0) <0.
Proof:
Replacing u by max(u,0), we can suppose that # > 0 on A(0,1) and u = 0 on
(0,1). Tt left us to show that u#(0) = 0. Define v on A(0,1)\{0} by
om {1 >0
0, Im(z) <0
Then v is subharmonic on A(0,1)\{0} by the gluing theorem Theorem 2.11.
Moreover v is bounded above near 0, so by the removable singularity theorem
Theorem 3.13 it extends to a subharmonic function on the whole of A(0,1).
Then by Theorem 2.21 (c),
v(0) = lir% M(r) = 1in8 M (r*) = u(0)
and also
v(0) = lim C,(r) = lim lcu(rZ) = lu(O)
r—0 r—0 2 2
where the middle equality holds as r; = r, implies 2zr; = 4xr, for the circum-

ference. Combining these two display yields u(0) = O.
[]
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Proof of Theorem 3.26:
We argue by contradiction. Let S be a connected set with at least two points
and suppose, if possible, that S is thin at some point { of its closure. Applying
a conformal mapping (which does not change thinness by Remark 3.7 (i1)), we
may assume that { = 0. Then there exists a subharmonic function u, defined on
a neighbourhood of 0, such that
lim sup u(z) < u(0).
7—0,zeS\ {0}
By the Riesz decomposition theorem Theorem 3.23 we can decompose u on a
neighbourhood of 0 as u = p, + h, where p, is the potential of a finite Borel

measure ¢ of compact support, and % is harmonic. Since /4 is continuous it fol-
lows that
lim sup pﬂ(z) < pﬂ(O).
z—0,ze€S\{0}
Now define 7 : C - Rby 7(z) := |z| and set
u(B) = ,u(T_l(B)), B c C Borel,

so that 4, is also a finite Borel measure with compact support. Then for € C

120 = [tog| 121 = 1] [ dut) < 5,2

where the equality holds by the definition of log potential and the inequality
holds by the triangle inequality |z — w| > | |z| — |w]| | . The equality holds

if z = 0. Therefore,

limsup p, (Iz]) < p, (0).

7—0,zeS\ {0}
Since S is connected and contains a point other than 0, it follows that the set
{|z] : z € S} includes an interval (0,a) for some a > 0. Hence
lim sup p, (z) <p, (0).

z—0,z€(0,a)

It s therefore possible to choose constants r and s so that
u(2) ==p,,(rz) +s
which by Theorem 2.4 (i1) is subharmonic on A(0,1) and satisfies #; < 0 on
(0,1) and u,(0) > 0. This violates the conclusion of Lemma 3.27.
[]

Combining the last two theorems immediately leads to a generalization to the fact
that every closed polar set is totally disconnected, which we proved in Corollary
3.14.1.

Corollary 3.26.1: F Polar Set Is Totally Disconnected
Every F_ polar set is totally disconnected.

A set may be thin at “many” points. As an extreme example, a countable dense sub-
set of C is thin everywhere. However, as our final theorem of this section shows, a set
cannot be thin at too many points of itself.

Theorem 3.28: A Set Cannot Be Thin at Too Many Points of Itself
A subset S of C is non-thin at n.e. point of itself.
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Proof:

Let {U;};5, be a countable base of open sets for C with diam(U;) < 1. For
each j, let 7'; be the collection of all subharmonic functions v on U; such that

0, onU;
v <
-1, onU;NnS
Set u; := sup v, and let uj* be its upper semicontinuous regularization. Then by

VEY;
Brelot-Cartan theorem Theorem 3.8 (b) there exists a Borel polar set E; such

that uj* =u;on U\E,. Set E := U E;. Then by Corollary 3.4.2 E is a Borel
j=1
polar set, and we shall show that S is non-thin at each point of S\ E. Suppose
that £ € S and that S is thin at {.
Case I { is non-isolated point of S
If £ is a non-isolated point of S, then there exists a subharmonic function u# on a
neighbourhood of ¢ such that
limsup u(z) < —1<u(l)<0.

z—¢,2€8\{¢}

Therefore there exists a neighbourhood of £, which we may take to be member

Uj of the countable base such that

0, on U]
u =<
=1, onU;n(S\{¢})
Case II: { 1s an isolated point of S
If { is an isolated point of S, then we reach the same conclusion by choosing U;
so that U; N S = {{}, and setting u = 0.

For each case, then, for each € > 0, the function
v(2) == u(z) + elog|z — |
belongs to the class 77, and so u; > u,. Sending & | 0 we deduce that u; > u on

Uj\{C }, and hence that uj* > u on U,. In particular,
uf(C) 2 u(@) > - 1.
On the other hand, it is clear that u;({) < — 1 since { € S. Hence { € E;. We

have therefore shown that the only point of S can be thin are those that lie in E.
This proves the desired result.

[

As a special case, we obtain a converse to Theorem 3.25.
Corollary 3.28.1: Set Thin at All Its Points Is Polar

A set which is thin at every point of itself must be polar.

Summary of Chapter 3

In this chapter we studied the potential theory and some elementary properties. The
reason we study potentials is that potentials turn out to be almost as general as
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arbitrary functions and for many purposes the two classes are equivalent. In fact as
we shall see in Riesz decomposition theorem that problem in subharmonic functions
can be reduced to problems in potentials.

In the first section we defined the potential and prove some its properties. In parti-
cular, unlike the subharmonic functions, the potentials have continuity principle and
minimum principle.

In the second section we introduced the concept of polar sets, which serves as the
“measure” zero set in potential theory. To this end we defined the energy of finite
Borel measures and based on this terminology we defined the polar sets to be subset
having minus infinite energy. Similar to the a.e. property translated to probability
theory as a.s. property we translate the a.e. property to potential theory as n.e.
property. We proved that “Measures with Finite Energy do not Charge Polar Sets”. As
a consequence, “Borel Polar set Has Lebesgue Measure Zero”. Thus the polar sets are
small in the sense they have measure zero. Moreover, “Polarity Is Stable under
Countable Union”. In fact this holds only for countable union of Borel polar sets, it
fails when the Borel condition is removed. Moreover, the polar sets are not
necessarily countable as a consequnce.

In the third section we studied the equilibrium measures and proved that “Compact
Sets Have Equilibrium Measure”. For the proof we introduced the concept of weak*
convergence, for which some authors call it the vague convergence. This motion of
convergence helps one prove the lemma “Weak™ Convergence Implies Energy Upper
Bound”. Then we proved the fundamental theorem of potential theory, namely the
Frostman’s theorem, which establishes the key relation between potentials and
energies.

Motivated by the fact that limit of decreasing sequence of subharmonic functions is
subharmonic but the same argument fails for increasing sequence. Thus we force it to
be u.s.c. by introducing the u.s.c. regularization in section 3.4. We proved Brelot-
Cartan theorem which justifies that the u.s.c. regularization agree with the original
nearly everywhere. Then we proved our motivating questions and it follows that the
u.s.c. regularization for the limit of increasing subharmonic function is again
subharmonic and agree with the original one n.e..

It is of special interest to study the minus infinity set. In section 3.5 we first proved
that “Subharmonic Function Is Minus Infinity On G4 Polar Set”, for whic allows us to
demonstrate the existence of uncountable polar sets. In fact, the converse of this
result also holds but relies on the application of condenser measure, for which we did
not introduce but instead proved a weaker version good for most cases: “F, Polar Set
Decomposition for Subharmonic Functions”, for which the proof relies on“Existence
of Borel Probability Measure Charging Compact Polar Sets”. As a corollary, we
proved “Characterization of Closed Polar Set via Subharmonic Functions”.

In section 3.6, we discussed that the polar sets are small in the other sense. We first
proved “Removable Singularity Theorem for Subharmonicity” and similarly
“Removable Singularity Theorem for Harmonic Functions”. Then the fact that the
polar set are small as removing them does not affect connectedness is proved in
“Removing Closed Polar Set Does Not Affect Connectivity”, and thus “Closed Polar
Set Is Totally Disconnected”. For an application we proved the Rado-Stout theorem
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and from which the connection between polar set and holomorphic function is
established, that is, “Preimage of Polar Set under Non-Constant Holomorphy Is
Polar”. We remarked that the polarity is invariant under conformal mapping and
therefore we can extend this concept to Riemann sphere. For this we can extend the
previous properties for subharmonic functions, namely “Extended Liouville Theorem
for Subharmonic Functions” and “Extended Maximum Principle for Subharmonic
Functions”, as a corollary a version of extended Liouville theorem also holds for
holomorphic function. Moreover the converse of the extended Liouville can serves as
a way to identify polar set by constant subharmonic functions.

In section 3.7 we studied the generalized Laplacian as the Radon measure such that
a certain equality holds. For the concept to be complete we first proved “Existence
and Uniqueness of Generalized Laplacian” for which is proved by a lemma called
“Approximation Lemma for Element in C.(D)”. An observation of these results
enables us to view the potentials under the perspective of distribution theory and
motivates “Poisson’s Equation in Complex Plane”. We are able to prove that “Local
Uniqueness of Log Potential Up to Harmonic Translation” and as an application we
showed that “Compact Non-Polar Set Has Unique Equilibrium Measure”. In
particular, “Equilibrium Measure of A Is Lebesgue Measure on dA”. We can compute
the “Solution to Generalized Laplacian via Holomorphic Zero Mass”, for which the
solution counts multiplicity. Finally we proved the Riesz decomposition theorem
which enables us to solve problems concerning subharmonic functions by concerning
potentials. This result is proved by Weyl’s lemma.

In section 3.8, we studied thinness. The motivation is that subharmonic function,
though may be discontinuous, the approximation always holds. Thus we defined
thinness and non-thinness, which are local property, closed under conformal mapping
and finite union, and a set is non-thin at its interior points. We proved that “F_ Polar
Set Is Thin at All Points of C” and “Non-Trivial Connected Set Is Non-Thin at Its
Closure Points”. The proof for the latter one relies on “Subharmonic “Barier” on
Boundary Points”. By these two results we proved that “F_ Polar Set Is Totally
Disconnected”. A set may be thin at many points but not too many. This is confirmed
by “A Set Cannot Be Thin at Too Many Points of Itself”, as a corollary, we proved
that “Set Thin at All Its Points Is Polar”.

4. The Dirichlet Problem
4.1 Solution of Dirichlet Problem
We recall the definition from Section 1.2 that, given a domain D and a continuous
function ¢ : 0D — R, the Dirichlet problem is to find a harmonic function 4 on D
such that
liné} h(z) = @) V¢ € aD.
71—

By Theorem 1.5, if such a solution 4 exists, then it is unique. Moreover, if D is a
disc, then a solution always does exist, and Theorem 1.6 (ii1) even gives a formula
for it.

For a general domain D, the situation is more complicated. In this case, the Dirich-
let problem, at least in the form stated above, may well have no solution.
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Example 4.1: Example of Dirichlet Problem Fails to Have Solution
LetD:={z:0<|z| <1}andletg : 0D — R be given by

_JO, Igl=1
40(6)—{1’ 1] =0

Then by Corollary 3.13.1, any solution 4 would have a removable singularity
at 0, and the maximum principle Theorem 1.4 (i1) would then imply that
h(0) < 0, violating the condition that lim /(z) = ¢(0) = 1. o

z—0
In this section and the next, we shall consider conditions under which a solution
does exist, and also, even more importantly, derive a natural reformulation of the
Dirichlet problem which always has has a solution. To this end, it is convenient to
extend the set-up described above in two ways:

(1)  Firstly, we shall allow D to be any proper subdomain of C*. Of course,
since the Dirichlet problem is invariant under conformal mapping of the
sphere, there is really no more general than working on a subdomain of
C. However, the gain in flexibility does turn out to be useful. We shall
exploit without further comment the fact that harmonicity, subharmoni-
city, and polarity all extend in a natural way to C.

(1))  Secondly, we shall consider arbitrary bounded function ¢ : 0D — R
instead of only the continuous ones. Although certainly no solution to
the Dirichlet problem is possible if ¢ is discontinuous, it is nevertheless
useful to allow this extra freedom, as will become clear later.

The key idea, sometimes called the Perrof method, is enshrined in the following

definition:
Definition: Perron Function

Let D be a proper subdomain of C* and let ¢ : dD — R be a bounded

function. The associated Perron function Hpp : D — R is defined by

Hpyp :=supu,
ue¥
where % (lower class class) denotes the family of all subharmonic functions u

on D such that
lim supu(z) < @) V¢ € aD.
=L
The motivation for this definition is that, if the Dirichlet problem has a solution at
all, then Hyg is it! Indeed, if # is such a solution, then certainly 7 € %, and so
h < Hpe. On the other hand, by the maximum principle Theorem 1.4, if u € % then
u < honD,and so Hyp < h. Therefore Hyp = h.
Our first result is that, regardless of whether the Dirichlet problem has a solution or
note, Hp@ 1s always a bounded harmonic function.
Theorem 4.1: Perron Function Is Always Bounded Harmonic
Let D be a proper subdomain of C* and let ¢ : 0D — R be a bounded
function. Then Hp¢ 1s a harmonic function on D and
sup | Hpp | < sup|¢]. (4.1)
D oD

The proof of Theorem 4.1 hinges on the following lemma.
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Lemma 4.2: Poisson Modification
Let D be a domain in C, let A be an open disc with A C D, and let u be a
subharmonic function on D with u # — co. If we define & on D by
- Pyu, onD
B { u, on D\A
where P,u 1s the Poisson integral. Then
(i)  u is subharmonic on D.
(ii)  u is harmonic on A.
(ilil) ©# >wuonD.
Proof:
Step I Assertion (i1) and (1i1)
First, note that Corollary 2.15.1 guarantees that u is Lebesgue integrable on
0A, so P,u makes sense. Theorem 1.6 (1) tells us that P u is harmonic on A,
and by Theorem 2.9 (b) Pyu > u there.
Step II: Assertion (1)
It remains to show that u is subharmonic on D, and by the gluing theorem
Theorem 2.11 this will follow provided that
lim sup Ppu(z) < u({) V§ € 0A.
=¢
To prove this inequality, choose continuous functions y, on dA such that
v, | u there (the existence of such a choice is guaranteed by Theorem 2.12).
Then by Theorem 2.12 using in the inequality and Theorem 1.6 (i1) using in
the equality, one has
lim sup Ppu(z) < lim Ppy(2) = y,(£), € € 04,
=¢ S
and the desired conclusion follows by sending n — oo.
[]
Proof of Theorem 4.1:
By applying a conformal mapping of the sphere, we can suppose that D is a
subdomain of C. Let % be as in the definition of Perron function.
Step I: (4.1) holds.

If we set M := sup | ¢ | then certainly —M € % so Hyp > — M. Moreover,
oD
given u € %, it follows from the maximum principle Theorem 2.5 (ii) that

u < M on D, and therefore H,p < M. This proves (4.1).

Step 1I: Hy ¢ 1s harmonic on D.

It suffices to prove harmonicity of Hy¢ on each open disc A with A C D. Fix
such a A, and also a point w, € A. By the definition of Hp¢, we can find
{u,},>1 C % such that u,(wy) — Hpp(wy). Replacing u, by max(u,, ---, u,,),
we can further suppose that #; < u, < --- on D. Now for each n, let &, denote
the Poisson modification of u,,, as defined in Lemma 4.2. Then we also have
u; < uy < --- on D and we claim that & := lim u, satisfies the followings:

(@u < HpponD (b)u(wy) = Hpp(wy) (c) uis harmonic on A
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Step 11.1: (a) holds
By Lemma 4.2 (i) each u,, is subharmonic on D and evidently
lim sup #,(z) = lim sup u,(z) < (), { € oD,
= 7—(
where the equality holds since u := lim u, and the inequality holds by the

n—-oo

definition of %, so that u,, € %. Hence u,, < Hp¢ for each n > 1 and therefore
u < Hpp, proving (a).
Step 11.2: (b) holds
By (a) and Lemma 4.2 (iii) &, > u, and thus
u(wy) = lim u,(wy) > lim u,(wy) = Hpp(wy),

n—oo n—oo

where the first equality holds by (a), the inequality holds since u, > u,, and the
last equality holds since u,(w,) = Hp@(w,). Thus (b) holds since the reversed
inequality holds by (a).
Step 11.3: (c) holds
Since each u, is harmonic on A, so by Harnack’s theorem Theorem 1.14 the
same is true for the increasing limit u, thus (c) holds.
Step III: u < Hpp on A.
Take an arbitrary point w € A, and choose {v,},5; C % such that
v,(w) = Hpp(w).
Replacing v, be max(u, ---, u,, vy, -++, v,), we can suppose that
vi<v,<wy<--andv, > u,onD.
Let v, denote the Poisson modification of v,. Then v, 1 v where
(@)v <HpponD () v(w) = Hpep(w)  (¢’) V is harmonic on A
In particular, (a’) implies that
V(wg) < Hpp(wy) = u(wy),
where the last equality holds by (b). On the other hand, v, > u,, for each n > 1
so Vv > u. Thus the function u — v, which is harmonic on A, attains maximum
value 0 at w,,. By the maximum principle Theorem 1.4, this implies that
“—7=0o0nA.
In particular, it follows that
u(w) =v(w) = Hpp(w).
Since w is chosen arbitrary in A, it follows that ' = H,¢ on A.

From the definition of Hy¢, one might expect that

lirré} Hpp(2) = () V¢ € aD.

Butif D := {7z :0 < |z| < 1} then this cannot be true, because, as we have seen in
Example 4.1, the Dirichlet problem may have no solution. It is instrucive to see
exactly what is going wrong.

Remark 4.1: Reason Dirichlet Problem Is Unsolvable in Example 4.1

First let
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_J0, [£]=1
co(é)-—{l, Z1=0

If u € 7 then by the extended maximum principle Theorem 3.17 (ii) u < 0 on
D and so Hpp < 0. Since 0 € %, in fact Hpp = 0 on D.

Now let
P ()= {O’ | _ :
-1, |{I=0
The same argument applies (even using the ordinary maximum principle
Theorem 2.5) and thus Hp < 0. This time 0 ¢ %. However it is true, accor-
ding to Corollary 1.1.1, that
elog|lz| € % Ve > 0.
Sending ¢ | 0 and again Hpp = 0 on D.
In both cases, the isolated boundary point O lacked sufficient “influence” on
the subharmonic functions in %, and the result was that H,,¢ had the wrong
boundary limit there. o
To overcome this problem mentioned in Remark 4.1, we introduce a notion of bar-
rier.
Defintion: Barrier
Let D be a proper subdomain of C* and let {, € dD. A barrier at {, is a subha-
rmonic function b defined on D N N, where N is an open neighbourhood of {,
such that
i) b<OonDnNN.
(i) limb(z) =0.
z—(
Definition: Regular Boundary Point
A boundary point at which a barrier exists is called regular.
Definition: Irregular Boundary Point
A boundary point at which a barrier does not exist is called irregular.
Definition: Regular Domain
Let D be a proper subdomain of C* then D is called a regular domain if {is a
regular boundary pointV¢ € aD.
Theorem 4.3: Sufficiency for Perron Function Solving Dirichlet Problem
Let D be a proper subdomain of C* and let {, be a regular boundary point of

oD. If ¢ : 0D — R is a bounded function which is continuous at {, then
lim Hpp(2) = ¢ (Sy)-

7=y
This time we need two lemmas. The first is a simple consequence of the definition

of Perron functions.
Lemma 4.4: Perron Function Is Antisymmetric

If D is a proper subdomain of C* and ¢ : dD — R is a bounded function then

Hpp < — Hp(—¢) on D.

Proof:

Let % be the family of subharmonic functions prescribed in the definition of

Perron functions, and let 7" be the corresponding family for —¢. Then, given
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u € % and v € 7/, their sum is subharmonic on D and satisfies
lirré}(u +v)(@) <) — @) =0, €aD.
—

Hence by the maximum principle Theorem 3.17 (ii), u + v < 0 on D. Taking
supremum over all such u and v, we get
Hpp + Hp(—¢) <0on D,
thus Hpp < — Hp(—@) on D as desired.
[]
The second lemma enables us to ‘globalize’ barriers by allowing a bit more space.
Lemma 4.5: Bouligand’s Lemma
Let {, be a regular boundary point of a domain D, and let N, be an open neigh-
bourhood of {,. Then, given € > 0, there exists a subharmonic function b, on D
such that
(i) b.<0onD.
(i) b, < —1on D\N,.
(i) liminfb.(z) > —e.
kel )
Proof:
We may suppose that {, Z oo (otherwise we may apply a conformal mapping).
Since {, is regular, there exists a neighbourhood N of {, and a barrier b on
D N N by the definition of barrier.
Let A = A((,, p), where p is chosen sufficiently small so that A C N N N,,.
Then the normalized Lebesgue measure on dA is a regular measure (since if y
is a finite Borel measure on a metric space X then y is regular), so we can find
a compact set K C D N JdA such that
L := (D noA)\K
has measure smaller than e. Since L is open in dA, using Theorem 1.6 (i1) we
get
lim P,l;(z)=1,7€L.

Z—1,2€D
Now put m := —sup b so that m > 0. Then forn € D N JdA,

K
b(n)

b o)

lim sup (ﬁ—PAIL(z)> <Q om 0. nek <-1.
z—=n,z€bnA ~ M 0-1, neL

Hence if we define b, on D by

) -1, on D\ A
then by the gluing theorem Theorem 2.11 b, is subharmonic on D. Clearly
b, <0onDand b, < — 1 on D\N,,
proving (i) and (ii). Finally, using the definition of b, in the first inequality and
the definition of barrier in the equality, one has
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b
lim infb,(z) > lim (ﬂ _ PAlL(z)> —0-Pu1,(() > — &,
7=¢ =G N m

where the last inequality holds by the fact that, as { is the center of A, the
value of P, 1,({,) is exactly the normalized Lebesgue measure of L, which is
smaller than &.

[]
Proof of Theorem 4.3:

Let € > 0. Since ¢ is continuous at {, by assumption, there exists an open nei-
ghbourhood N, of  such that

ceannNy= @) - o&)| <e
by continuity. Construct b, as in the proof of Lemma 4.5 and set

u:=@(y) —€e+ (M+ C”(Co))bg,
where M := sup | ¢ |. Then u is subharmonic on D, and if { € dD then
oD

) p(y) —€+0, ifcjeaDnNO
lim sup u(z) <

Hence by the definition of Perron function, u < Hp¢ on D. In particular,
lim Hpp(z) > lim infu(z) > ¢() — (1 + M + ¢(&y)),

7={ 7—={
where the first inequality holds since u < Hp¢ on D and the second inequality
holds by rewritting u and using Lemma 4.5 (iii). Since € > 0 is arbitrary, send-
ing € | 0 yields

< o).

lim inf Hyp(2) > ¢(&y). (4.2)

Z—>C0
Repeating the argument with ¢ replaced by —¢, we also have

lim inf Hy(—@)(2) = — @({y).

Z—>§0
By Lemma 4.4, Hyp < — Hp(—¢) and it follows that
lim sup Hyp(z) < ¢(&). (4.3)
Z—>C()
Finally, combining (4.2) and (4.3) yields the desired result.
[
Putting together what we have learned, we obtain the following result.
Corollary 4.3.1: Existence and Unique Solution to the Dirichlet Problem
Let D be a regular domain and let ¢ : dD — R be a continuous function. Then
there exists a unique harmonic function 4 on D such that

liné} h(z) = @) V¢ € aD.

Proof:
Uniqueness has been established in Theorem 1.5, existence follows from sett-
ing h := Hpp and applying Theorem 4.1 and Theorem 4.3.

[
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For the sakeness of simplicity, we shall denote DP the abbrivation of the Dirichlet
problem whenever necessary.
Remark 4.2: Regularity Is Necessary and Sufficient for Solvability of DP
There is also a converse to Theorem 4.3, which means regularity is not only
sufficient to guarantee the solvability of the Dirichlet problem, but also nece-
ssary. Thus Corollary 4.3.1 is, in some sense, the best possible result. o

4.2 Criteria for Regularity
Although the results of the previous section appear to solve the Dirichlet problem
completely, they leave one important question unanswered, namely, how to tell
whether a given boundary point of D is regular? In this section we examine some
geometric criteria for the existence and non-existence of barriers.
Theorem 4.6: Simply Connected Domain Smaller than C* Is Regular
If D is a simply connected domain such that C*\ D contains at least two points
then D is a regular domain.
Proof:
We need to show that every boundary point of D is regular. Given { € aD,
pick §; € 0D\{{,}. Applying a conformal mapping to the sphere, we can
suppose, without loss of generality, that {; = 0 and {; = 0. Then D is a
simply connected domain of C;\ {0}, so by Corollary 1.1.1 there exists a
holomorphic branch of log z on D. Put N := A(0,1) and define » on D N N by

1
b(z) = Re< ),z eDAN.
log 7z

Then b clearly satisfies all the conditions of being a barrier at 0.

[

This result can be ‘localized’ to obtain a sufficient condition for regularity of a sin-
gle point.
Theorem 4.7: Boundary Point in Non-Trivial Component Is Regular
Let D be a subdomain of C®, let {, € dD, and let C be a component of 0D
which contains §,. If C # {{,} then {, is regular.
Proof:
Choose {; € C\{{,}. Again we can suppose that {, = 0 and {; = o0. Then no
closed curve in C*®\ C can wind around any point of C, otherwise it would dis-
connect C. Hence, Cauchy’s theorem holds in C*®\ C, and we can repeat the
proof of Theorem 1.1 and Corollary 1.1.1 to obtain a holomorphic branch of
log z there, and hence on D. Repeating the proof of Theorem 4.6 yields the de-
sired result.
[]
At the other extreme, here is a condition for irregularity.
Theorem 4.8: Boundary Point with Polar Neighbourhood Is Irregular
Let D be a proper subdomain of C* and let {, € 0D. If there exists a neighbo-
urhood N of {, such that D N N is polar, then ( is irregular.
Proof:
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Suppose, if possible, that there exists a barrier b for {;. We can assume that b is
defined on D N N, where N is a connected open neighbourhood of {, such that
E := 0D N N is polar. Then by Theorem 3.14 N\ E is still connected, and so it
follows that
DNN=N\E.
Hence by the removable singularity theorem Theorem 3.13 b has a subharmo-
nic extension to the whole of N. Since b < 0 on N \ E, we have
max(0,b) = O n.e.on N,
so the same equality persists everywhere by the upper semicontinuity of b, and
thus b < 0 on N. Moreover,
b(&,) > lim supb(z) > 0,
z={o
where the first inequality holds by upper semicontinuity and the second holds
by the definition of barrier (ii). By maximum principle Theorem 3.17 b =0
on N, which contradicts the definition of » < QO on D N N.
[]
Theorem 4.7 and Theorem 4.8 between them provide practical tests for regularity
and irregularity which cover the most commonly occurring cases. The next result,
though less easy to apply, actually gives a complete characterization of regularity.
Theorem 4.9: Criterion for Regularity
Let D be a proper subdomain of C* and let {, € dD. Set K := C*\D. Then
the following statements are equivalent:
(a)  (yis aregular boundary point of D.
(b) K is non-thin at {,.
If in addition that co € D then (a) and (b) are also equivalent to
(¢) Kisnon-polar and p,({,) = I(v), where v is the equilibrium measure for
K.
Proof:
Since both (a) and (b) are invariant under conformal mapping (by Remark 3.7)
we can suppose from the start that oo € D so that K C C. We shall prove the
implications (a) = (b) = (c) = (a).
Step I: (a) = (b)
Suppose that {, is a regular point for D with barrier b, let u be a function subh-
armonic on a neighbourhood of ,, and take « such that
limsup u(z) < a. (4.4)
z—=L0,2€K\{{p}
Then there exists 7 > 0 such that if A = A({, r), then u is subharmonic on a
neighbourhood of A and u < @ on A N (K \{&} ) Decreasing r if necessary,
we can also suppose that b is defined on a neighbourhood of A\K. Then
{¢€0A\K : u(¢) > a}
is a compact set on which b < 0, so there exists ¢ > 0 such that
u+tb < aonodA\K.
Now for § € d(A\K)\{{,},
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. (u +1tbh)(¢), ¢ e€0dA\K
1 b < <
i sap (e 1h)(a) < {u@), ce@ankng S °

Hence by the extended maximum principle Theorem 3.17 (ii),
u+th <aonA\K.
Since lim b(z) = 0, it follows that

z—{p
lim sup u(z) < a.
7—8p.2€A\K

Combining this with (4.4) yields

lim sup u(z) £ a.

7—{0.2#80
Hence, by the submean inequality, u({,) < a. As this holds for all # and « sati-
stying (4.4), we conclude that K is non-thin at {, from definition.
Step II: (b) = (¢)
Suppose now that K is non-thin at {,. From Theorem 3.25 it follws straightf-
orward that K must be non-polar. Moreover, if v denotes the equlibrium meas-
ure of K, then by Frostman’s theorem Theorem 3.7 (i1) the set

E:={z€K:p)>I1v)}
is an F polar set. Using Theorem 3.25 once more, E is thin at {, and therefore
K\ E must be non-thin at {,. Since p, = I(v) on K \E by Theorem 3.7 (ii), it
follows that p ({,) = I(v).
Step III: (¢) = (a)
Assume that p,({,) = I(v). Define b : D — [—00, 00) by
b(z) :=1w) = p,(2).
Then b is subharmonic on D, and by Frostman’s theorem Theorem 3.7 (i)
b < 0 there. Since b(co) = — o0, the maximum principle Theorem 3.17 (ii)
implies that in fact b < 0 on D. Moreover,
liminfb(z) > Iw) — p,({y) =0

Z—>§0
by assumption (c), thus b is a barrier and ¢ is regular for D.

[]

This result will not be of much practical use until we have a general criterion for
thinness (see Section 5.4). However, it does have some interesting theoretical
consequences. The equivalence of (a) and (b), for example, explains the close
correspondence between the earlier theorems in this section and the results about the
thinness in Section 3.8. More importantly, the equivalence of (a) and (c) shows that
the set of irregular points is always small.

Theorem 4.10: Kellogg’s Theorem

Let D be a proper subdomain of C*. Then the set of irregular boundary points
is an F polar set.

Proof:

By first performing a conformal mapping. We can suppose that co € D. Set
K := C*®\D.
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Case I: K 1s polar
If K is polar, then by Theorem 4.8 every point of dD is irregular, and the result
is clear.
Case II: K 1s non-polar
If K 1s non-polar, then by step Il in the proof of Theorem 4.9, the set of irreg-
ular points is exactly

{z€K:p()>1W)}.
where v is the equilibrium measure for K, and this is an F polar set by an appl-
ication of Frostman’s theorem Theorem 3.7 (ii).

[

This result has a beautiful and important consequence.
Corollary 4.10.1: Solution of the Generalized Dirichlet Problem
Let D be a domain in C* such that dD is non-polar, and let ¢ : 0D — R be a
bounded function which is continuous n.e. on dD. Then there exists a unique

bounded harmonic function 4 on D such that
lim h(z) = @({) forn.e. { € dD.
7—¢

Remark 4.3: Non-Polarity Is Necessary but Is Not a Great Restriction
In order for this result to make sense, it is necessary to assume that dD is non-
polar. However this is no great restriction, because if dD were polar, then by
the extended maximum principle Theorem 3.17 (a), every bounded harmonic
function on D would be constant anyway. ¢

Proof of Corollary 4.10.1:
Step I Existence
Set h := Hp@. Then by Theorem 4.1 £ is harmonic and bounded on D. More-
over, by Theorem 4.3,

li_r)r; h(z) = (£), { € OD\(E, U E),

where E; is the set of irregular boundary points of D, and E, is the set of points
of discontinuity of ¢. Now E| is polar by Theorem 4.10 and E, is polar by ass-
umption. Moreover, both E, and E, are Borel sets, thus

lirrcl h(z) = @) forn.e. { € aD.

7

Step II: Uniqueness
Suppose that &, and &, are two solutions. Then /4, — h, is a bounded harmonic

function on D satisfying
lim(h; — h,)(z) = 0 forn.e. { € dD.
bandd

Applying the maximum principle Theorem 3.17 (b) to =(h; — h,) we deduce
that h, = h, on D.
[]
The fact that this generalized form of the Dirichlet problem can always be solved
makes it more suitable for many applications than the original form. Indeed, it will
provide the basis for much of the rest of this chapter.
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4.3 Harmonic Measure
When studying the Dirichlet problem on a disc A in Section 1.2, we not only prov-
ed that a unique solution exists, but also gave an explicit formula for it. In the
notation we have now developed, this formula may be succinctly expressed by saying
that, if ¢ : 0A — R is a continuous function, then
Hyp = Pyp on A,
where H,¢@ and P, ¢ are respectively the Perron function and the Poisson integral of
@. We now seek to extend this to more general domains. While the Perron function
has already been defined for an arbitrary domain, we currently lack an appropriate
analogue for the Poisson integral. To help define this, we introduce the notion of
harmonic measure.
Definition: Harmonic Measure and Generalized Poisson Integral
Let D be a proper subdomain of C*, and denote by B (dD) the o-algebra of
Borel subsets of dD. A harmonic measure for D is a function
@p : D X B(0D) — [0,1]

such that
(@) Foreachz € D, the map B — wp(z, B) is a Borel probability measure
on dD.

(b) Ife:0D — Risa continuous function, then Hy¢p = Ppe on D, where
Py 1s the generalized Poisson integral of ¢ on D given by

Ppo(z) := [ ¢()dwp(z,8),z € D.
oD
To those who may be concerned, w, is a transition probability kernel. Moreover, as

in the construction of the harmonic measure all one needs is the generalization of the
Poisson integral from P u to Ppu, in later applications we will implicitly refer to the
(generalized) Poisson kernel whenever we revoke the definition of harmonic measure
(b).
Example 4.2: Example for Harmonic Measure

Consider A := A(0,1). By Theorem 1.6 (1),

1
dw,(z,$) = 2—7[P(Z,C)IdCI

is a harmonic measure for A. This conciles the two definitions we have for the
Poisson integral Py¢p. ¢
Since the definition of harmonic measure has been concocted to fit the desired con-
clusion, it is really only justified once that we have proved the following theorem.
Theorem 4.11: Existence and Uniqueness for Harmonic Measure
Let D be a domain in C* such that dD is non-polar. Then there exists a unique
harmonic measure wp, for D.
The case when dD is polar is less interesting, see Exercise 1 for example.
Proof of Theorem 4.11:
Denote C(0D) the space of continuous functions ¢ : 0D — R.Ifa;,a, € R
and ¢, ¢, € C(0D), then by linearity
aHppy + ayHpp,
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is a solution to the generalized Dirichlet problem with boundary value
Ay + A,
(see Corollary 4.10.1), so by the uniqueness it follows that
Hp(a,9, + aypy) = o Hpgy + oy Hpg, on D.

Moreover, it 1s clear from the definition of Perron function that

@ >20o0ndD = Hyp > 0onD,

@ =1lonoD = Hpp =1onD.
Hence, for each z € D, the map ¢ — Hp@(2) is a positive linear functional on
C(0D) sending the constant function 1 to 1, so by the Riesz representation the-
orem (see Remark 3.5), there exists a unique Borel probability measure y, on

0D such that

Hpop(z) = [ @du,, ¢ € C(0D).
oD
Setting

wp(z,B) := u(B),z € D,B € (D),
we see immediately that the definition of harmonic measure holds. This proves
the existence of wy,, the uniqueness follows from the uniqueness part of Riesz
representation theorem (see Remark 3.5).

[

Harmonic measure is defined so that H,p = Pp¢ for all continuous functions
@ 0D — R.

The next result shows that, as a bonus, the same relation extends to a much wider

class of functions ¢.

Theorem 4.12: H,p = Pp¢ for All Bounded Borel Function ¢ On Non-Polar 0D
Let D be a domain in C* such that @D is non-polar. Then

Hpp = PpponD
for every bounded Borel function ¢ : 0D — R.
This gives us new information, even when D is a disc.

Remark 4.4: Hy¢ 1s Linear on Bounded Borel Functions
As Hp 1s always harmonic on D by Theorem 4.1, the same must be true for
Pp@. In the same direction, since the map ¢ — Pp@ is clearly linear on boun-
ded Borel functions, the same holds for ¢ — Hj,@, which was not obvious
before. o

Proof of Theorem 4.12:
We first show that Hy¢ > Pp@ on D when ¢ is bounded u.s.c. on dD and then
show that H,¢ < Pp on D when ¢ 1s bounded l.s.c. on dD, and then we shall
remove the u.s.c. and l.s.c. conditions.
Step 1.1: Hprp > Ppp on D when ¢ i1s bounded u.s.c. on 0D
First suppose that ¢ is bounded and u.s.c. on dD. Choose continuous functions
@, : 0D — R such that ¢, | ¢. Then we know that

Pp@, = Hpg,

by Theorem 4.11 in conjunction with the definition of harmonic measure.
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Thus Py, is harmonic on D for each n > 1 by Theorem 4.1. From the mono-
tone convergence theorem we know that
Ppp, | Ppp on D
and so by Harnack’s theorem Theorem 1.14 P, is harmonic on D. Let
w € D and ¢ > 0 be arbitrary. By the definition of Perron function, for each
n > 1 we can find a subharmonic function u, of D such that
lim sup u,(z) < ¢,(), ¢ € oD, and u,(w) > Hpp, (W) —
-l

Define u on D by

&£
5.

u: = PDCD + Z (un - HD¢n)-
n>1
Since Pp is a harmonic function and (u,, — Hp@, ) is a negative subharmonic
function for each n, it follows that u is subharmonic on D. Moreover, if { € 0D
then for each n > 1 one has
lim sup u(z) < lim sup (PD(/) +u, — Hqun)(z)
= 7—(
< lim supu,(z)
=¢
< @,(0)
where the first inequality holds since (1, — Hpg,) 1s negative thus removing it
results in a greater value, the second inequality holds since
Hqun = PDgon l PD(p
and thus Ppp — Hpgp, < 0. Finally, the last inequality holds by the definition
of Perron function.
An application of the monotone convergence theorem tells us that
lim sup u(z) < @(&).
=¢
Hence by the definition of Perron function, Hy¢ > u on D. In particular

Hip () = 1) = Pogp(0v) = 3, = = Pop() — .
n>1
where the last equality holds by the sum of geometric series. Since € and w are
chosen arbitrarily, it follows that
Hpp > Ppp on D.
Step 1.2: Hpp < Ppe when ¢ is bounded l.s.c. on 0D
Now suppose that ¢ is bounded and L.s.c. on dD. Applying the argument we
did in Step 1.1 to —¢, we obtain
Hp(—¢) = Pp(—¢) on D.
Hence, using Lemma 4.4 in the first inequality and linearity of the generalized
Poisson integral in the last we obtain that
Hp(p) < — Hp(—¢) < — Pp(—¢) = Ppp on D.
Step II: H@ = Ppg when ¢ is an arbitrary bounded Borel function on 0D
Finally, suppose that ¢ is an arbitrary bounded Borel function on dD. Let
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w € D and € > 0. Then, as the Borel probability measure wp(w, - ) is regular,
we can appeal to the Vitali-Carathéodory theorem* to obtain an u.s.c. func-
tion y, and a l.s.c. function y, on 0D such that

v, < ¢ <y, and { (v, — vy ) (Odawp(w, &) < €.
oD
Replacing v, by max (y/u, — ||qa||oo) and y, by min (l//f,“(plloo), we can further

suppose that y;, and y, are bounded on dD. Then by Step 1.1 and Step 1.2,
Hpy, 2 Ppy;, and Hpy, < Ppyr, on D.

Therefore,
Hpp(w) < Hpy,(w) (Vitali—Carathéodory Theorem (a))
< Ppyr(w) (Step1.2)
< Ppy,(w)+e (Vitali—Carathéodory Theorem (b))
< Ppop(w) + ¢ (Vitali-Carathéodory Theorem (a))
and
Hppw) > Hpy,(w) (Vitali—Carathéodory Theorem (a))

> Py, (w) (StepL.1)
> Ppy,(w) — ¢ (Vitali—Carathéodory Theorem (b))

> Ppo(w) — ¢ (Vitali-Carathéodory Theorem (a))
Since w and € are arbitrary, we conclude that H,¢ = P on D.
[]
From this result we can deduce a characterization of harmonic measure which exp-
lains its nomenclature.
Theorem 4.13: Characterization of Harmonic Measure
Let D be a domain in C* such that dD is non-polar and let B be a Borel subset
of dD. Then
(a)  The function z = wp(z, B) is harmonic and bounded on D.
(b) If{ is a regular boundary point of D which lies outside the relative boun-
dary of B in dD, then

ling wp(z,B) = 15(0).

Moreover, if the relative boundary of B in dD is polar, then the function
@p( -, B) is uniquely determined by (a) and (b).
Proof:

4 Vitali-Carathéodory Theorem: Suppose that 4 is a regular Borel measure on a topological
space X, and that ¢ : X — R is an integrable function. Then, given € > 0, there exists an u.s.c.
function y, : X = [—00, 00) and a l.s.c. function y, : (—o0, 00] such that

(b) I (w, —y)du < e.

X
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By Theorem 4.12 we have

wp(z, B) = Hplp(z), z € D.
Therefore (a) follows immediately from Theorem 4.1. Moreover, if { satisfies
assumptions in (b), then 15 is continuous at £, and so the conclusion of (b) will
follow from Theorem 4.3. Finally, the uniqueness part of the result is an imm-
ediate consequence of Corollary 4.10.1.

[

Remark 4.5: Harmonic Measure and Solution to Generalized Dirichlet Problem
This theorem says that, provided the relative boundary of B in dD is polar, the
function wp( -, B) is exactly the solution of the generalized Dirichlet problem
with boundary date ¢ = 1. ¢

This provides a quick way of identifying the harmonic measure in a number of im-

portant special cases — one simply ‘spots’ a harmonic measure with the right

boundary values, see the examples below.

Example 4.3: Some Examples of Harmonic Measure

Domain D Borel Subset B C 0D Harmonic Measure wp(z, B)
1 z—-b
(Im(2) > 0} [a. b] —arg(<—)
z z—a
2 14z
{|z| < 1,Im(z)>0} {Izl = 1,Im(z)>0} —arg(1 >
/s -z
Re(z) —a
{a < Re(z) < b} {Re(z) = b}
b—a
argz —a
{a <argz <f} {largz = p} f—a
log(|z|/r)
{r<lz| <s} {lz] = s} log(s/7)

Theorem 4.13 also has another interesting consequence.
Corollary 4.13.1: Mutual Absolute Continuity for Harmonic Functions
Let D be a domain in C* such that dD is non-polar. Then the measures
{(UD(Z’ . )}zeD
are mutually absolutely continuous. In fact, if z, w € D then for B € 93(dD),
a)D(Z’ B) S TD(Za W)G)D(W, B):
where 7,,(z, w) is the Harnack distance between z and w.

Proof:
We recall the definition for Harnack distance that

h(z) < 7z, Wh(w)
for every positive harmonic function 4 on D. The result follows by applying
this with & := wp( -, B).

[]
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It thus makes sense to describe subsets of dD as having harmonic measure zero wi-
thout referring to a particular base point z € D. The next result gives some examples
of these.

Theorem 4.14: Borel Polar Subset Has Harmonic Measure Zero
Let D be a domain in C* such that dD is non-polar. Then every Borel polar
subset of dD has harmonic measure zero.
Proof:
Let E be a Borel polar subset of dD. If u is a subharmonic function on D such
that
lim sup u(z) < 15(0), ¢ € oD,
=¢
then by the extended maximum principle Theorem 3.17 (b) u < 0 on D. It fol-
lows that Hy 1, = 0 on D, and thus by Theorem 4.12 Pl =0 on D.
[]

It is remarkable to ask whether, conversely, every set of harmonic measure zero m-
ust be polar. The answer is unfortunately NO, though this will only become apparent
later.

We now prove two basic general inequalities involving harmonic measure, one for
subharmonic functions and one for holomorphic functions. Under the perspective of
Theorem 4.14, the first of these is a generalization of the extended maximum
principle.

Theorem 4.15: Two Constant Theorem for Harmonic Measure

Let D be a domain in C* such that dD is non-polar, and let B be a Borel subset

of dD. If u is subharmonic on D and satisfies

u(z) <M,z € D,and lim supu(z) <m,{ € B,
¢
where M and m are constants. Then
u(z) < mwp(z, B) + M(1 — wp(z, B))

forz € D.
Proof:

Set ¢ :=mly+ M(1 — 15) on 0D. Then

lim supu(z) < @) V¢ € oD
=¢
by assumption. Thus by the definition of Perron function, u < Hp@ on D.
Using Theorem 4.12 in the first inequality gives
u < Ppp =mPply+ M(1 —Pply) onD,
which yields the desired inequality.
[]

Theorem 4.16: Subordination Principle for Harmonic Measure

Let D, and D, be domains in C* with non-polar boundaries, and let B, and B,

be Borel subsets of dD; and dD,, respectively. Let

f:DijuB, - D,UB,
be a continuous map which is meromorphic on D;, and suppose that
J(Dy) C Dyand f(B)) C B,.
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Then
a)D2(f(Z),Bz) > wp (2, By),z € Dy,
with equality holds if fis also a homeomorphism of D; U B, onto D, U B,.
Proof:
Setgp, :=1-1 B, and @, :=1—1 B, 0N 0D, and dD,, respectively. Let u be a
subharmonic function on D, such that
lim sup u(z) < @,(¢), { € 0D,.
=¢
Then by Corollary 1.1.3 u o f'is subharmonic on D, thus
lim sup (u < f)(2) < ¢(£), ¢ € 9D,
z=¢
and therefore
uof < Hp ¢y on D;.
As this holds for all such u, we deduce that
(Hp,p,) o f < Hp @, on D.
By Theorem 4.12,
Hqu)j = Pqu)j =1- PDlej,j =1,2
and hence
(PD2132) of > PDl ° 1B1 on D,
which is the desired inequality. Finally, if fis in addition a homeomorphism of
D, U B, onto D, U B,, then we can apply the same argument to f~! to obtain
the equality.
[]
Corollary 4.16.1: Domain Monotonicity for Harmonic Measure
Let D, and D, be domains in C* with non-polar boundaries, and suppose that
D, C D,. If B is a Borel subset of 0D; N 0D, then
a)Dl(z, B) < a)Dz(z,B), z €Dy
Proof:
Take f : D; UB — D, U B to be the inclusion map in Theorem 4.16.
[]
As an application of these ideas, we shall prove a theorem about asymptotic values.
Definition: Asymptotic Value
Let ¢ be a function defined on an unbounded domain D in C. Then a is an
asymptotic value of ¢ if there exists a path I : [0,00) — D such that
lim I'(#) = o0 and lim ¢ (T'(1)) = a.
— 00

—00

Theorem 4.17: Asymptotic Value for Subharmonic Growth on Sector of Half-Plane
Let u be a subharmonic function on H := {z : Im(z) > 0} such that u < 0 on
H. If a € [—00,0) is an asymptotic value of u, then Va € (0,7/2],
lim sup u(z) < d a,
7—00,2ES,, 4
where §,, 1s the sector {z EH:a<Largz <7 — a}.
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Proof:

LetI': [0,00) — H be a path such that
lim I'() = o0 and lim ¢ (I'(7)) = a.

=00 =00

Take a such that a < a < 0 and choose R > O sufficiently large such that
u < aonl' N Dg, where

Dp:={z€H:|z| >R}.
We may also suppose that I meets the circle { | z| = R}. Fix z € Dp\I', and let
W be the component of Dg\I” containing z. Then since u < @ on dW \ 0Dy, the
two-constant theorem Theorem 4.15 gives

u(z) < awy(z,0W\oDy).
We now seek to estimate the right hand side of this inequality. Notice that since
a < 0, this means finding a lower bound for the harmonic measure. To this end

we use Corollary 4.16.1 in the second inequality and obtain
wy(z,0W\0Dg) = 1 — wy(z,0W N oDg)

> 1 — wp,(z,0W N 0Dg)

= wp, (2, 0DR\OW) .
Now dW cannot meet both (—oo, — R] and [R, o0), for then I would disconn-
ect the connected set W. To this end we consider two cases.
Casel. oWN(—o0,—R] =@.
If so, using Corollary 4.16.1 in the first inequalitty, Theorem 4.12 in the equa-
lity, and definition of the sector in the last inequality gives
wp, (2, 0DR\OW) > wy, (z,(—o00, — R])

= Hp,l(—oo,-r)(@)

1
>—argz—Hp 1(2)

/4
where Cg := {{ € 0Dy : |{| = R}.
Case II: oW N (R, 0] = .
If so, a similar argument as in the first case shows that

1
wp, (2, 0DR\OW) > ;(n —argz) — Hp 1¢(2).
Finally we can estimate the right hand side of u(z) < Ea)W(z, 6W\6DR).

: -
Claim: lim sup u(z) < a—.
7—00,ZES,, n
Combining the estimates in the two cases we derive the conclusion that

u(z) < d — min (arg Z,m — arg z) - (,7HDR1CR(z).
/1

Note that, although this inequality was proved under the assumption that
z € Dg\T, it evidently holds if z € D, N I" as well. Hence, in particular,

~a -
u(z) <a——aHp1c(2),2 € DgN S,
T
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Finally, 1, = 0 on a neighbourhood on oo, which is a regular boundary point
of D, so by Theorem 4.3 lim Hp, 1.(z) = 0. It follows that

=0
lim sup u(z) < 52,
7—>00,2ES, 42
and since @ > a is chosen arbitrarily, sending a | a gives the desired result.
[]
Remark 4.6: Asymptotic Bound in Theorem 4.17 Is Sharp
The harmonic function u = — arg z, which has —z as an asymptotic value,
shows that the above bound is sharp. ¢
Of course, the function in Remark 4.6 also has many other asymptotic values. By
contrast, a bounded holomorphic function on H has at most one. This is proved in the
following result.
Corollary 4.17.1: Lindelof Theorem
Let f be a bounded holomorphic function on H := {z : Im(z) > 0}. If a is an
asymptotic value of f then, for each sector S, as in Theorem 4.17, f(z) = a
uniformly as z — oo in S,,. In particular, f can have at most one asymptotic
value.
Proof:

Applying Theorem 4.17 with u := log(%>, where M =sup | f—a|.

H

[]

These results provide a good illustration of how many problems in potential theory

and complex analysis can be reduced to question about harmonic measure. It is

therefore of great importance to be able to compare, or at least estimate, the harmonic

measure for as many domains as possible. Simple cases can be treated using

conformal mapping. As an illustration, we now compute the important example of
harmonic measure for the half plane H.

Theorem 4.18: Harmonic Measure for Half-Plane
LetH := {z e C:Im(z) > O}. If B is a Borel subset of R. Then

1 y
oyx +iy,B) =— dt,x +iy € H.
e y, B) ”[B( 2+ 2 y

Proof:
Set A := A(0,1) and let f : H — A be the conformal mapping

fo)=""L:eH
Z :=—,Z .
z+1

Then one has, using Theorem 4.17 conformal case in the first equality, that
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1 [ 1-]f@
wy(z, B) = 0, (f2), f(B)) = — | ————|d(]
; ol ) 27 )iy 10— F2) 12
1 1- 2
_ 1 1f@)] | rolds
22 )p | f(t) - F(2)]
T J)p |Z—f|2

where the second equality holds by Poisson’s integral, the third equality holds
by conformal mapping, and the last holds by conformal invariance. Substituti-
ng z := x + iy € H yields the desired result.
]
The problem of estimating harmonic measure for more complicated domains is va-
st subject, well beyond the scope of this book. We shall content ourselves with one
general estimate for simply connected domains, which will be a by-product of the

Carleman-Milloux theorem in Section 4.5. We conclude this section by relating the

harmonic measure to the equilibrium measure.

Theorem 4.19: Equilibrium and Harmonic Measure Agree on Component with co
Let K be a compact non-polar subset of C. Then its equilibrium measure v is
given by

V= wp(o0, - ),
where D is the component of C*®\ K containing oo.

Proof:

Denote w for wp(oo, - ) so w is a Borel probability measure on K by definition.
If we define

_ Jru() —p ) +1), z€ D\{co}
u(z) ;==

I(v), 7=00

then u is subharmonic on D and
lim supu(z) < p,(§) V¢ € oD.
¢

Denote ¢,, := max(p,,, — n) on dD, it follows that

u < HD¢n = PDqu OnD:
where the equality holds by Theorem 4.12. Sending n — oo we deduce that

u(z) < [ Po(&)dwp(z,{), z € D.
oD

In particular, setting z = co we obtain /(v) < I(w). This implies that @ is an

equilibrium measure for K, and by uniqueness Theorem 3.21 it follows that

U = w, as desired.

[

4.4 Green Functions
The harmonic measure of a domain is intimately related to another important invar-
iant, the Green function. In essense, a Green function is a family of fundamental
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solutions of the Laplacian, each of which is zero on the boundary. Here is the precise
definition.
Definition: Green Function
Let D be a proper subdomain of C*. A Green function for D is a map
8p:D XD — (-0, 0]
such that Vw € D one has
(@) gp(-,w)isharmonic on D\ {w}, and bounded outside each neighbourh-

ood of w.
(b) gpw,w)=occandasz—>w
zw) log|z| + O(1), W = oo
W) =
5Dl “log|z—w|+O0(1), w# o

(c) gpz,w)— 0asz— {forn.e. ¢ € dD.
Example 4.4: Green Function for Unit Disk
Consider A := A(0,1) then

1 —
galz, w) :=log | - |
Z—w
is a Green function for A. o
As usual, to justify the definition we now verify the existence and the uniqueness.
Theorem 4.20: Existence and Uniqueness of Green Function
If D is a domain in C* such that dD is non-polar, then there exists a unique
Green function g, for D.
Once again, the case when dD is polar is less interesting, see Exercise 1.
Proof of Theorem 4.20:
Step I: Uniqueness
Suppose that g, and g, are two Green functions for D. Given w € D, define
h(z) := gi(z,w) — &z, w), z € D\{w}.
Then by the definition of Green function (a), / is harmonic and bounded on
D\ {w}, and by (b) lirrél h(z) = 0 for n.e. { € dD, so by the extended maximum
7>

principle Theorem 3.17 (a),
h = 0on D\{w}.
As w is chosen arbitrarily, it follows that g, = g, on D X D.
Step II: Existence
By the definition of Green function (b), we shall prove the existence of w = oo
and w # oo respectively.
Step I1.1: gp(z,w) exists whenw = co € D
Set K := C®\D, so that K is a compact non-polar subset of C, and let v be its
equilibrium measure. If we define

gD(Z 00) = {py(Z) —-Iv), z € D\{oo}

00, =00
using Frostman’s theorem Theorem 3.7 in each condition, (a) holds by using
in addition Theorem 3.1 (i) and (b) holds by using addition the definition of

gD(Z, W).
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Step 11.2: gp(z, w) exists when w # oo, w € D.
Now, forw € D, w # oo, define

1
gp(z, w) = g5<—, oo), z€D
—w

where D is the image of D under the map z — (z — w)~!. By Example 4.4
applying to the domain D := A(0,1), result follows as z and w are arbitrary.
[]
We now start to investigate the properties of Green functions, the most elementary
one is its positivity.
Theorem 4.21: Green Function Is Positive
Let D be a domain in C* such that @D is non-polar. Then
gp(z,w) > 0Vz,we D,
Proof:
Fix w € D, and define
u(z) :==—gp(z,w), z € D.

Then u is subharmonic and bounded above on D and lim u(z) = O for n.e.
fandd

¢ € dD. Hence by the extended maximum principle Theorem 3.17 (b) u < 0
on D. Moreover, if we were at the case u(z) = 0 for some z € D, then by the
standard maximum principle Theorem 2.5 (i) it would follow that u = 0 on D,
which is impossible! For example
uw) :=—gpw,w,) = — 0
by definition. Hence # < 0 on D and the positivity follows from the definition
of u.
[]
As with the Harnack distance and harmonic measure, Green function admits a sub-
ordination principle for meromorphic functions.
Theorem 4.22: Subordination Principle for Green Function
Let D, and D, be domains in C* with non-polar boundaries, and let
f : D; = D, be a meromorphic function. Then

&p,(f(2), fW)) = gp (z,w), z,w € Dy,
with equality holds if and only if f is a conformal mapping of D, onto D,.
Proof:
By the definition of Green function, we will consider the case w = oo and
w # oo respectively. Then in the last step we prove the case for conformal
mapping.
Step I w # o0
Suppose so and define
u(z) := gp (2, w) — gp, (f(2), fW)), z € D\ {w).
Then u is subharmonic on D\ {w} and u is bounded above outside each neigh-
bourhood of w. Moreover, as z = w,

f(@)—fw) | L Oo(1) =
—Ww

u(z) = log log|f'(w)| + O(1),
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so in fact u is bounded above on D;\ {w}. Finally, by Theorem 4.21 gp, >0

hence
lim sup u(z) < lim gp,(z,w) =0 forne. £ € dD,.

= =€
Hence by the extended maximum principle Theorem 3.17 (b), u < 0 on
D \{w}, which gives the desired inequality.
Step Il w = 0
Suppose so, recall Step I1.2 in the proof of Theorem 4.20, we have
8,(2:00) = g75,(1/2,0),

where 51 is the image of D, under the map z — —. Hence the result follows
<

by applying Step I to the function
2= f(1/z) : Dy = D,.
The case when f(w) = oo is treated similarly.
Step III: Equality when fis conformal
Finally, if f is conformal from D, onto D,, applying the inequality we just pro-
ved in the first two steps to fand f~! respectively yields the desired result.
[
This result allows us to compute Green functions for some simple domains by me-
ans of conformal mapping. A few examples will be given in Example 4.5.
Another consequence of Theorem 4.22 is that g, increases with D.
Corollary 4.22.1: Domain Monotonicity for Green Function
Let D, and D, be domains in C* with non-polar boundaries. If D; C D, then
ng(Za W) S gDz(Z’ W)a ,weE Dl'
Proof:
Take f : D; — D, to be the inclusion map.
[]
In fact g, increases continuously with D, in the following sense.
Theorem 4.23: Green Function Is Continuous in Increase of Domain
Let D be a domain in C* such that dD is non-polar, and let { D, }, be subdo-

mains of D such that D, C D, C --- and UD" = D. Then

nx
lim g, (z,w) = gp(z, W), z,w € D.

n—-oo

Proof of Theorem 4.23:
Fixw € D. Thenw € D, for some n, and by renumerating the sequence

{D,},>1, we may suppose that n, = 1. For n > 1 define
h,(2) := gp(z,w) — &p, (2, w), 2 € D,\{w}.
Then A, is harmonic on D, \ {w} and bounded near w, so by the removale sin-
gularity theorem Corollary 3.13.1 in conjunction with Remark 3.1 (i), &,
extends to be harmonic on D,. Now Corollary 4.22.1 implies that
h, > h,., on D, for each n,
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thus u := lim A, is subharmonic on D by Theorem 2.12. Since

n—->oo
h < gp(-,w)on D, for each n,
it follows that
u < gp(-,w)onD.
Hence u 1s bounded above on D, and also
lim sup u(z) < 0 forn.e. { € oD
7=
by the definition of Green function. Therefore using the extended maximum pr-
inciple Theorem 3.17 we have u < 0 on D. This tells us that

lim inf g, (z,w) > gp(z,w), z € D.

n—-oo

But from Corollary 4.22.1 we also have
lim sup gp, (z,w) < gp(z,w), z € D.

n—-oo

Combining the two displays yields the desired result.

[
Example 4.5: Some Examples of Green Function
Domain D Green Function gp(z, w)
2 =
{lz] <p} log p-—zw
Pz —=w)
{im(z) > 0} log Z—W‘
—w
{Re(z) > 0} log| =™
—w
i *+w”
jargz| <o log| >
{ 2a g 7% — wo
T iaz —iaw
IRe(2)| < o | ke
{ 2a 10g eiaz — piaw

For bounded domains there is an integral formula for Green function in terms of the
harmonic measure. In some literature the following result is also known as the
fundamental identity for Green function (or sometimes Green kernel).

Theorem 4.24: Fundamental Identity for Logarithmic Potential

Let D be a bounded domain in C. Then

gD(Z,W)=[ log|{ —wldwp(z,{) —log|z —w]
oD
forz,w € D.

Givenw € D, define ¢, : 0D — R by

¢,(C) :=1log|{—w]|,{ € aD.
Then Ppe,, 1s harmonic and bounded on D and
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lim Py, (z) = ¢,({) forn.e. { € oD.
7=C

Therefore the function
(z,w) = Pp,(2) —log|z —w|
satisfies condition (a), (b), and (c) for being Green function, and so by the
uniquness part of Theorem 4.20 it must be the Green function gp,.
[]
The importance of this formula is that it tells us how g, (z, w) depends on w, which
is the key to proving the following symmetry theorem for Green functions. In view of
the asymmetry way that g, (z, w) was defined, this is perhaps a surprising result.
Theorem 4.25: Symmetry Theorem for Green Function
Let D be a domain in C* such that dD is non-polar. Then
gp(z, w) = gp(w, 2)
forz,w € D.
Proof:
Applying a conformal invariance, we can suppose that D C C. Then D can be
exhausted by an increasing sequence of bounded subdomains {D,},, and by

Theorem 4.23, g, will be symmetric provided that each g;, is symmetric. It is

thus sufficient to prove the result in the case when D is a bounded subdomain
of C.
Fix such a domain D, and let w € D. Define u on D\ {w} by
u(z) := gp(z,w) — gp(w, ), z € D\{w}.
Switching the rdles of z and w in Theorem 4.24 we have

1(2) = gz, w) +loglz = wl = | log|¢ =zl dap(v.0)
oD
for z € D\{w}. By Theorem 2.14, this formula shows that u is subharmonic

on D\ {w}. It also tells us that u is bounded above there. In addition, from the
original definition of u, we have

lim supu(z) < lim gp(z,w) =0
7= =¢

for n.e. { € dD. Hence by the extended maximum principle Theorem 3.17 it
follows that u < 0 on D\ {w}. Thus
gp(z,w) < gp(w,2),z € D.
Finally, since w is arbitrary, result follows.
[]
As part of our definition of Green function,
lim gy (z,w) =0 forn.e. { € dD,

=L
but it is not clear whether the exceptional set depends on w. The next result shows
that it doesn’t, and identifies it precisely.
Theorem 4.26: Criterion for Solvability of Dirichlet Problem via Green Function
Let D be a domain in C* such that dD is non-polar, let w € D, and let { € dD.
Then the following statements are equivalent:
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(@) limgp(z,w)=0.

¢
(b) ¢ is aregular boundary point of D.
Proof:
Step I: (a) = (b)
If lim gp(z, w) = 0 when —g,( -, w) is a barrier at { by definition and so { is
71—

regular.
Step II: (b) = (a)
Conversely, suppose that  is a regular boundary point of D. Let N be a relativ-
ely compact neighbourhood of w in D, and define ¢ : d(D\N) — R by
'_ 0, e oD

wle) = {gD(Z,w), ¢ €oN
Then gp( - , w) solves the generalized Dirichlet problem on D\N with bound-
ary function ¢ (see Corollary 4.10.1), so by uniqueness Theorem 1.5 one has

gp(z,w) = Hp\xy¢(2), z € D\N.

Hence, as ¢ is a regular point for D, and thus also for D\N. By Theorem 4.3 it
follows that

lim g(z, w) = ¢(¢) = 0.

=¢
[]

This result provides a characterization of regular points which is internal to D. This

has some interesting consequences, for example:

Example 4.6: Regularity Is Stable Under Conformal Mapping
If a domain D is regular, then so is every domain D conformally equivalent to
D, regardless of how D is embedded in C®. o

In fact, Example 4.6 is a consequence of the Kelvin transform, see Port and Sidney
Section 4.3.

We now use Example 4.6, in conjunction with the symmetry property of Green fu-
nction, to prove a strong converse to the subordination principle we proved for Green
function in Theorem 4.22.

Theorem 4.27: Characterization of Conformal Mapping via Green Function
Let D, and D, be domains in C* with non-polar boundaries, and let
f : D; = D, be a meromorphic function.
(a)  If there exist distinct points z,, wy € D such that
8D2<f(Z0)’f(W0)) = 8D1(Zoa Wp).
Then gD2(f(z),f(w)) = gp,(z,w) Vz,w € D, and finjective.
(b) Ifin addition D is a regular domain, then f'is also surjective, and is ther-
efore a conformal mapping of D, onto D,.
Proof:
Step I (a)
Define, for z € D\ {w,}, that

u(z) = gp (2. wp) — gp, (f(@). f(Wy)).
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Then u is subharmonic on D\ {w,} and by the subordination principle

Theorem 4.22 u < 0 there. Since, by assumption in (a), u(z,) = 0, it follows

from the maximum principle Theorem 2.5 that u = 0 and hence
&p,(f (@), f(wy)) = gp,(z. wy), z € D.

Now by the symmetry Theorem 4.25 we can switch the roles of z and wy, rep-

eating the argument gives

gp,(f(@). fw)) = gp,(z. W), z,w € D;.
This implies that f'is injective since

zFw=gpz,w) <o (Definition of Green Function (a))
= &p, (f @), f (W)> <0 (Above Display)
= f(2) #f(w) (Definition of Green Function (b))

Step II: (b)

Suppose not, that is, f(D,) # D,. Then an elementary connectedness argument
shows that df (D) N D, # &. Let  be a point in this set, and choose

{z,},>1 C Dy such thatf(z,) — 5. Replacing {z,},> by a sequence, if nece-
ssary, we may also suppose that z, — { € dD,. Then for any w € D,, we have
lim gp, (2, w) = lim g, (£(z,), /(W)

= gp, (1. f(W))

>0
where the first equality holds by (a), the second equality holds by continuity in

Theorem 4.23, and the last equality holds by positivity in Theorem 4.21.
Therefore, by Theorem 4.26 { must be an irregular point of dD,, contradicting
assumption in (b). Thus if D, is a regular domain, then necessarily f(D;) = D,.

[

As an application of this result, we obtain a simple proof of the Riemann mapping

theorem.

Theorem 4.28: Riemann Mapping Theorem
If D is a simply connected proper subdomain of C, then there exists a
conformal mapping of D onto the unit disc A.

Proof:
By Theorem 4.6, D is a regular domain. In particular, dD is non-polar, so D
has a Green function g, by Theorem 4.20. Fix w € D, we define

h(z) := gp(z,w) +log|z —w|, z € D\{w}.
Then & is harmonic on D\ {w} and bounded near w, so by the removable
singularity theorem Corollary 3.13.1 A extends to be harmonic on D. Applying
Theorem 1.1 (i), we can write & := Re( f;) for some holomorphic function f;on
D. Define
@ =G@-w¢" zeD.

Then fis holomorphic on D and f(w) = 0. Moreover,

log|f(z)| = — gp(z,w),z € D,
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which shows that f maps D into A and that
8a(f(2). f(w)) = gp(z.w), z € D.
Theorem 4.27 (b) applies and we conclude that fis the desired conformal
mapping from D onto A.
[]
Remark 4.7: Conformal Mapping Does Not Extend to Homeomorphism of Closures
In general, the conformal mapping f : D — A will not extend to a homeomor-
phism of the closures. ¢
For this to be possible, it is clear that every boundary point of D must be accessi-
ble, in the following sense.
Definition: Accessible Point
A point { € dD is said to be accessible if, for each sequence {z,},-; C D with

lim z, = ¢, there exists a path I : [0,00) = D with lim I'(z) = { such that

n—oo — o0

I'(z,) = z,, for some increasing sequence f, — 0.
It turns out that this simple necessary condition is also sufficient.
Theorem 4.29: Sufficiency for Extension to Homeomorphism on Closure
Let D be a bounded simply connected domain in C, and letf : D — A be a co-
nformal mapping of D onto the unit disc A.
(a) If{ € dD is accessible then f extends continuously to D U {{} and
FO)] =1 )
(b) If¢, ¢ € aD are distinct accessible points then () # f({).
(c) Ifevery boundary point of D is accessible then f extends to a homeomor-

phism of D onto A.
Proof:
Step I | f({)| = 1in (a)
One has
lim| f(z)| = lim ¢~8a(f.0) — [im e—80(zf0) — 1, (4.5)
= 7=¢ 72—

where the first equality holds by Theorem 4.22 conformal case, the second
equality holds by Theorem 4.27 (a), and the last by Theorem 4.26 (a). So any
continuous extension of fto { must satisfy | f({)| = 1.

Step II: Extension in (a) exists

To show that such an extension exists, we argue by contradiction. Suppose not,
then there exists a sequence {z,},5; C D with lim z, = { such that

n—-oo

f(ZZn) —>a andf(Z2n+1) - ﬁ
for some a # f. From (4.5) it is clear that

lal =1p]=1

Multiplying a constant to f, we may assume that f = @. Let N be an integer

2
such that Wﬂ < |a — p|, and define

u(z) ;= 10g|f‘1(z)—(§|,z e A
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N
v(z) = Z <u(62”ik/Nz) + u(ez”ik/NZ)>, 7 € A.
k=1
Then u and v are subharmonic on A by Corollary 1.1.1 and
v(0) = 2Nu(0) = 2N log |f—1(0) _ g| .

We now seek to estimate this quantity. Choose a path I" as in the definition of
accessible point. Given € > 0, there exists £, such that
IT() ~ ¢l < e Vi1,

Then
u <logeonS :=f({F(t)}tZO),
therefore
N
v < (@N = Dsupu+logeon T := ]2 V(s U 5%),
A k=1

where S$* is the reflection of S in the x-axis. Moreover, since f(I") accumulates
at both a and f by assumption, the choice of N implies that 7 separates {0}
from dA. Hence by the ordinary maximum principle Theorem 2.5,
v(0) <supvy < (2N —1)supu + loge.
T A
Since € > 0 is arbitrary, sending ¢ | 0 yields v(0) = — oo, thus f~1(0) = ¢, co-
ntradicting the fact that f ~10) e D.
Step III: (b) _ _
We argue by contradiction. Suppose that f({) = f({) = a. As both { and { are
accessible, by definition, we can find paths
I, T :[0,00) > D
such that
lim I'(7) = ¢ and lim T (r) = £,

=00 =00

Then f(I') and f (?) are two paths in A, both ending at a, along which f~! has
limits ¢ and Z, respectively. It follows that the function
1 21 )
ats <a Z+1

which is bounded and holomorphic in the upper half-plane, has distinct asymp-
totic values ¢ and ¢, which contradicts Lindel6f’s theorem Corollary 4.17.1.
Step 1V: (¢)
Using (a) and (b), if every boundary point of D is accessible, then f extends to
a continuous injection of D onto A by definition of accessible points. A standa-
rd compactness argument now shows that

fD)=A
and therefore f~! is continuous on A, proving fis indeed the desired homeom-
orphism.

[

4.5 The Poisson-Jensen’s Formula
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If u is a subharmonic function on a domain containing a closed disc A, then we saw
in Theorem 2.9 (b) that u < P u on A. The difference P,u — u measures how far u
is from being harmonic on A, and one would expect this to depend on the size of the
generalized Laplacian Au. The following theorem not only makes this precise, but
extends it to a wider class of other domains. It is the culmination of a whole sequence
of earlier results.

Theorem 4.30: Poisson-Jensen’s Formula for Subharmonic Functions
Let D be a bounded regular domain in C, and let u be a function subharmonic
on a neighbourhood of D with u # — co on D. Then

1
u(z) = J u(l)dwp(z, D) — 2—[ gp(z, w)Au(w)
oD 7 Jp

where z € D.
Proof:

We begin with the claim that, if z € D, then

log|z —
[ togtc=widoneey= {2827 O SR L
D oglz—wl, w € C\D
In proving (4.6) we consider w € D, w € C\D, and w € 9D, respectively.
Step I: (4.6) holds when w € D.
Suppose w € D, then (4.6) follows from the fundamental identity for logarit-
hmic potential Theorem 4.24.
Step II: (4.6) holds when w € C\D.
Suppose w € C\D, then the function
7 log|7 —w]

is harmonic on a neighbourhood of D by Corollary 1.1.1, and so in this case
(4.6) follows from the definition of harmonic measure (b).
Step III: (4.6) holds when w € aD.
Finally, suppose that w € dD then as D is connected one has

logyp log| & —wldwp(z,¢) = lim sup q log|{ =W ldawp(z, C))
wow,weD oD
= limsup (log|z—"W |+ gp(z, W))
Wow,weD
=loglz—w|+ _lim gp(w,z)
w-ow,weD
= log|z—w],
where the first equality holds by the definition of non-thin, for which holds by
Theorem 3.26 as D is connected, the second equality holds by the fundamental
identity for logarithmic potential Theorem 4.24, the third equality holds by the
continuity of log |z — w|, and the last equality holds by Theorem 4.26 (a) and
the assumption that D is a regular domain. Thus (4.6) is proved.
Step IV: Desired equality
Now choose a bounded domain D, containing D such that u is subharmonic on
a neighbourhood of D;. By the Riesz decomposition Theorem 3.23 we can
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write
u=p,+honD,

where u = 27)"'Au | and /4 is harmonic on D,. Then for z € D, we have
D,

[ u($)dwp(z, ()
oD

= < log|& —w]| dﬂ(W)>d0)D(Z, {)+ J h(§)dwp(z,¢)
Jop \Jp, oD

= ( loglé—wlda)D(z,C)>dM(W)+h(Z)
Jp, \Jap

= | gplz,wyduw) + [ log|z —w|du(w) + h(z)
Jp D,

2r
where the first equality holds since u = p, + & on D, and / is harmonic on D,

1
= —I gp(z, w)Au(w) + u(z)
D

the red term in the second equality holds by Fubini’s theorem and the last term
in the second equality holds by Theorem 4.13 (b) as dD is non-polar for the
existence of a harmonic measrue (see Theorem 4.11), the third equality holds
by equation (4.6), and the last equality holds by the definition of u. Rearrang-
ing the terms yields the desired result.
[]
As a special case, we recapture the classical Poisson-Jensen’s formula for holomor-
phic functions on a disc, use, for example, in value-distribution theory.
Corollary 4.30.1: Poisson-Jensen’s Formula for Holomorphic Functions on Disc
Let £ be a function holomorphic on a neighbourhood of A(0,1) with f # 0.

Then
1 2r |Z| 1 — W
log| f(2)] =—[ —loglf(e’9)|d9 Zlog 1,
2 )y et —z|? =W
where |z| < 1, wy, -+, w, are the zeros of fin A(O,l), counted according to
multiplicity.
Proof:

Set A := A(0,1) and recall that
. 1 .
dwy(z,e”) = 1= |z|*| e’ = z|*d0
T
by Example 4.2 and

galz, w) = log
=W

by Example 4.4. Moreover, by Theorem 3.22, A (log | f] ) consists of 27z
-masses at the zeros of f. The result follows by feeding these facts into Poisson-

1—zw‘
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Jensen’s formula for subharmonic functions Theorem 4.30.
[
Remark 4.8: u Being Harmonic on N.B.D. of D Is Necessary in Theorem 4.30
If we merely suppose that u is subharmonic on D, rather than on a neighbou-
rhood of D, then Au may be an infinite measure on D, and it is no longer clear
whether the integral

J 8gp(z, w)Au(w)
D

converges. <

In fact, the convergence turns out to be dependent on whether # has a harmonic

majorant, a concept which we shall now define.

Definition: Harmonic Majorant
Let u be a subharmonic function on a domain D. A harmonic majorant of u is a
harmonic function /# on D such that 42 > u there.

Definition: Least Harmonic Majorant
Let u be a subharmonic function on a domain D and let / be its harmonic maj-
orant. Then £ is called the least harmonic majorant if for every other harmonic
majorant k of u, h < k.

In some literature, the harmonic majorant (respectively, harmonic minorant) is also
called the harmonic correction. The following result tells us that the least harmonic
majorant exists and without the harmonic majorant problem prescribed in Remark
4.8 may occur.

Theorem 4.31: Existence of Harmonic Majorant Prevents Au Being Infinite Measure
Let D be a subdomain of C such that dD is non-polar, and let # be a subharmo-
nic function on D with u # — oo.
(a)  If u has a harmonic majorant on D, then it has at least one least harmonic
majorant and

u(z) = h(z) — i[ gp(z,w)Au(w), z € D.
2r
(b)  If u has no harmonic majorant on D then
LJ' gp(z, w)Au(w) = o0,z € D.
2 ),
Proof:
Step I. Construct harmonic functions via Theorem 1.14
Let {D,},>1 C D be a sequence of relatively compact subdomains of D such
that
D,cD,CDyC-and | |D,=D.
n>1
Without loss of generality, we may assume that each component of C*\D,
contains at least two points, so that by Theorem 4.7, each D, is a regular
domain. For n > 1, define
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h,(z) = [ u(@dwp (z,8),z € D,
oD,

then by the definition of harmonic measure (b), £, is harmonic on D,. Now by

Poisson-Jensen’s formula for subharmonic functions Theorem 4.30 one has

1
u(z) = hy(z) — —J gp, (2, w)Au(w)
2w )p,
for each z € D,. By Corollary 4.22.1 h, T h on D, where h satisfies

u(z) = h(z) - LJ gp(z, w)Au(w),z € D (4.7)
2r )y

by Theorem 1.14, also, either / is harmonic on D or & = oo there. We now
consider these two cases, for which should agree with (a) and (b) respectively.
Step I (a)

Suppose first that # has a harmonic majorant k on D. Then for each n, it foll-
ows from the definition of £, that

(@) < J KO)dwp 2. 0) = k(). 2 € D,
oD,

where the inequality holds by the definition of harmonic majorant, and hence

h < kon D. In particular & # o0, so & must be harmonic on D. Now equation

(4.7) then shows that /4 is a harmonic majorant of u, and it is the least as k is

arbitrary. Thus (a) is proved.

Step II: (b)

Now suppose that u has no harmonic majorant on D. Then /4 cannot be harm-

onic, for otherwise it would be such a marjorant. Consequently 2 = co on D,

and we conclude from (4.7) that

1
_J gp(z, w)Au(w) = o0,z € D.
2

This completes the proof for (b).
[]
This has an interesting consequence for holomorphic functions. For the sakeness of
simplicity we shall use h.m. to denote the harmonic majorant whenever necessary.
Corollary 4.31.1: Criterion for Finite Growth of Holomorphic Zeros via H.M.
Let D be a domain in C such that dD is non-polar, let f be a holomorphic
function on D, and let z, be a point in D such that f(z,) # 0. Then the
followings are equivalent:
(a) log|f| has a harmonic majorant on D.
(b) Z 8p(zg, w;) < 00, where wy, w,, --- are the zeros of f. In particular, this
jz1
series must converge if f is bounded.
Proof:
If we write u := log| f|, then Au consists of 2z-masses at the zeros of f, and
SO
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[ 2p(z. W)Au(w) = )" gp(z.w).
D

j=1
Result follows from Theorem 4.31.
[
The Carleman-Milloux theorem, which arises naturally out of the problem of esti-
mating the harmonic measure, is to find the best upper bound for a subharmonic
function u on A(0,1) satisfying
supu(z) £0and infu(z) <-1,0<r< 1. (4.8)
lz|=r |z|=r
As an application of the “Green machinery”, we now present the beautiful solution
found by Beurling and Nevanlinna.
Theorem 4.32: Beurling-Nevanlinna Theorem

Let u be a subharmonic function on A(0,1) satisfying (4.8). Then
2 i 1<1_|Z|> |z] <1

u(z) < ——sin~
T 1+ |z|

and this bound is sharp.
The proof of Theorem 4.32 relies on two lemmas, the first of them is an elementa-
ry inequality for Green functions on the disc.
Lemma 4.33: Rotational Bounds for Green Function Over Unit Disk
If A = A(0O,1) then

gal =1zl [w]) £ galz,w) < gallzl, [w])

forz,w € A.
Proof: _ _
Letz,w € A and write 7 := |z|e/*and w = |w|e”. Then
L—aw®_ | (A= 1z)( = Iwl*)
z=w |2+ [w|* = 2]zl |wcos(a — B)
which is maximized when cos(a — ) = 1, and minimized when
cos(a — ) = — 1. Thus we obtain the natural bounds
L+lzliwl P _|1=zw|* _|1==lzllw| |’
HMEAG Z—w |zl =Iwl |’
finally, using the formula in Example 4.4 we obtain
I —zw
gA(Z’ W) =
—w

Plugging g,(z, w) into the above display yields the desired result.
[]

Lemma 4.34: Subharmonic Function Formula in Unit Disk via Harmonic Majorant
Let A := A(0,1) and I := [0,1), and define v on A by
—a)A\I(Z, I), Z € A\I
v(z) ==
-1, z€l
Then v is subharmonic on A and harmonic on A\/. Moreover,

1
v(z) = —[ galz,w)Av(w), z € A
21 ),
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and

2y l=x

v(—Xx) = — —sin ( ),xel.
T 1

Proof:

By Theorem 4.13 (a) v is harmonic on A\/ and thus the Gluing Theorem 2.11
applies, it follows that v is subharmonic on A. It left us to prove the moreover
statement.
Step I: First identity in the moreover statement
Since v is defined to be non-positive, 0 is clearly a harmonic majorant of v. In
fact, it is also the least one, for if k is another least harmonic majorant of v then

lim sup — k(z) < lirrg— v(z) =0, € 0A\{1},

7= =

where the inequality holds since k > v thus —k < — v and the equality holds
by Corollary 4.10.1, so by the extended maximum principle Theorem 3.17
(b) k > 0 on A. Applying Theorem 4.31 (a), we deduce that

v(z)=0-— —I galz, wAv(w), z € A,
21},

where 0 is the least harmonic majorant of v and the integral is taken over /
since v is harmonic on A\7 and thus Av = 0 there.

Step II: Second identity in the moreover statement

We calculate the harmonic measure under conformal mapping as given in
Example 4.3 and obtain

forz € A\l
[]
Proof of Theorem 4.32:
We first verify the bound and then show that it is sharp. First, we set up our
assumptions for the above two lemmas to apply. Let A := A(0,1) and
U= {zEA:u(z)<—1},
where —1 is taken in order to match the form in Lemma 4.34.
We may, without loss of generality, assume that

inf u(z) < — 1 forall r
|zl=r

as otherwise we can work with u — ¢ and sending ¢ | 0. Thus if we define
T:A->1

by T(z) = |z| and T(U) = I, where I is the same as in Lemma 4.34. Now

both lemmas are ready to be applied. We proceed to verify the bound.

Step I: Veritying the bound in the assertion

Let v be defined in Lemma 4.34. Given p < 1, we can find a compact subset

K of U such that T(K') = [0,p]. Then by “Existence of Pushforward Measure
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under Surjection” there exists a finite Borel measure ¢ on K such that

uT=1 = Ay . Define a function /4 on A by
[0.p]

h(z) = — LJ' galz, wyduw), z € A.
27 Jg

Now by Lemma 4.34 h is harmonic on A\K and lim 4(z) = 0 V{ € 0A.
7—(

Moreover, if z € A we get
1 f
h(Z)Z—z— gallzl, Iwdu(w)

T Ik
-

=—-— gallzl,w)Av(w)
27 Jio.p1
Lt

> —— | gallz],w)Av(w)
21 ),

=v(lz])=-1

where the first inequality holds by the upper bound in Lemma 4.33 and the
second inequality holds since [0,p] C I and taking negation, the first equality
holds by “Existence of Pushforward Measure under Surjection”, the second
equality holds by holds by the first identity in Lemma 4.34, and the last equal-
ity holds by the definition of v on 1.

Hence, if { € d(A\K) then
0, € oA
lim sup u—h(z)ﬁ{ <0,
Z—’C,ZEA\K( ) M(C) - (_ 1)9 g € 0K
and so by the maximum principle Theorem 2.5 (b) u < h on A\K. Since also
u < —1<honK, wein fact have u < h on the whole of A. Applying now the
lower bound in Lemma 4.33, we deduce that, for each z € A,

1 1
u(z)s—z—J gA(—Izl,IWI)du(W)=——{ gal =zl wAv(w),
7 Jk 710,01

where the inequality holds by the lower bound in Lemma 4.33 and the equality
holds by the second identity in Lemma 4.34. As this holds for each p < 1, we
can send p T 1 and obtain

1 2l
@ S =52 saC= Izl mavin = (= 1z = = ~sin”! (57

5 Theorem: (Existence of Pushforward Measure under Surjection): Let X and Y be compact metric
spaces, and let T : X — Y be a continuous surjection. Then, given v € 9(Y ), the collection of
all Borel probability measures, there exists 4 € (X ) such that ,uT_1 = v so that

J @ o T(X)du(x) = [ p(y)dv(y)
X Y

for ¢ € C(Y), the space of all continuous functions ¢ : ¥ — R.
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where in the first inequality the limit can be passed since the integral is bound-
ed by Theorem 4.31 (a), the second equality holds by definition of v, and the
last equality holds by the second identity in Lemma 4.34. This proves the desi-
red bound for u.
Step II: The desired bound is sharp
To show that the bound is sharp, we note that for each 6, the function
Uuy(z) := v(e'z)
satisfies the hypotheses of the theorem, and so any general upper bound for
u(z) must be at least as large as
0 2 .1 1 - |Z|
sup uy(z) = supv(e’z) =v(—|z|) =——sin (—)
0 0 n 1+ |z|
where the first equality holds by definition and the last equality holds by the
second identity in Lemma 4.34. This observation concludes the proof.
]
As a consequence of this result, we can derive some general estimates for harmonic
measure on a simply connected domain.
Corollary 4.32.1: Bounds for Harmonic Measure of Connected Domain without Zero
Let D be a simply connected subdomain of C such that 0 € D, and let p > 0.
(a) Ifze Dand |z]| < pthen

2 —
wp(2.0D N AOp) = = sin‘1<Z . :i: )

(b) Ifze€ Dand |z]| > pthen

2 —
op(z,0D N A(0,p)) < ~ cos‘l( :i: +Z>.

Proof:
Step I: Assertion (a)
Define u on A(0,p) by

—wp(z,0D N A(0,p)), z € A0p)ND

-1, z € A(0.p\D

As D is simply connected, Theorem 4.6 guarantees that it is a regular domain,
and hence the gluing Theorem 2.11 applies to show that u is subharmonic on
A(0,p). Evidently, u < 0. Also no circle |z| = r can be entirely contained in D
for then it would separate O and oo, both of which lie outside D, contradicting
the fact that D is simply connected. Hence

inf u(z) =—-1,0<r <p.

uz) =

|z|=r
Applying Theorem 4.32 to the function 7 — u(pz ) on A(0,1), we deduce that
: 1—|z/p|
uz) < ——s1n‘1<—>,z e A0,p),
(2) - T+ 12/0] 0,p)

which proves (a).
Step II: (b)

Let D* be the image of D under the inversion z — —. Then if z € D one has
Z
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I _
wp(2.0D N A(0,p)) = a)D*<;, dD*\A(O,l/p))

1

<1- a)D*<—, oD* N A(o,l/p))
Z

Applying part (a) to D*, it follows that if also |z| > p then

2 1p 1z
oD n A0, Sl——sm_1< )
“p(2 ©.) 7 Up + 1/]z|

_2 _1<|Z|_p)
= — COS
|z| +p

which completes the proof.

[

Summary of Chapter 4

Since the ordinary Dirichlet problem not necessarily has a solution for general
domains, it is desired to derive a natural reformulation of the Dirichlet problem that
always has a solution. We generalize the domain D to be any proper subdomain of
C*™ and we generalize the continuous boundary condition to bounded boundary
condition. Then we define the Perron function, for which is defined in a way that if
the generalized Dirichlet problem has a solution then it is the Perron function.
Therefore we proved "Perron Function Is Always Bounded Harmonic", for the proof
we used the lemma "Poisson Modification". But so far there are still cases for the
generalized Dirichlet probelm not having solutions, and the reason is that the isolated
boundary point lack sufficient influence to the subharmonic function and thus the
Perron function has wrong boundary limit there. To this end we defined the Barrier,
from which we defined the regularity and irregularity of boundary points, and finally
regularity for the domain. Then our construction allows us to prove "Sufficiency for
Perron Function Solving Dirichlet Problem", for the proof relies on a property that
"Perron Function Is Antisymmetric" and a globalization for barriers "Bouligand’s
Lemma". As a consequence for Perron function solving Dirichlet problem, we can
prove "Existence and Unique Solution to the Dirichlet Problem". Moreover the
regularity is necessary and sufficient for the existence of the solution. This answers
part of our motivation and the other part will be told after Kellogg's theorem.

In the second section, we aim to find the criterion for regularity. We first proved
that "Simply Connected Domain Smaller than C* Is Regular", and then we localize
the result to obtain a sufficient condition for regularity of a single point "Boundary
Point in Non-Trivial Component Is Regular". As the other extreme, we are also able
to tell the irregularity "Boundary Point with Polar Neighbourhood Is Irregular".
Summarizing we derive the desired "Criterion for Regularity". As a consequence we
can show that the set of irregular points is always small, this result is also known as
"Kellogg’s Theorem", a consequence of this is to finish the construction that the
Generalized Dirichlet problem always has a solution, namely, "Solution of the
Generalized Dirichlet Problem".
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In the third setion, we need to verify that explicit solution to the Dirichlet problem
over disk holds also for the generalized one. To this end we need to extend the
Poisson integral to general domains. This motivates us to define the harmonic
measure, for which is the common value between the Perron function and the
generalized Poisson integral. This definition i1s confirmed by "Existence and
Uniqueness for Harmonic Measure", as in our definition of harmonic measure the
boundary condition is assumed to be continuous, it is natural to extend the definition
of harmonic measure to bounded boundary condition, namely "Hpp = Pp¢ for All
Bounded Borel Function ¢ On Non-Polar dD". Since the Perron function solves the
generalized Dirichlet problem, it should be harmonic, this is confirmed by the
"Characterization of Harmonic Measure". Moreover, a measure property for
harmonic measure is proved, namely, "Mutual Absolute Continuity for Harmonic
Functions". As desired, the harmonic measure does not charge polar sets, this is
proved by "Borel Polar Subset Has Harmonic Measure Zero". Unfortunately the
converse 1s not true. Since the harmonic measure is itself subharmonic, it has the
desired properties we proved, and even better. "Two Constant Theorem for Harmonic
Measure" gives a generalized extended Maximum principle, "Subordination Principle
for Harmonic Measure", and "Domain Monotonicity for Harmonic Measure". We can
then tell the growth rate of subharmonic functions by introducing the concept of
asymptotic value and "Asymptotic Value for Subharmonic Growth on Sector of Half-
Plane", for which the bound is sharp. Furthermore, we proved "Lindel6f Theorem"
which tells us that the bounded holomorphic function over half-line can have at most
one asymptotic value. These two results allow us to find the "Harmonic Measure for
Half-Plane". Finally, we compare the equilibrium measure and the harmonic measure
by showing that "Equilibrium and Harmonic Measure Agree on Component with co".

In the fourth section we introduced the Green function, for which the existence and
uniqueness is verified by "Existence and Uniqueness of Green Function". Some
properties are derived: "Green Function Is Positive", "Subordination Principle for
Green Function", "Domain Monotonicity for Green Function", and "Green Function
Is Continuous in Increase of Domain". With the help of Green function we derived
the "Fundamental Identity for Logarithmic Potential", which in turn tells us that the
Green function is symmetric in the space variables, namely, "Symmetry Theorem for
Green Function". Moreover, the relation between solvability of Generalized Dirichlet
Problem and Green function is found in "Criterion for Solvability of Dirichlet
Problem via Green Function". A consequence of the symmetry enables us to prove
the strong converse of subordination principle, which is "Characterization of
Conformal Mapping via Green Function", this yields a simple proof of the "Riemann
Mapping Theorem". However, the conformal mapping will not extend to a
homeomorphism of the closures, it is then natural to ask when it is possible. It is clear
that every boundary point must be accessible, this is also sufficient: "Sufficiency for
Extension to Homeomorphism on Closure".

Finally, in the last section, we proved "Poisson-Jensen’s Formula for Subharmonic
Functions" and compared it with the "Poisson-Jensen’s Formula for Holomorphic
Functions on Disc", for the latter is a consequence of the former. For the first result to
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hold, the function has to be harmonic on the neighbourhood of the closure for the
domain, as otherwise the Laplacian may be an infinite Radon measure. For us to
control this term we defined the harmonic marjorant and the least harmonic majorant,
and indeed they did their job as "Existence of Harmonic Majorant Prevents Au Being
Infinite Measure". As a corollary, we derived "Criterion for Finite Growth of
Holomorphic Zeros via Harmonic Majorant". This motivates us to give bound
estimates for harmonic measure, namely the Carleman-Milloux theorem, and we
derived the green function version "Beurling-Nevanlinna Theorem". The proof relies
on two technical lemma, the first is "Rotational Bounds for Green Function Over Unit
Disk" and the second is "Subharmonic Function Formula in Unit Disk via Harmonic
Majorant". Finally, as a consequence, we are able to find the "Bounds for Harmonic
Measure of Connected Domain without Zero".

5. Capacity
5.1 Capacity as a Set Function

Even though polar sets have played a prominent role in the theory developed so far,
we still lack an effective means of determining whether or not a given set is polar.
Thus it was only by a very indirect method that we were able to demonstrate the
existence of uncountable polar sets in Section 3.5, and nothing we have yet proved
will tell us whether, for example, the Cantor set is polar.

More generally, it is desirable to be able to gauge, in some way, how close a set is
to being polar. In the case of a compact set, the energy I(v) of its equilibrium measure
v, a quantity that has already cropped up several times, provides just such an
indicator. Taking exponentials in order to make it positive, we are led to the following
definition.

Definition: Logarithmic Capacity
The logarithmic capacity of a subset E C C is given by
c(E) :=sup el
u
where the supremum is taken over all Borel probability measures ¢ on C
whose support is a compact subset of E. In particular, if K is a compact set with
equilibrium measure v then c(K) = /™.

Here it is understood that e~ = 0, so that c(E') = 0 precisely when E is polar. Th-
ere are several other capacities with this property, but the logarithmic capacity enjoys
the advantage of particularly close links with complex analysis. Since it is the only
one we shall study, it will henceforth be referred to simply as ‘the capacity’.

We begin with proving some of its elementary properties.

Theorem 5.1: Some Elementary Properties of Logarithmic Capacity
(a) IfE| CE,thenc(E)) < c(E,). (Monotone)
(b) IfE cC Cthenc(E)=sup {C(K) : K C E are compact subsets}.
(c) IfEcCthenc(aE+p)=|alc(E)Va,p e C.
(Positive Homogeneous in Scaling, Invariant in Constant Translation)
(d) If Kisacompact subset of C then ¢(K) = c¢(d,K).
Proof:
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Both (a) and (b) are immediate consequences of the definition for logarithmic
capacities. An application of Theorem 3.21 gives (d). It left us to prove (c).
Let T : C — C be the map T(z) := az + . Then supp(u) C E if and only if
supp(uT~") € aE + B, and
I(uT~" = I(u) + log|a|
by the definition of energy. This proves (c).
[]
Since capacity is a monotone set function, it is natural to ask if it is continuous wi-
th respect to increasing or decreasing sequences. The following result gives the
answer.
Theorem 5.2: Capacity Is Continuous in Monotone Sequences

(a) IfK, DK, D - are compact subsets of C and K := ﬂ K, then

n>1

c¢(K) = lim c(K,).

(b) IfB, C B, C - are Borel subsets of C and B := U B, then
n>1
c¢(B) = lim c(B,).
Proof:
Step I (a)
By Theorem 5.1 (a) we certainly have
c(K)) 2 c(Ky) 2 c(Ky) > - (5.1)

In the other direction, for each n > 1 let v, be an equilibrium measure for K,
Then v, € (K)) for all n > 1. By a diagonal argument, there is a subsequence
{Up, }k>1 Which is weak*-convergent to some v € &(K;). Using Lemma 3.6,

we deduce that

lim sup / (vnk) <I(v).

n—oo
Moreover, since supp(v,) C K, for all n, it follows that supp(v) C K, and also
e!® < ¢(K). Thus we obtain
lim sup c(Knk) <c(K),

k—o0

and combining this with (5.1) yields the desired conclusion.

Step II: (b)
Again using Theorem 5.1 (a), we have

c(B)) < c(By) < c(By) < -+~ (5.2)
In the other direction, let K be a compact subset of B, and let v be an equilibri-
um measure for K. Since

v(B,NK)— v(K)asn — oo.
The regularity of finite Borel measure gives compact sets K, C B, N K such
that
K, CK,C K;C--andv(K,) — 1.

For n sufficiently large we have v(K,) > 0, and for these n we define
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V| K,
SARPTTaY
Thus u, 1s a Borel probability measure on K, and

I(wy) =
" U(Kn)z JKYK
Asn — oo, we have v(K,) — l and g 1 1 v-almot everywhere, so

log|z —w|lg 1x (W)dv(2)dv(w).

lim I(u,) = log|z — w|dv(z)dv(w) =: I(v).
n—->oo JKJIK
Since each y,, is supported on a compact subset of B,, we have
c(B) > eIk

and it follows that

liminfc(B,) > c(K).
Finally, since K is an arbitrary compact subset of B, Theorem 5.1 (b) implies
that

lim infc(B,) > ¢(B),

together with (5.2) yields the desired result.
[]
Theorem 5.2 (a) is false for general Borel sets, indeed even for bounded opens ets.
Example 5.1: Theorem 5.2 (a) Fails for Bounded Open Sets
Consider the sequence

1
Ux={zeC:—1<Rd@<1p<hm@<—}

n

n
forn > 1. Then clearly U; D U, D U; D --- and ﬂ U, = @. But also each set
n>1
U, contains a translation of the non-polar set [0,1], and so
c(U) > ¢([0,1]) >0 Vn > 1.
On the other hand, since @ is polar, c(U) = 0, therefore
c(U)=0< lim c(U,),

n—oo
thus the continuity fails. ¢
However, it can be shown that, given a bounded Borel set B, we have
c(B) = inf{c(U) :open U D B}. (5.3)
This result, due to Choquet, looks like dual to Theorem 5.1 (b), but actually it lies
much deeper, and we shall not prove it here (see Port and Sydney Theorem 6.78).
Capacity is not an additive set function, like a measure.
Example 5.2: Capacity Is NOT an Additive Set Function
Consider the unit disk A(0,1), which has finite capacity, contains infinitely
many disjoint translations of the unit interval [0,1], which has strictly positive
capacity since it is non-polar. ¢
There is however a relation between capacity and unions.
Theorem 5.3: Bound Estimates for Capacity of Borel Union
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Let {B,},>; be a (finite or infinite) sequence of Borel subsets of C, let
B := UB”’ and letd > 0.
n>

(a) Ifdiam(B) < d then ¢(B) < d and
1

< Z ! . (5.4)
log(d/c(B)) ~ “t log(d/c(B,))
(b) Ifdist(B;, B,) > d Vj # k then
: >y : . (5.5)
log*(d/c(B)) — i log*(d/c(B,))

Hence, we interpret 0 as oo and — as 0. Thus, for example, part (a) re-proves the
00

result that a countable union of Borel polar sets is polar (at least provided the union
is bounded, but the unbounded case can then be deduced from Theorem 5.2 (b)), for
which we proved in Corollary 3.4.2.
Proof of Theorem 5.3:
Step I. ¢(B) < din (a)
We begin noting that if diam(B) < d then, for any probability measure u that is
compactly supported on B, we have

I(p) =[ { log|z —wldu(z)du(w) SJ [ (logd)du(z)du(w),
BYB BYB

where the equality holds by the definition of energy and the inequality holds by
assumption diam(B) < d. Therefore ¢(B) < d by definition of capacity.
Step II: (5.4) in (a)
As for (5.4), it suffices to prove it in the case where there are just two sets B,
and B,. The case for n set then follows by induction, and for infinitely many
sets the result can be deduced from Theorem 5.2 (b). By scaling, we can also
suppose that d = 1.
Let Kbea compalct subset of B and lft e > 0. Our clai{n 1s to show that
—€
< . .

log(1/¢(K)) ~ log(1l/c(By)) * log(1/c(Ky)) 0
This inequality is clear if ¢(K') = 0, so we may as well assume that ¢(K) > 0.
In that case I(v) > — oo, where v is the equilibrium measure for K. Since

vBINK)+v(B,NK)>v(K)=1,
where the inequality holds by subadditivity of v and the equality holds since
d = 1. Now by the regularity of finite Borel measure we can find compact sets
K,CBNK,j=1.2

such that
v(K)+v(Ky)) >1—¢
Forj = 1,2, let v, be the equilibrium measure for K;. Then we have
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Iv) < “ pydl/j = [ pl/~dy < J pudl/ = I(Vj)y(l{j)a
I{j K J I{J J

where the first relation holds as p, > I(v) on C by Theorem 3.7 (a), the second
holds by Fubini’s theorem, the third holds as p, < 0 on K (recall that

diam(K') < d = 1), and the fourth holds since p,= I(;) n.e. and hence v-a.e.

on K; by Theorem 3.7 (b).
Now I(v) = log ¢(K) < 0 since diam(K') < d = 1, and likewise for /(v;), so
we obtain
v(K;) 1 1
< <

log(1/¢(K)) ~ log(1/c(K)) ~ log(1/c(B))
Summing over j gives (5.6). Finally, letting € | 0 in (5.6), and taking the supre-
mum over all compact subset K C B yields (5.4).
Step III: (b)
As in (a), we can suppose that there are just two sets B, B,, and thatd = 1.
Let K|, K, be compact subsets of B, B,, respectively. This time, our aim is to
show that

,j =12

1 1 1

> + .
logt(1/¢(B)) ~ log+(1/c(Ky)  log+(1/c(Ky))
We can assume that 0 < ¢(K;) < ¢(B) < 1, since otherwise (5.7) is clear any-

(5.7)

way. For j = 1,2, let v, be the equilibrium measure of K; and set
u:=0-0v +v,,
I(vy)
(1)) + 1(1y)
hence y is a probability measure with

I(w) > (1= 01wy + 21(y) =

where t := . Since —oo < I(y;) < 0, it follows that 0 <7 < 1, and

I(w)I(v,)
(1) + 1(vy)
Now u is supported on K; U K, C B so I(u) < log c(B) and hence
log c(K)log c(K,)
log c(K;) + log c(K5)
Since log ¢(B) and log ¢ (K;) are all negative, when the inequality is inverted it

logc(B) >

becomes (5.7). Finally, taking supremum in (5.7) over all compact subsets K
of By and K, of B, gives (5.5).
[]
We conclude by mentioning that capacity can behave badly with respect to comple-
ments.
Example 5.3: Capacity Behave Bad in Set Complements
Given E C C, one can show that there exists an F set /' C E such that
c(F) = c(E). Let S be a subset of [0,1] which is not F. Then every F, subset
F of [0,1] X S satisfies
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c(([0,11x $H\F) = ¢([0,1]) > 0.
Based on this one can construct a set £ of positive capacity such that every F,
subset F of E satisfies c(E\F) = ¢(E). o

5.2 Computation of Capacity
Though our definition for capacity is fine for the purpose of deriving theoretical pr-
operties of capacity, it is not well studied to computing the capacity of specific sets.
Even for the simplest one, that of a disc, requires some work, and most other sets are
virtually impossible.
Fortunately, for compact sets at least, there are easier alternatives. They are based
on the following relation between capacity and Green functions.
Theorem 5.4: Capacity of Compact Non-Polar Set via Green Function
Let K be a compact non-polar set and let D be the component of C*°\ K which
contains co. Then, as z — oo,
gp(z, ) =log|z| —logc(K) + o(1). (5.8)
Proof:
Let v be the equilibrium measure for K. From the way that g, was constructed
in Theorem 4.20 we have
8p(z, 00) = p(z) — Iv) = p,(z) — logc(K), z € D\{o0},
where the first equality holds by Theorem 4.20 Step 1.1 and the second holds
by the definition of capacity. Now using Theorem 3.1 (i1) we also know that
p,(2) =log|z| +o(1)as z = oo.
Combining these two facts yields the desired result.
[]
As a consequence, we can read off the capacity of a disc.
Corollary 5.4.1: Capacity of Closed Disc
Ifw € Cand r > 0, then c(A(w,r)) = r.

Proof: .
Setting D := C®\A(w, r), we have

=W
gD(z,oo):log‘—‘ =log|z| —logr + o(1),
r

where the first equality holds by the definition of D and the second holds by
Theorem 5.4. Combining this with (5.8) we deduce that C(Z(W, r)) =r.
[
The subordination principle for Green functions gives rise to a useful inequality for
capacity, as the inequality goes the other direction, we refer to it the inversed subord-
ination principle.
Theorem 5.5: Inversed Subordination Principle for Capacity
Let K, K, be compact subsets of C, and let D, D, be the components contain-
ing oo of C®\ K, and C*®\K, respectively. If there is a meromorphic function
f : D; = D, such that
f(z)=z+4+0()asz - oo. (5.9)
Then
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c(Ky) < e(K)),
with equality if f1s a conformal mapping from D, onto D,.
Proof:
If K, is polar then c(K,) = 0 and the inequality is clear. Thus, without loss of
generality, we may assume that K, is non-polar. We consider two cases for the
inequality, namely, K is non-polar and K| is general.
Case I: K, 1s non-polar
Suppose that K is also non-polar. Then the Green function g;, and g;, both
exists by Theorem 4.20, and by subordination principle Theorem 4.22,
gp,(f(2),0) > gp (z,0),z € Dy.
Now from Theorem 5.4, as 7 — oo,
8p,(z, ) = log|z| —log c(K)) + o(1),
and from (5.9),
gp,(f(2), ) =log|f(z)| —logc(K,) + o(1) (by (5.9))

=log|z| — log c(K,) + o(1) (meromorphic)
Combining these facts, we deduce that c¢(K,) < c¢(K)) in this case.
Case II: K| not necessarily non-polar
For a general K, take ¢ > 0 and set
Kf = {z : dist(z, K)) < }.

This set is non-polar by Corollary 3.4.1, so by Case I, we have

c(K,) < c(K7).
Sending € | 0 and using Theorem 5.2 (a), we again obtain c(K,) < c¢(K,), and
so, 1n fact, K; was non-polar anyway.
Finally, assume that f'is a conformal mapping from D, onto D,. Then we can
apply the same argument to f~! to deduce that

c(Ky) = c(Ky),
together with the meromorphic case we conclude the proof.

Using this, we can find the capacity of an interval.
Corollary 5.5.1: Capacity for Interval
If a < b then c([a,b]) = b ; a4
Proof:
The function f(z) := z + % maps C®\A(0,1) conformally onto C®\[—2,2]

and satisfies (5.9), so using Theorem 5.5 in the first equality,
c([-2,2]) = c(AO,D) =1,
where the second equality holds by Corollary 5.4.1. For a general a, b, the
result follows by translating and scaling.
[]
In principle, the same technique works for any compact connected set K with more

than one point.
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Example 5.4: Capacity for Non-Trivial Connected Compact Set
Let K be a non-trvial connected compact set. Using Riemann mapping theorem
Theorem 4.28, C*®\K can be mapped conformally onto the unit disc, and, by
composiing with a suitable Mobius transformation, we can find r > 0, and a
conformal mapping
f: C®\K — C®A(0,r)
which satisfies (5.9). The capacity of K is then given by
c(K) =c(AO,r) =,
where the first equality holds by the conformal case in Theorem 5.5 and the
second holds by Corollary 5.4.1. o
In practice, however, it is only possible to compute the conformal map f explicitly
for relatively simple sets K, such as those bounded by a finite number of straight lines
and circular arcs. A table of some calculations is available in the appendix.
Capacities also behaves well under taking inverse images by polynomials.
Theorem 5.6: Capacity under Inverse Image ofdPolynomials

Let K be a compact set, and let g(z) := Z ajzj, where a; # 0. Then

Proof:

Let D and D be components containing co of C*\K and C®\g~!(K) respec-
tively. Then, as is easily checked,

qg(D) =D and q(dD) = aD.
Case I: D is a regular domain
Assume so, then by Theorem 4.26 (a), s

limNgD(q(z), ©)=0,l€dD.

z—{,z€D
Moreover, by the definition of Green function (a), gp ( f(2), oo) 1s harmonic on
5\{00}, and as 7 — oo,
gp(q(2), ) =loglq(x)| + O(1) = d log|z| + O(1),
where the first equality holds by the definition of Green function (b) and the
term d appearing in the second is due to the degree of the polynomial. Now by
the uniquness part of Theorem 4.20, it follows that
gn(q@), ) =d - g5(z,0),z € D.
From Theorem 5.4 we also know that as z — oo,
8p(9(2), 00) = log|g(2) | ~ log c(K) + o(1)

=d log|z| +log|a,;| —logc(K)+ o(1),
where the first equality holds by Theorem 5.4 and the second holds by the blue
display above, the constant log|a,| is the O(1) term by assumption. Also,

g55(z,00) =log|z| —logc(g™'(K)) + o(1)

by Theorem 5.4 once more. Putting these facts together, we obtain
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dlogc(g™'(K)) =logc(K) —log|ayl,
which gives the desired result.
Case II: General D
For a general K and hence a general D, take € > 0 and set
K¢ = {z s dist(z, K) > 8}.
Since no component of K¢ is a singleton, it follows that the corresponding
domain D, is regular by Theorem 4.6. Therefore, by Case I,
£
c(q7' (k") = (—C(K ))”d.
layl
The desired result now follows by letting € | 0 and using Theorem 5.2 (a).
[]
This result can be used to compute the capacity of a few disconnected set which

possesses symmetry. As an illustration, we do this for a union of two intervals of
equal length.

Corollar 5.6.1: Capacity for Simple Symmetric Disconnected Set
b? —a?®

If0<a Sbthenc([—b,—a]u[a,b]) = >

Proof:
Taking ¢(z) := z%, we have

2 2
c(i=b, = al Ul b) = el 1) = (1, 21) 2 = (L)

where the first equality holds by Theorem 5.6, the second holds by the definit-
ion of g, and the last holds by Corollary 5.5.1.

[

5.3 Estimation of Capacity

Even for relatively simple sets, such as a square, calculation of the capacity requir-
es some effort. For more complicated sets it 1s usually impossible, and we have to be
content with estimates.

In this section we shall derive various upper and lower bounds for capacity in ter-
ms of other, more easily computed geometric quantities. As in the previous section,
we shall restrict attention to compact sets, relying on the results such as Theorem 5.1
(b) to cater for more general sets.

Many of the estimates rely on the following elementary result.

Theorem 5.7: Upper Bound Estimate for Capacity under Bounded Mapping
Let K be a compact subset of C and let T : K — C be a mapping satisfying
| T@)—TwW)| <A-|z—w|", z,wEK (5.10)
where A and a are positive constants. Then
c(T(K)) < Ac(K)™
Proof:
Let v be an equilibrium measure for the compact set 7(K ). By the “Existence
of Pushforward Measure under Surjection” (see page 106), there exists a Borel
probability measure u on K such that uT~! = v. Then
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Iv) = log |T(z) — T(w) |du(z)du(w)
JKJIK
< log(A |z — w|")du(z)du(w)
JxJK
=log A+ al(u)

where the equalities hold y the definition of energy and the inequality holds by
the assumption (5.10). Hence, from the definition of capacity, we have
c(T(K)) = '™ < Ae™® < Ac(K )",
where the first and the last relations hold by the definition of capacity, and the
second by the above display.
[]
Using this theorem in conjunction with Corollary 5.5.1, we deduce a number of
“1/4 estimates” for capacity.
Theorem 5.8: Quarter Estimates for Capacity of Certain Compact Sets
Let K be a compact subset of C.

d
(a) If Kis connected and has diameter d, then ¢(K) > T

4
(b) If Kis arectifiable curve of length £, then c(K) < T

m
(c) If Kis asubset of the real axis of Lebesgue measure m, then c¢(K) > T

(d) If Kis a subset of the unit circle of arc-length measure a, then
a
c(K) > sin<z>.
The example of a line segment (or that of a circular arc in case (d)) shows that all

these inequalities are sharp.

Proof of Theorem 5.8:
Step I: (a)
Rotating and translating, we can suppose that 0,d € K. Let T : C — R denote
the orthogonal projection onto the real-axis. Then T'(K') is a connected set con-
taining 0,d, so it contains [0,d ], and hence

d
o(T(K)) 2 c(10.d1) = .

where the first relation holds by Theorem 5.1 and the last by Corollary 5.5.1.
On the other hand, 7 satisfies (5.10) with A = a = 1, so by Theorem 5.7

d
e(T(K)) < c(K) < 7.

result follows.

Step II: (b)

Let T : [0,£] — K be the arc-length parametrization of K. Then T satisfies
(5.10) with A = a = 1, so by Theorem 5.7 using in the first realtion and
Corollary 5.5.1 using in the second, one has
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4
C(K) S C([(),f]) = Z)

as desired.
Step III: (c)
Define 7T : R - Rby T(x) := Leb(K N (— oo, oo]), where Leb denotes the
Lebesgue measure. Then 7(K) = [0,m], so
m

c(T(K)) = c([0,m]) = T

Again T satisfies (5.10) with A = a = 1, so the result follows as in (a).

Step 1V (d)

If K is contained within a semicircle, then one can employ an argument similar
to that in (c), using the circular version® of Corollary 5.5.1. For a general set
K, however, it is necessary to proceed somewhat differently.

Define f; : C*\K — C by

1 z+¢
(2) == —J dcl,
fi@ =g Tl
so that f; is holomorphic on C*\ K, with f;(c0) = % and f,(0) = Ta. Also,
L[ |z]P=1 —r
Re(fi@) =~ | ———1d¢l=—| P@OIdL,
4l lz—=¢] 2 Jk
where the second equality holds by Poisson integral, from which it follows that
T /s
—5 <Re(fi(2) < 592 € C®\K. (5.11)
Now define f, : C*\K — C by
eifl(z) _ e—ia/4
H@) =

elf1@) 4 eial4 i
so that f, is holomorphic on C®\ K, with f,(c0) = i e'@*sin(a/4) and /(0) =0.
Also (5.11) implies that | £,(z)| < 1 Vz € C*®\K, and so, using Schwartz’s
lemma, it follows that

£Q)

<1,z € C®\K.
Z
Finally, define f; : C*\K — C* by
Z
@) = fr(00) —,
AR

so that f; is meromorphic on C®\ K, with f;(z) = z + O(1) as z —» . Then
| 5(2)| > | fo(c0) | = sin(a/4), z € C®\K.

6 Theorem: (Capacity of Simple Symmetric Disconnected Set - Circular Version) Let K be the
circular arc {e? : |0| < a/2}, where 0 < a < 27, and let

f(z) = %(z -1+ \/(z — ey (z — e‘i“/2)>,

where the square root is taken so that f(z) = z + O(1) as z = . Then fmaps C®\K
conformally onto C”\Z(O, sin(a/4)), and c(K) = sin(a/4).
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Now by Theorem 5.5 we deduce that
a
c(K) > sin(—),
(K) 2
as claimed.

[

As an application of this result, we prove the celebrated Koebe one-quarter theor-
em for univalent functions.
Theorem 5.9: Koebe’s One-Quarter Theorem
If fis an injective holomorphic function on A(0,1) with f(0) = 0 and f'(0) = 1.
Then

F(AQO.D) > A(O,%).

That f (A(O,l)) contains some disc about the origin is a consequence of the open
mapping theorem. The point of Koebe’s theorem is that this disc always has radius at

least —. The constant 1 i1s sharp, as can be seen by considering the function

f@) = 1o

Proof of Theorem 5.9:
Let K be the compact set given by

1
K:={zec: - ¢ f(A0.D) }
and define f; : C®\A(0,1) -» C*®\K by

Z
fi@) D
Then f; is a conformal homeomorphism, and f,(z) = z + O(1) as z = oo0. Thus
by Theorem 5.5 conformal case using in the first and Corollary 5.4.1 using in
the second, we have

c(K) =c(A@©,D) = 1.
Moreover, C®\K is homeomorphic to C®\A(0,1), which is simply connected,
and hence K is connected. Therefore by Theorem 5.8 (a),
diam(K) < 4c(K) = 4.
As 0 € K, we deduce that K C A(0,4), from which the result follows.
[]

As we saw in Theorem 5.3, it is an easy consequence of the definition of capacity
that

c(K) < diam(K)
for every compact set K. But in fact this can be improved.
Theorem 5.10: Capacity Upper Bound for Compact Set with Finite Diameter
If K is a compact subset of C with diameter d. Then

(K)<i
c(K) <.

The example of a disc shows that this inequality is sharp.
Proof of Theorem 5.10:

121



Replacing K by its convex hull, which increases the capacity but leaves the di-
ameter unchanged, we can assume that K is convex. We may also suppose that
K contains more than one point, so by the Riemann mapping Theorem 4.28
there is a conformal map f : C*\K — C®\A(0,1) with f(c0) = co. Define
u:C\K - [—o0, )
by
- -f)
d
so that u is subharmonic on C\ K. Then, using Theorem 5.4, we have

u(z) := log — 8co\k (2, ),

u(z) =log|—| —log|z| +logc(K)+ o(l) as z - oo,

and so we can remove the singularity at co by Theorem 3.13 via setting

u(oo) = log<%> + log c(K).
Now
dist(f (= £(2)), 0K ) = O as dist(z, 9K) — 0.
Therefore,

lim sup u(z) < log —-0=0,{ €0dk.
7=¢

Hence by the maximal principle Theorem 2.5 (b), u < 0 on C*®\K, and in
particular u(oco0) < 0, result follows from Theorem 5.4.

[

Since there are sets, such as line segments, which have positive capacity but zero
area, we would not expect to find an upper bound for capacity in terms of area. But
there is a lower bound, which can be viewed as a kind of isoperimetric inequality for
capacity.

Theorem 5.11: Lower Bound for Capacity of Compact Sets with Finite Area
If K is a compact susbet of C with area A, then c(K) > \/A/=x.

The example of a disc shows that this inequality is sharp, though if K is connected
then it can be generalized to take account of the “dispersion” of K (see Exercise 5).
The proof of Theorem 5.11 proceeds with a lemma, which is of interest in its own
right.

Lemma 5.12: Ahlfors-Beurling Inequality
If K is a compact subset of C with area A, then

1
[ dA(w)| <\/7A,z € C.

Proof:
We begin by making some reductions. First of all, if K has zero area then the
inequality is obvious, so we may as well assume that A > 0. Also, it is enough
to prove the inequality for the special case z = 0; as the general case then foll-
ows by applying this to the translate K — z. Finally, we can suppose that
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J wldA(w) > 0,
K

otherwise just rotate K about the origin until it became true.

1 1
Let A be the disc {w eC: Re<§> > 2— }, where the radius a is chosen so
a

that A and K have the same area, in other words, za® = A. Then

[ Laaom = | Re<i)dA(w)
kW Jk w
1 1
< Re(—dA(w)+I —dA(w)
JknA w K\A 2a
_ | Re<i>dA(w)+J o
JKNA w A\K 2a
< Re(i)dA(w)

JA w

cos @
rdrd@

r /2 [Za cos @

J_z12J0 r

= ra = /74,

where the first relation holds as a is chosen so that A and K have the same
area, the second holds by the subadditive and assumption Re(1/w) > 1/2a,
the third holds as A and K have the same area, the fourth by the assumption
Re(1/w) > 1/2a, and the fifth by change of coordinates. This display gives
the desired inequality.

[

This result tells us that the size of the kernel over a compact set is bounded above
by a constant multiple of the measure of the set (in our case the area of the set).
Proof of Theorem 5.11:
Let D be the component of C*\ K containing oo, and define f : D — C* by

f@) = (%L - - —dA() ).

Then fis meromorphic, f(z) = z + O(1) as z = o0, and by Lemma 5.12 f
maps D onto C“\Z(O, A /77:). Hence by Theorem 5.5 using in the first and
Corollary 5.4.1 using in the second, one has

c(K) > ¢(B(04/ATx) ) = V/ATx,

as claimed.
[]
Finally, in this section, we return to the problem mentioned at the beginning of this
chapter, to determine whether or not the Cantor set is polar. In fact we shall study the
generalized Cantor set, constructed as follows.
Definition: Generalized Cantor Set
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Lets := {s,},>1 be a sequence of numbers such that 0 <5, <1 Vn > 1.
Define C(s;) to be the set obtained from [0,1] by removing an open interval of
length s, from the center.
At the n-th stage, let C(sy, --+, s,) be the set obtained by removing from the mi-
ddle of each interval in C(sy, -+, s,,_;) an open sub-interval whose length is a
proportion s, of the whole interval. We thereby obtain a decreasing sequence of
compact sets {C (Sp5 s sn)}nzl, and the corresponding generalized Cantor set
is defined to be
Cls) =) Clsps -+ 5,).
n>1
It is readily checked that C(s) is a compact, perfect, totally disconnected set of
Lebesgue measure I1,5(1 — s,).
We now investigate the capacity of the generalized Cantor set.

Theorem 5.13: Capacity Bounds for Generalized Cantor Set

Letp :=11,5,(1 — s)"* and q := Hn>1s1/2". Then
% <c(C(®)) < %
Thus, for example, the standard one-third Cantor set, which is obtained by taking

1
s, = 3 for all n, has capacity at least % and in particular it is non-polar.

n

Example 5.5: Uncountable Polar Set
Ifwesets, :=1—(1/ 2)%", then C(S) is polar, thereby providing the long-
promised example of uncountable polar set. ¢

Proof of Theorem 5.13:
Step I: Upper Bound
We begin with proving the upper bound. Put K := C(sy, --+, s,), and let K, K,
denote the left hand side and right hand side of K, respectively.
As diam(K) = 1, we can apply Theozrem 5.3 (a) with d = 1 to obtain

1 1
<> .
log(1/c(K)) — 4= log(1/C(K))
By the symmetry ¢(K;) = c¢(K,), so the above inequality simplifies to
1
logce(K) < ) log c(K)).

Now K = C(sy, **+, 5,,), and K| is just the set C(s,, :*-, 5,)) scaled down by a
I -5

1 , so the inequality becomes

2
10g<c(C(s1,---, ) < Z—log(

Sending n — oo yields

logc C(s) 2% (1_S),
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which gives the desired upper bound.
Step II: Lower Bound
The lower bound is proved in a similar fashion. With K, K, K, as before, we
have dist(K, K,) = s,, so applying Theorem 5.3 (b) with d = s, gives
2

1 1
>y .
log*(si/c(K)) — & log*(sy/c(K)))
If ¢(K) < sy, then this simplifies to
1 1
logc(K) > 5 log s, + ) log c(Kj).

If ¢(K') > sy, then this inequality is clear anyway, since c(K ) > c(K;). Repeat-
ing the argument used in the first step leads to

| ® 1 1 -3
logc(C(s))Z];Elogsj+]§510g< > >,

which yields the lower bound.

[

5.4 Criterion for Thinness
As we saw in Theorem 4.9 (b), the question of whether a given point is regular for

the Dirichlet problem on a domain D is equivalent to whether C*\D is non-thin at
the point. Unfortunately, at that time we had no general criterion for thinness, but
with the theory of capacity at our disposal, we are now in a position to put that right.
Theorem 5.14: Wiener’s Criterion for Thinness

Let F' be an F_ subset of C and let {, € C. Let y be a constant with 0 <y < 1,

and for n > 1 define

F,={ze€F:y"<|z=§l <y}
Then F is thin at { if and only if

n
. 5.12
g; log(2/c(F,)) < 6-12)

Proof:
Since thinness and capacity both remain invariant under translation, we may as
well suppose from the outset that {; = 0. We can also suppose that O & F, and
that I, # @ Vn > 1 (otherwise just remove 0, and add an appropriate counta-
ble set).
Step I. <
Assume first that (5.12) holds, we shall show that F'is thin at 0. As each F), is
an F_set, we may write it as F, := U K, where {K, } - 1is an increasing
n>1

sequence of compact sets. For each pair n, m, let v, be an equilibrium meas-
ure for K, (the existence is guaranteed by Theorem 3.21). Then

p,, =1w,,) =logc(K,,) <logc(F,)ne onk,,,

where the first relation holds by Frostman’s Theorem 3.7, the second holds by
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definition of capacity, and the last holds by Theorem 5.1 (a). Moreover, as
K,,, C A(0,1), which has diameter 2, we have

p,, <log2on A0,1).
Lastly, since K, N A(0,y") = @, it follows that

0= | 1oglwldy,, 00> ntogy
Knm
where the first relation holds by the definition of logarithmic potential and the

second holds by our assumption on F,. Now set
1

a, = .
" log(2/c(F)))
By our assumption, X - na, < oo, so we can find a sequence of positive num-
bers {f,},>1 such that f, — oo and still 5 na, 5, < co. For each m > 1, def-
ine u,, on A(0,1) by
u, =Y a,p,(p, —log2).
n>1
Then by Theorem 2.12, u,, is subharmonic on A(0,1), and
u, <—p,neonk,
u,, < 0onA(0,1)
1,(0) > Y a,B,(nlogy —log?2)

n>1
Next, define u on A(0,1) by
U= ( lim sup um)*,
n—oo
where * denotes the upper semicontinuous regularization, thus Theorem 3.9

(a) tells us that u is subharmonic on A(0,1), and by Theorem 3.9 (b)
u<—p neonk,
u <0onA(0,1)
u(0) > Y a,p,(nlogy —log2).

n>

In particular, if we set

E = U{z EF,:u@>-p,},
n>1
then
lim sup u(z) < lim — g, = — oo < u(0),
7—0,zEF\E n—00
where the first relation holds since u < — 3, n.e. on F, the second holds by
assumption of f,, and the last by the bound of #(0) we showed above.
Therefore, '\ E is thin at O by definition. But E is an F_ polar set (since
u < —p,ne.onk,, thusu > — f, on polar sets, Corollary 3.4.2 then tells us
that E is polar), therefore by Theorem 3.25, E is thin at O too. It follows that F'
is thin at 0, as desired.
Step II. =
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Now we suppose that F is thin at 0. By the definition of thinness, there exists a
subharmonic function u# on a neighbourhood of 0 such that
lim sup u(z) < u(0).
z—0,z€F
By the Riesz decomposition Theorem 3.23, we may take u to be of the form
u = p,, where  is a finite Borel measure on A(0,1). Then in particular

p,(0) > — o0,
and hence, writing
Ac=A{w it <wl <y,
we have

(@) = p,(0) = ZJ log‘ |- i]dﬂ(w), zeC.
k>1 JA w
Now we decompose the summation into three parts and consider the value on
the right hand side respectively:
1<k<n-2,n+2<k<oo,andn—-1<k <n+1.
Casel:1 <k<n-2
Now, ifz € A, and w € A, where k < n — 2, then |z/w]| < y" %! and so

inf Z{ 10g|1——|d/,t(w)> Zlog y" k= l)y(Ak)—>O

ZEA n— 0o

Case[[.n+2$k< 00
Also,ifz € A, and w eAk,wherek >n+2 then |z/w| >y~1 s0

Z1en1;f Zn}rz L 10g| 1 —— a’,u(w) > Z log — Z)M(Ak) ;; 0.

k=n+2
Caselll:n—1$k§n+1 _
Lastly, since yu is supported on A(0,1), we have

n+l
2 J log|w|du(w) <0.
A

k=n—1 "k
It follows that, given any ¢ > 0, there exists n such that Vn > n,,

n+1
Z J log|z —wl|duw) < p,(z) —p,0) + ¢,z €A,
k=n—1 Ak
Thus, combining the three cases we have proved, we can choose an ¢ suftficie-
ntly small so that

lim supp,(z) < p,(0) —
7—0,zeF
Then, increasing n,, if necessary, we have that, for all n > n,,

n+1
Z J log|z—w|du(w) < —¢e,z €F,.
k=n—1"Ax
For each n > n, write F, : U .m» Where {K, .}, - is an increasing seque-

m>1
nce of compact sets, and let v, be the equilibrium measure for K, (again, the
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existence is guaranteed by Theorem 3.21). Then replacing the last inequality
by p, yields

n+1
> J p,,, (Wdu(w) < — .
A

k=n—1 "k
Now by Frostman’s Theorem 3.7 (a),

Py, = I(v,,) =logc(K,,) on C.

Hence,
n+1
Z logc(K,, )uA,) < —¢eforn>ngm> 1.
k=n—1
Sending m — oo and rearranging the terms yields
1 n+l
log(1/c(F,)) ~ € kzn"l

Thus to show that (5.12) holds, it suffices to show that
Claim: ) (n = Du(A,) < .
n>1
This 1s done by observing that if w € A,, then
log|w| < —(n— 1Dlog(1/y).

Therefore, o
og | w| Pﬂ
nz>1 (n = Dpd) < Z J og(1/y) au0) (1/7)

This completes the proof.
[]

As we have seen in the proof, we interchange the use of energy, capacity, and pote-
ntial whenever one makes us more advantageous. This interchange can be done via
the bridge given by Frostman’s Theorem 3.7. Moreover, we can add subharmonic
functions into display by Riesz’s decomposition Theorem 3.23.

Even though the criterion (5.12) is rather complicated, it can be combined with the
results of the previous section to provide simpler conditions which are necessary for
thinness, or, equivalently, ones which are sufficient for non-thinness.

Theorem 5.15: Set Thin at Zero Has Finite Logarithmic Measure
Let F'be an F_ subset of C. If F is thin at 0, then

E = {r € (0,1] : re'? € F for some 9}
1s a set of finite logarithmic measure, that is,

1
J —dx < 0.
E -x
Proof:

Let0 <y < 1, and for n > 1 define

F,={z:y"< |zl <y '}.
Let T : C — R denote the circular projection 7(z) := | z|. Then, by applying
Theorem 5.8 (c) in the first relation and Theorem 5.7 in the second to a seq-
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uence of compact sets incraesing to F,, we obtain

dx <4c(T(F,)) < 4c(F)).

T(Fy,)
Since E := U T(F,), it follows that
n>1
1 1 4c(F,
J pLE ZJ xRN
EX n>1 VT Y =1 7

where the first inequality holds since 7(z) := |z| and E = U,5| T(F,), and
the definition of F; the second inequality holds by the above display. Note that

1
<—— fort €(0,1),
log(1/1)

thus by Theorem 5.3 (a),
c(F, ) 2

14 log(Zy”/c(F ))

—dx <8
[ * = Z1og 2}/”/c( D)

and since F'is thin at 0, this result is finite by Theorem 5.14.

Hence

]
Using radial projection instead of circular projection leads to a different type of
result. In particular, Theorem 5.15 and Theorem 5.16 would allow us to construct
polar set from F_ set.
Theorem 5.16: Polar Set Derived from Thin Set via Radial Projection
Let F be an F_ subset of C. If F is thin at 0, then
E = {eie : r,e" € F for some sequence r, — O}
1s a polar set.
Proof:
Again, let 0 < y < 1 and define

F,={z:y"<|zl <y" '}

Z
This time, let T : C\{0} — 0A(0,1) be the radial projection 7(z) := | B
Z
Then, by applying Theorem 5.7 to a sequence of compact sets increasing to I,
we have
c(F
c(T(F)) < (F) .
yn
Now,
E:= ﬂ U T(F,),
m>1n>m

it follows that for every m > 1, using Theorem 5.1 (a) in the first relation,
Theorem 5.3 (a) in the second relation, and the display above for capacity
bound, one obtains that
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1 1
<
log(2/c(E)) 10g(2/c( Uy T(Fn))>
1
iz log(2c(T(F) )

1
<
g; log(2y/c(F,))

Again, if F'is thin at 0, then by Theorem 5.14, the last series converges, and,
hence, sending m — oo gives c(E) = 0 and it follows that E is polar.

[

This has the following pleasant consequence.
Corollary 5.16.1: Radial Convergence for Subharmonic Functions Near Origin
If u is a function subharmonic on a neighbourhood of O then
lim u(re’®) = u(0) for n.e. e%.

r—0

Proof:
For each k > 1, define

U, = {z €C:uQ) < u(O)—%}.

Then U, is an open set which is thin at 0, so by Theorem 5.16,

. 1 :
lim inf u(re'?) > u(0) — Z for n.e. e'®.

r—=0
As a countable union of Borel polar set is polar by Corollary 3.4.2, we have

lim inf u(re’®) > u(0) for n.e. .
r—0
On the other hand, by upper semicontinuity, we ccertainly have
lim sup u(re?) < u(0) for all €%
r—0
Combining these inequalities yields the desired result.

[

5.5 Transfinite Diameter
There is another approach to capacity which is actually more direct than our defini-
tion in the first section. As well as giving further useful estimates for capacity, it has
close links with the theory of uniform approximation. It is based on the following
definition.
Definition: n-th Diameter
Let K be a compact subset of C and let n > 2. The n-th diameter of K is given
by
5,(K) = sup { IT 1w = w0 sy, eew, € K}
Jk:j<k
Definition: Fekete n-Tuple
An n-tuple wy, ---,w, € K for which the supremum is attained is called the
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Fekete n-tuple for K.

As K is compact, a Fekete n-tuple always exists, though it needs not to be unique.
The maximum principle Theorem 2.5 shows that in fact it must lie in 0,K.

Evidently, 6,(K) is just the usual diameter of K, and 6,(K) < 6,(K) for all n > 2.
Indeed, as we shall shortly see, the sequence {5,(K)},, is decreasing, so it has a
limit, often called the transfinite diameter of K. Actually, as the following theorem
suggests, this is nothing than the capacity.

Theorem 5.17: Fekete-Szego Theorem
Let K be a compact subset of C. Then the sequence {6,(K )}, is decreasing

and
lim 6,(K) = c(K).
Proof:
In order to simplify the notation, throughout the proof we shall denote 6,(K) as
0

-
Claim I: {6,} >, is decreasing
Let n > 2 and choose w,, -*-,w, | € K such that

nn+1)/2 _ o
5n+1 o ) |MG VVkl.
i<j<k<n+l
Then, since w,, ---, w,,; is an Fekete n-tuple in K, by definition one has
n(n—1)/2 _
o 2 1] Iw—wd
2<j<k<n+1

There are n + 1 such inequalities in all, the m-th tuple (1 < m <n + 1) one
obtained by omitting the terms involving w,,. Multiplying them all together
gives
(5;11(71—1)/2)71-}-1 > H |Wj _ Wkln—l — (5:11(n+1)/2)n—1‘
1< j<k<n+1
Hence 6, > 6, as desired.
Claim II: 6, > ¢(K) Vn > 2.
Next, we show that c¢(K') < 9, foralln > 2. If z;, ---, z, € K. Then taking log
on both sides and using the definition of energy give
N Y. loglz -z <logs,
nn—1) 4
1<j<k<n
Integrating this inequality with respect to dv(z,), -++, dv(z,), where v is an equ-
ilibrium me;sure for K (existence and uniqueness by Theorem 3.21), we have
— log|z; =z, | dv(z)dv(z;) < logé,.
n(n—1) 1<j<k<n JK JK ' ' '
Hence I(v) < log 6, thus by the definition of capacity c¢(K) < o, Vn > 2.
Claim III: ¢(K') > lim sup o, Vn > 2.

n—oo

Choose € > 0 and set
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-D/2
A =H|Wj_wk|-

Jj<k
For each j, let y; be normalized Lebesgue measure on the circle dA(w, €) and
n

putpu :=n"! 2 #;.- Then I(y) is given by
j=1

1 2
- > Hlog |2 = wldpRdp(w) + — > [Jlog |z = wldu2)dp(w).
jzl1 i<k
Now for each j,

” log|z — wldu(z)du(w) =: I(y;) = loge,

where the last equality holds by Corollary 3.21.1 and Corollary 5.4.1.
Moreover, for each pair j < &,

ﬂ log|z —wlduz)du(w) = Jpﬂj(W)dﬂk(W) 2 P (Wi,
where the first relation holds by the definition of potential and the second by
the upper semicontinuous since Py, is subharmonic by Theorem 3.1 (a).

Furthermore, using the same argument, we have
Py (W) = |loglz — wildu(z) 2 log|w; — wy|

since log | w; — wy | is subharmonic by Theorem 2.19.

Summing these together yields
n+1

1 2
I(ﬂ)2ﬁ210g8+ﬁ Z log|w; — w,

J=1 1<j<k<n+l
n—1

1
=—loge +
n n
where the second term in the last equality comes from the definition for n-th

diameter. Since y is supported on K¥, it follows that
C(KE) > gl/nén(K)(n—l)/n‘
Hence lim sup 6, < ¢(K?). Finally, since € > 0 is arbitrary, sending ¢ | 0 and

log 6,

n—-oo

using Theorem 5.2 (a) yield the desired result.
[]

Much of the importance of this theorem derives from its connection with polynom-
ial approximation. For several reasons, it is of interest to find monic polynomials g(z)
for which the sup-norm on K,

lgllx == sup{[q(@)|:z € K},
is relatively small. We now consider one such class.
Definition: Fekete Polynomial
Let K be a compact subset of C and let n > 2. A Fekete polynomial for K of
degree n is a polynomial of the form
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n
q(z) = H(z — W),
j=1
where wy, ---, w, 1s a Fekete n-tuple for K.
Theorem 5.18: Capacity Bounds via Fekete Polynomial
Let K be a compact subset of C.
(a) If g is a monic polynomial of degree n > 1, then ||q||}(/" > c(K).
(b) If g is a Fekete polynomial of degree n > 2, then ||q||}(/” < 0,(K).
Proof:
Step I: Assertion (a)
Since

g~ (AO,llqllp) = {z € C: q(z) € AW.llgllx)}

={zeC:lq@I<llglly}
we have Vz € K, z € {Z €C:lq@@)| < ”CIHK}' Thus K C q_1<A(O’”q“K))'

It follows that
_ ¢(BQ.lgll)
(k) < e(a7'(BO.lgll) ) = ( | 1 K))“"= Il

where the first realation holds by monotonicity of capacity in Theorem 5.1 (a),
the second holds by Theorem 5.6 where |a,;| = 1 since monic, and the last by
Corollary 5.4.1.

Step II: Assertion (b) i

Suppose that g(z) = H (z —w,), where wy, ---, w, is an Fekete n-tuple for K.
i=1
Ifz € K, then z,w(, ---,w, is an (n + 1)-tuple for K, so

[Tz =wit T 1w = wel < 6,y e+,

i=1 Jj<k
and hence

S 1(I()n(n+1)/2 5 (K)n(n+1)/2
lq(@)] <= < = 5,(K)",
5n(K )n(n—l)/2 5n(K )n(n—l)/2

where the first relation holds by the above display, the second holds since 6, 1s
decreasing as we have shown in the first claim for the proof of Theorem 5.17,
and the last holds by the definition of the Fekete n-th diamter.
Finally, since z is chosen arbitrarily, the desired inequality follows.
[]
In particular, the second inequality in Theorem 5.18 together with Theorem 5.17
tells us that, sending n — oo, the left hand side is the sup norm and the right hand
side i1s nothing but the capacity for K. Thus we have a lower bound for capacity via
Fekete n-th diameter. This aligned with our intuition.
Combining the last two theorems leads immediately to another characterization of
capacity.
Corollary 5.18.1: Characterization of Capacity via Monic Polynomial
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Let K be a compact subset of C, and for each n > 1 let
m, := inf { llgllx : g is a monic polynomial of degree n}
Then
lim m (K)'" = in{ m (K)'" = ¢(K).
n>

n—-oo

Definition: Chebyshev Polynomial
A monic polynomial g of degree n for which ||g||x = m,(K) is said to be a
Chebyshev polynomial.
Remark 5.1: Comparison of Chebyshev Polynomial and Fekete Polynomial
It can be shown that the Chebyshev polynomial exists and, provided that K has
at least n points, is unique. However, the Fekete polynomials have the advant-
age that, unlike the Chebyshev polynomials, their zeros always belong to K. ¢
As an illustration of this, we now use them to prove a strong form of Lemma 3.12.
It states that for every compact polar set, there exists a Borel probability measure
whose potential is minus infinity, hence zero energy.
Theorem 5.19: Evan’s Theorem
Let E be a compact polar set. Then there exists a Borel probability measure u
on E such that
p(2) =—o0 Vz EE.
Proof:
Givenn > 2, let wy, ---, w, be a Fekete n-tuple for K, and let g, be the corresp-
onding Fekete polynomial. If i, denotes the probability measure on K consist-

ing of — - masses at wy, ---, w,, then
n

n
1
p, ()= Zloglz - w;| = ;loglqn(z)l <logé,(E),z €EE
j=1
where the first relation holds by the definition of potential and Fekete n-tuple,
the second holds by the definition of Fekete polynomial, and the last holds by
Theorem 5.18 (b). Now by Fekete-Szeg6é Theorem 5.17,
lim 6,(E) =c(E)=0.

nt—oo
So, replacing {u,},> by a sequence, we may suppose that

p,, <—2"onEforalln > 1.

(e ]
If we sety = Z 27"u,, then u is a Borel probability measure on K, and

n=1

PR =)2"p, ()< D 27"2") = -0,z EE.

n=1 n=1

Thus u has the desired property.
[]

Knowledge of ||g|| ¢ also gives us information about how g behaves off K. If D is a
bounded component of C*\K then
lq()| < llqlix Vz € D,
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by the maximum principle Theorem 2.5. The next result tells us what happens when
D is the unbounded component. The first part contains the basic inequality, and the
second part gives some indication of its sharpness.
Theorem 5.20: Berstein’s Lemma
Let K be a non-polar compact subset of C and let D be the component of
C*\K containing oo.
(a) Ifgisapolynomial of degree n > 1 then

<M)1/n < ep@®) 7 e D\{oo0},
lallx
where g, 1s the Green function of D.

(b) If g is a Fekete polynomial for K of degree n > 2 then
<M>1/n > egD(Z,OO)< c(K) >TD(Z>°°)’ z € D\{},

where 7, denotes the Harnack’s distance for D.

Proof:
Step I. Assertion (a)
Multiplying g by a constant, we can suppose that it is monic. If we define

u(z) := — log|g(2)| - ~ log ||gllx — 8p(z, o), z € D\{eo}.
(To see this, take logarithm on both sides of the desired inequality). Then u(z)
is subharmonic on D\ {oco}. Moreover, as 7 — oo, by Theorem 5.4,
1
u(z) = log|z| ——log lqlix —log|z] +log c(K) + o(l).

Therefore, setting

1
u(oo0) :=logc(K) — — log [lgllx
makes u subharmonic on D. Now since dD C K, we have

. 1 1
lim sup u(z) < - log|g({)| ——logllgllx <0,¢ € aD,

= h
where the first inequality holds by the upper semicontinuity of u and the seco-
nd holds by the definition of ||g|| x, which is the supremum of |g(z)|. Thus, by
the maximum principle Theorem 2.5, u < 0 on D, as desired.
Step II: Assertion (b)
If g 1s a Fekete polynomial, then in particular by Remark 5.1 all its zeros lie in
K, and therefore u is actually harmonic on D. Also, from part (a), u < 0 on D,
so we may apply Harnack’s inequality Corollary 1.10.2 to —u to obtain

u(z) > 1p(z, 00)u(o), z € D.

Now by Theorem 5.18 (b) using in the second relation, one has

1
u(oo) =logc(K) — - log [lgllx = log c(K) —log 5,(K).
Combining the above displays yields the desired result.
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We offer a heuristic interpretation for Bernstein’s lemma. Since Chebyshev polyno-
mial offers us an approximation result for the capacity of K via components in
C*\K, it is naturally to ask what happens for unbounded component in C®\K.
Bernstein's lemma tells us that, the growth rate of the approximation is bounded by
the exponential of Green function on that component, thus the approximation near
infinity does not go wild. Moreover, if the polynomial is further Fekete, then all zeros
of this polynomial lay in K, thus a convexity argument yields the sharpness.

We end this section with an application to polynomial convexity.

Definition: Polynomially Convex
A compact subset K of C is polynomially convex if for each z € C\K, there
exists a polynomial g such that

lq(2) | > llqllk.

Remark 5.2: Necessary and Sufficient Condition for Polynomially Convex
The definition will not make sense if z belongs to a bounded component of
C\K, so for K to be polynomially convex it is necessary that C\K is conne-
cted. This condition also turns out to be sufficient. ¢

Example 5.6: Connectedness of C\K Is Sufficient for Polynomially Convex
A simple compactedness argument shows that, given an open neighbourhood
U of K, there is a finite set of polynomials g, ---, g, such that

max M >1,VzeC\U. o
1<j<n ||%‘||K
What is less obvious in Example 5.6 is that in fact one polynomial will do the job.
Theorem 5.21: Hilbert-Lemniscate Theorem
Let K be a compact subset of C such that C\K is connected, and let U be an

neighbourhood of K. Then there exists a polynomial g such that

Z
9@ | v ew.
llallx
Proof:
We can suppose that K is non-polar, otherwise just adjoin a small line segment
in U.

100 Adjoining Two Points by a Segment: Making K Non-Polar

Now K' = K u segment is non-polar (positive capacity).

This does not lose genera
If a polynomial g works fol it al:

ly
since ||q||_K = ||q]|_{K'} and thi

SO wol
the inequality
050 91q(z2)| / [laf|_K > 1 still holds outside U.
[ ]

Im(z)

@ K(finite, polar)
—— Adjoined segment

.00 T T - . T T y
-1.00 -0.75 —0.50 -025 0.00 025 050 075 1.00
Re(z)

(Figure 5.1: Adjoining line segment in compact polar set make it non-polar)
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Let D := C*®\K and put
L:= 1inf gp(z,00)and M := sup 7p(z, ),
Z€EC\U 7€C®\U
so that L > 0 and M < oo. Then by Theorem 5.20 (b), if g is a Fekete polyno-
mial for K of degree n, then

K
(M)w > eL(Q)M, zeC\U.
Since 6,(K) — ¢(K) as n — oo by Theorem 5.17, the right hand side will

exceed 1 for all sufficiently large n.

[

Summary of Chapter 5

Lacking the criterion for polarity, we introduce the concept of capacity to provide a
characterization. In the first section, we constructed the capacity. Moreover, as it is a
set function, some of its properties can be compared with the ones of measures: We
first proved some of “Elementary Properties of Logarithmic Capacity”, then
“Capacity Is Continuous in Monotone Sequences”. So far the connection with
measures looks perfect, but capacity is not additive, so for the union operations under
capacity we proved “Bound Estimates for Capacity of Borel Union” instead.

In the second section we studied the computation of capacity for certain sets, whi-
ch are based on the connection of capacity and Green function, namely, “Capacity of
Compact Non-Polar Set via Green Function”. Then immediately “Capacity of Closed
Disc” is derived. We proved an inversed version “Inversed Subordination Principle
for Capacity”, as a result, “Capacity for Interval” is computed explicitly. Then we
proved “Capacity under Inverse Image of Polynomials”, which has a corollary
providing a formula for certain disconnected sets, that is, “Capacity for Simple
Symmetric Disconnected Set”.

For some other sets that do not have good shapes or properties, the computation for
capacity can be very hard. Thus in the third section we proved some estimation
results. The first among these is “Upper Bound Estimate for Capacity under Bounded
Mapping”, then we derived a collection of quarter estimates for certain compact sets -
“Quarter Estimates for Capacity of Certain Compact Sets”. As an application, a result
in complex analysis is proved via capacity, that is, “Koebe’s One-Quarter Theorem”.
For compact sets with finite diameter, we proved “Capacity Upper Bound for
Compact Set with Finite Diameter”. The area and the capacity is also related by
“Lower Bound for Capacity of Compact Sets with Finite Area”, for the proof of this
result we introduced a lemma “Ahlfors-Beurling Inequality” stating that the size of
the kernel over a compact set is bounded above by a constant multiple of the area of
the set. Finally, we constructed the generalized Cantor set and proved “Capacity
Bound for Generalized Cantor Set”. All of these bounds are SHARP! However, for
the generalized Cantor set, the polarity really depends on how it is constructed.

In the fourth section, we studied the Criterion for thinness, which enables us to tell
if a set is polar or not. This is the famous “Wiener’s Criterion for Thinness”. As a
result, we proved “Set Thin at Zero Has Finite Logarithmic Measure” and “Polar Set
Derived from Thin Set via Radial Projection”. These two results offered us a way to
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construct certain polar sets. Finally we proved a corollary - “Radial Convergence for
Subharmonic Functions Near Origin™.

In the last section we introduced the concept of transfinite diameter. We started with
the definition of Fekete tuple and proved “Fekete-Szegé Theorem”, which tells us
that the Fekete tuple for a compact set converges to the capacity of the same set. This
enables us to introduce the Fekete polynomial and “Capacity Bounds via Fekete
Polynomial”. In particular, if we introduce the Chebyshev polynomial, then we can
characterize the capacity via “Characterization of Capacity via Monic Polynomial”.
Then we proved “Evan’s Theorem”, which tells us that compact polar set has Borel
probability measure with minus infinity potential. It is natural to ask how the
approximation behaves on unbounded domains, the growth rate is bounded and the
bound is sharp, which is proved in “Bernstein’s Lemma”. Finally, as the sharpness
requires convexity, we defined the polynomial convexity and proved that
connectedness of its component is necessary for a set to be polynomially convex, and,
also, sufficient, by “Hilbert-Lemniscate Theorem”.
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