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1. Harmonic Functions 
1.1 Harmonic and Holomorphic Functions 

    Harmonic functions, namely solutions of Laplace’s equation, exhibit many propert-
ies remoniscent of those of holomorphic functions. In fact, when working in a plane, 
as well shell, there is a direct connection between the two classes. We shall unshame-
dly exploit this to accelerate the initial development of harmonic functions, under the 
assumption that we already know something about holomorphic ones. Later, potential 
theory will repay its debt to complex analysis in the form of many beautiful applicati-
ons. 
    We begin with the formal definition. A function  means it has second d-
erivative in . 
Definition: Harmonic Function 
	 Let  be an open subset of . A function  is said to be harmonic 
	 if  and  on . 
Definition: Holomorphic Function 
	 A function  is said to be holomorphic at the point  if the limit 

,  

	 exists. It is said to be holomorphic if this holds for every point . 
Remark 1.1: Some Properties of Holomorphic Functions 
	 (i)	 If  is holomorphic on , then for some appropriate closed paths  in , 

	 	 	 	 	      .	 	       (Contour Integration) 

	 (ii)	 If  is holomorphic, then  is infinitely differentiable.	 (Regularity) 
	 (iii)	 If  and  are holomorphic functions on  which are equal in an arbitrar- 
	 	 ily small disc in  then  everywhere on . 
	 	 	 	 	 	 	 	 	           (Identity Principle)	  
    The following basic result not only furnishes numerous examples of harmonic fun-
ctions, but also provide a useful tool in deriving their elementary properties from 
those of holomorphic functions. We shall use  to denote the real-part of . 
Theorem 1.1: Characterization of Harmonicity as Holomorphy 
	 Let  be a domain in . 
	 (i)	 If  is holomorphic on  and , then  is harmonic on . 
	 (ii)	 If  is harmonic on , and if  is simply connected, then  for  
	 	 some  holomorphic on . Moreover,  is unique up to adding a constant. 
Proof: 
	 Step I: Assertion (i) 
	 Let , the Cauchy-Riemann equations give that  

 and . 
	 Therefore, using Cauchy-Riemann equation in the second equality gives 

. 
	 Thus (ii) follows from the definition of harmonicity. 
	 Step II: Uniqueness in assertion (ii) 

h ∈ C2(U )
U

U ℂ h : U → ℝ
h ∈ C2(U ) Δh = 0 U

f : ℂ → ℂ z ∈ ℂ

lim
h→0

f (z + h) − f (z)
h

h ∈ ℂ

z ∈ ℂ

f D γ D

∫γ
f (z)dz = 0

f f
f g D

D f = g D
⋄

Re f f

D ℂ
f D h = Re f h D
h D D h = Re f

f D f

f := h + ik
hx = ky hy = − kx

Δh := hxx + hyy = kyx − kxy = 0
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	 If  for some holomorphic function , say , then 
	 	 	 	          .	 	 	 	 (1.1) 
	 Thus, if  exists, then  is completely determined by , and hence  is unique up 
	 to adding a constant. 
	 Step III: Existence in assertion (ii) 
	 Equation (1.1) suggests how we might construct such a function . Define  
	  by . Then  and  satisfies the Cauchy- 
	 Riemann equations by assumption of harmonicity in : 

 and . 
	 Therefore  is holomorphic on  since  and  satisfies the Cauchy- 
	 Riemann equation. Fix , and define  by 

, 

	 the integral being taken over any path in  from  to . As  is simply conne- 
	 cted, Cauchy’s theorem (see Remark 1.1 (i)) ensures that the integral is indep- 
	 endent of the particular path chosen. Then  is holomorphic on  and  

. 
	 Denote , we have 

, 
	 so that 

 and . 
	 It follows that  is constant on , putting  shows that the constant is 
	 zero, thus , as desired. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   As a consequence, we obtain a useful result about holomorphic logarithms. Recall 
that the holomorphic function has the maximum modulus principle. 
Remark 1.2: Maximum Modulus Principle for Holomorphy 
	 Let  be a domain and  be holomorphic/analytic. If  has a 
	 local maximum on  then  is constant on .	  
Corollary 1.1.1: Logarithms for Holomorphic Functions 
	 Let  be holomorphic and non-zero on a simply connected domain  in .  
	 Then there exists a holomorphic function  on  such that . 
Proof: 
	 Put  on . Because  is locally the real part of a holomorphic fun- 
	 ction, namely a branch of , it is harmonic by Theorem 1.1 (i). Now using 
	 Theorem 1.1 (ii), there exists a holomorphic function  on  such that  
	  there, or in other words, 

 on  
	 By Remark 1.2,  is a constant . Adding a suitable constant to , we can 
	 suppose that  and therefore . 
	 	 	 	 	 	 	 	 	 	 	 	 	  

h = Re f f f := h + ik
f′￼= hx + ikx = hx − ihy

f f′￼ h f

f
g : D → ℂ g := hx − ihy g ∈ C1(D) g

h
hxx = − hyy hxy = hyx

g D g ∈ C1(D) g
z0 ∈ D f : D → ℂ

f (z) := h(z0) + ∫
z

z0

g(w)dw

D z0 z D

f D
f′￼= g = hx − ihy

h̃ := Re f
h̃x − ih̃y = f′￼= hx − ihy

(h̃ − h)x = 0 (h̃ − h)y = 0
h̃ − h D z = z0

h = Re f
□

U ⊂ ℂ f : U → ℂ | f |
U f U ⋄

f D ℂ
g D f = eg

h := log | f | D h
log f

g D
h = Re g

| fe−g | = | f f −1 | = 1 D
fe−g C g

C = 1 f = eg

□
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    Corollary 1.1.1 (and, by implication, Theorem 1.1(ii)) may fail if  is not assum-
ed to be simply connected. 
Example 1.1: Corollary 1.1.1 Fails When  Is NOT Simply Connected 
	 The function  is holomorphic and non-zero on the domain  
	 ; but ther eis no holomorphic function  such that  on , 

	 for such a  would satisfy , and this would then imply that 

, 

	 where the first equality holds by Remark 1.1 (i), the second equality holds  
	 since , and the last equality by simply calculation. This is impos- 
	 sible since .	  
    However, since discs are simply connected, every harmonic function is at least loc-
ally the real part of some holomorphic function. This leads to the following results. 
Corollary 1.1.2: Regularity of Harmonic Functions 
	 If  is a harmonic function on an open subset  of  then . 
Corollary 1.1.3: Composition for Harmonic Functions via Holomorphy 
	 If  is a holomorphic map between open subsets  and  of , 
	 and if  is harmonic on , then  is harmonic on . 
    To make our notes self-contained, we state some properties of holomorphic functi-
ons into the following remark without proof. 
Remark 1.3: More Properties of Holomorphic Functions 
	 If  and  are holomorphic on  then 
	 (i)	  is holomorphic on  and . 
	 (ii)	  is holomorphic on  and . 

	 (iii)	 If , then  is holomorphic at  and . 

	 (iv)	 If  and  are holomorphic then the chain rule holds 
	 	 	 	  .	  
   The result in Corollary 1.1.3 allows us to extend the notion of harmonicity to the 
Riemann sphere.  
Example 1.2: Extending Harmonicity to Riemann Sphere 
	 Given a function  defined on an open neighbourhood  of , we say  is 
	 harmonic on  if  is harmonic on , where  is a conformal mapp- 
	 ing of  onto an open subset of . It does not matter which map  is chosen: 
	 if  and  are two such choices, then 

, 
	 where , so by Corollary 1.1.3,  is harmonic on  if 
	 and only if  is harmonic on .	  
    Another simple consequence of Theorem 1.1 will be of great importance later. 
Theorem 1.2: Mean-Value Property of Harmonic Functions 
	 Let  be a harmonic function on an open neighbourhood of the disc . 
	 Then 

D

D
f (z) = z

D := ℂ∖{0} g z = eg(z) D

g g′￼(z) =
1
z

0 = ∫|z|=1
g′￼(z)dz = ∫|z|=1

1
z

dz = 2π i

g′￼(z) = 1/z
0 ≠ 2π i ⋄

h U ℂ h ∈ C∞(U )

f : U1 → U2 U1 U2 ℂ
h U2 h ∘ f U1

f g D ⊂ ℂ
f + g D ( f + g)′￼= f′￼+ g′￼
fg D ( fg)′￼= f′￼g + fg′￼

g(z0) ≠ 0 f /g z0 ( f /g)′￼=
f′￼g − fg′￼

g2

f : D → U g : U → ℂ
( f ∘ g)′￼(z) = g′￼(f (z))f′￼(z) ∀z ∈ D ⋄

h U ∞ h
U h ∘ φ−1 φ(U ) φ

U ℂ φ
φ1 φ2

(h ∘ φ−1
1 ) = (h ∘ φ−1

2 ) ∘ f
f = φ2 ∘ φ−1

1 h ∘ φ−1
1 φ1(U )

h ∘ φ−1
1 φ2(U ) ⋄

h Δ(w, ρ)
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. 

Proof: 
	 Choose  so that  is a harmonic function on . By Theorem 1.1 
	 (ii), there exists  holomorphic on  such that  there. Now using 
	 Cauchy’s integral formula in the first equality and change to radial coordinate  
	 in the second, one gets 

. 

	 Result follows upon taking real part of both sides. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   This section ends with two further ways in which harmonic functions behave like 
holomorphic ones, an identity principle and a maximum principle. We shall deduce 
the harmonic versions of both these results from their holomorphic counterparts. 
Theorem 1.3: Identity Principle for Harmonic Functions 
	 Let  and  be harmonic functions on a domain  in . If  on a non- 
	 empty open subset  of . Then  throughout . 
Proof: 
	 Without loss of generality, we may suppose that . Set . Then 
	 as in the proof of Theorem 1.1,  is holomorphic on , and also  on   
	 since  there. By Remark 1.1 (iii), it follows that  throughout ,  
	 and hence that  and  on . Therefore  is constant on , and since 
	  on , this constant must be zero. It follows that  on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   For holomorphic functions, a stronger form of identity principle holds: namely, if 
two holomorphic functions agree on a set with a limit point in the domain , then 
they agree throughout . However, this is not the case for harmonic functions. 
Example 1.3: Stronger Identity Principle Fails for Harmonic Functions 
	 The functions  and  are harmonic function on  and agree 
	 on the imaginary axis without being equal on the whole .	  
Theorem 1.4: Maximum Principle for Harmonic Functions 
	 Let  be a harmonic function on a domain  in . 
	 (i)	 If  attains a local maximum on  then  is constant. 
	 (ii)	 If  extends continuously to  and  on  then  on . 
    This is perhaps a proper moment for a reminder about our convention that all clos-
ures and boundaries are taken with respect to the extended complex plane  rather 
than . Indeed, Theorem 1.4 (ii) would otherwise be false. 
Example 1.4: Without Our Convention Theorem 1.4 (ii) Fails 
	 The harmonic function  on the domain  
	 extends continuously to  and  on  but  on .	  
Proof of Theorem 1.4: 
	 Step I: Assertion (i) 

h(w) =
1

2π ∫
2π

0
h(w + ρeiθ)dθ

ρ′￼> ρ h Δ(w, ρ′￼)
f Δ(w, ρ′￼) h = Re f

f (w) =
1

2π i ∫|ξ−w|=ρ

f (ξ)
ξ − w

dξ =
1

2π ∫
2π

0
f (w + ρeiθ)dθ

□

h k D ℂ h = k
U D h = k D

k = 0 g := hx − ihy
g D g = 0 U

h = 0 g = 0 D
hx = 0 hy = 0 D h D

h = 0 U h = k = 0 D
□

D
D

h(z) := Re z k(z) = 0 ℂ
ℂ ⋄

h D ℂ
h D h
h D h ≤ 0 ∂D h ≤ 0 D

ℂ∞

ℂ

h(z) := Re z D := {z ∈ ℂ : Re z > 0}
D h ≤ 0 ∂D h > 0 D ⋄
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	 Suppose  attains a local maximum at . Then for some  we have 
	  on . By Theorem 1.1 (ii) there exists a holomorphic function  
	  on  such that  there. Then  attains a local maximum at , 
	 so  must be a constant. Therefore  is constant on  and hence on the 
	 whole of  by Theorem 1.3. 
	 Step II: Assertion (ii) 
	 As  is compact,  must attain a maximum at some point . If  
	 then  by assumption, and so  on . If  then by (i) we just 
	 proved,  is constant on , hence on , and so once again  on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  

1.2 The Dirichlet Problem on the Disc 
    The Dirichlet problem is to find a harmonic function on a domain with the prescri-
bed boundary values. It is one of the greatest advantages of harmonic functions over 
holomorphic ones that for “nice” domains, a solution always exists. This is a 
powerful tool for many applications. We first formulate the problem. 
Definition: Dirichlet Problem 
	 Let  be a subdomain of  and let  be a continuous function. The 
	 Dirichlet problem is to find a harmonic function  on  such that 

 . 

Theorem 1.5: Uniqueness of Solution to Dirichlet Problem 
	 There exists at most one solution to Dirichlet problem. 
Proof: 
	 Suppose  and  are two solutions to the Dirichlet problem. Then  is 
	 harmonic on  (use Remark 1.3 (i) to see this). Moreover  on  
	 by the definition of Dirichlet problem and  extends continuously to  
	 by Theorem 1.4 (ii). Another application of Theorem 1.4 (ii) to  
	 respectively yields that  on , as desired. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    The question for the existence of solution to Dirichlet problem will be discussed in 
the fourth chapter as we need more tools. There is a special case we can solve based 
on the current knowledge. 
Definition: Poisson Kernel 
	 The Poisson kernel  is defined by 

, 

	 where  and . 
Definition: Poisson Integral 
	 If  and  is a Lebesgue integrable function. Then the 
	 Poisson integral  is defined by 

 

h w ∈ D r > 0
h ≤ h(w) Δ(w, r)
f Δ(w, r) h = Re f |e f | w

e f h Δ(w, r)
D

D h w ∈ D w ∈ ∂D
h(w) ≤ 0 h ≤ 0 D w ∈ D

h D D h ≤ 0 D
□

D ℂ φ : ∂D → ℝ
h D

lim
z→ξ

h(z) = φ(ξ) ∀ξ ∈ ∂D

h1 h2 h1 − h2
D h1 − h2 = 0 ∂D

h1 − h2 D
±(h1 − h2)

h1 − h2 = 0 D
□

P : Δ(0,1) × ∂Δ(0,1) → ℝ

P(z, ζ ) := Re ( ζ + z
ζ − z ) =

1 − |z |2

|ζ − z |2

|z | < 1 |ζ | = 1

Δ := Δ(w, ρ) φ : ∂Δ → ℝ
PΔφ : Δ → ℝ

PΔφ(z) :=
1

2π ∫
2π

0
P( z − w

ρ
, eiθ)φ(w + ρeiθ)dθ
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	 for . More precisely, if  and  then 

. 

    The following result is fundamental. 
Theorem 1.6: Properties of Poisson Integral 
	 (i)	  is harmonic on . 
	 (ii)	 If  is continuous at  then . 

	 (iii)	 In particular, if  is continuous on the whole of  then   
	 	 solves the Dirichlet problem on . 
Proof: 
	 Using an affine transformation if necessary, without loss of generality, we may 
	 assume that  and , hence . 
	 Step I: Assertion (i) 
	 By the definition of Poisson kernel, one has, for , 

, 

	 so that  is the real part of a holomorphic function and thus by Theorem 1.1  
	 (i),  is harmonic on . 
	 Step II: Assertion (ii) 
	 To prove the second assertion, we need a lemma. 
Lemma 1.7: Properties of Poisson Kernel 
	 The Poisson kernel  satisfies 
	 (i)	  for  and .		 (Non-Negative) 

	 (ii)	  for .	 	 (Normalization) 

	 (iii)	  as , where  and . 

Proof: 
	 The first assertion follows immediately from the definition of Poisson kernel. 
	 Step I: Assertion (ii)	  
	 Expressing the given integral as a contour integral and using Cauchy’s formula 
	 in the first and the second equality respctively, 

. 

	 Step II: Assertion (iii) 
	 If  then 

z ∈ Δ r < ρ 0 ≤ t < 2π

PΔφ(w + reit) =
1

2π ∫
2π

0

ρ2 − r2

ρ2 − 2ρr cos(θ − t) + r2
φ(w + ρeiθ)dθ

PΔφ Δ
φ ζ0 ∈ ∂Δ lim

z→ζ0

PΔφ(z) = φ(ζ0)

φ ∂Δ h := PΔφ
Δ

w = 0 ρ = 1 Δ = Δ(0,1)

z ∈ Δ

PΔφ(z) = Re ( 1
2π ∫

2π

0

eiθ + z
eiθ − z

φ(eiθ)dθ)
PΔφ

PΔφ Δ

P
P(z, ζ ) > 0 |z | < 1 |ζ | = 1
1

2π ∫
2π

0
P(z, eiθ)dθ = 1 |z | < 1

sup
|ζ−ζ0|≥δ

P(z, ζ ) → 0 z → ζ0 |ζ0 | = 1 δ > 0

1
2π ∫

2π

0
P(z, eiθ)dθ = Re ( 1

2π i ∫|ζ|=1

ζ + z
ζ − z

dζ
ζ )

= Re ( 1
2π i ∫|ζ|=1

( 2
ζ − z

−
1
ζ )dζ)

= Re (2 − 1) = 1

|z − ζ0 | < δ
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, 

	 sending  yields the last assertion. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Proof of Theorem 1.6: Continued 
	 Once again, we may assume that . Then using Lemma 1.7 (ii) and 
	 (i) in the first and the second equality respectively gives 

 

	 Let . If  is continuous at , then there exists a  such that 
 

	 by the continuity assumption. Hence, using Lemma 1.7 (i) and (ii) again one 
	 obtains 

. 

	 Moreover, according to Lemma 1.7 (iii), there exists  such that 
. 

	 Hence if  then 

 

	 where we used Minkowski’s inequality in the second inequality. Combining  
	 these facts, we deduce that if  then 

. 

	 Finally, since  is arbitrary, sending  yields (ii) and (iii). 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   As an immediate consequence of this result, we obtain an analogue of the Cauchy 
integral formula for harmonic functions. 
Corollary 1.6.1: Poisson Integral Formula for Harmonic Functions 
	 If  is harmonic on an open neighbourhood of the disc  then for   
	 and , 

. 

sup
ζ−ζ0|≥δ

P(z, δ ) ≤
1 − |z |2

(δ − |ζ0 − z |)2

z → ζ0
□

Δ = Δ(0,1)

PΔφ(z) − φ(z0) =
1

2π ∫
2π

0
P(z, eiθ)(φ(eiθ) − φ(ζ0))dθ

≤
1

2π ∫
2π

0
P(z, eiθ) φ(eiθ − φ(ζ0) dθ .

ε > 0 φ ζ0 ∈ ∂Δ δ > 0
|ζ − ζ0 | < δ ⇒ φ(δ ) − φ(ζ0) < ε

1
2π ∫|eiθ−ζ0|<δ

P(z, eiθ) φ(eiθ) − φ(ζ0) dθ ≤
1

2π ∫
2π

0
P(z, eiθ)εdθ = ε

δ′￼> 0
|z − ζ0 | < δ′￼⇒ sup

|ζ−ζ0|≥δ
P(z, ζ ) < ε

|z − ζ0 | < δ′￼
1

2π ∫|eiθ−ζ0|≥δ
P(z, eiθ) φ(eiθ) − φ(ζ0) dθ ≤

1
2π ∫

2π

0
ε φ(eiθ) − φ(ζ0) dθ

≤ ε( 1
2π ∫

2π

0
|φ(eiθ) |dθ + |φ(ζ0) |)

|z − ζ0 | < δ′￼

PΔφ(z) − φ(ζ0) ≤ ε(1 +
1

2π ∫
2π

0
|φ(eiθ) |dθ + |φ(ζ0) |)

ε > 0 ε ↓ 0
□

h Δ(w, ρ) r < ρ
0 ≤ t < π

h(w + reit) =
1

2π ∫
2π

0

ρ2 − r2

ρ2 − 2ρr cos(θ − t) + r2
h(w + ρeiθ)dθ
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Proof: 
	 Consider the Dirichlet problem on  with . According to 
	 Theorem 1.6 (iii),  and  are both solutions and by Theorem 1.5 the solu- 
	 tion is unique. Thus  on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   Note that this result is a generalization of the mean-value property Theorem 1.2, 
for which is the case when . It allows us to recapture the values of  everywhere 
on  from the knowledge of  on . Exercise 4 gives an analogous formula for  on 

, where  is the essentially unique holomorphic function such that . 
   The mean value property Theorem 1.2 actually characterizes harmonic functions. 
This is proved in the next theorem, which also illustrates well the value of being able 
to solve the Dirichlet problem. 
Theorem 1.8: Mean-Value Property Characterizes Harmonic Functions 
	 Let  be a continuous function on an open subset , and  
	 suppose that it possesses the local mean-value property, that is, given , 
	 there exists  such that for , 

. 

	 Then  is harmonic on . 
Proof: 
	 It suffices to show that  is harmonic on each open disc  with . Fix  
	 such a , and define  by 

 

	 Then  is continuous on  and has local mean-value property on . Since  
	 is compact,  attains a maximum value  at some point of . Define 

 and . 
	 Then  is open since  is continuous.  is also open, for if  then the  
	 local mean-value property forces  to be equal to  on all sufficiently small 
	 circles around . 
	 Now  and  partition the connected set , either , in which case  
	 attains its maximum on  and so ; or , in which case  and 
	 . Thus  and a similar argument tells us that . Hence  
	 on  and since  is harmonic by Theorem 1.6 (i), so is . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    The technique we used in proving Theorem 1.8 by defining  and  will be used 
in proving the maximum principle for subharmonic functions. Ineed, the reason that 
this technique works is by our assumption that  is simply connected. 
    Combining Theorem 1.2 and Theorem 1.8 we obtain the following result. 
Corollary 1.8.1: Harmonicity As Local Uniform Limit of Harmonic Functions 
	 If  is a sequence of harmonic functions on  converging locally unifo- 
	 rmly to a function , then  is also harmonic on . 

Δ := Δ(w, ρ) φ := h |∂Δ
h PΔh

h = PΔh Δ
□

r = 0 h
Δ h ∂D f

Δ f h = Re f

h : U → ℝ U ⊂ ℂ
w ∈ U

ρ > 0 0 ≤ r < ρ

h(w) =
1

2π ∫
2π

0
h(w + reit)dt

h D

h Δ Δ ⊂ U
Δ k : Δ → ℝ

k := {h − PΔh on Δ
0 on ∂Δ

k Δ Δ Δ
k M Δ

A := {z ∈ Δ : k(z) < M} B := {z ∈ Δ : k(z) = M}
A k B k(w) = M

k M
w

A B Δ A = Δ k
∂D M = 0 B = Δ k ≡ M

M = 0 k ≤ 0 k ≥ 0 h = PΔh
Δ PΔh h

□
A B

D

{hn}n≥1 D
h h D
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   A useful feature of Theorem 1.8 is that one only needs to check that the mean-
value property holds locally (that is, the value of  can depend on ). As an applica-
tion of this, we derive a form of the reflection principle for holomorphic functions. 
Theorem 1.9: Reflection Principle for Holomorphic Functions 
	 Let  and write 

 and . 
	 Suppose that  is a holomorphic function on  such that  extends continu- 
	 ously to  with  on . Then  extends holomorphically to the wh- 
	 ole of . 
    Note that no assumption is made about the continuity of  on , this comes free. 
Proof of Theorem 1.9:  
	 Define  by 

 

	 Then  is continuous on  and has local mean-value property on . Thus by 
	 Theorem 1.8,  is harmonic on . Using Theorem 1.1 (ii), there exists a holo- 
	 morphic function  on  such that . Now  is holomorphic on  	  
	 by Remark 1.3 (i) and takes only imaginary values, so it is constant there. Adj- 
	 usting  appropriately, we can make this constant to be zero. Then  is the desi- 
	 red extension of  to the whole of . 
	 	 	 	 	 	 	 	 	 	 	 	 	  

1.3 Positive Harmonic Functions 
    In this section we shall exploit the Poisson integral formula Corollary 1.6.1 to der- 
ive some useful inequalities for positive harmonic functions. By “positive” here is 
meant “non-negative”, although in this context there is hardly any difference since, 
by Theorem 1.4 (i), any harmonic function which attains a minimum value zero on a 
domain must be identically zero throughout the domain. 
Theorem 1.10: Harnack’s Inequality 
	 Let  be a positive harmonic function on the disc . Then for  and 
	 , 

. 

Proof: 
	 Choose  with . By Corollary 1.6.1 applied to  on  in the  
	 first equality one has 

ρ w

Δ := Δ(0,R)
Δ+ := {z ∈ Δ : Im z > 0} I := {z ∈ Δ : Im z = 0}

f Δ+ Re f
Δ+ ∪ I Re f = 0 I f

Δ
Im f I

h : Δ → ℝ

h(z) :=
Re f (z), z ∈ Δ+

0, z ∈ I
−Re f (z ), z ∈ Δ+

h Δ Δ
h Δ

f̃ Δ h = Re f̃ f − f̃ Δ+

f̃ f̃
f Δ

□

h Δ(w, ρ) r < ρ
0 ≤ t < 2π

ρ − r
ρ + r

h(w) ≤ h(w + reit) ≤
ρ + r
ρ − r

h(w)

s r < s < ρ h Δ(w, s)

10



 

	 where the last inequality holds by the mean-value property of . Now sending 
	  gives 

, 

	 thus the desired upper bound is obtained. A similar argument gives the desired 
	 lower bound. Thus the proof is complete. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Corollary 1.10.1: Liouville Theorem 
	 Every harmonic function on  which is bounded above or below is constant. 
Proof: 
	 It suffices to show that every positive harmonic function  on  is constant. 
	 Given , put  and let . Applying Theorem 1.10 to  on the 
	 disc  gives 

. 

	 Sending  yields . Thus  attains a maximum value at  and 
	 by Theorem 1.4 (i)  is constant on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Harnack’s inequality on discs implies an analogous result for general domains. 
Corollary 1.10.2: Harnack’s Inequality on General Domains 
	 Let  be a domain in  and let . Then there exists a number  such 
	 that for every positive harmonic function  on , 
	 	 	 	        ,	 	 	 	 (1.2) 
Proof: 
	 Given , write  if there exists a number  such that (1.2) holds for 
	 every positive harmonic function  on . Then  is an equivalence relation on 
	 , and Harnack’s inequality Theorem 1.10 shows that the equivalent classes  
	 are open sets. As  is connected, there can only be one such an equivalent  
	 class, and this proves (1.2).	  
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Prompted by the last result, we make the following definition. 
Definition: Harnack Distance 
	 Let  be a domain in . Given , the Harnack distance between   
	 and  is the smallest number  such that for every positive harmonic 
	 function  on , 
	 	 	         .		 	 (1.3) 

h(w + eit) =
1

2π ∫
2π

0

s2 − r2

s2 − 2rs cos(θ − t) + r2
h(w + seiθ)dθ

≤
1

2π ∫
2π

0

s + r
s − r

h(w + seiθ)dθ

=
s + r
s − r

h(w),

h
s → ρ

h(e + reit) ≤
ρ + r
ρ − r

h(w)

□

ℂ

h ℂ
z ∈ ℂ r := |z | ρ > r h

Δ(0,ρ)
h(z) ≤

ρ + r
ρ − r

h(0)

ρ → ∞ h(z) ≤ h(0) h 0
h ℂ

□

D ℂ∞ z, w ∈ D τ
h D

τ−1h(w) ≤ h(z) ≤ τh(w)

z, w ∈ D z ∼ w τ
h D ∼

D
D

□

D ℂ∞ z, w ∈ D z
w τD(z, w)

h D
τD(z, w)−1h(w) ≤ h(z) ≤ τD(z, w)h(w)
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    There is one case for which  can be computed straightaway. 
Theorem 1.11: Harnack Distance Inside Discs 
	 If . Then 

 for . 

Proof: 
	 From Harnack’s inequality Theorem 1.10, it follows that 

 for . 

	 On the other hand, by considering the positive harmonic function  on  given 
	 by 

 

	 for , the equality follows immediately. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    From this, one can compute or estimate  for other domains  by means of the fo-
llowing subordination principle. Before stating it we first recall some terminology in 
complex analysis. 
Definition: Memomorphic Function 
	 A function on a domain  is said to be meromorphic if there exists a sequence 
	 of points  with no limit points in  such that if we denote  

 
	 such that  is holomorphic and  has holes at . 
Remark 1.4: Properties of Meromorphic Functions 
	 Let , , and  be meromorphic functions on the same domain. Then 
	 (i)	  is meromorphic. 
	 (ii)	  is meromorphic. 
	 (iii)	 . 
	 (iv)	  and . 
	 (v)	  is meromorphic.	  
Definition: Conformal Map 
	 A map  is said to be conformal if it preserves angles between oriented 
	 curves in magnitude as well as in orientation. 
Theorem 1.12: Subordination Principle 
	 Let  be a meromorphic map between domains  and  in .  
	 Then for , 

, 
	 with equality holds if  is a conformal mapping of  and . 
Proof: 
	 Let . Given a positive harmonic function  on , if  is holomorphic 
	 then by Corollary 1.1.3  is harmonic on . If  is meromorphic but not  
	 holomorphic, then  agrees with a harmonic function on , 

τD

Δ = Δ(w, ρ)

τD(z, w) =
ρ + |z − w |
ρ − |z − w |

z ∈ Δ

τΔ(z, w) ≤
ρ + |z − w |
ρ − |z − w |

z ∈ Δ

h Δ

h(z) := P( z − w
ρ

, ζ) := Re ( ρζ + (z − w)
ρζ − (z − w) )

|ζ | = 1
□

τD D

Ω
p1, p2, ⋯ Ω

Ω* := Ω∖{p1, p2, ⋯}
f : Ω* → ℂ f p1, p2, ⋯

f g h
f ± g
fg
f (g + h) = fg + f h
f ± 0 = f f ⋅ 1 = f
1/f ⋄

f (z) := w

f : D1 → D2 D1 D2 ℂ∞

z, w ∈ D1
τD2(f (z), f (w)) ≤ τD1

(z, w)
f D1 D2

z, w ∈ D1 h D2 f
h ∘ f D1 f

h ∘ f D1∖{p1, p2, ⋯}
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	 which is a non-empty open set. Thus by Theorem 1.3  is harmonic on . 
	 In particular,  is a positive harmonic function on . So by (1.3) one has 

 . 
	 As this holds for arbitrary such a function , the inequality is verified. 
	 Suppose in addition that  is a conformal map of  onto , then we can apply 
	 the same argument to  and the equality follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Corollary 1.12.1: Inverse Monotonicity for Harnack Distance under Domain 
	 If  then 

, where . 
Proof: 
	 Take  to be the inclusion map. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    We can use this to study the continuity properties of . 
Theorem 1.13: Log Harnack Distance Over is a Continuous Semimetric 
	 If  is a subdomain of  then  is a continuous semimetric on . 
Proof: 
	 Step I:  is a semimetric on . 
	 To show that  is a semimetric, we need to verify that for , 
	 	 	  and .	 	 	 (Non-“Negative”) 
	 	 	 .	 	 	 	 (Symmetric) 
	 	 	  for .	 (Triangle Inequality) 
	 All of these follows from the definition of . 
	 Step II:  is continuous on . 
	 To show that  is continuous, it suffices to prove that 

 as , 
	 because the general result then follows by the triangle inequality for . To 
	 this end, let , and choose  so that . Then for  
	  we have 

, 

	 where the first inequality holds since , the second inequality holds 
	 since  and by Corollary 1.12.1, and the last equality holds by the defin- 
	 ition of . Since  is arbitrary, sending  yields  as  
	 , as desired. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Remark 1.5: Reason for  Being Semimetric Instead of Metric In General	  
	 It may happen that  even when , so that  is not  
	 quite a metric. For example, since the only positive harmonic function on  are 
	 constants, it follows that  . However,  is a me- 
	 tric for many domains .		  
    It is now a short step to the following important theorem. 

h ∘ f D1
h ∘ f D1

τD1
(z, w)−1h(f (w)) ≤ h(f (z)) ≤ τD1

(z, w)h(f (w))
h

f D1 D2
f −1

□

D1 ⊂ D2
τD2

(z, w) ≤ τD1
(z, w) z, w ∈ D1

f : D1 → D2
□

τD

D ℂ∞ log τD D

log τD D
log τD z, w ∈ D

∙ τD(z, w) ≥ 1 τD(z, z) = 1
∙ τD(z, w) = τD(w, z)
∙ τD(z, w) ≤ τD(z, z′￼)τD(z′￼, w) z′￼∈ D

τD
log τD D

log τD
log τD(z, w) → 0 z → w

log τD
w ∈ D ρ > 0 Δ := Δ(w, ρ) ⊂ D

z ∈ Δ

0 ≤ log τD(z, w) ≤ log τΔ(z, w) = log( ρ + |z − w |
ρ − |z − w | )

τD(z, w) ≥ 1
Δ ⊂ D

τΔ ρ > 0 ρ ↓ 0 log τD(z, w) → 0
z → w

□
log τD
log τD(z, w) = 0 z ≠ w log τD

ℂ
log τℂ(z, w) = 0 ∀z, w ∈ ℂ log τD

D ⋄
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Theorem 1.14: Harnack’s Theorem 
	 Let  be harmonic functions on a domain  in  and suppose that 

 on . 
	 Then either  locally uniformly or  locally uniformly where  is  
	 a harmonic function on . 
Proof: 
	 Fix . Given a compact subset  of , the quantity 

 

	 is finite since  is continuous (a continuous function has finite supremum  
	 over compacts). Hence whenever , we have, for , 

 
 

	 because  and  are positive harmonic functions on  by assump- 
	 tion. Now if  as  then  uniformly on . As  can be 
	 any compact subset of , we conclude that  locally uniformly on . 
	 On the other hand, if  tends to a finite limit, then  is uniformly  
	 Cauchy on . Again, as  is an arbitrary compact susbet of , it follows that  
	  converges locally uniformly on  to a finite function , by Corollary 1.8.1 
	  is necessarily harmonic on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   There is also a very useful variant of Harnack’s theorem in which, instead of assu-
ming that the sequence  is increasing, we suppose merely that it is positive. 
The price we pay is that, in general, only a subsequence will converge. 
Theorem 1.15: Harnack’s Theorem for Positive Harmonic Functions 
	 Let  be positive harmonic functions on a domain  in . Then either 
	  locally uniformly, or else some subsequence  locally uniform-	
	 ly, where  is a harmonic function on . 
Proof: 
	 We proceed the proof with three steps. 
	 Step I: Reduce assumption to a bounded sequence  
	 Fix . From the inequalities where  and , 
	 	 	      ,	 	 (1.4) 
	 it follows that if  then also  locally uniformly on ; and if 
	  then also  locally uniformly on . Therefore, replacing  
	  by a subsequence if necessary, we can reduce to the case where the se- 
	 quence  is bounded. The inequality (1.4) then implies that  
	  is locally uniformly bounded on , and so it suffices to prove that 
	 there is a subsequence  such that  is locally uniformly conv- 
	 ergent on . 
	 Step II:  such that  is locally uniformly convergent on . 

{hn}n≥1 D ℂ∞

h1 ≤ h2 ≤ ⋯ D
hn → ∞ hn → h h

D

w ∈ D K D
CK := sup

z∈K
τD(z, w)

τD
n ≥ m ≥ 1 z ∈ K

hn(w) − h1(w) ≤ CK(hn(z) − h1(z))
hn(w) − hm(w) ≤ CK(hn(w) − hm(w))

hn − h1 hn − hm D
hn(w) → ∞ n → ∞ hn → ∞ K K

D hn → ∞ D
hn(w) {hn}n≥1

K K D
hn D h
h D

□

{hn}n≥1

{hn}n≥1 D ℂ∞

hn → ∞ hnj
→ h

h D

{log hn(w)}n≥1
w ∈ D z ∈ D n ≥ 1

τD(z, w)−1hn(w) ≤ hn(z) ≤ τD(z, w)hn(w)
hn(w) → ∞ hn → ∞ D

hn(w) → 0 hn → 0 D
{hn}n≥1

{log hn(w)}n≥1
{log hn}n≥1 D

{hnj
}j≥1 {log hnj

}j≥1

D
∃{hnj

}j≥1 {log hnj
}j≥1 D
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	 Let  be a countable dense subset of . The sequence  is boun- 
	 ded for each . So by a diagonal argument we may find a subsequence 
	  such that  is convergent . We shall show that,  
	 for this subsequence,  is locally uniformly convergent on . 
	 Step III:  converges locally uniformly on  
	 Let  be a compact subset of , and let . For each , let 

, 
	 and let  be a finite subcover o . Since  is dense in , for each  
	 we can pick a point . Then there exists  such that for  
	 , , 

. 
	 Now by the definition of Harnack distance, for , 

 
	 with a similar argument applied to , one gets 

 
	 for  and . Thus  is uniformly Cauchy on  and thus 
	 uniformly convergent on . Since this holds for any compact subset , the loc- 
	 ally uniformly convergence is verified.	  
	 	 	 	 	 	 	 	 	 	 	 	 	  
    We conclude this chapter by applying some of the ideas developed in it to give a b-
eautiful recent proof of Picard’s theorem due to John Lewis. 
Theorem 1.16: Picard’s Theorem 
	 If  is a non-constant entire function. Then  contains at most 
	 one point. 
   The proof requires a lemma on harmonic functions which is of some interest in its 
own right. We shall use the notation 

. 

Lemma 1.17: Sup of Harmonic Function Is Bouned Away From Zero on Discs 
	 Let  be harmonic on a neighbourhood of  with . Then there 
	 exists a disc  such that  and 
	 (i)	 . 
	 (ii)	 . 
    Of course the exact value of the constant  is unimportant here. The point is that 
it is positive! 
Proof of Lemma 1.17: 
	 For  write , and define 

 

S D {log hn(ζ )}n≥1
ζ ∈ S

{hnj
}j≥1 {log hnj

(ζ )}j≥1 ∀ζ ∈ S
{log hnj

}j≥1 D
{log hnj

}j≥1 D
K D ε > 0 z ∈ K

Vz := {z′￼∈ D : log τD(z, z′￼) < ε}
Vz1

, ⋯, Vzm
K S D ℓ

ζℓ ∈ Vzℓ
∩ S N ≥ 1

nj, nk ≥ N ℓ = 1,⋯, m
log hnj

(ζℓ) − log hnk
(ζℓ) ≤ ε

z ∈ Vzℓ

log hnj
(z) − log hnj

(ζℓ) ≤ log τD(z, ζℓ) < 2ε
hnk

log hnj
(z) − log hnk

(ζℓ) < 5ε
nj, nk ≥ N z ∈ K {log hnj

}j≥1 K
K K

□

f : ℂ → ℂ ℂ∖ f (ℂ)

Mh(w, r) := sup
Δ(w,r)

h = sup
∂Δ(w,r)

h

h Δ(0,2R) h(0) = 0
Δ(w, r) ⊂ Δ(0,2R) h(w) = 0

Mh(w, r) ≥ 3−11Mh(0,R)
Mh(w, r /2) ≥ 3−11Mh(w, r)

3−11

z ∈ Δ(0,2R) δ(z) := dist(z, ∂Δ(0,2R))
Z := {z ∈ Δ(0,2R) : h(z) = 0}
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, 

. 

	 Choose  such that  and set . We shall 
	 show that  satisfies the conclusion of the lemma.  
	 Clearly  and . Also , so to com- 
	 plete the proof it suffices to show that 

(a)	  
(b)	 . 

	 Step I: (a) 
	 Take  with . If  then by continuity . Now  
	 suppose that . Then (using the obvious notation for line segments in ) 
	 there exists  such that . It follows that  on 
	 . In fact, for each  we have  on . For if not, then 
	 there exists  with . But then  and 

, 
	 where the first inequality holds by triangle inequality, the second holds by ass- 
	 umption, and the last holds since . This display implies that  
	 , which is impossible. 
	 Thus indeed for each  we have  on . It follows from  
	 Harnack’s inequality Theorem 1.10 that for such , 

. 

	 Since  has length less than , it can be covered by  overlapping discs of 
	 radius  with centers in . Therefore, 

, 
	 where the last inequality holds since  on . 
	 Step II: (b) 
	 This is virtually identical. Take  with . If  then by 
	 continuity . Now suppose that . Then there exists  
	 such that . It follows that  on . In fact, for each  
	  we have  on . For if not, then there exists  
	  with . But then  and 
             , 
	 implying that , which is impossible. 
	 Thus indeed for each  we have  on . It follows from  
	 Harnack’s theorem Theorem 1.10 that for such , 

. 

	 Since  has length less than , it can be covered by  overlapping discs of 
	 radius  with centers in . Therefore, 

, 

U := ⋃
z∈Z

Δ(z, δ(z)/4)
γ := sup

U
h = sup

z∈Z
Mh(z, δ(z)/4)

w ∈ Z Mh(w, δ(w)/4) ≥ γ /3 r := δ(w)/2
Δ(w, r)

Δ(w, r) ⊂ Δ(0,2R) h(w) = 0 Mh(w, r /2) ≥ γ /3

Mh(0,R) ≤ 310γ
Mh(w, r) ≤ 310γ

z ∈ Δ(0,R) h(z) ≥ 0 z ∈ U h(z) ≤ γ
z ∉ U ℂ

z′￼∈ (z,0) ∩ U [z, z′￼) ∩ U = ∅ h > 0
[z, z′￼) ζ ∈ [z, z′￼) h > 0 Δ(ζ, R /5)

ζ′￼∈ Δ(ζ, R /5) h(ζ′￼) = 0 ζ′￼∈ Z
δ(ζ′￼) ≥ δ(ζ ) − |ζ′￼− ζ | ≥ R − R /5 = 4R /5 > 4 |ζ′￼− ζ |

ζ′￼∈ Δ(ζ, R /5)
ζ ∈ U

ζ ∈ [z, z′￼) h > 0 Δ(ζ, R /5)
ζ

sup
Δ(ζ,R/10)

h ≤ 32 inf
Δ(ζ,R/10)

h

[z, z′￼] R 5
R /10 [z, z′￼)

h(z) ≤ (32)5h(z′￼) ≤ 310γ
h ≤ γ U

z ∈ Δ(w, r) h(z) ≥ 0 z ∈ U
h(z) ≤ γ z ∉ U z′￼∈ (z, w) ∩ U

[z, z′￼) ∩ U = ∅ h > 0 [z, z′￼)
ζ ∈ [z, z′￼) h > 0 Δ(ζ, r /5)
ζ′￼∈ Δ(ζ, r /5) h(ζ′￼) = 0 ζ′￼∈ Z

δ(ζ′￼) ≥ δ(w) − |ζ′￼− ζ | − |ζ − w | ≥ 2r − r /5 − r = 4r /5 > 4 |ζ′￼− ζ |
ζ ∈ U

ζ ∈ [z, z′￼) h > 0 Δ(ζ, r /5)
ζ

sup
Δ(ζ,r/10)

h ≤ 32 inf
Δ(ζ,r/10)

h

[z, z′￼] r 5
r /10 [z, z′￼)

h(z) ≤ (32)5h(z′￼) ≤ 310γ
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	 where the last inequality holds since  on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Proof of Theorem 1.16: 
	 Suppose, for a contradiction, that  contains at least two points  and . 
	 Then  and  are both harmonic functions on  
	 and they satisfy 

(i)	  
(ii)	  

	 everywhere on . Since  is non-constant, so is , and so by Corollary 1.10.1 
	  is unbounded above and below. In particular, there exists  with  
	 , and replacing  by  we can without loss of generality  
	 assume that . 
	 Now applying Lemma 1.17 to  on each of the discs  to produce new 
	 discs  such that  and 

 
. 

	 For each  set . Since  is unbounded, 
. 

	 Define two sequences of harmonic functions  and  on  by 

 and  

	 for . Then  and  have the following properties: 
	 	 (a)	 . 
	 	 (b)	 . 

	 	 (c)	 . 

	 	 (d)	 . 

	 Evidently  . Using Theorem 1.15 to  to deduce that a 
	 subsequence of the  converges locally uniformly to a function  on  
	 .  
	 The functions  are uniformly bounded above (for example by  
	 ), and so a further subsequence of these converges locally unif- 
	 ormly to a function  on . Both  and  are harmonic (or possibly ident- 
	 ically ) and they have the following properties: 
	 	 (a’)	 . 
	 	 (b’)	 . 
	 	 (c’)	 . 

h ≤ γ U
□

ℂ∖ f (ℂ) α β
h := log | f − α | k := log | f − β | ℂ

|h+ − k+ | ≤ |α − β |
max(h, k) ≥ log |α − β | /2

ℂ f h
h z0 ∈ ℂ
h(z0) = 0 f (z) f (z + z0)

z0 = 0
h Δ(0,2j+1)

Δ(wj, rj) h(wj) = 0
Mh(wj, rj) ≥ 3−11Mh(0,2j)

Mh(wj, rj /2) ≥ 3−11Mh(wh, rj)
j ≥ 1 M + j := Mh(wj, rj) h

lim
j→∞

Mh ≥ 3−11 lim
j→∞

Mh(0,2j) = ∞

{hj}j≥1 {kj}j≥1 Δ(0,1)

hj(z) :=
h(wj + rjz)

Mj
kj(z) :=

k(wj + rjz)
Mj

|z | < 1 hj kj
hj(0) = 0
Mhj

(0,1/2) ≥ 3−11

|h+
j − k+

j | ≤
|α − β |

Mj

max(hj, kj) ≥
log( |α − β | /2)

Mj
hj ≤ 1 ∀j ≥ 1 {1 − hj}j≥1

{hj}j≥1 h̃
Δ(0,1)

{kj}j≥1
1 + |α − β | /M1

k̃ Δ(0,1) h̃ k̃
−∞

h̃(0) = 0
Mh̃(0,1/2) ≥ 3−11

h̃+ = k̃+
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	 	 (d’)	 . 
	 Property (b’) implies that  for some , and (c’) then tells us that  
	 in a neighbourhood of . By the identity principle Theorem 1.3 it follows that 
	  everywhere on . From (d’) we then deduce that  on , 
	 and combining this with (a’) and the maximum principle Theorem 1.4 (i), we  
	 conclude that  on . But this is inconsistent with (b’), contradiction. 
	 	 	 	 	 	 	 	 	 	 	 	 	  

2. Subharmonic Functions 
2.1 Upper Semicontinuous Functions 

    As part of their definition, subharmonic functions are going to be upper semiconti-
nuous, so before making this definition, we take a brief look at upper semicontinuous 
functions in abstract. 
Definition: Upper Semicontinuous 
	 Let  be a topological space. We say that a function  is  
	 upper semicontinuous if the set  is open in  . 
Definition: Lower Semicontinuous 
	 Let  be a topological space. We say that a function  is 
	 lower semicontinuous if  is upper semicontinuous. 
    A straightforward check shows that  is upper semicontinuous if and only if 

 for each . 

In particular,  is continuous if and only if it is lower semicontinuous and upper 
semicontinuous at the same time. 
    We shall make frequent use of the following basic compactness theorem. For the s-
akeness of simplicity we shall denote upper semicontinuity as u.s.c. and lower 
semicontinuity as l.s.c. whenever necessary. 
Theorem 2.1: USC Is Bounded Above and Attains Upper Bound on Compacts 
	 Let  be an u.s.c. function on a topological space  and let  be a compact  
	 subset of . Then  is bounded above on  and attains its bound. 
Proof: 
	 The sets  form an open cover of , so have a finite 
	 subcover. Hence  is bounded above on . Let . Then the open sets 

	  cannot cover  since it has no finite subcover 

	 and thus  for at least one . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    The other result we shall need is an approximation theorem. 
Theorem 2.2: Continuous Approximation to Bounded Above USC Functions 
	 Let  be an u.s.c. function on a metric space  and suppose that  is boun- 
	 ded above on . Then there exist continuous functions 

, where  on  

max(h̃, k̃) ≥ 0
h̃(ζ ) > 0 ζ h̃ = k̃

ζ
h̃ = k̃ Δ(0,1) h̃ ≥ 0 Δ(0,1)

h̃ ≡ 0 Δ(0,1)
□

X u : X → [−∞, ∞)
{x ∈ X : u(x) < α} X ∀α ∈ ℝ

X u : X → (−∞, ∞]
−u

u
lim sup

y→x
u(y) ≤ u(x) x ∈ X

u

U X K
X u K

{{x ∈ X : u(x) < n}}n≥1 K
u K M := sup

K
u

{{x ∈ X : u(x) < M −
1
n }}n≥1 K

u(x) = M x ∈ K
□

u (X, d ) u
X

{φn : X → ℝ}n≥1 φ1 ≥ φ2 ≥ ⋯ ≥ u X
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	 and . 

Proof: 
	 Without loss of generality, we may assume that  as otherwise 	  
	 . For , define  by 

, . 

	 Then for each  one has 
, where , 

	 so  is continuous on . 
	 Moreover,  and so in particular . On the other 

	 hand, writing  for the ball , we have 
 

	 for  and . Thus 
, for , . 

	 Since  is u.s.c., sending  yields . 

	 	 	 	 	 	 	 	 	 	 	 	 	  

2.2 Subharmonic Function 
    In spirit, at least, a function  is subharmonic if its Laplacian satisfies . Ho-
wever, we shall not define subharmonicity this way. As we shall see later, one of the 
greatest virtues of subharmonic functions is their flexibility, and this would be lost if 
we were to assume that they are smooth. 
    Instead, we proceed by analogy with convex functions on  (indeed, this is a good 
analogy to keep in mind throughout this book). If , then it is convex if and 
only if , but the convexity is actually defined via a submean property, which 
also allows non-smooth functions such as  to be convex. Taking this as 
our model, we shall define subharmonicity using an analogous submean property in 
the plane. 
   There is, however, one more technicality. Convex functions on open intervals are 
automatically continuous, but there is no such a result for subharmonic functions. We 
could demand continuity as part of our definition, but, for reasons that will become 
apparent later, it is advantageous merely to ask for u.s.c.. 
    After this preamble, we are at last ready to make the definition. 
Definition: Subharmonic Function 
	 Let  be an open subset of . A function  is said to be  
	 subharmonic if 
	 (i)	  is u.s.c.. 
	 (ii)	  satisfies the local submean inequality, that is, given  there exists 
	 	  such that 

lim
n→∞

φn = u

u ≠ − ∞
φn ≡ − n n ≥ 1 φn : X → ℝ

φn(x) := sup
y∈X

(u(y) − nd(x, y)) x ∈ X

n
φn(x) − φn(x′￼) ≤ nd(x, x′￼) x, x′￼∈ X

φn D
φ1 ≥ φ2 ≥ ⋯ ≥ u lim

n→∞
φn = u

Δ(x, ρ) {y ∈ X : d(x, y) < ρ}
φn(x) ≤ max ( sup

Δ(x,ρ)
u, sup

X
(n − nρ))

x ∈ X ρ > 0
lim
n→∞

φn(x) ≤ sup
Δ(x,ρ)

u x ∈ X ρ > 0

u ρ ↑ ∞ lim
n→∞

φn ≤ u

□

u Δu ≥ 0

ℝ
ψ ∈ C2(ℝ)

ψ′￼′￼≥ 0
ψ (t) := | t |

U ℂ u : U → [−∞, ∞)

u
u w ∈ U
ρ > 0
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	 	 	     , .		 	 (2.1) 

Definition: Superharmonic Function 
	 A function  is superharmonic if  is subharmonic. 
Remark 2.1: Intepretation for Definition of Subharmonic Functions 
	 The definition merits some comment: 
	 (i)	 The integral in (2.1) is to be interpreted as the difference of the correspo-	
	 	 nding integrals of  and . By Theorem 2.1,  is bounded on  
	 	 , so its integral is certainly finite. Thus the difference of the two 
	 	 integrals makes sense, even though the integral of  may be infinite. 
	 	 We shall see later that the latter only happens when  on the  
	 	 whole component of  containing . (Note that, according to our defini-	
	 	 tion,  is a subharmonic function, though many authors exclude 
	 	 it).	 	 	 	 	 	        (Infinity and Convention) 
	 (ii)	 Since the subharmonicity is defined via the local submean inequality  
	 	 (that is,  may depend on ), it is a local property. This means that if 
	 	  is an open cover of  where  is an arbitrary index set, then  
	 	 is subharmonic on  if and only if it is subharmonic on each . 
	 	 	 	 	 	 	 (Subharmonicity Is a Local Property) 
	 (iii)	 We observe that a function is harmonic if and only if it is at the same  
	 	 time subharmonic and superharmonic.		  
	 	 	 	 	 	 	 	     (Characterizes Harmonicity)	  
Theorem 2.3: Construct Subharmonic Function via Holomorphic Function 
	 If  is holomorphic on an open set  in . Then  is subharmonic on . 
Proof: 
	 Evidently  is u.s.c.. Also it satisfies the local submean property at 
	 each  for which , because near such a point  is actu- 
	 ally harmonic. On the other hand, if  then (2.1) is immediate. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Further examples can be generated using the following elementary result, which is 
an immediate result from the definition for subharmonicity. 
Theorem 2.4: Some Elementary Properties for Subharmonic Functions 
	 Let  and  be subharmonic functions on an open set  in . Then 
	 (i)	  is subharmonic on . 
	 (ii)	  is subharmonic on  . 
    From (i) it follows that a subharmonic function needs not to be smooth. One might 
reasonably guess that they do have to be continuous, but actually this is not true 
neither. An example is given below, another will be given in section 5 of this chapter. 
Example 2.1: Subharmonic Functions Need Not To Be Continuous 
	 Consider  and . One has 

 

	 Thus the function 

u(w) ≤
1

2π ∫
2π

0
u(w + reit)dt 0 ≤ r < ρ

u : U → (−∞, ∞] −u

u+ u− u+

∂Δ(w, r)
u−

u ≡ − ∞
U x

u ≡ − ∞

ρ w
{Uα}α∈I U I u

U Uα

⋄

f U ℂ log | f | U

u := log | f |
w ∈ U u(w) > − ∞ log | f |

u(w) = − ∞
□

u v U ℂ
max(u, v) U
αu + βv U ∀α, β ≥ 0

ζ ∈ ℂ r > 0
1

2π ∫
2π

0
log |reit − ζ |dt = {log |ζ | , if r ≤ |ζ |

log r, if r > |ζ |
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	 is subharmonic on  but  is discontinuous at .	  

2.3 The Maximum Principle 
    As a result of Theorem 1.2 and Theorem 1.8, the local mean-value property impli-
es the (global) mean-value property. To make much further progress with subharmo-
nic functions, we need a corresponding result for the submean inequality. As with 
harmonic functions, we shall deduce this result with maximum principle. The import-
ance of the maximum principle lies in the fact that from local assumptions it derives 
global conclusions. Indeed, many principles in potential theory involve extending a 
property of the potential of a measure from a set which the measure is concentrated to 
the whole space. 
   Such results are usually very powerful, and the maximum principle is no excepti-
on. Since it will feature prominently in what follows, we shall digress slightly in 
order to study it in a little more detail, returning to the submean inequality in the next 
section. 
Theorem 2.5: Maximum Principle for Subharmonic Functions 
	 Let  be a subharmonic function on a domain  in . 
	 (i)	 If  attains a global maximum on  then  is constant. 
	 (ii)	 If   then  on . 

Remark 2.2: Max Principle for Subharmonic Fails with Global Min or Local Max 
	 Note that in (i),  can attain a local maximum or a global minimum without 	  
	 being constant on . For example, the non-constant subharmonic function 

 
	 does both in . Moreover, just as in Theorem 1.4, the validity of (ii) depends 
	 on our convention that  whenever  is unbounded.	  
Proof of Theorem 2.5: 
	 Step I: Assertion (i) 
	 Suppose that  attains a maximum value  on . Define 

 and . 
	 Then  is open by the u.s.c. of . Moreover,  is also open because if  
	  then the local submean inequality (2.1) forces  to be equal to  on 
	 all sufficiently small circles around . Clearly  and  partitions  and since  
	  is connected either  or . By our assumption  thus  
	 and (i) follows. 
	 Step II: Assertion (ii) 
	 Extend  to  by defining 

, . 

	 Then  is u.s.c. on , which is compact, so by Theorem 2.1  attains a maxi- 
	 mum at some . If , then by assumption  thus  on  
	 . On the other hand, if  then by (i)  is constant on , hence on , 

u(z) := ∑
n≥1

2−n log |z − 2−n |

ℂ u 0 ⋄

u D ℂ
u D u
lim sup

z→ζ
u(z) ≤ 0 ∀ζ ∈ ∂D u ≤ 0 D

u
D

u(z) := max(Re z,0)
ℂ

∞ ∈ ∂D D ⋄

u M D
A := {z ∈ D : u(z) < M} B := {z ∈ D : u(z) = M}

A u B
u(w) = M u M

w A B D
D A = D B = D B ≠ ∅ B = D

u ∂D
u(ζ ) := lim sup

z→ζ
u(z) ζ ∈ ∂D

u D u
w ∈ D w ∈ ∂D u(w) ≤ 0 u ≤ 0

D w ∈ D u D D
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	 thus  on  as desired. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Remark 2.3: (i) in Theorem 2.5 Replaced by  with Mild Growth at Infinity 
	 In fact, it is possible to replace  by  in (ii) if  does not grow too  
	 rapid at infinity. Hence it is a rather general result that makes this statement  
	 precise.	  
   To this spirit, the following result guarantees the mild growth at infinity and thus 
the assumption in (i) of Theorem 2.5 can be replaced by . 
Theorem 2.6: Phragmén-Lindelöf Principle 
	 Let  be a subharmonic function on an unbounded domain  in  such that 

, . 

	 Suppose also that there exists a finite-valued superharmonic function  on  
	 such that 

 and . 

	 Then  on . 
Proof: 
	 Step I: Case when  on . 
	 Assume first that  on . Let  and set 

. 
	 Then  is subharmonic on , and 

  (even ), 

	 so by Theorem 2.5 (ii)  on . Sending  we get  on . 
	 Step II: General case 
	 Now consider a general . Let  and set 

. 
	 Since  is l.s.c. and , it follows that  is bounded below on . 

	 Adding a constant to  if necessary, we can without loss of generality assume 
	 that  on . Set 

. 
	 Then for  we have 

. 

	 Applying result in the first step to  on each component of , we get 
	  on . As  it follows that  on , and plainly  on 
	 , so in fact  on . Finally, since  is arbitrary, sending  
	 yields the desired result. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Corollary 2.6.1: Maximum Principle for Subharmonic on Unbounded Domain 

u ≤ 0 D
□

∂D∖{∞}
∂D ∂D∖{∞} u

⋄

∂D∖{∞}

u D ℂ
lim sup

z→ζ
u(z) ≤ 0 ζ ∈ ∂D∖{∞}

v D

lim inf
z→∞

v(z) > 0 lim sup
z→∞

u(z)
v(z)

≤ 0

u ≤ 0 D

v > 0 D
v > 0 D ε > 0

uε := u − εv
uε D

lim sup
z→ζ

uε(z) ≤ 0 ∀ζ ∈ ∂D ∞

uε ≤ 0 D ε → 0 u ≤ 0 D

v η > 0
Fη := {z ∈ D : u(z) ≥ η}

v lim inf
z→∞

v(z) > 0 v Fη

v
v > 0 Fη

V := {z ∈ D : v(z) > 0}
η ∈ ∂V ∖{∞}

lim sup
z→∞

(u(z) − η) ≤ {
lim supz→ζ u(z), if ζ ∈ ∂D∖{∞}
u(ζ ) − η, if ζ ∈ D ∩ ∂V

≤ 0

u − η V
u − η ≤ 0 V Fη ⊂ V u ≤ η Fη u ≤ η
D∖Fη u ≤ η D η > 0 η ↓ 0

□
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	 Let  be a subharmonic function on an unbounded proper subdomain  of  
	 such that 

 for  and . 

	 Then  on . 
Proof: 
	 Take  and apply Theorem 2.6 with .	 	  
Corollary 2.6.2: Liouville Theorem for Subharmonic Functions 
	 Let  be a subharmonic function on  such that 

. 

	 Then  is constant on . In particular, every subharmonic function on  which 
	 is bounded above must be constant. 
Proof: 
	 If  then this is clear. Suppose , choose  with  
	  and apply Corollary 2.6.1 to  on . Thus  
	  on  and now by the maximum principle Theorem 2.5 (i)  is  
	 constant on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    For domains of a particular shape one needs to assume less about the growth near 
infinity. We consider two examples: strips and sectors These give rise to the classical 
forms of the Phragmén-Lindelöf principle. 
Theorem 2.7: Phragmén-Lindelöf Principle for Strips 
	 Let  be the strip , where , and let  be a 

	 subharmonic function on  such that for some constants  and , 
, . 

	 If   then  on . 

Example 2.2:  Is Necessary in Theorem 2.7 
	 The function  shows that the conclus- 
	 ion in Theorem 2.7 fails if .	  
Proof of Theorem 2.7: 
	 Choose  such that , and define  by 

 
	 for . Then  is subharmonic on . Moreover,  

 

	 and  

. 

	 The desired result follows from Theorem 2.6. 

u D ℂ

lim sup
z→ζ

≤ 0 ζ ∈ ∂D∖{∞} lim sup
z→∞

u(z)
log |z |

≤ 0

u ≤ 0 D

w ∈ ∂D v(z) := log |z − w | □

u ℂ

lim sup
z→∞

u(z)
log |z |

≤ 0

u ℂ ℂ

u ≡ − ∞ u ≢ − ∞ w ∈ ℂ
u(w) > − ∞ u − u(w) ℂ∖{w}
u ≤ u(w) ℂ u

ℂ
□

Sγ {z ∈ ℂ : |Re z | <
π
2γ } γ > 0 u

Sγ A < ∞ α < γ
u(x + iy) ≤ Aeα|y| x + iy ∈ Sγ

lim sup
z→ζ

u(z) ≤ 0 ∀ζ ∈ ∂Sγ∖{∞} u ≤ 0 Sγ

α < γ
u(z) : Re (cos(γz)) = cos(γx)cosh(γ y)

α = γ ⋄

β α < β < γ v : Sγ → ℝ
v(z) := Re (cos(βz)) = cos(βx)cosh(βy)

z = x + iy ∈ Sγ v Sγ

lim inf
z→∞

v(z) ≥ lim inf
|y|>∞

cos( βπ
2γ )cosh(βy) = ∞

lim sup
z→∞

u(z)
v(z)

≤ lim sup
|y|>∞

Aeα|y|

cos(βπ /2γ)cosh(βy)
= 0
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Corollary 2.7.1: Three-Lines Theorem 
	 Let  be a subharmonic function on the strip  such that 
	 for some constants  and , 

, . 
	 If  

 

	 then 
, . 

(Figure 2.1: Demonstration for the three-line theorem) 
Proof: 
	 Define  by 

, . 
	 Then applying (a translation of) Theorem 2.7 with  yields  on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Theorem 2.8: Phragmén-Lindelöf Principle for Sectors 

	 Let  be the sector , where , and let  be 

	 a subharmonic function on  such that for some constants  and  
	 , 

, . 
Proof: 
	 Choose  with , and define  by 

, . 
	 Then  is harmonic on  by Theorem 1.1 (i) and 

 

	 and 

□

u S := {z : 0 < Re z < 1}
A < ∞ α < π

u(x + iy) ≤ Aeα|y| x + iy ∈ S

lim sup
z→ζ

u(z) ≤ {M0, Re ζ = 0
M1, Re ζ = 1

u(x + iy) ≤ M0(1 − x) + M1x x + iy ∈ S

ũ : S → [−∞, ∞)
ũ(z) := u(z) − Re (M0(1 − z) + M1z) z ∈ S

γ = π ũ ≤ 0 S
□

Tγ {z ∈ ℂ∖{0} : |arg(z) | <
π
2γ } γ >

1
2

u

Tγ A, B < ∞
α < π

u(z) ≤ A + B |z |α z ∈ Tγ

β α < β < γ v : Tγ → ℝ
v(z) = Re (zβ) = rβ cos(βt) z = reit ∈ Tγ

v Tγ

lim inf
z→∞

v(z) ≥ lim inf
r→∞

rβ cos( βπ
2γ ) = ∞
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. 

	 Hence again the result follows from Theorem 2.6. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   As we mentioned earlier, the function  shows that the theorem is no 
longer true if , but we do have the following partial result, in which, for 
simplicity, we take . 
Corollary 2.8.1: Phragmén-Lindelöf Principle for Half Plane 
	 Let  be a subharmonic function on the half-plane  such 
	 that for some constants , 

, . 
	 If 

  and . 

	 Then  for . 
Proof: 
	 Given , define  by 

 for . 
	 Then applying (a rotated version of) Theorem 2.8 with  on each of the 
	 two sectors 

 and , 

	 we deduce that  is bounded above on . Applying Theorem 2.8 once more 
	 with , we have  on . Hence 

, 
	 since  is arbitrary, sending  yields the desired result. 
	 	 	 	 	 	 	 	 	 	 	 	 	  

2.4 Criteria for Subharmnicity 
    Now that the necessary tools are available, we can prove that subharmonic functio-
ns satisfy the global submean inequality. In fact, more is true: they also obey an 
inequality corresponding to the Poisson integral formula, as is shown in the following 
theorem. 
Theorem 2.9: Criterion for U.S.C. Function to Be Subharmonic 
	 Let  be an open subset of , and let  be an u.s.c. function. 
	 Then the followings are equivalent: 
	 (a)	 The function  is subharmonic. 
	 (b)	 Whenever , for  and , 

. 

	 (c)	 Whenever  is a relatively compact subdomain of  and  is a harmonic 
	 	 function on  satisfying 

lim sup
z→∞

u(z)
v(z)

≤ lim sup
r→∞

A + Brα

rβ cos( β
2γ )

= 0

□
u(z) := Re (zγ)

α = γ
γ = 1

u H := {z : Re z > 0}
A, B < ∞
u(z) ≤ A + B |z | z ∈ H

lim sup
z→ζ

u(z) ≤ 0 ∀ζ ∈ ∂H ∖{∞} lim sup
x→∞

u(x)
x

= L

u(z) ≤ L(Re z) z ∈ H

L′￼> L ũ : H → [−∞, ∞)
ũ(z) := u(z) − L′￼(Re z) z ∈ H

γ = 2

−π
2

< arg(z) < 0 0 < arg(z) <
π
2

ũ H
γ = 1 ũ ≤ 0 H

u(z) ≤ L′￼(Re z)
L′￼> L L′￼↓ L

□

U ℂ u : U → [−∞, ∞)

u
Δ(w, ρ) ⊂ U r < ρ 0 ≤ t < 2π

u(w + reit) ≤
1

2π ∫
2π

0

ρ2 − r2

ρ2 − 2ρr cos(θ − t) + r2
u(w + ρeiθ)dθ

D U h
D
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, . 

	 	 Then  on .	 	 	 	  
Proof: 
	 (a)  (c): 
	 Suppose  is subharmonic on . Given  and  as assumed in (c), the function 
	  is subharmonic on , so the result follows from the maximum principle 
	 Theorem 2.5 (ii). 
	 (c)  (b): 
	 Suppose that . By Theorem 2.2 there exist continuous funct- 
	 ions 

, and  on . 
	 By Theorem 1.6 (i), each  is harmonic on . Moreover by Theorem 1.6 
	 (ii) we have 

 . 

	 Therefore using u.s.c. in the first inequality and the fact  in the second, 
 . 

	 From (c) it follows that  on . Sending  and using Monotone 
	 convergence theorem gives the desired inequality. 
	 (b)  (a) is clear. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Putting  in Theorem 2.9 (b) yields the following result. 
Corollary 2.9.1: Global Submean Inequality 
	 If  is a subharmonic function on an open set  in , and if , then 

. 

    The criterion (c) in Theorem 2.9, as well as explaining the name “subharmonic”, is 
also useful in its own right. For example, since it remains invariant under conformal 
mapping by the subordination principle Theorem 1.12, we immediately deduce the 
following result. 
Corollary 2.9.2: Subharmonicity Is Closed Under Conformal Mapping 
	 If  is a conformal mapping between open subsets  and  of 
	 , and if  is subharmonic on , then  is subharmonic on . 
   Using this result, we can extend the definition of subharmonicity to the Riemann 
sphere in just the same way as we did for harmonicity in Example 1.2. It is easily 
checked that all the results in Section 2.2 remain valid for subharmonic functions 
defined on an open subset of , as does the maximum principle Theorem 2.5. 
Remark 2.4: Subharmonicity Is Closed Under General Holomorphic Functions 
	 Corollary 2.9.2 remains true for a general holomorphic function . One proof 
	 is outlined in Exercise 2, and the other will be given in Theorem 2.23.	  

lim sup
z→ζ

(u − h)(z) ≤ 0 ζ ∈ ∂D

u ≤ h D

⇒
u U D h

u − h D

⇒
Δ := Δ(w, ρ) ⊂ U

{φn}n≥1, φn : ∂Δ → ℝ φn ↓ u ∂Δ
PΔφn Δ

lim
z→ζ

PΔφn(z) = φn(ζ ) ∀ζ ∈ ∂Δ

φn ↓ u
lim sup

z→ζ
(u − PΔφn)(z) ≤ u(ζ ) − φn(ζ ) ≤ 0 ∀ζ ∈ ∂Δ

u ≤ PΔφn Δ n → ∞

⇒
□

r = 0

u U ℂ Δ(w, ρ) ⊂ U

u(w) ≤
1

2π ∫
2π

0
u(w + ρeiθ)dθ

f : U1 → U2 U1 U2
ℂ u U2 u ∘ f U1

ℂ∞

f
⋄
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   As an application of Theorem 2.9, we can characterize those  functions which 
are subharmonic as those with positive Laplacian. This result vindicates what we said 
at the beginning of Section 2.2. 
Theorem 2.10: Criterion for Subharmonicity via Positive Laplacian 
	 Let  be an open subset of , and let . Then 

. 
Proof: 
	 Step I:  
	 Assume first that  on . We shall use Theorem 2.9 (c) to prove that   
	 is subharmonic. Let  be a relatively compact subdomain of , and suppose 
	 that  is a harmonic function on  such that 

 . 

	 We need to show that  on . 
	 Let  and define 

 

	 Then  is u.s.c. on , so it attains a maximum there by Theorem 2.1. But  
	 cannot attain a local maximum on  because 

 on . 
	 Therefore the maximum is attained on  and hence 

 on . 

	 Since  is arbitrary, sending  yields  on  as desired. 
	 Step II:  
	 Conversely, suppose that  is subharmonic on . We prove by contradiction.  
	 Suppose  for some . Then by continuity there exists  
	 such that 

 on . 
	 But what we have just proved in the first step, this implies that  is superharm- 
	 onic on , and hence harmonic there. In particular , which 
	 contradicts with the original assumption. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
  The next result, which nicely illustrates the flexibility of subharmonic functions, 
shows that they can be “glued” together. 
Theorem 2.11: Gluing Theorem 
	 Let  be a subharmonic function on an open set  in , and let  be a subharm- 
	 onic function on an open subset  of  such that 

, . 

	 Then  is subharmonic on , where 

 

C2

U ℂ u ∈ C2(U )
u is subharmonic  ⇔ Δu ≥ 0 on U

⇐
Δu ≥ 0 U u

D U
h D

lim sup
z→ζ

(u − h)(z) ≤ 0 ∀ζ ∈ ∂D

u ≤ h D
ε > 0

vε(z) := {u(z) − h(z) + ε |z |2 , if z ∈ D
ε |z |2 , if ∂D

vε D vε
D

Δvε = Δu + 4ε > 0 D
∂D

u − h ≤ sup
∂D

ε |z |2 D

ε > 0 ε ↓ 0 u − h ≤ 0 D
⇒

u U
Δu(w) < 0 w ∈ U ρ > 0

Δu ≤ 0 Δ(w, ρ)
u

Δ(w, ρ) Δu(w) = 0

□

u U ℂ v
V U

lim sup
z→ζ

v(z) ≤ u(ζ ) ζ ∈ U ∩ ∂V

ũ U

ũ := {max(u, v), on V
u, on U ∖V

27



(Figure 2.2: Demonstration of Gluing two subharmonic functions) 
Proof: 
	 The boundary condition on  ensures that  is u.s.c. on . By Theorem 2.4 (i) 
	  satisfies the local submean inequality at each , and it also does so  
	 when  since  on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   We conclude this section with three theorems about infinite families of subharmo-
nic functions. The first of these, for decreasing sequences, is simply but important. It 
would no longer be true if we were to restrict subharmonic functions to be 
continuous, and ineed is one of the principal reasons for not doing so. 
Theorem 2.12: Monotone Decreasing Limit Preserves Subharmonicity 
	 Let  be subharmonic functions on an open set  in , and suppose that 
	  on . Then  is subharmonic on . 

Proof: 
	 The set  is the union of the open sets  for each 
	 , so it is open and thus  is u.s.c.. 
	 Moreover, if  then for each  one has 

.	  

	 Sending  and applying monotone convergence theorem we deduce that 
	  satisfies the submean inequality and is therefore subharmonic on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    The corresponding result for an increasing sequence  is false because, even 
it is finite, the limit  may fail to be u.s.c.. 
Example 2.3: Monotone Increasing Limit Does Not Preserve Subharmonicity 

	 Let  on , then 

 

	 We will return to this topic in Section 3.4.	  
    The remaining two results generalize Theorem 2.9 (a) and (b) respectively. 

v ũ U
ũ w ∈ V

w ∈ U ∖V ũ ≥ u U
□

{un}n≥1 U ℂ
u1 ≥ u2 ≥ ⋯ U u := lim

n→∞
un U

{z : u(z) < α} {z : un(z) < α}
α ∈ ℝ u

Δ(w, ρ) ⊂ U n ≥ 1

un(w) ≤
1

2π ∫
2π

0
un(w + ρeiθ)dθ

n → ∞
u U

□
{un}n≥1

u

un(z) :=
log |z |

n
Δ(0,1)

u(z) = {0, if 0 < |z | < 1
−∞, if z = 0

⋄
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Theorem 2.13: Sup for Subharmonic Part of U.S.C. Functions Is Subharmonic 
	 Let  be a compact topological space, let  be an open subset of , and let 
	  be a function such that 
	 (a)	  is u.s.c. on . 
	 (b)	  is subharmonic on  . 
	 Then  is subharmonic on . 

Proof: 
	 Let  and suppose that  for some . Then for each , 
	 , so as  is u.s.c., there exists a neighbourhood  of  and  
	 such that 

 on . 
	 As  is compact, it has a finite subcover . Then  on , 
	 where . This shows that  is u.s.c. by Theorem 2.1. 
	 Now suppose that . Then , 

 

	 Taking the supremum over  yields the desired submean inequality. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Theorem 2.14: Integral Mean of Subharmonic Functions Is Subharmonic 
	 Let  be a measure space with , let  be an open subset of , 
	 and let  be a function such that 
	 (a)	  is measurable on . 
	 (b)	  is subharmonic on  . 
	 (c)	  is locally bounded above on . 

	 Then  is subharmonic on . 

Proof: 
	 It suffices to prove that  is subharmonic on each relatively compact subdo- 
	 main  of  and then Remark 2.1 concludes the proof. 
	 Fix such a . Then (c) implies that  is bounded above on , so by 

	 subtracting a constant if necessary, we can without loss of generality assume  
	 that  on . This enables us to use Fatou’s lemma and Fubini’s Theo- 
	 rem. Whenever  in , we have 

T U ℂ
v : U × T → [−∞, ∞)

v U × T
z ↦ v(z, t) U ∀t ∈ T

u(z) := sup
t∈T

v(z, t) U

w ∈ U u(w) < α α ∈ ℝ t ∈ T
v(w, t) < α v Nt t ρt > 0

v < α Δ(r, ρt) × Nt
T Nt1, ⋯, Ntn u < α Δ(w, ρ′￼)

ρ′￼= min(ρt1, ⋯, ρtn) u
Δ(w, ρ) ⊂ U ∀t ∈ T

v(w, t) ≤
1

2π ∫
2π

0
v(w + ρeiθ, t) (by submean inequality)

≤
1

2π ∫
2π

0
u(w + ρeiθ)dθ (since u := sup v)

t ∈ T
□

(Ω, μ) μ(Ω) < ∞ U ℂ
v : U × Ω → [−∞, ∞)

v U × Ω
z ↦ v(z, ω) U ∀ω ∈ Ω
z ↦ sup

ω∈Ω
v(z, ω) U

u(z) := ∫Ω
v(z, ω)dμ(ω) U

u
D U

D sup
ω

v(z, ω) D

v ≤ 0 D × Ω
wn → w D
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	 It follows that  is u.s.c. on . 
	 Now we prove the submean inequality, suppose  then 

 

	 where the first equality holds by Fubini’s theorem and the inequality holds by 
	 the submean inequality for . Therefore  satisfies the submean inequality and 
	 it follows that  is subharmonic on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  

2.5 Integrability for Subharmonic Functions 
   As a subharmonic function is u.s.c., it is automaticaly bounded above on compact 
sets by Theorem 2.1. More subtle is the fact that also it cannot be ‘too bounded 
below’. 
Theorem 2.15: Subharmonic Function Is Locally Integrable 
	 Let  be a subharmonic function on a domain  in  with  on .  
	 Then  is locally integrable on , that is, for each compact subset  of , 

, 

	 where  denotes the 2-dimensional Lebesgue measure. 
Proof: 
	 By a simple completeness argument, it suffices to show that for each , 
	 there exists  such that 

	 	 	 	 	 .	 	 	 	 (2.2) 

	 Denote 

 

	 and 

. 

	 We shall show that both  and  are open, and that  on , from which  
	 the result follows from the connectedness of . 
	 Step I:  is open 

lim sup
n→∞

u(wn) ≤ ∫Ω
lim sup

n→∞
v(wn, ω)dμ(ω) (Fatou's Lemma)

≤ ∫Ω
v(w, ω)dμ(ω) (wn → w)

=: u(w)
u D

Δ(w, ρ) ⊂ D
1

2π ∫
2π

0
u(w + ρeiθ)dθ = ∫Ω ( 1

2π ∫
2π

0
v(w + ρeiθ, ω)dθ)dμ(ω)

≥ ∫Ω
v(w, ω)dμ(ω) =: u(w),

v u
u D

□

u D ℂ u ≢ − ∞ D
u D K D

∫K
|u |d A < ∞

d A

w ∈ D
ρ > 0

∫Δ(w,ρ)
|u |d A < ∞

A := {w ∈ D : ∃ρ > 0 such that ∫Δ(w,ρ)
|u |d A < ∞}

B := {w ∈ D : /∃ρ > 0 such that ∫Δ(w,ρ)
|u |d A < ∞}

A B u = − ∞ B
D

A
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	 Let , choose  such that (2.2) holds. Given  and set 
	 . Then , so 

 

	 and it follows that  and hence  is open. 
	 Step II:  is open and  on  
	 Let , choose  such that . Then by the definition of 
	 , 

. 

	 Given , set . Then 
 

	 and  is bounded above on  by Theorem 2.1. Therefore 

. 

	 Now  satisfies the submean inequality 

, . 

	 Multiplying  and integrating over  and  yields 

. 

	 Hence  on . Thus  is open and  on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    From this, it follows that subharmonic functions are also integrable on circles. 
Corollary 2.15.1: Subharmonic Function Is Integrable on Circles 
	 Let  be a subharmonic function on a domain  in  with . If  
	  then 

. 

Proof: 
	 Let . Since  is bounded above on , by subtracting a const- 
	 ant if necessary, we may without loss of generality assume that  on  
	 . Using Theorem 2.9 (b) in the first inequality, if  and   
	 then one has 

 

	 Hence, if the last integral were  then  on , contradicting 
	 Theorem 2.15. Therefore the integral is necessarily finite. 

w ∈ A ρ > 0 w′￼∈ Δ(w, ρ)
ρ′￼:= ρ − |w′￼− w | Δ(w′￼, ρ′￼) ⊂ Δ(w, ρ)

∫Δ(w′￼,ρ′￼)
|u |d A < ∞

Δ(w, ρ) ⊂ A A
B u = − ∞ B

w ∈ B ρ > 0 Δ(w,2ρ) ⊂ D
B

∫Δ(w,ρ)
|u |d A = ∞

w′￼∈ Δ(w, ρ) ρ′￼:= ρ + |w′￼− w |
Δ(w′￼, ρ′￼) ⊃ Δ(w, ρ)

u Δ(w′￼, ρ′￼)

∫Δ(w′￼,ρ′￼)
ud A = − ∞

u

u(w′￼) ≤
1

2π ∫
2π

0
u(w′￼+ reiθ)dθ 0 ≤ r ≤ ρ′￼

2πr r = 0 r = ρ′￼

π(ρ′￼)2u(w′￼) ≤ ∫Δ(w′￼,ρ′￼)
ud A = − ∞

u = − ∞ Δ(w, ρ) B u = − ∞ D
□

u D ℂ u ≢ − ∞
Δ(w, ρ) ⊂ D

1
2π ∫

2π

0
u(w + ρeiθ)dθ > − ∞

Δ(w, ρ) ⊂ D u Δ(r, ρ)
u ≤ 0

Δ(w, ρ) r < ρ 0 ≤ t < 2π

u(w + reit) ≤
1

2π ∫
2π

0

ρ2 − r2

ρ2 − 2ρr cos(θ − t) + r2
u(w + ρeiθ)dθ

≤ (ρ + r
ρ − r ) 1

2π ∫
2π

0
u(w + ρeiθ)dθ .

−∞ u ≡ − ∞ Δ(w, ρ)
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    Another consequence of Theorem 2.15 is that subharmonic functions can only eq-
ual to  on relatively  small sets. 
Corollary 2.15.2: Subharmonic Functions Are Locally Integrable Leb-A.E. 
	 Let  be a subharmonic function on a domain  in  with  on .  
	 Then  is a set of Lebesgue measure zero. 
Proof: 
	 Let  be compact sets with . For each  one has 

 

	 by Theorem 2.15. Thus  has measure zero. Since  it 

	 also has Lebesgue measure zero. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    The set  above is also small in other ways: one is outlined in Exercise 1 and othe-
rs will be given in Chapter 3. Of course, if  where  is holomorphic, then 

 is just the zero set of , and is therefore countable. But as the following theorem 
shows, there are subharmonic functions which are  on uncountable sets. 
Theorem 2.16: Uncountable Set Where Subharmonics Are Not Integrable 
	 Let  be a compact subset of  with no isolated points, let  be a count- 
	 able dense subset of , and let  be strictly increasing positive numbers 
	 such that . Define  by 

, . 

	 Then the followings are true: 
	 (a)	  is subharmonc on  and  is not identically . 
	 (b)	  on an uncountable dense subset of . 
	 (c)	  is discontinuous (Lebesgue) almost everywhere on . 
Proof: 
	 Step I: (a) 
	 Let  be the fininte measure on  given by  for  and define 

 
	 by . Then , 

, 

	 where the first inequality holds by the definition of . Now by Theorem 2.14 
	  is subharmonic on  and   by Theorem 2.15 and th- 
	 erefore  as desired. 
	 Step II: (b) 
	 Set . Clearly  by (a), and each  so  

□

−∞

u D ℂ u ≢ − ∞ D
E := {z ∈ D : u(z) = − ∞}

{Kn}n≥1 ⋃
n≥1

Kn = D n

∫Kn

|u |d A < ∞

E ∩ Kn E = ⋃
n≥1

(E ∩ Kn)

□
E

u := log | f | f
E f

−∞

K ℂ {wn}n≥1
K {an}n≥1

∑
n≥1

an < ∞ u : ℂ : [−∞, ∞)

u(z) := ∑
n≥1

an log |z − wn | z ∈ ℂ

u ℂ u −∞
u = − ∞ K
u K

μ ℕ μ({n}) = an n ≥ 1
v : ℂ × ℕ → [−∞, ∞)

v(z, n) := log |z − wn | ∀z ∈ ℂ

∫ℕ
v(z, n)dμ(n) = ∑

n≥1

an log |z − wn | =: u(z)

μ
u ℂ u(z) > − ∞ ∀z ∈ ℂ∖K

u ≢ − ∞

E := {z ∈ ℂ : u(z) = − ∞} E ⊂ K wn ∈ E E
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	 is dense in . Since 
 

	 is a countable union of closed nowhere dense  sets, it follows that  is  1

	 meager  in . If  were countable then  would be meager itself, contradict- 2

	 ing the Baire category theorem, thus  is uncountable. 
	 Step III: (c) 
	 The function  is discontinuous at empty point of . Since  is dense in , 
	 and by Corollary 2.15.2  has Lebesgue measure zero. It follows that  is dis- 
	 continuous Lebesgue-almost everywhere on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    We shall return to the study of the sets where subharmonic functions are  in m-
ore details in Section 3.5. 

2.6 Convexity for Subharmonic Functions 
    As we have already remarked, there are strong similarities between subharmonic f-
unctions on  and convex functions on . In this section we examine in more detail 
the relationship between two classes. 
Definition: Convex Functions 
	 Let . A function  is said to be convex if for  
	 all , 

. 
  It is well-known that the convex functions are continuous. Moreover, given that 

 then  is convex if and only if  on . We shall need a 
basic inequality for convex functions. 
Theorem 2.17: Jensen’s Inequality 
	 Let  and let  be a convex function. Suppose 
	 that  is a measure space with total measure , and suppose that 
	  is -integrable. Then 

. 

Proof: 

	 Set  so that . By convexity, if , then 

. 

	 After arrangement, this implies that 

. 

K
K ∖E = ⋃

n≥1

{z ∈ K : u(z) ≥ − n}

K ∖E
K E K

E

u E ∖E E K
E u

K
□

−∞

ℂ ℝ

−∞ ≤ a < b < ∞ ψ : (a, b) → ℝ
t1, t2 ∈ (a, b)

ψ((1 − λ)t1 + λt2) ≤ (1 − λ)ψ (t1) + λψ (t2)

ψ ∈ C2((a, b)) ψ ψ′￼′￼≥ 0 (a, b)

−∞ ≤ a < b ≤ ∞ ψ : (a, b) → ℝ
(Ω, μ) μ(Ω) = 1

f : Ω → (a, b) μ

ψ(∫Ω
fdμ) ≤ ∫Ω

ψ ∘ fdμ

c := ∫Ω
fdμ c ∈ (a, b) a < t1 < c < t2 < b

ψ (c) ≤
t2 − c
t2 − t1

ψ (t1) +
c − t1
t2 − t1

ψ (t2)

sup
t1∈(a,c)

ψ (c) − ψ (t1)
c − t1

≤ inf
t2∈(c,b)

ψ (t2) − ψ (c)
t2 − c

 A set  is said to be nowhere dense if its closure has empty interior.1 A ⊂ X

 A set  is said to be meager if it is the countable union of nowhere dense sets.2 A ⊂ X
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	 Hence there exists a constant  such that 
, . 

	 Setting  and integrating with respect to  gives 

 

	 since the total measure . The proof is completed. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    This enables us to generate new examples of subharmonic functions. 
Theorem 2.18: Increasing Convex Composition Preserves Subharmonicity 
	 Let , let  be subharmonic function on an open 
	 set  in , and let  be an increasing convex function. Denote 
	 , then  is subharmonic on . 

Proof: 
	 Choose  with , and for eaach  set , so 
	  is subharmonic by Theorem 2.4 (i). Then certainly  is upper semicon- 
	 tinuous on . Moreover, if  then 

 

	 where the second inequality holds by Jensen’s inequality Theorem 2.17 appl- 

	 ied to the measure  on . Hence  is subharmonic on . Since  

	  as , it follows from Theorem 2.12 that  is subharmonic 
	 on  as desired. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Corollary 2.18.1: Exponential of Subharmonic Function Is Subharmonic 
	 If  is subharmonic on an open subset  of  then so is . 
Example 2.4: Subharmonic Functions Whose Exponential Is Subharmonic 
	 Applying Corollary 2.18.1 to , where  is holomorphic and 
	 , then  is subharmonic.	  
    It is of special interest to know under what conditions  is subharmonic. 
Theorem 2.19: Criterion for Log Functions to Be Subharmonic 
	 Let  be a function on an open set  in . Then the following 
	 statements are equivalent: 
	 (i)	  is subharmonic on . 
	 (ii)	  is subharmonic on  for every (complex) polynomial . 
Proof: 
	 (i)  (ii): 
	 Suppose first that  is subharmonic on . Then by Theorem 2.4 (ii) and 
	 Theorem 1.1 (ii),  is subharmonic on  for each polynomial , 

M
ψ (t) ≥ ψ (c) + M(t − c) t ∈ (a, b)

t := f (w) μ

∫Ω
ψ(f (w))dμ(w) ≥ ∫Ω

ψ (c)dμ(w) + M ⋅ ∫Ω
(f (w) − c)dμ(w) = ψ (c)

μ(Ω) = 1
□

−∞ ≤ a < b ≤ ∞ u : U → [a, b)
U ℂ ψ : (a, b) → ℝ

ψ (a) := lim
t→a

ψ (t) ψ ∘ u U

{an}n≥1 ⊂ (a, b) an ↓ a n un := max(u, an)
un ψ ∘ un

U Δ(w, ρ) ⊂ U

ψ ∘ un(w) ≤ ψ( 1
2π ∫

2π

0
un(w + ρeiθ)dθ) (Submean Inequality)

≤
1

2π ∫
2π

0
ψ ∘ un(w + ρeiθ)dθ

dθ
2π

[0,2π) ψ ∘ un U

ψ ∘ un ↓ u n → ∞ ψ ∘ u
U

□

u U ℂ exp u

u := α log | f | f
α > 0 | f |α ⋄

log u

u : U → [0,∞) U ℂ

log u U
u |eq | U q

⇒
log u U
log u + Re q U q
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	 taking exponentials, Corollary 2.18.1 implies that  is subharmonic. 
	 (ii)  (i): 
	 Conversely, suppose (ii) holds. Taking , we see straightaway that  is 
	 subharmonic, and in particular upper semicontinuous. Hence  is also  
	 upper semicontinuous by convexity.  
	 It remains to check the submean inequality. Let  be a disc with 
	 , and choose continuous functions  such that  
	 on . For each  we can find a polynomial  such that 

 on . 

	 This follows from Stone-Wierstrass Theorem (which states that any continuo- 
	 us complex function over a compact interval can be approximated by an arbitr- 
	 ary degree of accuracy with a sequence of polynomials).  
	 Then we have, for , using submean inequality in the first display, 

. 

	 Since  is assumed to be subharmonic, it follows from the maximum pr- 
	 inciple Theorem 2.5 that  on . Hence 

 

	 Sending  and applying Monotone convergence theorem yield 

, 

	 which verifies the submean inequality and (i) follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Theorem 2.19 allows us to characterize radial subharmonic functions. 
Theorem 2.20: Criterion for Radial Functions to Be Subharmonic 
	 Let  be a function which is radial i.e.,  
	 for all , and assume that . Then the followings are equivalent: 
	 (i)	  is subharmonic on . 
	 (ii)	  is an increasing convex function of ,  with  
	 	 . 

Proof: 
	 (ii)  (i): 
	 Applying Theorem 2.18 with  and  gives this dire- 
	 ction. 
	 (i)  (ii): 
	 Assume (i). Given  with , then the maximum principle 	  

u |eq |
⇒

q = 0 u
log u

Δ := Δ(w, ρ)
Δ ⊂ U φn : ∂Δ → ℝ φn ↓ log n

∂Δ n ≥ 1 {qn}n≥1

0 = Re qn − φn ≤
1
n

∂Δ

ζ ∈ ∂Δ
lim sup

z→ζ
u(z) |e−qn(z) | ≤ eφn(ζ)e−Re qn(ζ) ≤ 1

u |e−qn |
u |e−qn | ≤ 1 Δ

log u(w) ≤ Re qn(w)

=
1

2π ∫
2π

0
Re qn(w + ρeiθ)dθ

≤
1

2π ∫
2π

0
φn(w + ρeiθ)dθ +

1
n

.

n → ∞

log u(w) ≤
1

2π ∫
2π

0
log u(w + ρeiθ)dθ

□

v : Δ(0,ρ) → [−∞, ∞) ( v(z) = v( |z | )
z) v ≢ − ∞
v Δ(0,ρ)
v(r) log r 0 < r < ρ
lim
r→0

v(r) = v(0)

⇒
u(z) := log |z | ψ (t) = v(et)

⇒
r1, r2 ∈ [0,ρ) r1 < r2
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	 Theorem 2.5 (ii) applied to  on  yields 
. 

	 Hence  is increasing on . Moreover, it follows that 
. 

	 On the other hand, upper semicontinuity implies that  and 

	 hence . 

	 It remains to show that  is a convex function of . Observe first that by 
	 Corollary 2.15.1  for . Given  with ,  
	 choose constants ,  such that 

 for . 
	 Applying the maximum principle Theorem 2.5 (ii) to  on 
	 , we get 

, . 
	 Hence if  and  then 

	  

	 which verifies the convexity. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   Theorem 2.20 can be used to study various integral means of subharmonic functi-
ons. 
Definition: Max, Circle Mean, and Area Mean 
	 Let  be a subharmonic function on the disc  with . For  
	 , we define 
	 (i)	 Maximum of  over  as . 

	 (ii)	 Circular mean of  over  as . 

	 (iii)	 Area mean of  over  as . 

	 Note that by Theorem 2.15 and Corollary 2.15.1 (i), (ii), and (iii) are well- 
	 defined and are all finite. Moreover  and  are connected by the rela- 
	 tion 

	 	 	 	          .	 	 	 	 (2.3) 

Theorem 2.21: Properties for Modes of Mean Integrals for Subharmonic Functions 
	 Let  be a subharmonic function on the disc  with . For  
	 , we have 
	 (a)	 , , and  are all increasing convex functions of . 

v Δ(0,r2)
v(r1) ≤ sup

∂Δ(0,r2)
v = v(r2)

v [0,ρ)
lim inf

r→0
v(r) ≥ v(0)

lim sup
r→0

v(r) ≤ v(0)

lim
r→0

v(r) = v(0)

v(r) log r
v(r) > − ∞ r > 0 r1, r2 ∈ (0,ρ) r1 < r2
α β

α + β log r = v(r) r = r1 + r2
v(z) − α − β log |z |

{z : r1 < |z | < r2}
v(r) ≤ α + β log r r1 < r < r2

0 ≤ λ ≤ 1 log r := (1 − λ)log r1 + λ log r2
v(r) ≤ α + β log r

= (1 − λ)(α + β log r1) + λ(α + β log r2)
= (1 − λ)v(r1) + λv(r2),

□

u Δ(0,ρ) u ≢ − ∞
0 < r < ρ

u Δ(0,r) Mu(r) := sup
|z|=r

u(z)

u Δ(0,r) Cu(r) :=
1

2π ∫
2π

0
u(reit)dt

u Δ(0,r) Bu(r) :=
1

πr2 ∫Δ(0,r)
ud A

Cu(r) Bu(r)

Bu(r) =
2
r2 ∫

r

0
Cu(s)sds

u Δ(0,ρ) u ≢ − ∞
0 < r < ρ

Mu(r) Cu(r) Bu(r) log r
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	 	 	 	 	 	 	           (Log-Radius Convexity of Means) 
	 (b)	  for .	 	 	  
	 	 	 	 	 	 	 	 	 	  (Ordering of Means) 
	 (c)	 .	          (Continuity at Center) 

Proof: 
	 Step I: (a) 
	 Observe that for , 

 where , 

 where , 

 where . 

	 In each case  is subharmonic on : this is proved using Theorem 2.13 in 
	 the first case and Theorem 2.14 in the other two. Clearly each  is also radial,  
	 and so the result follows from Theorem 2.20. 
	 Step II: (b) 
	 The first inequality is trivial. To derive the others, we begin with the relation 

 for  

	 proved in (a). Multiplying both sides by  and integrating from  to  

	 we get 

. 

	 Combining this with (2.3) yields , as desired. 
	 Step III: (c) 
	 By (b), it suffices to show that , and this is an immediate 

	 consequence from the upper semicontinuity of . 
	 	 	 	 	 	 	 	 	 	 	 	 	  

2.7 Smoothing for Subharmonic Functions 
   Although subharmonic functions need not to be smooth, indeed sometimes far fro-
m it, they can nevertheless always be approximated by others which are smooth. A 
standard way to do this is to use convolutions. 
Definition: Convolution 
	 Let  be an open subset of , and for  define 

. 
	 Let  be a locally integrable function and let  be a 
	 continuous function with . Then the convolution between  
	 and  is the function  given by 

Mu(r) ≥ Cu(r) ≥ Bu(r) ≥ u(0) 0 < r < ρ

lim
r→0

Mu(r) = lim
r→0

Cu(r) = lim
r→0

Bu(r) = u(0)

0 < r < ρ
Mu(r) = v(r) v(z) = sup

t∈[0,2π]
u(zeit)

Cu(r) = v(r) v(z) =
1

2π ∫
2π

0
u(zeit)dt

Bu(r) = v(r) v(z) =
1
π ∫

2π

0 ∫
1

0
u(zseit)sdsdt

v Δ(0,ρ)
v

Cu(r) ≥ Cu(s) ≥ u(0) r ≥ s
2s
r2

s = 0 s = r

Cu(r) ≥
2
r2 ∫

2π

0
Cu(s)sds ≥ u(0)

Cu(r) ≥ Bu(r) ≥ u(0)

lim sup
r→0

Mu(r) ≤ u(0)

u
□

u ℂ r > 0
Ur := {z ∈ U : dist(z, ∂U ) > r}

u : U → [−∞, ∞) φ : ℂ → ℝ
supp(φ) ⊂ Δ(0,r) u

φ u * φ : Ur → ℝ
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, . 

    	 After a change of variable, we also have 

, . 

	 This shows that if  then . 
Theorem 2.22: Smoothing Theorem for Subharmonic Functions 
	 Let  be a subharmonic function on a domain  in  with . Let  
	  be a function satisfying 
	 (a)	 .	 	 	 (Continuous) 
	 (b)	 .	 	 	 (Non-Negative) 
	 (c)	 .	 	 (Radial) 
	 (d)	 .		 (Concentrated on Unit Sphere) 

	 (e)	 .	 	 (Normalized) 

	 For  define , . Then 

	 (i)	  is a  subharmonic function on  for each . 
	 (ii)	  on  as . 
Example 2.5: Examples of Functions Described in Theorem 2.22 
	 An example for a function  satisfying (a)-(e) in Theorem 2.22 is given by 

 

	 where  is a constant chosen so that .	  

Proof of Theorem 2.22: 
	 Step I: Assertion (i) 
	 By Theorem 2.15  is locally integrable so  makes sense and is  on  
	 To show it is subharmonic on , applying Theorem 2.14 with  

 and  
	 yields the desired result. 
	 Step II: Assertion (ii) 
	 Now fix . For  we have 

. 

	 Making substitutions  and  yields 

. 

	 By Theorem 2.21 (c)  as . Hence by Monotone convergence 
	 theorem,  decreases to 

u * φ(z) = ∫ℂ
u(z − w)φ(w)d A(w) z ∈ Ur

u * φ(z) = ∫ℂ
u(w)φ(z − w)d A(w) z ∈ Ur

φ ∈ C∞ u * φ ∈ C∞

u D ℂ u ≢ − ∞
χ : ℂ → ℝ

χ ∈ C∞

χ ≥ 0
χ (z) = χ ( |z | )
supp( χ) ⊂ Δ(0,1)

∫ℂ
χd A = 1

r > 0 χr(z) :=
1
r2

χ( z
r ) z ∈ ℂ

u * χr C∞ D r > 0
(u * χr) ↓ u D r ↓ 0

χ

χ (z) :=
C ⋅ exp{ −1

1 − 4 |z |2 }, if  |z | < 1
2

0, if  |z | ≥ 1
2

C ∫ χdA = 1 ⋄

u u * χr C∞ Dr
D

(Ω, μ) = (ℂ, χrd A) v(z, w) = u(z − w)

ζ ∈ D 0 < r < dist(ζ, ∂D)

u * χr(ζ ) = ∫
2π

0 ∫
r

0
u(ζ − seit)r−2χ( s

r )sdsdt

σ := s /r v(z) := u(ζ − z)

u * χr(ζ ) = 2π∫
1

0
Cv(rσ)χ (σ)σdσ

Cv(rσ) ↓ v(0) r ↓ 0
u * χr(ζ )
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, 

	 where the first equality holds by  and assuptions (c) and (d), 
	 the second equality holds by assumption (e). It follows that  on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Corollary 2.22.1: Subharmonic Function Has Smoothing On Relatively Compacts 
	 Let  be a subharmonic function on an open set  in , and let  be a relativ- 
	 ely compact subdomain of . Then there exist subharmonic functions  
	  such that  on  and . 

Proof: 
	 If  on , take . Otherwise, choose  such that   
	 and take . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    As an application of this result, we can extend Corollary 2.9.2 to general holomor-
phic mappings as we promised in Remark 2.4. 
Theorem 2.23: Subharmonicity Is Closed under Holomorphy 
	 Let  be a holomorphic map between open subsets ,  of . If 
	  is subharmonic on  then  is subharmonic on . 
Proof: 
	 Let  be a relatively compact subdomain of . It suffices to show that  is 
	 subharmonic on . 
	 Set  and choose subharmonic functions 

 such that  on . 
	 By Theorem 2.10  on  . Now an easy computation gives 

 on . 
	 Hence  on , and using Theorem 2.10 once more we conclude 
	 that  is subharmonic there. Finally, sending  and by Theorem 2.12 
	  is subharmonic on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Theorem 2.23 can also be used to prove a form of identity principle for subharmo-
nic functions which, although rather weak, is still useful. In particular it extends the 
almost everywhere property to everywhere property. 
Theorem 2.24: Weak Identity Principle for Subharmonic Functions 
	 Suppose that  and  are subharmonic functions on an open set  in  such 
	 that  almost everywhere on  then  on . 
Proof: 
	 Step I: Bounded below case 
	 Suppose first that  and  are bounded below on . Taking  as stated in  
	 Theorem 2.22, we then have  on . Sending  we conc- 
	 lude that  on . 
	 Step II: General case 
	 The general case follows by applying the first step to  and  

2π∫
1

0
v(0)χ (σ)σdσ = u(ζ )∫ℂ

χd A = u(ζ )

v(z) := u(ζ − z)
(u * χr) ↓ u D

□

u U ℂ D
U

{un}n≥1 ⊂ C∞(D) u1 ≥ u2 ≥ ⋯ ≥ u D lim
n→∞

un = u

u ≡ − ∞ D un ≡ − n r > 0 D ⊂ Ur
un := u * χr/n

□

f : U1 → U2 U1 U2 ℂ
u U2 u ∘ f U1

D1 U1 u ∘ f
D1

D2 : f (D1)
{un}n≥1 ⊂ C∞(D2) un ↓ u D2

Δun ≥ 0 D2 ∀n ≥ 1
Δ(un ∘ f ) = ((Δun) ∘ f) | f′￼|2 D1

Δ(un ∘ f ) ≥ 0 D1
un ∘ f n ↑ ∞

u ∘ f D1
□

u v U ℂ
u = v U u ≡ v U

u v U χ
u * χr = v * χr Ur r → 0

u = v U

un := max(u, − n)
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	  and then sending . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   We cannot hope for an identity principle as strong as that for harmonic functions we 
proved back in Theorem 1.3. In other words, the almost everywhere condition cannot 
be removed in Theorem 2.24. 
Example 2.6: Almost Everywhere Condition Cannot Be Removed in Theorem 2.24 
	 Consider  and . They agree on an open subset of 
	  without being equal on the whole of .	  
    In fact, as we shall see, it is this very lack of rigidity that makes subharmonic func-
tions such a useful tool. 

3. Potential Theory 
3.1 Potentials 

    Potentials play at least two roles. Firstly they provide an important source of exam-
ples of subharmonic functions, giving us the means, for instance, of constructing such 
functions with various prescribed properties. Secondly, despite their apparently rather 
special nature, which makes them comparatively easy to study, we shall see that 
potentials turn out to be almost as general as arbitrary subharmonic functions, and for 
many purposes the two classes are equivalent. 
    We shall define potentials only for finite measures with compact support. 
Definition: Potentials (of Measures) 
	 Let  be a finite Borel measure on  with compact support. Its potential is the 
	 function  defined by 

, . 

    Since  is defined in this way, it is also known as the logarithmic potentials. 
Theorem 3.1: Basic Properties of Potentials 
	 Let  be a finite Borel measure on  with compact support. Then 
	 (i)	  is subharmonic on  and harmonic on . 
	 (ii)	  as . 
Proof: 
	 Step I: Assertion (i) 
	 Set , so  can be regarded as a measure on . By Theorem 2.14 
	 applied with  on , we see that  is subharmonic 
	 on . Applying Theorem 2.14 once more but with   
	 on , we also find that  is superharmonic on  and hence harm- 
	 onic there, this proves (i). 
	 Step II: Assertion (ii) 
	 Observe that for , by change of variables 

. 

	 As  has compact support, the final term is  as . 

vn := max(v, − n) n → ∞
□

u(z) := max(Re z,0) v(z) := 0
ℂ ℂ ⋄

μ ℂ
pμ : ℂ → [−∞, ∞)

pμ(z) := ∫ log |z − w |dμ(w) z ∈ ℂ

pμ(z)

μ ℂ
pμ ℂ ℂ∖supp(μ)
pμ(z) = μ(ℂ)log |z | + O( |z |−1 ) z → ∞

K := supp(μ) μ K
v(z, w) := log |z − w | ℂ × K pμ

ℂ v(z, w) := − log |z − w |
(ℂ∖K ) × K pμ ℂ∖K

z ≠ 0

pμ(z) = μ(ℂ)log |z | + ∫ log 1 −
w
z

dμ(w)

μ O( |z |−1 ) n → ∞
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   Potentials enjoy several properties over and above those displayed by general sub-
harmonic functions. We now prove two of these: the continuity principle and the 
minimum principle. 
Theorem 3.2: Continuity Principle for Potentials 
	 Let  be a finite Borel measure on  with compact support . 
	 (a)	 If  then .	 (Lower Bound) 

	 (b)	 If in addition  then . 

	 	 	 	 	 	 	 	 	 	      (Continuity) 
Proof: 
	 Step I: Assertion (a) 
	 If  then by upper semicontinuity  and the result 

	 is trivial. Thus, without loss of generality we may assume that .  
	 Then necessarily one has  and so, given , there exists  
	 such that . Given , choose  minimizing .  
	 Then , by triangle inequality one has 

. 

	 Therefore, using change of variables in the equality and fundamental theorem 
	 of calculus in the inequality yields 

 

	 As  in , the corresponding  in , and hence 
. 

	 Finally, since  is arbitrary, sending  yields (a). 
	 Step II: Assertion (b) 
	 Suppose that in addition we have . Then by (a) one has 

. 

	 Moreover, since  is upper semicontinuous by Theorem 3.1, one has 
. 

	 Combining these two displays gives the assertion (b). 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Theorem 3.3: Minimum Principle for Potentials 
	 Let  be a finite Borel measure on  with compact support . If  on  
	 then  on . 

□

μ ℂ K
ζ0 ∈ K lim inf

z→ζ0

pμ(z) = lim inf
ζ→ζ0,ζ∈K

pμ(ζ )

lim
ζ→ζ0,ζ∈K

pμ(ζ ) = pμ(ζ0) lim
z→ζ0

pμ(z) = pμ(ζ0)

pμ(ζ0) = − ∞ lim
z→ζ0

pμ(z) = − ∞

pμ(ζ0) > − ∞
μ({ζ0)}) = 0 ε > 0 r > 0

μ(Δ(ζ0, r)) < ε z ∈ ℂ ζ ∈ K |ζ − z |
∀w ∈ K

|ζ − w |
|z − w |

≤
|ζ − z | + |z − w |

|z − w |
≤ 2

pμ(z) = pμ(ζ ) − ∫K
log

ζ − w
z − w

dμ(w)

≥ pμ(ζ ) − ε log 2 − ∫K∖Δ(ζ0,r)
log

ζ − w
z − w

dμ(w) .

z → ζ0 ℂ ζ → ζ0 K
lim inf

z→ζ0

pμ(z) ≥ lim inf
ζ→ζ0,ζ∈K

pμ(ζ ) − ε log 2 − 0

ε > 0 ε ↓ 0

lim
ζ→ζ0,ζ∈K

pμ(ζ ) = pμ(ζ0)

lim
z→ζ0

pμ(z) = pμ(ζ0)

pμ
lim sup

z→ζ0

pμ(z) ≤ pμ(ζ0)

□

μ ℂ K pμ ≥ M K
pμ ≥ M ℂ

41



Proof: 
	 Denote  on . Then  is subharmonic on  and (assuming that 
	 )  as . Moreover if , then 

, 

	 where the first inequality holds by the definition of , the middle equality holds 
	 by Theorem 3.2 (a), and the last inequality holds by assumption. 
	 Finally, applying the maximum principle Theorem 2.5 to  on each component 
	 of  we get  there. Thus  on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  

3.2 Polar Sets 
    Polar sets play the role of negligible sets in potential theory, much as sets of meas-
ure zero do in measure theory. To define them, we first need to introduce the notion 
of energy. 
Definition: Energy (of Measures) 
	 Let  be a finite Borel measure on  with compact support. Its energy  is 
	 defined by 

. 

   To explain this terminology, think of  as being a charge distribution on . Then 
 represents the potential energy at  due to , and so the total energy of  is just 

, in other words, . In fact, since like charges repel, most physicists 

would define the energy as , but our definition would be more convenient. 
    It is possible that . Indeed some sets only support measures of infinite 
energy. These sets are so important and deserve a name. 
Definition: Polar Set 
	 A subset  of  is said to be polar if  for every finite Borel 	  
	 measure  for which  is a compact subset of . 
Definition: Non-Polar Set 
	 A subset  of  is said to be non-polar if it is not polar. 
Definition: Nearly Everywhere Property 
	 A property is said to hold nearly everywhere (n.e.) on a subset  of  if it holds 
	 everywhere on , where  is some Borel polar set. 
    As we mentioned earlier, the polar sets serve as the “measure zero sets in measure 
theory”, thus, as almost everywhere being translated to almost surely from measure 
theory to probability theory, same thing happens here as we translate almost every-
where to nearly everywhere. Some authors also call nearly everywhere property as 
quasi-everywhere property. 
Remark 3.1: Some Properties of Polar Sets, Non-Polar Sets, and N.E. Properties 
	 (i)	 Singletons are polar (when ). 
	 (ii)	 Every subset of polar set is polar. 

u := − pμ ℂ∖K u ℂ∖K
u ≠ 0 u(z) → − ∞ n → ∞ ζ0 ∈ ∂K

lim sup
z→ζ0,z∈ℂ∖K

u(z) ≤ − lim inf
z→ζ0

pμ(z) = − lim inf
ζ→ζ0,ζ∈K

pμ(ζ ) ≤ − M

u

u
ℂ∖K u ≤ − M pμ ≥ M ℂ

□

μ ℂ I(μ)

I(μ) := ∬ log |z − w |dμ(z)dμ(w) = ∫ pμ(z)dμ(z)

μ ℂ
pμ(z) z μ μ

∫ pμ(z)dμ(z) I(μ)

−I(μ)
I(μ) = − ∞

E ℂ I(μ) = − ∞
μ ≠ 0 supp(μ) E

E ℂ

S ℂ
S∖E E

d ≥ 2
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	 (iii)	 Every non-polar set contains a compact non-polar subset, namely, 
	 	 , for measure , such that . 
	 (iv)	 If a property  holds nearly everywhere then it holds ( )-almost  
	 	 everywhere. The converse is not true. 
	 (v)	 If a property  holds nearly everywhere on  then it holds nearly 
	 	 everywhere on . 

	 (vi)	 If a  nearly everywhere on ,  nearly everywhere on , then 
	 	  nearly everywhere on .		  
	 (vii)	 Borel polar sets have Hausdorff dimension zero and for all  Borel 
	 	 polar sets have -Hausdorff measure zero.	  
    It is easy to see that measures of finite energy can have no atoms. In fact, more ge-
nerally, they do not charge any polar sets. 
Theorem 3.4: Borel Measures with Finite Energy Do NOT Charge Any Polar Sets 
	 Let  be a finite Borel measure on  with compact support, and suppose that 
	 . Then  for every Borel polar sets . 
Proof: 
	 Let  be a Borel set such that . We shall show that  is non-polar. 
	 By the regularity of , we can choose a compact subset  of  with .  
	 Set  and . Then  is a finite non-zero measure  
	 whose support is a compact subset of  and 

 

	 where the first equality holds by change of variables and Theorem 3.1 (ii), the 
	 first inequality holds since integrating over  results in some negative terms,  
	 and the last equality holds by using Theorem 3.1 (ii) again. This proves the  
	 claim that  is non-polar. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Corollary 3.4.1: Borel Polar Set Has Lebesgue Measure Zero 
	 Every Borel polar set has Lebesgue measure zero. 
Proof: 
	 It suffices to show that, for , the measure  has energy 
	 . For then by Theorem 3.4 every Borel polar set  has -measure 
	 zero, that is,  has Lebesgue measure zero, and the result follows by 
	 letting . 
	 To this end, fix  and let . Then for  one has 

supp(μ) μ I(μ) > − ∞
𝒫 μ

𝒫 {En}n≥1
E := ⋃

n≥1

En

f1 ≥ f2 E f2 ≥ f3 B
f1 ≥ f3 E

α > 0
α ⋄

μ ℂ
I(μ) > − ∞ μ(E ) = 0 E

E μ(E ) > 0 E
μ K E μ(K ) > 0

μ̃ := μ |K d := diam(supp(μ)) μ̃
E

I(μ̃ ) = ∫K ∫K
log

z − w
d

dμ(z)dμ(w) + μ(K )2log d

≥ ∫ℂ ∫ℂ
log

z − w
d

dμ(z)dμ(w) + μ(K )2log d

= I(μ) − μ(ℂ)2log d + μ(K )2log d
> − ∞,

ℂ

E
□

ρ > 0 dμ := d A |Δ(0,ρ)
I(μ) > − ∞ E μ

E ∩ Δ(0,ρ)
ρ → ∞

ρ > 0 dμ := d A |Δ(0,ρ) z ∈ Δ(0,ρ)
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	 where the first equality holds by Theorem 3.1 (ii) and the inequality holds  
	 since . It follows from this display that 

, 

	 as desired. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Thus nearly everywhere property implies almost everywhere property and the con-
verse is not true, as we claimed in Remark 3.1 (iv). In fact an argument similar to the 
proof of Corollary 3.4.1, but rather more technical, shows that Borel polar sets 
actually have -dimensional Hausdorff measure zero for each , and thus are all 
of Hausdorff dimension zero. We shall not perform the details here. 
Corollary 3.4.2: Borel Polar Set Is Stable Under Countable Union 
	 A countable union of Borel polar sets is polar. In particular, every countable 
	 subset of  is polar. 
Proof: 
	 Suppose that  are Borel polar sets and . Let  be a finite  

	 Borel measure on  whose support is a compact subset of . If   
	 then by Theorem 3.4   thus  and hence . It 
	 follows that  is polar. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    The conclusion in Corollary 3.4.2 fails if the sets are not Borel. 
Example 3.1: Countable Union of Non-Borel Polar Sets May NOT Be Polar 
	 Let  be a set and let  be a collection of infinite subsets of  such that the 
	 cardinality of  is greater or equal to the cardinality of  for all . Then 
	  can be partitioned into subsets  and  and neither of them contains any ele- 
	 ment of . 
	 In particular, if  is the collection of all uncountable compact subsets of   
	 then  can be partitioned into subsets  and  such that each compact subset  
	 of  or  is countable. In this case, the union of two non-Borel polar sets needs 
	 not to be polar.	  
Remark 3.2: Polar Sets Need Not to Be Countable 
	 We conclude this section by remark that, though every countable set is polar, 
	 not every polar set is countable. This will be demonstrated in Section 3.5, and 
	 more concrete examples of uncountable polar sets will be given in Section 5.3. 
	 	 	 	 	 	 	 	 	 	 	 	 	  

pμ(z) = ∫Δ(0,ρ)
log

z − w
2ρ

d A(w) + πρ2 log(2ρ)

≥ ∫
2π

t=0 ∫
2ρ

r=0
log( r

2ρ )rdrdt + πρ2(2ρ)

= − 2πρ2 + πρ2 log(2ρ)

|r | ≤ |z − w |

I(μ) := ∫Δ(0,ρ)
pμ(z)dμ(z) ≥ (− 2πρ2 + πρ2 log(2ρ))πρ2 > − ∞

□

α α > 0

ℂ

{En}n≥1 E := ⋃
n≥1

En μ

ℂ E I(μ) > − ∞
μ(En) = 0 ∀n ≥ 1 μ(E ) = 0 μ = 0

E
□

S 𝒯 S
T 𝒯 T ∈ 𝒯

S P Q
𝒯

𝒯0 ℂ
ℂ P Q

P Q
⋄

⋄
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3.3 Equilibrium Measures 
    In physics, a charge placed upon a conductor will distribute itself so as to minimize 
energy. In our context, this suggests lookging at probability measures  on a compact 
set  which minimize  (that is to say, when one puts charge on a conductor, the 
charges spread out until they stop being able to lower the system’s electrical energy 
any further). Not only are they of physical relevance, but they turn out to be math-
ematically very useful too. 
Definition: Equilibrium Measure (of Compacts) 
	 Let  be a compact subset of , and denote  the collection of all Borel 
	 probability measures on . If there exists  such that 

. 

	 Then  is called an equilibrium measure for . 
Theorem 3.5: Compact Sets Have Equilibrium Measure 
	 Every compact set  in  has an equilibrium measure. 
   We shall see later in Section 3.7 that in fact this equilibrium measure is unique, pr-
ovided that  is non-polar. (Of course if  is polar then every  is an equil-
ibrium measure since they all satisfy .) 
    To prove Theorem 3.5, we shall need the notion of weak*-convergence of probabi-
lity measures. Some of the authors, for example Sydney and Port, call this mode of 
convergence the vague convergence. 
Definition: Weak* Convergence 
	 A sequence , where  is a compact metric space, is said to be 

	 weak* convergent to , denoted as , if 

 , 

	 where  is the space of continuous functions  equipped with the 
	 usual sup norm. 
   In fact, every sequence  has a weak* convergent subsequence via 
a classical diagonal argument. 
Lemma 3.6: Weak* Convergence Implies Energy Upper Bound 
	 If  in  then . 

Proof: 
	 Given continuous functions  and  on , the definition of weak* convergence 
	 implies that, as , 

. 

	 Now using the Stone-Weierstrass theorem (see the proof in Theorem 2.19),  
	 one can show that every continuous function  on  can be unifor- 

	 mly approximated by finite sums of the form , where , , are 

μ
K I(μ)

K ℂ 𝒫(K )
K ν ∈ 𝒫(K )

I(ν) = sup
μ∈𝒫(K )

I(μ)

ν K

K ℂ

K K μ ∈ 𝒫(K )
I(μ) = − ∞

{μn}n≥1 ⊂ 𝒫(X ) X
μ ∈ 𝒫(X ) μn

weak*
n→∞

μ

∫X
φdμn → ∫X

φdμ ∀φ ∈ C(X )

C(X ) φ : X → ℝ

{μn}n≥1 ⊂ 𝒫(K )

μn
weak*

n→∞
μ 𝒫(K ) lim sup

n→∞
I(μn) ≤ I(μ)

φ ψ K
n → ∞

∫K ∫K
φ(z)ψ (w)dμn(z)dμn(w) → ∫K ∫K

φ(z)ψ (w)dμ(z)dμ(w)

χ (z, w) K × K
n

∑
j=1

φj(z)ψj(w) φj ψj
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	 continuous functions on . It follows that for every such , 

 

	 as . Applying this with , where  
	 , we obtain 

 

	 where the first equality holds by the definition of energy, the inequality holds  
	 by taking the maximum inside the integral, and the second equality holds by  
	 the weak* convergence. The desired result now follows upon sending   
	 and using Monotone convergence theorem. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Proof of Theorem 3.5: 
	 Let , and choose a sequence  such that 

	  as . It can be shown that there exists a sequence   
	 which is weak* convergent to some . Now by Lemma 3.6, 

, 

	 then  is an equilibrium measure for  by definition. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   Physical intuition would tend to suggest that if  is an equilibrium measure for  
then  should be constant on  (for otherwise charge would flow from one part of  
to another part, disturbing being equilibrium). This idea is confirmed by the next 
theorem, and even serves to motivate the proof. 
Theorem 3.7: Frostman’s Theorem 
	 Let  be a compact set in , and let  be an equilibrium measure for . Then 
	 (a)	  on . 
	 (b)	  on , where  is an  polar subset of . 
   It can happen that the exceptional set  is non-empty. An example is demonstrated 
below. 
Example 3.2: Exceptional Set in Frostman’s Theorem Can Be Empty 
	 Let  be a compact set of the form , where  is a closed disc, and  is a 
	 polar subset of . Let  be an equilibrium measure for . Then   
	 and  is harmonic on .	  
Proof of Theorem 3.7: 
	 If  (that is,  is polar) then the result is trivial. Without loss of gen- 
	 erality we may assume that . It suffices to prove that 

K χ

∫K ∫K
χ (z, w)dμn(z)dμn(w) → ∫K ∫K

χ (z, w)dμ(z)dμ(w)

n → ∞ χ (z, w) := max (log |z − w | , − m)
m ≥ 1

lim sup
n→∞

I(μn):= lim sup
n→∞ ∫K ∫K

log |z − w |dμn(z)dμn(w)

≤ lim sup
n→∞ ∫K ∫K

max (log |z − w | , − m)dμn(z)dμn(w)

= ∫K ∫K
max (log |z − w | , − m)dμ(z)dμ(w),

m → ∞

□

M := sup
μ∈𝒫(K )

I(μ) {μn}n≥1 ⊂ 𝒫(K )

I(μn) → M n → ∞ {μnk
}k≥1

ν ∈ 𝒫(K )
I(ν) ≥ lim sup

k→∞
I(μnk

) =: M

ν K
□

ν K
pν K K

K ℂ ν K
pν ≥ I(μ) ℂ
pν = I(μ) K ∖E E Fσ ∂K

E

K Δ ∪ E Δ E
ℂ∖Δ ν K ν(E ) = 0

pν ℂ∖Δ ⋄

I(ν) = − ∞ K
I(ν) > − ∞
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	 	 (i)	  is polar . 

	 	 (ii)	  is empty . 

	 Step I: It suffices to prove (i) and (ii) 
	 Indeed, for (ii) then implies that  on , and so by the minimum 
	 principle Theorem 3.3 we get  on , which gives aseertion (a). 
	 On the other hand, if we put , then (i) and Corollary 3.4.2 together 

	 imply that  is an  polar set. Since  on , this gives the first part 
	 of assertion (b). As for the second part in (b), observe that as  is polar, it must 
	 have Lebesgue measure zero by Corollary 3.4.1, so  Lebesgue almost 
	 everywhere on , and hence by the weak identity principle Theorem 2.24,  
	  everywhere on . This concludes assertion (b). 
	 Step II: (i) holds 
	 We will prove (i) by contradiction. Suppose, if possible, that some  is non- 
	 polar. Choose  with . Since  

, 

	 there exists  such that . By the upper semicontinuity 
	 there exists  such that 

 on . 

	 In particular, 
. 

	 As , the number  is strictly positive. Define a sig- 
	 ned measure  on  by 

 

	 Then for each , the measure 
 

	  is positive, and therefore . Moreover, noting that 
 

	 by the defintion of , we have 

Kn := {z ∈ K : pν(z) ≥ I(ν) +
1
n } ∀n ≥ 1

Ln := {z ∈ supp(ν) : pν(z) < I(ν) −
1
n } ∀n ≥ 1

pν ≥ I(ν) supp(ν)
pν ≥ I(ν) ℂ

E := ⋃
n≥1

Kn

E Fσ pν ≤ I(ν) K ∖E
E

pν = I(ν)
K

pν = I(ν)
∘
K

Kn
μ ∈ 𝒫(Kn) I(μ) > − ∞

I(μ) = ∫ pνdν

z0 ∈ supp(ν) pν(z0) ≤ I(ν)
r > 0

pν < I(ν) +
1

2n
Δ(z0, r)

Δ(z0, r) ∩ Kn = ∅
z0 ∈ supp(ν) a := ν(Δ(z0, r))

σ K

σ :=
μ, on Kn

− ν
a , on Δ(z0, r)

0, otherwise
t ∈ (0,a)

νt := ν + tσ
νt ∈ 𝒫(K )

I(μ) > − ∞ ⇒ I( |σ |) > − ∞
σ
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	 where the first equality holds by change of measure and definition of , the 
	 second equality holds by Theorem 3.1 (ii), the third equality holds by the defi-	
	 nition of  and integration by parts, and in the last inequality, the blue term co- 

	 mes from the inequality  on  and the red term comes from the 

	 inequality  on . Therefore  provided that  is 

	 sufficiently small, contradicting the assumption that  is an equilibrium meas- 
	 ure. Hence each  is necessarily polar, proving (i). 
	 Step III: (ii) holds 
	 We shall prove (ii) by contradiction. Suppose, if possible, that some  is non- 
	 empty. Pick , by the upper semicontinuity, there exists  such that 

 on . 

	 As , the number  is strictly positive. Now by (i) 
	 and Corollary 3.4.1,  , and so 

 -almost everywhere on . 
	 Hence 

 

	 where the first equality holds by definition, the second equality holds by integ- 

	 ration by parts, the first inequality holds since  on  and  

	  -almost everywhere on , and the last inequality holds since . 
	 This display is obviously a contradiction. Hence each  is empty, giving (b). 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Frostman’s theorem Theorem 3.7 is very important, serving many different purpo-
ses. Indeed, it is sometimes referred to as “fundamental theorem of potential theory” - 
a grandiose title but, as we shall see, one that is fully justified. 

I(νt) − I(ν) = 2t∬ log |z − w |dν(w)dσ(z) + t2 ∬ log |z − w |dσ(w)dσ(z)

= 2t∫ pν(z)dσ(z) + O(t2)

= 2t(∫Kn

pν(z)dμ(z) − ∫Δ(z0,r)
pν(z)

dν(z)
a

+ O(t))
≥ 2t[(I(ν) +

1
n ) − (I(ν) +

1
2n )+O(t)],

σ

σ

pν ≥ I(ν) +
1
n

Kn

pn < I(ν) +
1

2n
Δ(z0, r) I(νt) > I(ν) t

ν
Kn

Ln
z1 ∈ Ln s > 0

pν < I(ν) −
1
n

Δ(z1, s)

z1 ∈ supp(ν) b := ν(Δ(z1, s))
ν(Kn) = 0 ∀n ≥ 1

pν < I(ν) ν K

I(ν) := ∫K
pνdν = ∫Δ(z1,s)

pνdν + ∫K∖Δ(z1,s)
pνdν

≤ (I(ν) −
1
n ) ⋅ b + I(ν) ⋅ (1 − b)

< I(ν)

pν < I(ν) −
1
n

Δ(z1, s)

pν < I(ν) ν K b > 0
Ln

□
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3.4 Upper Semicontinuous Regularization 
   We saw in Theorem 2.12 that the limit of a decreasing sequence of subharmonic 
functions is subharmonic. At the same time, we remarked that the corresponding 
result for an increasing sequence was false, because the limit might not be upper 
semicontinuous. One way round this problem is to make the limit upper semiconti-
nuous by regularizing it. 
Definition: Upper Semicontinuous Regularization 
	 Let  be a topological space, and let  be a function which is 
	 locally bounded above on . Its upper semicontinuous regularization, denoted 
	 as , is defined by 

, 

	 where  and the infimum is taken over all neighbourhoods  of . 
   It is easily check that  is an u.s.c. function on  such that , and also that it 
is the least such a function. 
   Returning to our problem about an increasing sequence of subharmonic functions, it 
is perharps not too surprising to learn that provided the limit  is locally bounded 
above, its u.s.c. regularization  is u.s.c.. What is much less obvious is that  is 
very nearly equal to . It can be proved that  almost everywhere on  and in 
fact mucm more than this is true. 
Theorem 3.8: Brelot-Cartan Theorem 
	 Let  be a collection of subharmonic functions on an open subset  of , and 
	 suppose that the function  is locally bounded above on . Then 

	 (a)	  is subharmonic on . 
	 (b)	  n.e. on . 
    Part (b) says that  everywhere on  outside some Borel polar set. Note how-
ever that the set  itself may not be Borel, since  can be uncount-
able. 
Proof of Theorem 3.8: 
	 Step I: (a) 
	 The upper semicontinuity of  is trivial, it left us to prove the submean inequ- 
	 ality. Suppose that . Then for each , 

, 

	 where the first inequality holds by submean inequality of  and the second ine- 
	 quality holds by the definition of u.s.c. regularization. Taking the supremum  
	 over all , one has 

	 	 	 	 .	 	 	 (3.1) 

	 Now choose  such that . If  is sufficiently large,  

	 then , so (3.1) holds with  replaced by  throughout. Thus 

X u : X → [−∞, ∞)
X

u* : X → [−∞, ∞)
u*(x) := lim sup

y→x
u(y) = inf

N
( sup

y∈N
u(y))

x ∈ X N x
u* X u* ≥ u

u
u* u*

u u = u* X

𝒱 U ℂ
u := sup

v∈𝒱
v U

u* U
u* = u U

u* = u U
{z : u*(z) ≠ u(z)} 𝒱

u*
Δ(w, ρ) ⊂ U v ∈ 𝒱

v(w) ≤
1

2π ∫
2π

0
v(w + ρeiθ)dθ ≤

1
2π ∫

2π

0
u*(w + ρeiθ)dθ

v

v ∈ 𝒱

u(w) ≤
1

2π ∫
2π

0
u*(w + ρeiθ)dθ

wn → w lim
n→∞

u(wn) = u*(w) n

Δ(wn, ρ) ⊂ U w wn
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	 Thus  satisfies the submean inequality as desired. 
	 Step II: (b) 
	 We first consider the case when  is countable so that  is Borel-measurable. 
	 Step II.1: (b) when  is countable 
	 Now the set  can be written as a countable union of  
	 Borel sets of the form 

, 
	 where  is a disc such that  and  is a rational number. Thus it 	  
	 suffices to show that each such a set  is polar. We shall do this by contradc- 
	 tion. 
	 Suppose, if possible, that for some  and  the set  is non-polar. Then  cont- 
	 ains a compact non-polar subset  by Remark 3.1 (iii). Let  be an equilibr- 
	 ium measure for , and define  by 

, 
	 where  is a positive constant chosen sufficiently large so that 

. 

	 such a choice is possible since by Frostman’s theorem Theorem 3.7 and the  
	 maximum principle Theorem 2.5 (ii),  on the unbounded component 
	 of .   
	 Then for each , the function  is subharmonic on , and if  
	  then 

. 

	 Hence by the maximum principle Theorem 2.5 (ii),  on . Therefore 
	  on . Moreover,  on , in fact  on the whole of ,  
	 and hence  on . This implies that  on , or in other words  
	  on , which contradicts Theorem 3.7 (b). Thus  is polar, as desired. 
	 Step II.2: (b) when  is not necessarily countable 
	 We now turn to the case when  is uncountable. Choose a countable base  
	  of relatively compact open subsets of . For each pair , there 
	 exists  such that 

. 

	 If we set , then  and . By the countable base  

u*(w) ≤
1

2π ∫
2π

0
lim sup

n→∞
u*(wn + ρeiθ)dθ (Fatou's Lemma)

≤
1

2π ∫
2π

0
u*(w + ρeiθ)dθ (Definition of u*)

u*

𝒱 u
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E
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K q : ℂ → [−∞, ∞)
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(
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ℂ∖K )
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	  nearly everywhere on . Hence it follows that  n.e. on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Of course, the Brelot-Cartan theroem Theorem 3.8 applies in particular to limits of 
increasing sequences. There is also a corresponding result for more general sequ-
ences. 
Theorem 3.9: Brelot-Cartan Theorem Applied to General Sequences 
	 Let  be a sequence of subharmonic functions on an open set , and  
	 suppose that  is locally bounded above on . If . Then 

	 (a)	  is subharmonic on . 
	 (b)	  n.e. on . 
	 (c)	 If  is continuous and  then  locally 
	 	 uniformly on  as . 
Proof: 
	 Step I: (a) 
	 If  then for each , 

. 

	 Taking  of both sides and using Fatou’s lemma give 

. 

	 The same argument as used in proving Theorem 3.8 (a) now shows that  is 
	 subharmonic on . 
	 Step II: (b) 
	 For each  denote . Then , and , say, where  

	 . Now by Theorem 3.8 (b),  n.e. for each  therefore 
	  n.e. and hence  n.e. on . 
	 Step III: (c) 
	 Since  for each , it suffices to prove that 
	  uniformly on compacts. As  is a decreasing sequence 
	 of u.s.c. functions, by Dini’s theorem  this will be true provided that  3

	 , thus it left us to prove this inequality. 

	 Step III.1: . 

	 By Theorem 3.8 (a), each  is subharmonic on , and since , it follows 
	 from Theorem 2.12 that  is subharmonic on . Moreover, by (a) we just  
	 proved,  is subharmonic on  and by (b) we just proved  n.e. and  

u*0 = u0 U u* = u U
□

{un}n≥1 U
sup

n
un U u := lim sup

n→∞
un

u* U
u* = u U

φ : U → ℝ φ ≥ u max(un, φ) → φ
U n → ∞

Δ(w, ρ) ⊂ U n ≥ 1

un(w) ≤
1

2π ∫
2π

0
un(w + ρeiθ)dθ

lim sup
n→∞

u(w) ≤
1

2π ∫
2π

0
u(w + ρeiθ)dθ ≤

1
2π ∫

2π

0
u*(w + ρeiθ)dθ

u*
U

n ≥ 1 vn := sup
≥n

um vn ↓ u v*n ↓ v

v ≥ u* ≥ u v*n = vn n ≥ 1
v = u u* = u U

φ ≤ max(un, φ) ≤ max(v*n , φ) n ≥ 1
max(v*n , φ) → φ {v*n }n≥1

lim
n→∞

v*n ≤ φ

lim
n→∞

v*n ≤ φ

v*n U v*n ↓ v
v U

u* U b = u*

 Dini’s Theorem: Let  be a compact metric space. Let  be a continuous function 3

and , , be a sequence of continuous functions. If  converges pointwisely 
to  and if    then  uniformly.

K f : K → ℝ
fn : K → ℝ n ≥ 1 { fn}n≥1

f f (x) ≥ fn+1(x) ∀x ∈ K ∀n ≥ 1 fn → f
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	 thus a.e. on . Hence by the weak identity principle Theorem 2.24   
	 everywhere on  and so 

, 

	 as desired. 
	 	 	 	 	 	 	 	 	 	 	 	 	  

3.5 Minus Infimum Sets 
   Earlier we have proved in Corollary 2.15.2 that if  is subharmonic on a domain 
and  then the set where  has Lebesgue measure zero. We are now 
in a position to prove a much stronger result. Recall that a  set is of the form of 
countable intersection of open sets. 
Theorem 3.10: Subharmonic Function Is Minus Infinity On  Polar Set 
	 Let  be a subharmonic function on a domain  in  such that . Then 
	  is a  polar set. 
Proof: 
	 Since  is clearly a  set. It left us to show that it is 

	 polar. Denote  so that 

 

	 Now by Theorem 3.9 (a)  is subharmonic on , and since it evidently atta- 
	 ins a maximum value  there, it follows that  on  by Theorem 2.5 (i). 
	 Moreover, by Theorem 3.9 (b),  n.e. on . Therefore  n.e. on  
	 and  is indeed polar by Theorem 3.9 (b) and the definition of n.e. property. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    This result allows us to demonstrate the existence of uncountable polar sets. For e-
xample, the set  occuring in the proof of Theorem 2.16 (b) is uncountable and by 
Theorem 3.10 it is polar. More concrete examples will appear in Section 5.3. 
    Theorem 3.10 is sharp in the sense that every  polar set arises as the set where 
some subharmonic function . This converse, Deny’s theorem, is too hard for 
us to prove here as the proof relies on the concept of condenser measure; instead we 
content ourselves with the following result which, though weaker, is good enough for 
most purposes. 
Theorem 3.11:  Polar Set Decomposition for Subharmonic Functions 
	 Let  be an  polar set, and let  be an  set such that . Then  
	 there exists a subharmonic function  such that 
	 (i)	  on . 
	 (ii)	  on . 
    We shall prove this via a lemma which is of interest in its own right. 
Lemma 3.12: Existence of Borel Probability Measure Charging Compact Polar Sets 
	 Let  be a compact polar set, and let  be a compact set disjoint from . Then 
	 there exists a Borel probability measure  on  with compact support such that 

U v = u*
U

lim
n→∞

v*n = v = u* ≤ φ* = φ

□

u
u ≢ − ∞ u = − ∞

Gδ

Gδ
u D ℂ u ≢ − ∞
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E := ⋂
n≥1

{z : u(z) < − n} Gδ
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u
n
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−∞, z ∈ E

v* D
0 v* ≡ 0 D

v* = v D v = 0 D
E

□

E
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Fσ
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u : ℂ → [−∞, ∞)
u = − ∞ E
u > − ∞ F

E F E
μ ℂ

52



	 (i)	  
	 (ii)	 . 
Proof: 
	 Step I: Assertion (ii) 
	 Let  be a sequence of compact sets, with  for all  such 
	 that 

 and . 

	 For each , let  be an equilibrium measure for . Note that   
	 since  by Frostman’s theorem Theorem 3.7 (b). 
	 Now  for all , so by a diagonal argument there exists a sub- 
	 sequence of  that is weak*-convergent to some . In fact, 
	 since  for all , we must have . As  is polar, 
	 it follows that . Hence by Lemma 3.6  as ,  
	 and so, replacing  by a further subsequence, we can suppose that 

 for all . 
	 Put  

. 

	 Then  so . Thus the measure we constructed satis- 
	 fies assertion (ii). 
	 Step II: Assertion (i) 
	 First suppose that . Then  for each , so by Theorem 3.7 (b), 

. 
	 Hence, 

, 

	 where the first equality holds by the definition of  and the first equality holds 
	 since  for all . 
	 Now suppose that . Choose such that  and put  
	 then for all , 

, 

	 and also by Theorem 3.7 (a),  for every . Hence 

, 

	 where the first equality holds by the definition of  and the first inequality by 
	 summing by parts. Thus  as desired. 
	 	 	 	 	 	 	 	 	 	 	 	 	  

E = {z ∈ ℂ : pμ(z) = − ∞}
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    We remark in passing that it is not clear from the proof above whether  can be ch-
osen so that . The fact that it can (Evan’s theorem) will be proved in 
Section 5.5. 
Proof of Theorem 3.11: 
	 Denote  and , where  and  are increas- 

	 ing sequences of compact sets. By Lemma 3.12, for each , there exists a 
	 Borel probability measure  with compact support such that 

 and . 
	 Then  is bounded above on  and below on , so we can choose cons- 
	 tants  and  for each  such that  satisfying 

 and . 

	 Denote . Then on any bounded set, the sequence of partial sums is 

	 eventually decreasing and so by Theorem 2.12  is subharmonic on . More- 
	 over if  then  for some  and so . This proves 
	 the first assertion. 
	 Finally, if  then  for each  and  for all 
	 sufficiently large , thus  on , proving assertion (ii). 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    We conclude by recording an important special case of Theorem 3.11. 
Corollary 3.11.1: Characterization of Closed Polar Set via Subharmonic Functions 
	 If  is a closed polar subset of . Then there exists a subharmonic function   
	 on  such that . 
Proof: 
	 Applying Theorem 3.11 with .	 	 	 	 	 	  

3.6 Removable Singularities 
    In each of the last three sections we have encountered theorems asserting that cert-
ain exceptional sets are polar. It is thus of special interest to determine in what ways 
polar sets are “negligible”. The key to this is the following removable singularity 
thoerem. 
Theorem 3.13: Removable Singularity Theorem for Subharmonicity 
	 Let  be an open subset of , let  be a closed polar set, and let  be a subha- 
	 rmonic function on . Suppose that each point of  has a neighbour- 
	 hood  such that  is bounded above on . Then  has a unique subhar- 
	 monic extension to the whole of . 
Proof: 
	 Uniqueness follows from the weak identity principle Theorem 2.24 since  	 
	 has (Lebesgue) measure zero by Corollary 3.4.1. 
	 To construct the extension, we define  on  by 

μ
supp(μ) ⊂ E
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n ≥ 1
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αn > 0 βn ∈ ℝ n un := αn pμn
+ βn

sup
Δ(0,n)
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un > − 2−n

u :=
∞
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un
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z ∈ E un(z) = − ∞ n u(z) = − ∞
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□
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 where . 

	 The boundedness assumption ensures that  everywhere, and so  is u.s.c. 
	 on  by Theorem 2.2. To check that  is subharmonic, we shall use (c)  (a)  
	 in Theorem 2.9. Let  be a relatively compact subdomain of , and let  be a 
	 harmonic function on  such that 

 . 

	 We need to show that  on . 
	 Now by Corollary 3.11.1 there exists a subharmonic function  on  such that 
	 . For each , the function  is certainly  
	 subharmonic on  by Theorem 2.4 (ii), and equals  on , Remark 2.1 
	 (ii) tells us that  is subharmonic on the whole of . Therefore by the 
	 maximum principle Theorem 2.5, 

 on . 

	 Sending  we deduce that  on . From the way that  is defined  
	 on  it follows that  on  too. Therefore  on  as desired. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Corollary 3.13.1: Removable Singularity Theorem for Harmonic Functions 
	 Let  be an open subset of , let  be a closed polar set, and let  be a harm- 
	 onic function on . Suppose that each point of  has a neighbourhood 
	  such that  is bounded on . Then  has a unique harmonic extension to 
	 the whole of . 
Proof: 
	 The uniqueness is clear by Theorem 1.3. As for the existence, Theorem 3.13 
	 applying to  gives functions  and  which are subharmonic on , and  
	 which agree respectively to  and  on . Then  is subharmonic on  
	  and  on , so by the weak identity principle Theorem 2.24 
	  on the whole of . Therefore  is superharmonic on  and as well 
	 as being subharmonic on . Thus by Remark 2.1 (iii)  is the desired harmo- 
	 nic extension of . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    The removable singularity theorem Theorem 3.13 can be used to demonstrate a fu-
rther sense in which polar sets are small. 
Theorem 3.14: Removing Closed Polar Set Does Not Affect Connectivity 
	 Let  be a domain in  and let  be a closed polar set. Then  is still  
	 connected. 
Proof: 
	 Suppose that , where  and  are disjoint non-empty open sets. 
	 Define  by 

 

	 By Theorem 3.13,  has a subharmonic extension to the whole of . It then 

u(w) := lim sup
z→w,z∈U∖E
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U u ⇔

D U h
D

lim sup
z→ζ

(u − h)(z) ≤ 0 ∀ζ ∈ ∂D

u ≤ h D
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U u
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□
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	 follows from Corollary 2.15.2 that if  then  on  and so  
	 , which contradicts our assuption that both  and  are non-empty. Thus 
	  is connected. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    A purely topological argument now yields the following argument. 
Corollary 3.14.1: Closed Polar Set Is Totally Disconnected 
	 Every closed polar set  is totally disconnected. 
Proof: 
	 We need to show that if , then its component in  is just . Without  
	 loss of generality, we may assume that . Let  and set 

, , and . 
	 Choose  with  and . By Theorem 3.14  
	 both  and  are connected, so we can join  to  by a path  in 
	 , and  to  by a path  in . Then 

 
	 is a closed path in  which winds once aroung . It must therefore also  
	 wind once around every point in the same component of  as . Hence this  
	 component lies inside the disc , since  is arbitrary, sending  gives 
	 the component to be , as desired. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Here is a beautiful application of these ideas to complex analysis. 
Theorem 3.15: Rado-Stout Theorem 
	 Let  be a domain of , let  be a closed polar set, and let  be a  
	 continuous function which is holomorphic on . Then  is holomor- 
	 phic on the whole of . 
Proof: 
	 If , then, as  is connected and  by Corollary 3.14.1 is totally  
	 disconnected, it follows that  is constant, in which case the result is trivial. 
	 Without loss of generality, we may assume that . Corollary 3.11.1 
	 tells us that there exists a subharmonic function  on  such that  

. 
	 Then  is subharmonic on  by Theorem 2.23, and equals  
	 on , so it is subharmonic on the whole of  by Theorem 3.13. Now 

 on  
	 thus by Theorem 3.10  is a  polar set. Using Corollary 3.13.1 in 
	 conjunction with Theorem 1.1 to  and  yields the fact that they 
	 are harmonic in , and hence that  by Corollary 1.1.2. Since  
	 satisfies the Cauchy-Riemann equations on , by continuity it must also 
	 do so on , and hence it is holomorphic on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Corollary 3.15.1: Preimage of Polar Set under Non-Constant Holomorphy Is Polar 
	 Let  be a domain in , let  be a non-constant holomorphic function on ,  
	 and let  be a polar set. Then  is also polar. 
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□
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f −1(E ) Gδ
Re( f ) Im( f )

D f ∈ C∞(D) f
D∖E

E D
□

D ℂ f D
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Proof: 
	 If  is closed in , then this is an immediate consequence of the proof for 
	 Theorem 3.15. For the general case, it suffices to show that every compact 
	 subset of  is polar, and this is easily deduced from the case already  
	 proved. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Note that the non-constant assumption is necessary in the above result. 
Remark 3.3: Polarity Is Invariant under Conformal Mapping 
	 In particular, it follows that the property of being a polar set is invariant under 
	 conformal mapping. 	  
    Thus we can extend the notion of polarity to , by declaring 
Definition: Polar Set in  
	 A set  in  is polar if  is polar for some conformal mapping  of a  
	 neighbourhood of  into . It is easy to see that in fact  is polar in this sense 
	 if and only if  is polar in the standard case. 
   Both the Liouville theorem Corollary 2.6.2 and the maximum principle Theorem 
2.5 have extended versions, which will later be proved to be very important. 
Theorem 3.16: Extended Liouville Theorem for Subharmonic Functions 
	 Let  be a closed polar subset of , and let  be a subharmonic function on 
	  which is bounded above. Then  is constant. 
Proof: 
	 By Theorem 3.13,  extends to be subharmonic on the whole of . Moreover, 
	 if  then  on  and hence everywhere on  by 

	 Theorem 2.24. Therefore  is bounded above on , and by Corollary 2.6.2 we 
	 conclude that  is constant. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Remark 3.4: Converse of Extended Liouville Theorem Also Holds 
	 Let  be a closed subset of  with the property that every subharmonic funct- 
	 ion bounded above on  is constant, then  is polar.	  
Corollary 3.16.1: Extended Liouville Theorem for Holomorphic Functions 
	 Let  be a closed polar subset of , and let  be a holomorphic function on  
	  such that  is non-polar. Then  is constant. 
Proof: 
	 Choose a compact non-polar set  such that , and let  be an 
	 equilibrium measure for . Then  is harmonic and bounded below on  
	 by Theorem 3.7 (a), so  is harmonic and bounded above on . Hence 
	 by Theorem 3.16  is constant. By Theorem 3.1 (ii), 

, 

	 this implies that  is bounded on . Applying Theorem 3.16 once more, this 
	 time to  and , we deduce that  is constant. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Theorem 3.17: Extended Maximum Principle for Subharmonic Functions 
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□
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	 Let  be a domain in , and let  be a subharmonic function on  which is  
	 bounded above. 
	 (a)	 If  is polar then  is constant. 
	 (b)	 If  is non-polar and  for n.e.  then  on 	

	 	 . 
Proof: 
	 Step I: (a) 
	 Denote . Then by Remark 3.3  is a closed polar subset of ,  
	 so by Theorem 3.14,  is connected. Since  is a component of , it 
	 follows that . Now assertion (a) follows from Theorem 3.16. 
	 Step II: (b) 
	 Given , define 

. 

	 Then  is a closed polar subset of . Define  on  by 

 

	 By gluing theorem Theorem 2.11  is subharmonic on , and it is clearly 
	 bounded above there, so by Theorem 3.16 it is constant. Since  on  
	 , which is non-empty, then by Theorem 2.24 . Hence  
	  on . Finally, since  is arbitrary, sending  give assertion (b). 
	 	 	 	 	 	 	 	 	 	 	 	 	  

3.7 The Generalized Laplacian 
    By Theorem 2.10, a  subharmonic function  satisfies that . In this secti-
on we shall develop an appropriate generalization of this fact to arbitrary subharm-
onic functions. This turns out to be an important idea, with many applications. 
Definition:  Space 
	 Let  be a domain in . The space  is defined to be the space of all 
	 -functions  whose support  is a compact subset of . 
    If  is a  subharmonic function on , then, identifying  with positive measure 

, it follows from Green’s theorem that 

	 	 	          , .	 	 	 (3.2) 

Now if  is an arbitrary subharmonic function on  with , then by Theorem 
2.15,  is locally integrable, and so the right hand side of (3.2) makes sense. We 
therefore use it to define the left hand side of (3.2). 
Definition: Radon Measure 
	 A Borel measure  on a topological space  is called a Radon measure if  
	  for each compact subset of . 
Remark 3.5: Radon Measure and Riesz Representation 
	 Each Radon Measure  on the topological space  gives rise to a linear functi- 
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∂D u
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D
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□

C2 u Δu ≥ 0
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C∞ φ : D → ℝ supp(φ) D
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∫D
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uΔφd A φ ∈ C∞
c (D)

u D u ≢ − ∞
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μ X
μ(K ) < ∞ X
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	 onal  on  via 

, . 

	 This linear functional is positive in the sense that  . For  
	 certain spaces  there is an important converse called Riesz representation  
	 theorem: 
	 	 Let  be a metric space possessing a compact exhaustion (increasing 
	 	 sequence of compact subsets  such that , and their 
	 	 union is the whole space ). If  is a positive linear functional on  
	 	 then there exists a unique Radon measure  on  such that 

	 	 	 	    .		 	 	 	  

Definition: Generalized Laplacian 
	 Let  be a subharmonic function on a domain  in  with . The gene- 
	 ralized Laplacian of  is the Radon measure  on  such that (3.2) holds. 
    To justify this definition, we need to prove the following theorem. 
Theorem 3.18: Existence and Uniqueness of the Generalized Laplacian 
	 The generalized Laplacian for a subharmonic function  on a domain  in  
	 such that  exists and is unique. 
   The proof relies on a simple approximation lemma. We write  for the space of 
all continuous functions  whose support  is a compact subset of . 
Definition: Sup Norm on  
	 We define the sup-norm on  by 

, . 

Lemma 3.19: Approximation Lemma for Element in  
	 Let , and let  be a relatively compact open subset of  such that 
	 . Then 
	 (i)	 There exists  such that  for all  and 
	 	  as . 
	 (ii)	 If in addition that , then  in (i) can be chosen so that  
	 	  for all  as well. 
Proof: 
	 Extend  to the whole of  by defining  on . Then if  are 
	 the functions used in Theorem 2.22, we have, by Theorem 2.22 (i) that 

 . 
	 Moreover,  

, 
	 so that  provided that  is sufficiently small. Finally, 
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Λ(φ) ≥ 0 ∀φ ≥ 0
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X
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u D ℂ u ≢ − ∞
u Δu D
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∥φ∥∞ := sup
D
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φ ∈ Cc(D) U D
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{φn}n≥1 ⊂ C∞

c (D) supp(φn) ⊂ U n ≥ 1
∥φn − φ∥∞ → 0 n → ∞

φ ≥ 0 {φn}n≥1
φn ≥ 0 n ≥ 1

φ ℂ φ ≡ 0 ℂ∖D {χr}r≥0

φ * χr ∈ C∞(ℂ) ∀r > 0

supp(φ * χr) ⊂ {z ∈ ℂ : dist(z, supp(φ)) ≤ r}
supp(φ * χr) ⊂ U r
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	 where the second equality holds by Theorem 2.22 (d) and (e). Moreover, 
	 this  as  because  is uniformly continuous on . 
	 Hence we may take 

 for each , 
	 where  is chosen sufficiently small. Moreover, with this definition, it is 
	 clear that if  then  for each  as desired. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Proof of Theorem 3.18: 
	 Step I: Uniqueness 
	 We begin with the uniqueness. Suppose that  and  are two Radon measures 
	 on  such that 

, . 

	 Then by Lemma 3.19, this equation also holds . By the unique-	 
	 ness part of the Riesz representation theorem in Remark 3.5 we conclude that  
	 . 
	 Step II: Existence 
	 Now we turn to the question of existence. Define  by 

, . 

	 Clearly  is a linear functional, and our first step is to show that this linear 
	 functional is positive, that is 
	 Step II.1:  
	 Suppose then that  with . Choose a relatively compact open 
	 subset  of  such that . By Corollary 2.22.1 there exist  
	 subharmonic functions  on  such that  there. By Theorem 2.10 
	  for each , and so using Green’s theorem it follows that 

. 

	 Sending  and applying Lebesgue’s dominated convergence theorem we 
	 conclude that 

, 

	 in other words . Thus  is indeed positive. 
	 Step II.2: Boundedness of  
	 Next, we show that, given a relatively compact open subset  of , there exists 
	 a constant  such that 

∥φ * χr − φ∥∞:= sup
z∈ℂ ∫Δ(0,r)

(φ(z − w) − φ(z))χr(w)d A(w)

≤ sup
z∈ℂ,|w|<r
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∥φ * χr − φ∥∞ → 0 r → 0 φ ℂ

φn := φ * χδ/n n ≥ 1
δ > 0

φ ≥ 0 φn ≥ 0 n ≥ 1
□
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	 	             , , .	 	 (3.3) 
	 To do this, take  such that  and  on . Then given 
	  with , we have 

 on , 
	 so, since  is positive, it follows that 

. 
	 Thus (3.3) holds with . 
	 Step II.3: Using Riesz representation theorem to conclude the existence 
	 Now combining (3.3) and Lemma 3.19, we deduce that  extends to a positive 
	 linear functional on the whole of . Therefore, by the existence part of the 
	 Riesz representation theorem in Remark 3.5, there exists a unique Radon mea- 
	 sure  on  such that 

, . 

	 In particular,  

, , 

	 which completes the proof of the existence.	  
	 	 	 	 	 	 	 	 	 	 	 	 	  
    The reader familiar with the distribution theory will recognize the generalized Lap-
lacian as being just the Laplacian interpreted in the distributional sense. Although no 
previous knowledge of distribution theory is assumed in this book, it is helpful in 
understanding several of the results. For example: 
Remark 3.6: Interpreting Potential via Distribution Theory Perspective 
	 The potential  can be regarded as the distributional convolution of the  
	 measure  with the locally integrable function , and the latter is just  
	 (a multiple of) the fundamental solution of the Laplacian. One might therefore 
	 expect  to be the convolution of  with a delta-function, that is, a multiple 
	 of  itself. That this is indeed the case is confirmed by the next result.	  
Theorem 3.20: Poisson’s Equation in Complex Plane 
	 Let  be a finite Borel measure on  with compact support. Then 

. 
Proof: 
	 Given , we have 

 

	 where the first equality holds by the definition of the potential  and the  
	 second equality holds by Fubini’s theorem (The use of Fubini’s theorem is 
	 justified, because  is bounded with compact support and  is locally 
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□
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	 integrable with respect to the Lebesgue measure on ). Now if , then 

 

	 where the first equality holds since  as , the second 
	 equality holds by Green’s theorem. Hence 

, , 

	 as desired. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Corollary 3.20.1: Local Uniqueness of Log Potential Up to Hamonic Translation 
	 Let  and  be finite Borel measures on  with compact support. If  

 
	 on an open set , where  is harmonic on , then 

. 
Proof: 
	 Since  is harmonic on ,  on . Therefore 

. 
	 The desired result follows from Theorem 3.20. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   As an application of this result, we can justify the statement made in Section 3.3 
concerning the uniqueness of equilibrium measures. 
Theorem 3.21: Compact Non-Polar Set Has Unique Equilibrium Measure 
	 Let  be a compact non-polar subset of . Then its equilibrium measure  is 
	 unique, and , the exterior boundary of . 
Proof: 
	 Step I:  is non-polar 
	 Suppose  is polar, then by Theorem 3.14  would be connected, and 
	 this would imply that , but  is non-polar by assumption, this is impo- 
	 ssible and thus  is non-polar. 
	 Step II: Uniqueness 
	 Let  and  be equilibrium measures on  and  respectively. It suffices to  
	 prove that . By Frostman’s theorem Theorem 3.7 one has 

 on  and  n.e. on . 
	 Moreover,  is bounded above on each bounded component of , so apply-	  
	 ing the extended maximum principle Theorem 3.17 (ii) we deduce that 

ℂ w ∈ ℂ

  ∫ℂ
log |z − w |Δφ(z)d A(z)

= lim
ε→0 ∫|z−w|>ε

log |z − w |Δφ(z)d A(z)

= lim
ε→0 ∫

2π

0
(φ(w + reit) − r log r

∂φ
∂r

(w + reit))
r=ε

dt

= 2πφ(w),
{z : |z − w | > ε} ↑ ℂ ε ↓ 0

∫ℂ
pμΔφd A = ∫ℂ

2πφdμ φ ∈ C∞
c (ℂ)

□

μ1 μ2 ℂ
pμ1

= pμ2
+ h

U h U
μ1 |U = μ2 |U

h U Δh = 0 U
(Δpμ1

) |U = (Δpμ2
) |U

□

K ℂ ν
supp(ν) ⊂ ∂eK K

∂eK
∂eK ℂ∖∂eK

∂eK = K K
∂eK

ν ν̃ K ∂eK
ν = ν̃

pν ≥ I(ν) ℂ pν = I(ν) K
pν ℂ∖K

62



 on . 
	 Similarly,  

 on  and  n.e. on , 
	 and also  

 on each bounded component of . 
	 Finally, on the unbounded component of , which is the same as the unbou- 
	 nded component of , the difference  is harmonic and bounded, 
	 and so by the extended maximum principle Theorem 3.17 (ii) once again, 

 
	 on each unbounded components of  and . Moreover, since 

 
	 as . It follows that . Thus  n.e. on , and therefore 
	 everywhere on  by the weak identity principle Theorem 2.24. Finally, apply- 
	 ing Corollary 3.20.1 we deduce that . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Corollary 3.21.1: Equilibrium Measure of  Is Lebesgue Measure on  
	 The equilibrium measure of a closed disc  is the normalized Lebesgue  
	 measure on . 
Proof: 
	 By Theorem 3.21, the equilibrium measure is supported on , and since it is 
	 unique it must be rotational invariant. This implies that it is a multiple of the 
	 Lebesgue measure on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
  As a further application of Theorem 3.20 we can compute  when  is 
holomorphic. 
Theorem 3.22: Solution to Generalized Laplacian via Holomorphic Zero Mass 
	 Let  be a holomorphic function on a domain  such that . Then 
	  consists of -masses at the zeros of , counted according to 
	 multiplicity. 
Proof: 
	 Given a relatively compact open subset  of , we can write 

, , 
	 where  are the zeros of  in , and  is holomorphic and non-zero on 
	 . Then for , 

, 

	 where  consists of unit masses at  and  is harmonic on . By 
	 Theorem 3.20, 

 on . 
	 As this holds for each such , the result holds by Remark 3.1 (ii). 
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    The proof above shows that  can be expressed locally as the sum of a poten-
tial and a harmonic function. This is actually a special case of a quite general result. 
Theorem 3.23: Riesz Decomposition Theorem 
	 Let  be a subharmonic function on a domain  in  with . Then, 
	 given a relatively compact open subset  of , we can decompose  as 

 on , 

	 where  and  is harmonic on . 

   This is a very powerful result. It means that many problems about general subhar-
monic functions can be reduced to questions about potentials. Most of the work for 
proving Theorem 3.23 has already been done. What remains to be proved is the 
following lemma, which is a converse to Corollary 3.20.1. 
Lemma 3.24: Weyl’s Lemma 
	 Let  and  be subharmonic functions on a domain  in  with . If 
	  then  for some harmonic function  on . 
Proof: 
	 Let  be the functions we used in the smoothing theorem Theorem 2.22, 
	 and for  we write 

. 
	 Then , and for  we have 

 

	 where the first equality holds since Laplacian is commutative under convolu- 
	 tion, the second equality holds since Laplacian is closed under translation, and 
	 the last equality holds by Green’s theorem and . 
	 The same calculation works with  replaced by . Since , it follows  
	 that 

 on . 
	 Therefore there exists a harmonic function  on  such that 

 on . 
	 Now by Theorem 2.22 applied to , we have  on  for each 
	 , and hence 

 on , 
	 where the third equality holds since  is commutative. Therefore there is 
	 a single harmonic function  on  such that for each , 

 on . 
	 Since  is arbitrary, sending  and using Theorem 3.22 gives  

 on , 
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	 as desired. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Proof of Theorem 3.23: 
	 Put . Then by Theorem 3.20, 

 on . 
	 Applying Lemma 3.24 on each component of , it follows that 

 on , 
	 where  is harmonic on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  

3.8 Thinness 
    Let  be a subharmonic function on a neighbourhood of . Even though  may 
be discontinuous at , it is always true that 
	 	 	 	 	  .	 	 	 	 (3.4) 

For by u.s.c. one certainly has , and if the inequality is strict, then 

 would violate the submean inequality on small circles around . Thus the value of  
at  is completely determined by its values on a punctured disc around . It turns out 
to be useful to know to what extent the punctured disc may be replaced by a smaller 
set . 
Definition: Thin and Non-Thin 
	 Let  be a subset of  and let . Then  is non-thin at  if 
	 (i)	 . 
	 (ii)	 For every subharmonic function  defined on a neighbourhood of , 

. 

	 Otherwise  is said to be thin at . 
    A complete characterization of thinness is quite complicated, and must await devel-
opments in Chapter 5. However, for many purposes it is enough to be able to handle 
a few important special cases, which we shall study in this section. We begin with 
elementary remarks. 
Remark 3.7: Elementary Properties of Thinness 
	 (i)	 Thinness is obviously a local property, that is,  is non-thin at  if and  
	 	 only if  is non-thin at  for each open neighbourhood  of . 
	 	 	 	 	 	 	 	 (Thinness is a Local Property) 
	 (ii)	 Thinness is invariant under conformal mapping, so that although we  
	 	 have defined thinness in the plane, we would equally well study it on 
	 	 the sphere.	 	 (Thinness is Invariant under Conformal Mapping) 
	 (iii)	 If two sets are both thin at a particular point, then so is their union. 
	 	 	 	 	 	 (Union of finitely many thin sets is thin) 
	 (iv)	 From (3.4) it follows that a set  is non-thin at each point of its interior. 
	 	 In particular, an open set is non-thin at every point of iteself. 

□
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	 	 	 	 	 	 (A set is non-thin at every point of its interior) 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Though  cannot be thin in its interior, it can be thin at some point on its boundary. 
Example 3.3: A Set Can Be Thin at Its Boundary Points 
    	 Let  be a subharmonic function which is discontinuous at , and choose  so	  
	 that 

. 

	 Then  is an open set with  and clearly  is thin at . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    We shall look at special types of set , beginning with the small ones. 
Theorem 3.25:  Polar Set Is Thin at All Points of  
	 An  polar set is thin at every point of . 
Proof: 
	 Let  be an  polar set and let . Then  is also an  polar set and  
	 is obviously disjoint from , so by Theorem 3.11 (i) there exists a subharm- 
	 onic function  on  such that  on  and  by 
	 Theorem 3.11 (ii). Therefore  is thin at . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    As the other extreme we have the following theorem. 
Theorem 3.26: Non-Trivial Connected Set Is Non-Thin at Its Closure Points 
	 A connected set containing more than one point is non-thin at every point of its 
	 closure. 
    The proof is based on a lemma which is actually a special case of the main result. 
Lemma 3.27: Subharmonic “Barier” on Boundary Points 
	 Let  be a subharmonic function on . If  on the segment  then 
	 . 
Proof: 
	 Replacing  by , we can suppose that  on  and  on 
	 . It left us to show that . Define  on  by 

 

	 Then  is subharmonic on  by the gluing theorem Theorem 2.11. 
	 Moreover  is bounded above near , so by the removable singularity theorem 
	 Theorem 3.13 it extends to a subharmonic function on the whole of . 
	 Then by Theorem 2.21 (c), 

 

	 and also 

 

	 where the middle equality holds as  implies  for the circum- 
	 ference. Combining these two display yields . 
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Proof of Theorem 3.26: 
	 We argue by contradiction. Let  be a connected set with at least two points  
	 and suppose, if possible, that  is thin at some point  of its closure. Applying 
	 a conformal mapping (which does not change thinness by Remark 3.7 (ii)), we 
	 may assume that . Then there exists a subharmonic function , defined on 
	 a neighbourhood of , such that 

. 

	 By the Riesz decomposition theorem Theorem 3.23 we can decompose  on a 
	 neighbourhood of  as , where  is the potential of a finite Borel 
	 measure  of compact support, and  is harmonic. Since  is continuous it fol- 
	 lows that 

. 

	 Now define  by  and set 
,  Borel, 

	 so that  is also a finite Borel measure with compact support. Then for  

 

	 where the equality holds by the definition of log potential and the inequality 
	 holds by the triangle inequality . The equality holds 
	 if . Therefore, 

. 

	 Since  is connected and contains a point other than , it follows that the set 
	  includes an interval  for some . Hence 

. 

	 It is therefore possible to choose constants  and  so that 
 

	 which by Theorem 2.4 (ii) is subharmonic on  and satisfies  on 
	  and . This violates the conclusion of Lemma 3.27. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   Combining the last two theorems immediately leads to a generalization to the fact 
that every closed polar set is totally disconnected, which we proved in Corollary 
3.14.1. 
Corollary 3.26.1:  Polar Set Is Totally Disconnected 
	 Every  polar set is totally disconnected. 
    A set may be thin at “many” points. As an extreme example, a countable dense sub-
set of  is thin everywhere. However, as our final theorem of this section shows, a set 
cannot be thin at too many points of itself. 
Theorem 3.28: A Set Cannot Be Thin at Too Many Points of Itself 
	 A subset  of  is non-thin at n.e. point of itself. 
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Proof: 
	 Let  be a countable base of open sets for  with  For 
	 each , let  be the collection of all subharmonic functions  on  such that 

 

	 Set , and let  be its upper semicontinuous regularization. Then by 

	 Brelot-Cartan theorem Theorem 3.8 (b) there exists a Borel polar set  such 
	 that  on . Set . Then by Corollary 3.4.2  is a Borel  

	 polar set, and we shall show that  is non-thin at each point of . Suppose  
	 that  and that  is thin at .  
	 Case I:  is non-isolated point of  
	 If  is a non-isolated point of , then there exists a subharmonic function  on a  
	 neighbourhood of  such that 

. 

	 Therefore there exists a neighbourhood of , which we may take to be member 
	  of the countable base such that 

 

	 Case II:  is an isolated point of  
	 If  is an isolated point of , then we reach the same conclusion by choosing   
	 so that , and setting .  
	 For each case, then, for each , the function 

 
	 belongs to the class , and so . Sending  we deduce that  on 
	 , and hence that  on . In particular, 

. 
	 On the other hand, it is clear that  since . Hence . We  
	 have therefore shown that the only point of  can be thin are those that lie in . 
	 This proves the desired result. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    As a special case, we obtain a converse to Theorem 3.25. 
Corollary 3.28.1: Set Thin at All Its Points Is Polar 
	 A set which is thin at every point of itself must be polar. 

Summary of Chapter 3 
    In this chapter we studied the potential theory and some elementary properties. The 
reason we study potentials is that potentials turn out to be almost as general as 
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arbitrary functions and for many purposes the two classes are equivalent. In fact as 
we shall see in Riesz decomposition theorem that problem in subharmonic functions 
can be reduced to problems in potentials. 
    In the first section we defined the potential and prove some its properties. In parti-
cular, unlike the subharmonic functions, the potentials have continuity principle and 
minimum principle. 
    In the second section we introduced the concept of polar sets, which serves as the 
“measure” zero set in potential theory. To this end we defined the energy of finite 
Borel measures and based on this terminology we defined the polar sets to be subset 
having minus infinite energy. Similar to the a.e. property translated to probability 
theory as a.s. property we translate the a.e. property to potential theory as n.e. 
property. We proved that “Measures with Finite Energy do not Charge Polar Sets”. As 
a consequence, “Borel Polar set Has Lebesgue Measure Zero”. Thus the polar sets are 
small in the sense they have measure zero. Moreover, “Polarity Is Stable under 
Countable Union”. In fact this holds only for countable union of Borel polar sets, it 
fails when the Borel condition is removed. Moreover, the polar sets are not 
necessarily countable as a consequnce. 
    In the third section we studied the equilibrium measures and proved that “Compact 
Sets Have Equilibrium Measure”. For the proof we introduced the concept of weak* 
convergence, for which some authors call it the vague convergence. This motion of 
convergence helps one prove the lemma “Weak* Convergence Implies Energy Upper 
Bound”. Then we proved the fundamental theorem of potential theory, namely the 
Frostman’s theorem, which establishes the key relation between potentials and 
energies. 
    Motivated by the fact that limit of decreasing sequence of subharmonic functions is 
subharmonic but the same argument fails for increasing sequence. Thus we force it to 
be u.s.c. by introducing the u.s.c. regularization in section 3.4. We proved Brelot-
Cartan theorem which justifies that the u.s.c. regularization agree with the original 
nearly everywhere. Then we proved our motivating questions and it follows that the 
u.s.c. regularization for the limit of increasing subharmonic function is again 
subharmonic and agree with the original one n.e.. 
    It is of special interest to study the minus infinity set. In section 3.5 we first proved 
that “Subharmonic Function Is Minus Infinity On  Polar Set”, for whic allows us to 
demonstrate the existence of uncountable polar sets. In fact, the converse of this 
result also holds but relies on the application of condenser measure, for which we did 
not introduce but instead proved a weaker version good for most cases: “  Polar Set 
Decomposition for Subharmonic Functions”, for which the proof relies on“Existence 
of Borel Probability Measure Charging Compact Polar Sets”. As a corollary, we 
proved “Characterization of Closed Polar Set via Subharmonic Functions”. 
    In section 3.6, we discussed that the polar sets are small in the other sense. We first 
proved “Removable Singularity Theorem for Subharmonicity” and similarly 
“Removable Singularity Theorem for Harmonic Functions”. Then the fact that the 
polar set are small as removing them does not affect connectedness is proved in 
“Removing Closed Polar Set Does Not Affect Connectivity”, and thus “Closed Polar 
Set Is Totally Disconnected”. For an application we proved the Radó-Stout theorem 

Gδ

Fσ
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and from which the connection between polar set and holomorphic function is 
established, that is, “Preimage of Polar Set under Non-Constant Holomorphy Is 
Polar”. We remarked that the polarity is invariant under conformal mapping and 
therefore we can extend this concept to Riemann sphere. For this we can extend the 
previous properties for subharmonic functions, namely “Extended Liouville Theorem 
for Subharmonic Functions” and “Extended Maximum Principle for Subharmonic 
Functions”, as a corollary a version of extended Liouville theorem also holds for 
holomorphic function. Moreover the converse of the extended Liouville can serves as 
a way to identify polar set by constant subharmonic functions. 
    In section 3.7 we studied the generalized Laplacian as the Radon measure such that 
a certain equality holds. For the concept to be complete we first proved “Existence 
and Uniqueness of Generalized Laplacian” for which is proved by a lemma called 
“Approximation Lemma for Element in ”. An observation of these results 
enables us to view the potentials under the perspective of distribution theory and 
motivates “Poisson’s Equation in Complex Plane”. We are able to prove that “Local 
Uniqueness of Log Potential Up to Harmonic Translation” and as an application we 
showed that “Compact Non-Polar Set Has Unique Equilibrium Measure”. In 
particular, “Equilibrium Measure of  Is Lebesgue Measure on ”. We can compute 
the “Solution to Generalized Laplacian via Holomorphic Zero Mass”, for which the 
solution counts multiplicity. Finally we proved the Riesz decomposition theorem 
which enables us to solve problems concerning subharmonic functions by concerning 
potentials. This result is proved by Weyl’s lemma. 
    In section 3.8, we studied thinness. The motivation is that subharmonic function, 
though may be discontinuous, the approximation always holds. Thus we defined 
thinness and non-thinness, which are local property, closed under conformal mapping 
and finite union, and a set is non-thin at its interior points. We proved that “  Polar 
Set Is Thin at All Points of ” and “Non-Trivial Connected Set Is Non-Thin at Its 
Closure Points”. The proof for the latter one relies on “Subharmonic “Barier” on 
Boundary Points”. By these two results we proved that “  Polar Set Is Totally 
Disconnected”. A set may be thin at many points but not too many. This is confirmed 
by “A Set Cannot Be Thin at Too Many Points of Itself”, as a corollary, we proved 
that “Set Thin at All Its Points Is Polar”. 

4. The Dirichlet Problem 
4.1 Solution of Dirichlet Problem 

   We recall the definition from Section 1.2 that, given a domain  and a continuous 
function , the Dirichlet problem is to find a harmonic function  on  
such that 

 . 

By Theorem 1.5, if such a solution  exists, then it is unique. Moreover, if  is a 
disc, then a solution always does exist, and Theorem 1.6 (iii) even gives a formula 
for it. 
    For a general domain , the situation is more complicated. In this case, the Dirich-
let problem, at least in the form stated above, may well have no solution. 
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Example 4.1: Example of Dirichlet Problem Fails to Have Solution 
	 Let  and let  be given by 

 

	 Then by Corollary 3.13.1, any solution  would have a removable singularity 
	 at , and the maximum principle Theorem 1.4 (ii) would then imply that  
	 , violating the condition that .	  

   In this section and the next, we shall consider conditions under which a solution 
does exist, and also, even more importantly, derive a natural reformulation of the 
Dirichlet problem which always has has a solution. To this end, it is convenient to 
extend the set-up described above in two ways: 
	 (i)	 Firstly, we shall allow  to be any proper subdomain of . Of course,	
	 	 since the Dirichlet problem is invariant under conformal mapping of the 
	 	 sphere, there is really no more general than working on a subdomain of 
	 	 . However, the gain in flexibility does turn out to be useful. We shall 
	 	 exploit without further comment the fact that harmonicity, subharmoni- 
	 	 city, and polarity all extend in a natural way to . 
	 (ii)	 Secondly, we shall consider arbitrary bounded function  
	 	 instead of only the continuous ones. Although certainly no solution to  
	 	 the Dirichlet problem is possible if  is discontinuous, it is nevertheless 
	 	 useful to allow this extra freedom, as will become clear later. 
   The key idea, sometimes called the Perrof method, is enshrined in the following 
definition: 
Definition: Perron Function 
	 Let  be a proper subdomain of  and let  be a bounded  
	 function. The associated Perron function  is defined by 

, 

	 where  (lower class class) denotes the family of all subharmonic functions   
	 on  such that 

 . 

   The motivation for this definition is that, if the Dirichlet problem has a solution at 
all, then  is it! Indeed, if  is such a solution, then certainly , and so 

. On the other hand, by the maximum principle Theorem 1.4, if  then 
 on , and so . Therefore . 

    Our first result is that, regardless of whether the Dirichlet problem has a solution or 
note,  is always a bounded harmonic function. 
Theorem 4.1: Perron Function Is Always Bounded Harmonic 
	 Let  be a proper subdomain of  and let  be a bounded  
	 function. Then  is a harmonic function on  and 
	 	 	 	            .	 	 	 	 (4.1) 

    The proof of Theorem 4.1 hinges on the following lemma. 
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Lemma 4.2: Poisson Modification 
	 Let  be a domain in , let  be an open disc with , and let  be a 
	 subharmonic function on  with . If we define  on  by 

 

	 where  is the Poisson integral. Then 
	 (i)	  is subharmonic on . 
	 (ii)	  is harmonic on . 
	 (iii)	  on . 
Proof: 
	 Step I: Assertion (ii) and (iii) 
	 First, note that Corollary 2.15.1 guarantees that  is Lebesgue integrable on 
	 , so  makes sense. Theorem 1.6 (i) tells us that  is harmonic on , 
	 and by Theorem 2.9 (b)  there. 
	 Step II: Assertion (i) 
	 It remains to show that  is subharmonic on , and by the gluing theorem 
	 Theorem 2.11 this will follow provided that 

 . 

	 To prove this inequality, choose continuous functions  on  such that  
	  there (the existence of such a choice is guaranteed by Theorem 2.12). 
	 Then by Theorem 2.12 using in the inequality and Theorem 1.6 (ii) using in  
	 the equality, one has 

, , 

	 and the desired conclusion follows by sending . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Proof of Theorem 4.1: 
	 By applying a conformal mapping of the sphere, we can suppose that  is a  
	 subdomain of . Let  be as in the definition of Perron function. 
	 Step I: (4.1) holds. 
	 If we set  then certainly  so . Moreover, 

	 given , it follows from the maximum principle Theorem 2.5 (ii) that 
	  on , and therefore . This proves (4.1). 
	 Step II:  is harmonic on . 
	 It suffices to prove harmonicity of  on each open disc  with . Fix 
	 such a , and also a point . By the definition of , we can find 
	  such that . Replacing  by , 
	 we can further suppose that  on . Now for each , let  denote 
	 the Poisson modification of , as defined in Lemma 4.2. Then we also have 
	  on  and we claim that  satisfies the followings: 

(a)  on 	   (b) 	  (c)  is harmonic on  
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72



	 Step II.1: (a) holds 
	 By Lemma 4.2 (i) each  is subharmonic on  and evidently 

, , 

	 where the equality holds since  and the inequality holds by the  

	 definition of , so that . Hence  for each  and therefore 
	 , proving (a). 
	 Step II.2: (b) holds 
	 By (a) and Lemma 4.2 (iii)  and thus 

, 

	 where the first equality holds by (a), the inequality holds since , and the	  
	 last equality holds since . Thus (b) holds since the reversed 
	 inequality holds by (a). 
	 Step II.3: (c) holds 
	 Since each  is harmonic on , so by Harnack’s theorem Theorem 1.14 the 	  
	 same is true for the increasing limit , thus (c) holds. 
	 Step III:  on . 
	 Take an arbitrary point , and choose  such that 

. 
	 Replacing  be , we can suppose that 

 and  on . 
	 Let  denote the Poisson modification of . Then  where 
	 (a’)  on 	 (b’) 	 (c’)  is harmonic on  
	 In particular, (a’) implies that 

, 
	 where the last equality holds by (b). On the other hand,  for each  
	 so . Thus the function , which is harmonic on , attains maximum 
	 value  at . By the maximum principle Theorem 1.4, this implies that 

 on . 
	 In particular, it follows that 

. 
	 Since  is chosen arbitrary in , it follows that  on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    From the definition of , one might expect that 

 . 

But if  then this cannot be true, because, as we have seen in 
Example 4.1, the Dirichlet problem may have no solution. It is instrucive to see 
exactly what is going wrong. 
Remark 4.1: Reason Dirichlet Problem Is Unsolvable in Example 4.1 
	 First let 
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ũn
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	 If  then by the extended maximum principle Theorem 3.17 (ii)  on  
	  and so . Since , in fact  on . 
	 Now let 

	  

	 The same argument applies (even using the ordinary maximum principle  
	 Theorem 2.5) and thus . This time . However it is true, accor- 
	 ding to Corollary 1.1.1, that 

 . 
	 Sending  and again  on . 
	 In both cases, the isolated boundary point  lacked sufficient “influence” on  
	 the subharmonic functions in , and the result was that  had the wrong 
	 boundary limit there.	  
    To overcome this problem mentioned in Remark 4.1, we introduce a notion of bar-
rier. 
Defintion: Barrier 
	 Let  be a proper subdomain of  and let . A barrier at  is a subha- 
	 rmonic function  defined on , where  is an open neighbourhood of , 
	 such that 
	 (i)	  on . 
	 (ii)	 . 

Definition: Regular Boundary Point 
	 A boundary point at which a barrier exists is called regular. 
Definition: Irregular Boundary Point 
	 A boundary point at which a barrier does not exist is called irregular. 
Definition: Regular Domain 
	 Let  be a proper subdomain of  then  is called a regular domain if   is a  
	 regular boundary point . 
Theorem 4.3: Sufficiency for Perron Function Solving Dirichlet Problem 
	 Let  be a proper subdomain of  and let  be a regular boundary point of  
	 . If  is a bounded function which is continuous at  then 

. 

    This time we need two lemmas. The first is a simple consequence of the definition 
of Perron functions. 
Lemma 4.4: Perron Function Is Antisymmetric 
	 If  is a proper subdomain of  and  is a bounded function then 

 on . 
Proof: 
	 Let  be the family of subharmonic functions prescribed in the definition of  
	 Perron functions, and let  be the corresponding family for . Then, given 
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	  and , their sum is subharmonic on  and satisfies 
, . 

	 Hence by the maximum principle Theorem 3.17 (ii),  on . Taking 
	 supremum over all such  and , we get 

 on , 
	 thus  on  as desired. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    The second lemma enables us to ‘globalize’ barriers by allowing a bit more space. 
Lemma 4.5: Bouligand’s Lemma 
	 Let  be a regular boundary point of a domain , and let  be an open neigh- 
	 bourhood of . Then, given , there exists a subharmonic function  on  
	 such that 
	 (i)	  on . 
	 (ii)	  on . 
	 (iii)	 . 

Proof: 
	 We may suppose that  (otherwise we may apply a conformal mapping). 
	 Since  is regular, there exists a neighbourhood  of  and a barrier  on  
	  by the definition of barrier. 
	 Let , where  is chosen sufficiently small so that .  
	 Then the normalized Lebesgue measure on  is a regular measure (since if   
	 is a finite Borel measure on a metric space  then  is regular), so we can find  
	 a compact set  such that 

 
	 has measure smaller than . Since  is open in , using Theorem 1.6 (ii) we 
	 get 

, . 

	 Now put  so that . Then for , 

. 

	 Hence if we define  on  by 

 

	 then by the gluing theorem Theorem 2.11  is subharmonic on . Clearly 
 on  and  on , 

	 proving (i) and (ii). Finally, using the definition of  in the first inequality and 
	 the definition of barrier in the equality, one has 
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, 

	 where the last inequality holds by the fact that, as  is the center of , the  
	 value of  is exactly the normalized Lebesgue measure of , which is 
	 smaller than . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Proof of Theorem 4.3: 
	 Let . Since  is continuous at  by assumption, there exists an open nei- 
	 ghbourhood  of  such that 

 
	 by continuity. Construct  as in the proof of Lemma 4.5 and set 

, 
	 where . Then  is subharmonic on , and if  then 

. 

	 Hence by the definition of Perron function,  on . In particular, 
, 

	 where the first inequality holds since  on  and the second inequality 
	 holds by rewritting  and using Lemma 4.5 (iii). Since  is arbitrary, send- 
	 ing  yields 
	 	 	 	          .	 	 	 	 (4.2)	  

	 Repeating the argument with  replaced by , we also have 
. 

	 By Lemma 4.4,  and it follows that 
	 	 	 	          .	 	 	 	 (4.3) 

	 Finally, combining (4.2) and (4.3) yields the desired result. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Putting together what we have learned, we obtain the following result. 
Corollary 4.3.1: Existence and Unique Solution to the Dirichlet Problem 
	 Let  be a regular domain and let  be a continuous function. Then 
	 there exists a unique harmonic function  on  such that 

 . 

Proof: 
	 Uniqueness has been established in Theorem 1.5, existence follows from sett- 
	 ing  and applying Theorem 4.1 and Theorem 4.3. 
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   For the sakeness of simplicity, we shall denote DP the abbrivation of the Dirichlet 
problem whenever necessary. 
Remark 4.2: Regularity Is Necessary and Sufficient for Solvability of DP 
	 There is also a converse to Theorem 4.3, which means regularity is not only 
	 sufficient to guarantee the solvability of the Dirichlet problem, but also nece- 
	 ssary. Thus Corollary 4.3.1 is, in some sense, the best possible result.	 	  

4.2 Criteria for Regularity 
   Although the results of the previous section appear to solve the Dirichlet problem 
completely, they leave one important question unanswered, namely, how to tell 
whether a given boundary point of  is regular? In this section we examine some 
geometric criteria for the existence and non-existence of barriers. 
Theorem 4.6: Simply Connected Domain Smaller than  Is Regular 
	 If  is a simply connected domain such that  contains at least two points 
	 then  is a regular domain. 
Proof: 
	 We need to show that every boundary point of  is regular. Given , 
	 pick . Applying a conformal mapping to the sphere, we can  
	 suppose, without loss of generality, that  and . Then  is a  
	 simply connected domain of , so by Corollary 1.1.1 there exists a 
	 holomorphic branch of  on . Put  and define  on  by 

, . 

	 Then  clearly satisfies all the conditions of being a barrier at . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    This result can be ‘localized’ to obtain a sufficient condition for regularity of a sin-
gle point. 
Theorem 4.7: Boundary Point in Non-Trivial Component Is Regular 
	 Let  be a subdomain of , let , and let  be a component of  
	 which contains . If  then  is regular. 
Proof: 
	 Choose . Again we can suppose that  and . Then no 
	 closed curve in  can wind around any point of , otherwise it would dis- 
	 connect . Hence, Cauchy’s theorem holds in , and we can repeat the  
	 proof of Theorem 1.1 and Corollary 1.1.1 to obtain a holomorphic branch of 
	  there, and hence on . Repeating the proof of Theorem 4.6 yields the de- 
	 sired result. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    At the other extreme, here is a condition for irregularity. 
Theorem 4.8: Boundary Point with Polar Neighbourhood Is Irregular 
	 Let  be a proper subdomain of  and let . If there exists a neighbo- 
	 urhood  of  such that  is polar, then  is irregular. 
Proof: 
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log z ) z ∈ D ∩ N

b 0
□

D ℂ∞ ζ0 ∈ ∂D C ∂D
ζ0 C ≠ {ζ0} ζ0

ζ1 ∈ C∖{ζ0} ζ0 = 0 ζ1 = ∞
ℂ∞∖C C

C ℂ∞∖C

log z D

□

D ℂ∞ ζ0 ∈ ∂D
N ζ0 ∂D ∩ N ζ0
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	 Suppose, if possible, that there exists a barrier  for . We can assume that  is 
	 defined on , where  is a connected open neighbourhood of  such that 
	  is polar. Then by Theorem 3.14  is still connected, and so it 
	 follows that 

. 
	 Hence by the removable singularity theorem Theorem 3.13  has a subharmo- 
	 nic extension to the whole of . Since  on , we have 

 n.e. on , 
	 so the same equality persists everywhere by the upper semicontinuity of , and  
	 thus  on . Moreover, 

, 

	 where the first inequality holds by upper semicontinuity and the second holds  
	 by the definition of barrier (ii). By maximum principle Theorem 3.17  	  
	 on , which contradicts the definition of  on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Theorem 4.7 and Theorem 4.8 between them provide practical tests for regularity 
and irregularity which cover the most commonly occurring cases. The next result, 
though less easy to apply, actually gives a complete characterization of regularity. 
Theorem 4.9: Criterion for Regularity 
	 Let  be a proper subdomain of  and let . Set . Then 
	 the following statements are equivalent: 
	 (a)	  is a regular boundary point of . 
	 (b)	  is non-thin at . 
	 If in addition that  then (a) and (b) are also equivalent to 
	 (c)	  is non-polar and , where  is the equilibrium measure for 
	 	 . 
Proof: 
	 Since both (a) and (b) are invariant under conformal mapping (by Remark 3.7) 
	 we can suppose from the start that  so that . We shall prove the  
	 implications (a)  (b)  (c)  (a). 
	 Step I: (a)  (b) 
	 Suppose that  is a regular point for  with barrier , let  be a function subh- 
	 armonic on a neighbourhood of , and take  such that 
	 	 	 	          .	 	 	 	 (4.4) 

	 Then there exists  such that if , then  is subharmonic on a 
	 neighbourhood of  and  on . Decreasing  if necessary, 
	 we can also suppose that  is defined on a neighbourhood of . Then 

 
	 is a compact set on which , so there exists  such that 

 on . 
	 Now for , 

b ζ0 b
D ∩ N N ζ0

E := ∂D ∩ N N ∖E

D ∩ N = N ∖E
b

N b < 0 N ∖E
max(0,b) = 0 N

b
b ≤ 0 N

b(ζ0) ≥ lim sup
z→ζ0

b(z) ≥ 0

b ≡ 0
N b < 0 D ∩ N

□

D ℂ∞ ζ0 ∈ ∂D K := ℂ∞∖D

ζ0 D
K ζ0

∞ ∈ D
K pν(ζ0) = I(ν) ν
K

∞ ∈ D K ⊂ ℂ
⇒ ⇒ ⇒

⇒
ζ0 D b u

ζ0 α
lim sup

z→ζ0,z∈K∖{ζ0}
u(z) < α

r > 0 Δ = Δ(ζ0, r) u
Δ u < α Δ ∩ (K ∖{ζ0}) r

b Δ∖K
{ζ ∈ ∂Δ∖K : u(ζ ) ≥ α}

b < 0 t > 0
u + tb < α ∂Δ∖K

ζ ∈ ∂(Δ∖K )∖{ζ0}
78



. 

	 Hence by the extended maximum principle Theorem 3.17 (ii), 
 on . 

	 Since , it follows that 

. 

	 Combining this with (4.4) yields 
. 

	 Hence, by the submean inequality, . As this holds for all  and  sati- 
	 sfying (4.4), we conclude that  is non-thin at  from definition. 
	 Step II: (b)  (c) 
	 Suppose now that  is non-thin at . From Theorem 3.25 it follws straightf- 
	 orward that  must be non-polar. Moreover, if  denotes the equlibrium meas- 
	 ure of , then by Frostman’s theorem Theorem 3.7 (ii) the set 

 
	 is an  polar set. Using Theorem 3.25 once more,  is thin at  and therefore 
	  must be non-thin at . Since  on  by Theorem 3.7 (ii), it 
	 follows that . 
	 Step III: (c)  (a) 
	 Assume that . Define  by 

. 
	 Then  is subharmonic on , and by Frostman’s theorem Theorem 3.7 (i)  
	  there. Since , the maximum principle Theorem 3.17 (ii)  
	 implies that in fact  on . Moreover, 

 

	 by assumption (c), thus  is a barrier and  is regular for . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   This result will not be of much practical use until we have a general criterion for 
thinness (see Section 5.4). However, it does have some interesting theoretical 
consequences. The equivalence of (a) and (b), for example, explains the close 
correspondence between the earlier theorems in this section and the results about the 
thinness in Section 3.8. More importantly, the equivalence of (a) and (c) shows that 
the set of irregular points is always small. 
Theorem 4.10: Kellogg’s Theorem 
	 Let  be a proper subdomain of . Then the set of irregular boundary points  
	 is an  polar set. 
Proof: 
	 By first performing a conformal mapping. We can suppose that . Set  
	 . 

lim sup
z→ζ,z∈Δ∖K

(u + tb)(z) ≤ {(u + tb)(ζ ), ζ ∈ ∂Δ∖K
u(ζ ), ζ ∈ (Δ ∩ K )∖{ζ0}

≤ α

u + tb ≤ α Δ∖K
lim
z→ζ0

b(z) = 0

lim sup
z→ζ0,z∈Δ∖K

u(z) ≤ α

lim sup
z→ζ0,z≠ζ0

u(z) ≤ α

u(ζ0) ≤ α u α
K ζ0

⇒
K ζ0

K ν
K

E := {z ∈ K : pν(z) > I(ν)}
Fσ E ζ0

K ∖E ζ0 pν = I(ν) K ∖E
pν(ζ0) = I(ν)
⇒
pν(ζ0) = I(ν) b : D → [−∞, ∞)

b(z) := I(ν) − pν(z)
b D

b ≤ 0 b(∞) = − ∞
b < 0 D
lim inf

z→ζ0

b(z) ≥ I(ν) − pν(ζ0) = 0

b ζ0 D
□

D ℂ∞

Fσ

∞ ∈ D
K := ℂ∞∖D
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	 Case I:  is polar 
	 If  is polar, then by Theorem 4.8 every point of  is irregular, and the result 
	 is clear. 
	 Case II:  is non-polar 
	 If  is non-polar, then by step II in the proof of Theorem 4.9, the set of irreg- 
	 ular points is exactly 

, 
	 where  is the equilibrium measure for , and this is an  polar set by an appl- 
	 ication of Frostman’s theorem Theorem 3.7 (ii). 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    This result has a beautiful and important consequence. 
Corollary 4.10.1: Solution of the Generalized Dirichlet Problem 
	 Let  be a domain in  such that  is non-polar, and let  be a  
	 bounded function which is continuous n.e. on . Then there exists a unique  
	 bounded harmonic function  on  such that 

 for n.e. . 

Remark 4.3: Non-Polarity Is Necessary but Is Not a Great Restriction 
	 In order for this result to make sense, it is necessary to assume that  is non- 
	 polar. However this is no great restriction, because if  were polar, then by 
	 the extended maximum principle Theorem 3.17 (a), every bounded harmonic 
	 function on  would be constant anyway.	  
Proof of Corollary 4.10.1: 
	 Step I: Existence 
	 Set . Then by Theorem 4.1  is harmonic and bounded on . More- 
	 over, by Theorem 4.3, 

, , 

	 where  is the set of irregular boundary points of , and  is the set of points 
	 of discontinuity of . Now  is polar by Theorem 4.10 and  is polar by ass- 
	 umption. Moreover, both  and  are Borel sets, thus 

 for n.e. . 

	 Step II: Uniqueness 
	 Suppose that  and  are two solutions. Then  is a bounded harmonic 
	 function on  satisfying 

 for n.e. . 

	 Applying the maximum principle Theorem 3.17 (b) to  we deduce 
	 that  on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   The fact that this generalized form of the Dirichlet problem can always be solved 
makes it more suitable for many applications than the original form. Indeed, it will 
provide the basis for much of the rest of this chapter. 

K
K ∂D

K
K

{z ∈ K : pν(z) > I(ν)}
ν K Fσ

□

D ℂ∞ ∂D φ : ∂D → ℝ
∂D

h D
lim
z→ζ

h(z) = φ(ζ ) ζ ∈ ∂D

∂D
∂D

D ⋄

h := HDφ h D

lim
z→ζ

h(z) = φ(ζ ) ζ ∈ ∂D∖(E1 ∪ E2)

E1 D E2
φ E1 E2

E1 E2
lim
z→ζ

h(z) = φ(ζ ) ζ ∈ ∂D

h1 h2 h1 − h2
D

lim
z→ζ

(h1 − h2)(z) = 0 ζ ∈ ∂D

±(h1 − h2)
h2 = h2 D

□
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4.3 Harmonic Measure 
    When studying the Dirichlet problem on a disc  in Section 1.2, we not only prov-
ed that a unique solution exists, but also gave an explicit formula for it. In the 
notation we have now developed, this formula may be succinctly expressed by saying 
that, if  is a continuous function, then 

 on , 
where  and  are respectively the Perron function and the Poisson integral of 

. We now seek to extend this to more general domains. While the Perron function 
has already been defined for an arbitrary domain, we currently lack an appropriate 
analogue for the Poisson integral. To help define this, we introduce the notion of 
harmonic measure. 
Definition: Harmonic Measure and Generalized Poisson Integral 
	 Let  be a proper subdomain of , and denote by  the -algebra of 
	 Borel subsets of . A harmonic measure for  is a function  

 
	 such that 
	 (a)	 For each , the map  is a Borel probability measure 
	 	 on . 
	 (b)	 If  is a continuous function, then  on , where 
	 	  is the generalized Poisson integral of  on  given by 

, . 

    To those who may be concerned,  is a transition probability kernel. Moreover, as 
in the construction of the harmonic measure all one needs is the generalization of the 
Poisson integral from  to , in later applications we will implicitly refer to the 
(generalized) Poisson kernel whenever we revoke the definition of harmonic measure 
(b).  
Example 4.2: Example for Harmonic Measure 
	 Consider . By Theorem 1.6 (i), 

 

	 is a harmonic measure for . This conciles the two definitions we have for the 
	 Poisson integral .	  
    Since the definition of harmonic measure has been concocted to fit the desired con-
clusion, it is really only justified once that we have proved the following theorem. 
Theorem 4.11: Existence and Uniqueness for Harmonic Measure 
	 Let  be a domain in  such that  is non-polar. Then there exists a unique 
	 harmonic measure  for . 
    The case when  is polar is less interesting, see Exercise 1 for example. 
Proof of Theorem 4.11: 
	 Denote  the space of continuous functions . If  
	 and , then by linearity 

 

Δ

φ : ∂Δ → ℝ
HΔφ = PΔφ Δ

HΔφ PΔφ
φ

D ℂ∞ ℬ(∂D) σ
∂D D

ωD : D × ℬ(∂D) → [0,1]

z ∈ D B ↦ ωD(z, B)
∂D

φ : ∂D → ℝ HDφ = PDφ D
PDφ φ D

PDφ(z) := ∫∂D
φ(ζ )dωD(z, ζ ) z ∈ D

ωD

PΔu PDu

Δ := Δ(0,1)

dωΔ(z, ζ ) :=
1

2π
P(z, ζ ) |dζ |

Δ
PΔφ ⋄

D ℂ∞ ∂D
ωD D

∂D

C(∂D) φ : ∂D → ℝ α1, α2 ∈ ℝ
φ1, φ2 ∈ C(∂D)

α1HDφ1 + α2HDφ2
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	 is a solution to the generalized Dirichlet problem with boundary value  
 

	 (see Corollary 4.10.1), so by the uniqueness it follows that 
 on . 

	 Moreover, it is clear from the definition of Perron function that 
, 
. 

	 Hence, for each , the map  is a positive linear functional on 
	  sending the constant function  to , so by the Riesz representation the- 
	 orem (see Remark 3.5), there exists a unique Borel probability measure  on  
	  such that 

, . 

	 Setting 
, , , 

	 we see immediately that the definition of harmonic measure holds. This proves 
	 the existence of , the uniqueness follows from the uniqueness part of Riesz 
	 representation theorem (see Remark 3.5). 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Harmonic measure is defined so that  for all continuous functions  

. 
The next result shows that, as a bonus, the same relation extends to a much wider 
class of functions . 
Theorem 4.12:  for All Bounded Borel Function  On Non-Polar  
	 Let  be a domain in  such that  is non-polar. Then 

 on  
	 for every bounded Borel function . 
    This gives us new information, even when  is a disc. 
Remark 4.4:  is Linear on Bounded Borel Functions 
	 As  is always harmonic on  by Theorem 4.1, the same must be true for 
	 . In the same direction, since the map  is clearly linear on boun- 
	 ded Borel functions, the same holds for , which was not obvious  
	 before.	  
Proof of Theorem 4.12: 
	 We first show that  on  when  is bounded u.s.c. on  and then 
	 show that  on  when  is bounded l.s.c. on , and then we shall 
	 remove the u.s.c. and l.s.c. conditions. 
	 Step I.1:  on  when  is bounded u.s.c. on  
	 First suppose that  is bounded and u.s.c. on . Choose continuous functions 
	  such that . Then we know that 

 
	 by Theorem 4.11 in conjunction with the definition of harmonic measure.  

α1φ1 + α2φ2

HD(α1φ1 + α2φ2) = α1HDφ1 + α2HDφ2 D

φ ≥ 0 on ∂D ⇒ HDφ ≥ 0 on D
φ ≡ 1 on ∂D ⇒ HDφ ≡ 1 on D

z ∈ D φ ↦ HDφ(z)
C(∂D) 1 1

μz
∂D

HDφ(z) = ∫∂D
φdμz φ ∈ C(∂D)

ωD(z, B) := μz(B) z ∈ D B ∈ ℬ(∂D)

ωD

□
HDφ = PDφ

φ : ∂D → ℝ

φ
HDφ = PDφ φ ∂D

D ℂ∞ ∂D
HDφ = PDφ D

φ : ∂D → ℝ
D

HDφ
HDφ D

PDφ φ ↦ PDφ
φ ↦ HDφ

⋄

HDφ ≥ PDφ D φ ∂D
HDφ ≤ PDφ D φ ∂D

HDφ ≥ PDφ D φ ∂D
φ ∂D

φn : ∂D → ℝ φn ↓ φ
PDφn = HDφn
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	 Thus  is harmonic on  for each  by Theorem 4.1. From the mono- 
	 tone convergence theorem we know that 

 on  
	 and so by Harnack’s theorem Theorem 1.14  is harmonic on . Let  
	  and  be arbitrary. By the definition of Perron function, for each 
	  we can find a subharmonic function  of  such that 

, , and . 

	 Define  on  by 
. 

	 Since  is a harmonic function and  is a negative subharmonic 
	 function for each , it follows that  is subharmonic on . Moreover, if  
	 then for each  one has 

 

	 where the first inequality holds since  is negative thus removing it 
	 results in a greater value, the second inequality holds since 

  
	 and thus . Finally, the last inequality holds by the definition  
	 of Perron function. 
	 An application of the monotone convergence theorem tells us that  

. 

	 Hence by the definition of Perron function,  on . In particular 
, 

	 where the last equality holds by the sum of geometric series. Since  and  are 
	 chosen arbitrarily, it follows that 

 on . 
	 Step I.2:  when  is bounded l.s.c. on  
	 Now suppose that  is bounded and l.s.c. on . Applying the argument we  
	 did in Step I.1 to , we obtain 

 on . 
	 Hence, using Lemma 4.4 in the first inequality and linearity of the generalized 
	 Poisson integral in the last we obtain that 

 on . 
	 Step II:  when  is an arbitrary bounded Borel function on  
	 Finally, suppose that  is an arbitrary bounded Borel function on . Let  

PDφn D n ≥ 1

PDφn ↓ PDφ D
PDφ D

w ∈ D ε > 0
n ≥ 1 un D

lim sup
z→ζ

un(z) ≤ φn(ζ ) ζ ∈ ∂D un(w) > HDφn(w) −
ε
2n

u D
u := PDφ + ∑

n≥1

(un − HDφn)

PDφ (un − HDφn)
n u D ζ ∈ ∂D

n ≥ 1
lim sup

z→ζ
u(z) ≤ lim sup

z→ζ
(PDφ + un − HDφn)(z)

≤ lim sup
z→ζ

un(z)

≤ φn(ζ )
(un − HDφn)

HDφn = PDφn ↓ PDφ
PDφ − HDφn ≤ 0

lim sup
z→ζ

u(z) ≤ φ(ζ )

HDφ ≥ u D
HDφ(w) ≥ u(w) ≥ PDφ(w) − ∑

n≥1

ε
2n

= PDφ(w) − ε

ε w

HDφ ≥ PDφ D
HDφ ≤ PDφ φ ∂D

φ ∂D
−φ

HD(−φ) ≥ PD(−φ) D

HD(φ) ≤ − HD(−φ) ≤ − PD(−φ) = PDφ D
HDφ = PDφ φ ∂D

φ ∂D
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	  and . Then, as the Borel probability measure  is regular, 
	 we can appeal to the Vitali-Carathéodory theorem  to obtain an u.s.c. func- 4

	 tion  and a l.s.c. function  on  such that 

 and . 

	 Replacing  by  and  by , we can further 
	 suppose that  and  are bounded on . Then by Step I.1 and Step I.2, 

 and  on . 
	 Therefore, 

 

	 and 

 

	 Since  and  are arbitrary, we conclude that  on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    From this result we can deduce a characterization of harmonic measure which exp-
lains its nomenclature. 
Theorem 4.13: Characterization of Harmonic Measure 
	 Let  be a domain in  such that  is non-polar and let  be a Borel subset  
	 of . Then 
	 (a)	 The function  is harmonic and bounded on . 
	 (b)	 If  is a regular boundary point of  which lies outside the relative boun- 
	 	 dary of  in , then 

. 

	 Moreover, if the relative boundary of  in  is polar, then the function  
	  is uniquely determined by (a) and (b). 
Proof: 

w ∈ D ε > 0 ωD(w, ⋅ )

ψu ψℓ ∂D

ψu ≤ φ ≤ ψℓ ∫∂D
(ψu − ψℓ)(ζ )dωD(w, ζ ) < ε

ψu max (ψu, − ∥φ∥∞) ψℓ min (ψℓ,∥φ∥∞)
ψu ψℓ ∂D

HDψu ≥ PDψu HDψℓ ≤ PDψℓ D

HDφ(w) ≤ HDψℓ(w) (Vitali-Carathéodory Theorem (a))
≤ PDψℓ(w) (Step I.2)
≤ PDψu(w) + ε (Vitali-Carathéodory Theorem (b))
≤ PDφ(w) + ε (Vitali-Carathéodory Theorem (a))

HDφ(w) ≥ HDψu(w) (Vitali-Carathéodory Theorem (a))
≥ PDψu(w) (Step I.1)
≥ PDψℓ(w) − ε (Vitali-Carathéodory Theorem (b))
≥ PDφ(w) − ε (Vitali-Carathéodory Theorem (a))

w ε HDφ = PDφ D
□

D ℂ∞ ∂D B
∂D

z ↦ ωD(z, B) D
ζ D

B ∂D
lim
z→ζ

ωD(z, B) = 1B(ζ )

B ∂D
ωD( ⋅ , B)

 Vitali-Carathéodory Theorem: Suppose that  is a regular Borel measure on a topological 4

space , and that  is an integrable function. Then, given , there exists an u.s.c. 
function  and a l.s.c. function  such that

(a)	 .


(b)	 .

μ
X φ : X → ℝ ε > 0

ψu : X → [−∞, ∞) ψℓ : (−∞, ∞]
ψu ≤ φ ≤ ψℓ

∫X
(ψu − ψℓ)dμ < ε
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	 By Theorem 4.12 we have 
, . 

	 Therefore (a) follows immediately from Theorem 4.1. Moreover, if  satisfies 
	 assumptions in (b), then  is continuous at , and so the conclusion of (b) will 
	 follow from Theorem 4.3. Finally, the uniqueness part of the result is an imm- 
	 ediate consequence of Corollary 4.10.1. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Remark 4.5: Harmonic Measure and Solution to Generalized Dirichlet Problem 
	 This theorem says that, provided the relative boundary of  in  is polar, the 
	 function  is exactly the solution of the generalized Dirichlet problem 
	 with boundary date .	  
    This provides a quick way of identifying the harmonic measure in a number of im-
portant special cases — one simply ‘spots’ a harmonic measure with the right 
boundary values, see the examples below. 
Example 4.3: Some Examples of Harmonic Measure 

     
	 Theorem 4.13 also has another interesting consequence. 
Corollary 4.13.1: Mutual Absolute Continuity for Harmonic Functions 
	 Let  be a domain in  such that  is non-polar. Then the measures 

 
	 are mutually absolutely continuous. In fact, if  then for , 

, 
	 where  is the Harnack distance between  and . 
Proof: 
	 We recall the definition for Harnack distance that 

 
	 for every positive harmonic function  on . The result follows by applying  
	 this with . 
	 	 	 	 	 	 	 	 	 	 	 	 	  

ωD(z, B) = HD1B(z) z ∈ D
ζ

1B ζ

□

B ∂D
ωD( ⋅ , B)

φ = 1B ⋄

D ℂ∞ ∂D
{ωD(z, ⋅ )}z∈D

z, w ∈ D B ∈ ℬ(∂D)
ωD(z, B) ≤ τD(z, w)ωD(w, B)

τD(z, w) z w

h(z) ≤ τD(z, w)h(w)
h D

h := ωD( ⋅ , B)
□
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{Im(z ) > 0}

Borel Subset B ⊂ ∂D

log( |z | /r)
log(s /r)

1
π

arg( z − b
z − a )

{r < |z | < s}

{a < Re(z ) < b}

Harmonic Measure ωD(z , B )

{ |z | = s}

2
π

arg( 1 + z
1 − z )

arg z − α
β − α{α < arg z < β}

[a , b]

Domain D

{ |z | = 1,Im(z ) > 0}
Re(z ) − a

b − a
{Re(z ) = b}

{ |z | < 1,Im(z ) > 0}

{arg z = β}



    It thus makes sense to describe subsets of  as having harmonic measure zero wi-
thout referring to a particular base point . The next result gives some examples 
of these. 
Theorem 4.14: Borel Polar Subset Has Harmonic Measure Zero 
	 Let  be a domain in  such that  is non-polar. Then every Borel polar  
	 subset of  has harmonic measure zero. 
Proof: 
	 Let  be a Borel polar subset of . If  is a subharmonic function on  such 
	 that 

, , 

	 then by the extended maximum principle Theorem 3.17 (b)  on . It fol- 
	 lows that  on , and thus by Theorem 4.12  on . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    It is remarkable to ask whether, conversely, every set of harmonic measure zero m-
ust be polar. The answer is unfortunately NO, though this will only become apparent 
later. 
   We now prove two basic general inequalities involving harmonic measure, one for 
subharmonic functions and one for holomorphic functions. Under the perspective of 
Theorem 4.14, the first of these is a generalization of the extended maximum 
principle. 
Theorem 4.15: Two Constant Theorem for Harmonic Measure 
	 Let  be a domain in  such that  is non-polar, and let  be a Borel subset 
	 of . If  is subharmonic on  and satisfies 

, , and , , 

	 where  and  are constants. Then 
 

	 for . 
Proof: 
	 Set  on . Then 

  

	 by assumption. Thus by the definition of Perron function,  on .  
	 Using Theorem 4.12 in the first inequality gives 

 on , 
	 which yields the desired inequality. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Theorem 4.16: Subordination Principle for Harmonic Measure 
	 Let  and  be domains in  with non-polar boundaries, and let  and  
	 be Borel subsets of  and , respectively. Let 

 
	 be a continuous map which is meromorphic on , and suppose that 

 and . 

∂D
z ∈ D

D ℂ∞ ∂D
∂D

E ∂D u D

lim sup
z→ζ

u(z) ≤ 1E(ζ ) ζ ∈ ∂D

u ≤ 0 D
HD1E ≡ 0 D PD1E ≡ 0 D

□

D ℂ∞ ∂D B
∂D u D

u(z) ≤ M z ∈ D lim sup
z→ζ

u(z) ≤ m ζ ∈ B

M m
u(z) ≤ mωD(z, B) + M(1 − ωD(z, B))

z ∈ D

φ := m1B + M(1 − 1B) ∂D
lim sup

z→ζ
u(z) ≤ φ(ζ ) ∀ζ ∈ ∂D

u ≤ HDφ D

u ≤ PDφ = mPD1B + M(1 − PD1B) D

□

D1 D2 ℂ∞ B1 B2
∂D1 ∂D2

f : D1 ∪ B1 → D2 ∪ B2
D1

f (D1) ⊂ D2 f (B1) ⊂ B2
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	 Then 
, , 

	 with equality holds if  is also a homeomorphism of  onto . 
Proof: 
	 Set  and  on  and , respectively. Let  be a 
	 subharmonic function on  such that 

, . 

	 Then by Corollary 1.1.3  is subharmonic on , thus 
,  

	 and therefore 
 on . 

	 As this holds for all such , we deduce that 
 on . 

	 By Theorem 4.12, 
,  

	 and hence 
 on , 

	 which is the desired inequality. Finally, if  is in addition a homeomorphism of 
	  onto , then we can apply the same argument to  to obtain  
	 the equality. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Corollary 4.16.1: Domain Monotonicity for Harmonic Measure 
	 Let  and  be domains in  with non-polar boundaries, and suppose that 
	 . If  is a Borel subset of  then 

, . 
Proof: 
	 Take  to be the inclusion map in Theorem 4.16. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    As an application of these ideas, we shall prove a theorem about asymptotic values. 
Definition: Asymptotic Value 
	 Let  be a function defined on an unbounded domain  in . Then  is an 
	 asymptotic value of  if there exists a path  such that 

 and . 

Theorem 4.17: Asymptotic Value for Subharmonic Growth on Sector of Half-Plane 
	 Let  be a subharmonic function on  such that  on  
	 . If  is an asymptotic value of , then , 

, 

	 where  is the sector . 

ωD2(f (z), B2) ≥ ωD1
(z, B1) z ∈ D1

f D1 ∪ B1 D2 ∪ B2

φ1 := 1 − 1B1
φ2 := 1 − 1B2

∂D1 ∂D2 u
D2

lim sup
z→ζ

u(z) ≤ φ2(ζ ) ζ ∈ ∂D2

u ∘ f D1
lim sup

z→ζ
(u ∘ f)(z) ≤ φ1(ζ ) ζ ∈ ∂D1

u ∘ f ≤ HD1
φ1 D1

u
(HD2

φ2) ∘ f ≤ HD1
φ1 D1

HDj
φj = PDj

φj = 1 − PDj
1Bj

j = 1,2

(PD2
1B2

) ∘ f ≥ PD1
∘ 1B1

D1
f

D1 ∪ B1 D2 ∪ B2 f −1

□

D1 D2 ℂ∞

D1 ⊂ D2 B ∂D1 ∩ ∂D2
ωD1

(z, B) ≤ ωD2
(z, B) z ∈ D1

f : D1 ∪ B → D2 ∪ B
□

φ D ℂ a
φ Γ : [0,∞) → D

lim
t→∞

Γ(t) = ∞ lim
t→∞

φ(Γ(t)) = a

u ℍ := {z : Im(z) > 0} u ≤ 0
ℍ a ∈ [−∞,0) u ∀a ∈ (0,π /2]

lim sup
z→∞,z∈Sα

u(z) ≤
α
π

 a

Sα {z ∈ ℍ : α ≤ arg z ≤ π − α}
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Proof: 
	 Let  be a path such that 

 and . 

	 Take  such that  and choose  sufficiently large such that  
	  on , where  

. 
	 We may also suppose that  meets the circle . Fix , and let 
	  be the component of  containing . Then since  on , the 
	 two-constant theorem Theorem 4.15 gives 

. 
	 We now seek to estimate the right hand side of this inequality. Notice that since 
	 , this means finding a lower bound for the harmonic measure. To this end 
	 we use Corollary 4.16.1 in the second inequality and obtain 

 

	 Now  cannot meet both  and , for then  would disconn- 
	 ect the connected set . To this end we consider two cases. 
	 Case I: . 
	 If so, using Corollary 4.16.1 in the first inequalitty, Theorem 4.12 in the equa- 
	 lity, and definition of the sector in the last inequality gives 

 

	 where . 
	 Case II: . 
	 If so, a similar argument as in the first case shows that 

. 

	 Finally we can estimate the right hand side of . 

	 Claim: . 

	 Combining the estimates in the two cases we derive the conclusion that 

. 

	 Note that, although this inequality was proved under the assumption that  
	 , it evidently holds if  as well. Hence, in particular, 

, . 

Γ : [0,∞) → ℍ
lim
t→∞

Γ(t) = ∞ lim
t→∞

φ(Γ(t)) = a

ã a < ã < 0 R > 0
u < ã Γ ∩ DR

DR := {z ∈ ℍ : |z | > R}
Γ { |z | = R} z ∈ DR∖Γ

W DR∖Γ z u ≤ ã ∂W ∖∂DR

u(z) ≤ ãωW(z, ∂W ∖∂DR)
ã < 0

ωW(z, ∂W ∖∂DR) = 1 − ωW(z, ∂W ∩ ∂DR)
≥ 1 − ωDR(z, ∂W ∩ ∂DR)
= ωDR(z, ∂DR∖∂W) .

∂W (−∞, − R] [R, ∞) Γ
W

∂W ∩ (−∞, − R] = ∅

ωDR(z, ∂DR∖∂W) ≥ ωDR(z, (−∞, − R])
= HDR

1(−∞,−R](z)

≥
1
π

arg z − HDR
1CR

(z)

CR := {ζ ∈ ∂DR : |ζ | = R}
∂W ∩ (R, ∞] = ∞

ωDR(z, ∂DR∖∂W) ≥
1
π (π − arg z) − HDR

1CR
(z)

u(z) ≤ ãωW(z, ∂W ∖∂DR)
lim sup
z→∞,z∈Sα

u(z) ≤ ã
α
π

u(z) ≤ ã
1
π

min (arg z, π − arg z) − ãHDR
1CR

(z)

z ∈ DR∖Γ z ∈ DR ∩ Γ
u(z) ≤ ã

α
π

− ãHDR
1CR

(z) z ∈ DR ∩ Sα
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	 Finally,  on a neighbourhood on , which is a regular boundary point 
	 of , so by Theorem 4.3 . It follows that 

, 

	 and since  is chosen arbitrarily, sending  gives the desired result. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Remark 4.6: Asymptotic Bound in Theorem 4.17 Is Sharp 
	 The harmonic function , which has  as an asymptotic value,  
	 shows that the above bound is sharp.	  
   Of course, the function in Remark 4.6 also has many other asymptotic values. By 
contrast, a bounded holomorphic function on  has at most one. This is proved in the 
following result. 
Corollary 4.17.1: Lindelöf Theorem 
	 Let   be a bounded holomorphic function on . If  is an 
	 asymptotic value of  then, for each sector  as in Theorem 4.17,  
	 uniformly as  in . In particular,  can have at most one asymptotic  
	 value. 
Proof: 

	 Applying Theorem 4.17 with , where . 

	 	 	 	 	 	 	 	 	 	 	 	 	  
    These results provide a good illustration of how many problems in potential theory 
and complex analysis can be reduced to question about harmonic measure. It is 
therefore of great importance to be able to compare, or at least estimate, the harmonic 
measure for as many domains as possible. Simple cases can be treated using 
conformal mapping. As an illustration, we now compute the important example of 
harmonic measure for the half plane . 
Theorem 4.18: Harmonic Measure for Half-Plane 
	 Let . If  is a Borel subset of . Then 

, . 

Proof: 
	 Set  and let  be the conformal mapping 

, . 

	 Then one has, using Theorem 4.17 conformal case in the first equality, that 

1CR
= 0 ∞

DR lim
z→∞

HDR
1CR

(z) = 0

lim sup
z→∞,z∈Sα

u(z) ≤ ã
α
π

ã > a ã ↓ a
□

u = − arg z −π
⋄

ℍ

f ℍ := {z : Im(z) > 0} α
f Sα f (z) → a

z → ∞ Sα f

u := log( | f − a |
M ) M = sup

ℍ
| f − a |

□

ℍ

ℍ := {z ∈ ℂ : Im(z) > 0} B ℝ

ωℍ(x + iy, B) =
1
π ∫B

y
(x − t)2 + y2

dt x + iy ∈ ℍ

Δ := Δ(0,1) f : ℍ → Δ
f (z) :=

z − i
z + i

z ∈ ℍ
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	 where the second equality holds by Poisson’s integral, the third equality holds  
	 by conformal mapping, and the last holds by conformal invariance. Substituti- 
	 ng  yields the desired result. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    The problem of estimating harmonic measure for more complicated domains is va-
st subject, well beyond the scope of this book. We shall content ourselves with one 
general estimate for simply connected domains, which will be a by-product of the 
Carleman-Milloux theorem in Section 4.5. We conclude this section by relating the 
harmonic measure to the equilibrium measure. 
Theorem 4.19: Equilibrium and Harmonic Measure Agree on Component with  
	 Let  be a compact non-polar subset of . Then its equilibrium measure  is 
	 given by 

, 
	 where  is the component of  containing . 
Proof: 
	 Denote  for  so  is a Borel probability measure on  by definition. 
	 If we define 

 

	 then  is subharmonic on  and 
 . 

	 Denote  on , it follows that 
 on , 

	 where the equality holds by Theorem 4.12. Sending  we deduce that 

, . 

	 In particular, setting  we obtain . This implies that  is an 
	 equilibrium measure for , and by uniqueness Theorem 3.21 it follows that  
	 , as desired. 
	 	 	 	 	 	 	 	 	 	 	 	 	  

4.4 Green Functions 
    The harmonic measure of a domain is intimately related to another important invar-
iant, the Green function. In essense, a Green function is a family of fundamental 

ωℍ(z, B) = ωΔ(f (z), f (B)) =
1

2π ∫f (B)

1 − | f (z) |2

|ζ − f (z) |2 |dζ |

=
1

2π ∫B

1 − | f (z) |2

| f (t) − f (z) |2 | f′￼(t) |dt

=
1
π ∫B

Im(z)
|z − t |2 dt

z := x + iy ∈ ℍ
□

∞
K ℂ ν

ν := ωD(∞, ⋅ )
D ℂ∞∖K ∞

ω ωD(∞, ⋅ ) ω K

u(z) := {pω(z) − pν(z) + I(ν), z ∈ D∖{∞}
I(ν), z = ∞

u D
lim sup

z→ζ
u(z) ≤ pω(ζ ) ∀ζ ∈ ∂D

φn := max(pω, − n) ∂D
u ≤ HDφn = PDφn D

n → ∞

u(z) ≤ ∫∂D
pω(ζ )dωD(z, ζ ) z ∈ D

z = ∞ I(ν) ≤ I(ω) ω
K

ν = ω
□
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solutions of the Laplacian, each of which is zero on the boundary. Here is the precise 
definition. 
Definition: Green Function 
	 Let  be a proper subdomain of . A Green function for  is a map  

 
	 such that  one has 
	 (a)	  is harmonic on , and bounded outside each neighbourh- 
	 	 ood of . 
	 (b)	  and as  

 

	 (c)	  as  for n.e. . 
Example 4.4: Green Function for Unit Disk 
	 Consider  then 

 

	 is a Green function for .	  
    As usual, to justify the definition we now verify the existence and the uniqueness. 
Theorem 4.20: Existence and Uniqueness of Green Function 
	 If  is a domain in  such that  is non-polar, then there exists a unique 
	 Green function  for . 
    Once again, the case when  is polar is less interesting, see Exercise 1. 
Proof of Theorem 4.20: 
	 Step I: Uniqueness 
	 Suppose that  and  are two Green functions for . Given , define 

, . 
	 Then by the definition of Green function (a),  is harmonic and bounded on  
	 , and by (b)  for n.e. , so by the extended maximum 

	 principle Theorem 3.17 (a), 
 on . 

	 As  is chosen arbitrarily, it follows that  on . 
	 Step II: Existence 
	 By the definition of Green function (b), we shall prove the existence of  
	 and  respectively. 
	 Step II.1:  exists when  
	 Set , so that  is a compact non-polar subset of , and let  be its 
	 equilibrium measure. If we define 

 

	 using Frostman’s theorem Theorem 3.7 in each condition, (a) holds by using  
	 in addition Theorem 3.1 (i) and (b) holds by using addition the definition of  
	 . 

D ℂ∞ D
gD : D × D → (−∞, ∞]

∀w ∈ D
gD( ⋅ , w) D∖{w}

w
gD(w, w) = ∞ z → w

gD(z, w) = {log |z | + O(1), w = ∞
−log |z − w | + O(1), w ≠ ∞

gD(z, w) → 0 z → ζ ζ ∈ ∂D

Δ := Δ(0,1)

gΔ(z, w) := log
1 − zw
z − w

Δ ⋄

D ℂ∞ ∂D
gD D

∂D

g1 g2 D w ∈ D
h(z) := g1(z, w) − g2(z, w) z ∈ D∖{w}

h
D∖{w} lim

z→ζ
h(z) = 0 ζ ∈ ∂D

h ≡ 0 D∖{w}
w g1 = g2 D × D

w = ∞
w ≠ ∞

gD(z, w) w = ∞ ∈ D
K := ℂ∞∖D K ℂ ν

gD(z, ∞) := {pν(z) − I(ν), z ∈ D∖{∞}
∞, z = ∞

gD(z, w)
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	 Step II.2:  exists when , . 
	 Now, for , , define 

,  

	 where  is the image of  under the map . By Example 4.4  
	 applying to the domain , result follows as  and  are arbitrary. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    We now start to investigate the properties of Green functions, the most elementary 
one is its positivity. 
Theorem 4.21: Green Function Is Positive 
	 Let  be a domain in  such that  is non-polar. Then 

 . 
Proof: 
	 Fix , and define 

, . 
	 Then  is subharmonic and bounded above on  and  for n.e. 

	 . Hence by the extended maximum principle Theorem 3.17 (b)  
	 on . Moreover, if we were at the case  for some , then by the  
	 standard maximum principle Theorem 2.5 (i) it would follow that  on , 
	 which is impossible! For example 

 
	 by definition. Hence  on  and the positivity follows from the definition 
	 of . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    As with the Harnack distance and harmonic measure, Green function admits a sub-
ordination principle for meromorphic functions. 
Theorem 4.22: Subordination Principle for Green Function 
	 Let  and  be domains in  with non-polar boundaries, and let  
	  be a meromorphic function. Then 

, , 
	 with equality holds if and only if  is a conformal mapping of  onto . 
Proof: 
	 By the definition of Green function, we will consider the case  and  
	  respectively. Then in the last step we prove the case for conformal  
	 mapping. 
	 Step I:  
	 Suppose so and define 

, . 
	 Then  is subharmonic on  and  is bounded above outside each neigh- 
	 bourhood of . Moreover, as , 

, 

gD(z, w) w ≠ ∞ w ∈ D
w ∈ D w ≠ ∞

gD(z, w) := gD̃( 1
z − w

, ∞) z ∈ D

D̃ D z ↦ (z − w)−1

D̃ := Δ(0,1) z w
□

D ℂ∞ ∂D
gD(z, w) > 0 ∀z, w ∈ D

w ∈ D
u(z) := − gD(z, w) z ∈ D

u D lim
z→ζ

u(z) = 0

ζ ∈ ∂D u ≤ 0
D u(z) = 0 z ∈ D

u ≡ 0 D

u(w) := − gD(w, w,) = − ∞
u < 0 D

u
□

D1 D2 ℂ∞

f : D1 → D2
gD2(f (z), f (w)) ≥ gD1

(z, w) z, w ∈ D1
f D1 D2

w = ∞
w ≠ ∞

w ≠ ∞

u(z) := gD1
(z, w) − gD2(f (z), f (w)) z ∈ D1∖{w}

u D1∖{w} u
w z → w

u(z) = log
f (z) − f (w)

z − w
+ O(1) = log | f′￼(w) | + O(1)
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	 so in fact  is bounded above on . Finally, by Theorem 4.21  
	 hence 

 for n.e. . 

	 Hence by the extended maximum principle Theorem 3.17 (b),  on  
	 , which gives the desired inequality. 
	 Step II:  
	 Suppose so, recall Step II.2 in the proof of Theorem 4.20, we have 

, 

	 where  is the image of  under the map . Hence the result follows 

	 by applying Step I to the function 
. 

	 The case when  is treated similarly. 
	 Step III: Equality when  is conformal	 
	 Finally, if  is conformal from  onto , applying the inequality we just pro- 
	 ved in the first two steps to  and  respectively yields the desired result. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    This result allows us to compute Green functions for some simple domains by me-
ans of conformal mapping. A few examples will be given in Example 4.5. 
     Another consequence of Theorem 4.22 is that  increases with . 
Corollary 4.22.1: Domain Monotonicity for Green Function 
	 Let  and  be domains in  with non-polar boundaries. If  then 

, . 
Proof: 
	 Take  to be the inclusion map.	  
	 	 	 	 	 	 	 	 	 	 	 	 	  
    In fact  increases continuously with , in the following sense. 
Theorem 4.23: Green Function Is Continuous in Increase of Domain 
	 Let  be a domain in  such that  is non-polar, and let  be subdo- 
	 mains of  such that  and . Then 

, . 

Proof of Theorem 4.23: 
	 Fix . Then  for some , and by renumerating the sequence  
	 , we may suppose that . For  define 

, . 
	 Then  is harmonic on  and bounded near , so by the removale sin- 
	 gularity theorem Corollary 3.13.1 in conjunction with Remark 3.1 (i),   
	 extends to be harmonic on . Now Corollary 4.22.1 implies that 

 on  for each , 

u D1∖{w} gD2
> 0

lim sup
z→ζ

u(z) ≤ lim
z→ζ

gD1
(z, w) = 0 ζ ∈ ∂D1

u ≤ 0
D1∖{w}

w = ∞

gD1
(z, ∞) = gD̃ 1

(1/z,0)

D̃ 1 D1 z ↦
1
z

z ↦ f (1/z) : D̃ 1 → D2
f (w) = ∞

f
f D1 D2

f f −1

□

gD D

D1 D2 ℂ∞ D1 ⊂ D2
gD1

(z, w) ≤ gD2
(z, w) z, w ∈ D1

f : D1 → D2
□

gD D

D ℂ∞ ∂D {Dn}n≥1
D D1 ⊂ D2 ⊂ ⋯ ⋃

n≥

Dn = D

lim
n→∞

gDn
(z, w) = gD(z, w) z, w ∈ D

w ∈ D w ∈ Dn0
n0

{Dn}n≥1 n0 = 1 n ≥ 1
hn(z) := gD(z, w) − gDn

(z, w) z ∈ Dn∖{w}
hn Dn∖{w} w

hn
Dn

hn ≥ hn+1 Dn n
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	 thus  is subharmonic on  by Theorem 2.12. Since 

 on  for each , 
	 it follows that 

 on . 
	 Hence  is bounded above on , and also 

 for n.e.  

	 by the definition of Green function. Therefore using the extended maximum pr- 
	 inciple Theorem 3.17 we have  on . This tells us that 

, . 

	 But from Corollary 4.22.1 we also have 
, . 

	 Combining the two displays yields the desired result. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Example 4.5: Some Examples of Green Function 

   For bounded domains there is an integral formula for Green function in terms of the 
harmonic measure. In some literature the following result is also known as the 
fundamental identity for Green function (or sometimes Green kernel). 
Theorem 4.24: Fundamental Identity for Logarithmic Potential 
	 Let  be a bounded domain in . Then 

 

	 for . 
Proof: 
	 Given , define  by 

, . 
	 Then  is harmonic and bounded on  and 

u := lim
n→∞

hn D

h ≤ gD( ⋅ , w) Dn n

u ≤ gD( ⋅ , w) D
u D

lim sup
z→ζ

u(z) ≤ 0 ζ ∈ ∂D

u ≤ 0 D
lim inf

n→∞
gDn

(z, w) ≥ gD(z, w) z ∈ D

lim sup
n→∞

gDn
(z, w) ≤ gD(z, w) z ∈ D

□

D ℂ

gD(z, w) = ∫∂D
log |ζ − w |dωD(z, ζ ) − log |z − w |

z, w ∈ D

w ∈ D φw : ∂D → ℝ
φw(ζ ) := log |ζ − w | ζ ∈ ∂D

PDφw D
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 for n.e. . 

	 Therefore the function 
 

	 satisfies condition (a), (b), and (c) for being Green function, and so by the 
	 uniquness part of Theorem 4.20 it must be the Green function . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    The importance of this formula is that it tells us how  depends on , which 
is the key to proving the following symmetry theorem for Green functions. In view of 
the asymmetry way that  was defined, this is perhaps a surprising result. 
Theorem 4.25: Symmetry Theorem for Green Function 
	 Let  be a domain in  such that  is non-polar. Then 

 
	 for . 
Proof: 
	 Applying a conformal invariance, we can suppose that . Then  can be 
	 exhausted by an increasing sequence of bounded subdomains , and by 
	 Theorem 4.23,  will be symmetric provided that each  is symmetric. It is 
	 thus sufficient to prove the result in the case when  is a bounded subdomain  
	 of . 
	 Fix such a domain , and let . Define  on  by 

, . 
	 Switching the rôles of  and  in Theorem 4.24 we have 

 

	 for . By Theorem 2.14, this formula shows that  is subharmonic 
	 on . It also tells us that  is bounded above there. In addition, from the 
	 original definition of , we have 

 

	 for n.e. . Hence by the extended maximum principle Theorem 3.17 it 
	 follows that  on . Thus 

, . 
	 Finally, since  is arbitrary, result follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   As part of our definition of Green function, 

 for n.e. , 

but it is not clear whether the exceptional set depends on . The next result shows 
that it doesn’t, and identifies it precisely. 
Theorem 4.26: Criterion for Solvability of Dirichlet Problem via Green Function 
	 Let  be a domain in  such that  is non-polar, let , and let . 
	 Then the following statements are equivalent: 

lim
z→ζ

PDφw(z) = φw(ζ ) ζ ∈ ∂D

(z, w) ↦ PDφw(z) − log |z − w |

gD
□

gD(z, w) w

gD(z, w)

D ℂ∞ ∂D
gD(z, w) = gD(w, z)

z, w ∈ D

D ⊂ ℂ D
{Dn}n≥1

gD gDn

D
ℂ

D w ∈ D u D∖{w}
u(z) := gD(z, w) − gD(w, z) z ∈ D∖{w}

z w

u(z) = gD(z, w) + log |z − w | − ∫∂D
log |ζ − z |dωD(w, ζ )

z ∈ D∖{w} u
D∖{w} u

u
lim sup

z→ζ
u(z) ≤ lim

z→ζ
gD(z, w) = 0

ζ ∈ ∂D
u ≤ 0 D∖{w}

gD(z, w) ≤ gD(w, z) z ∈ D
w

□

lim
z→ζ

gD(z, w) = 0 ζ ∈ ∂D

w

D ℂ∞ ∂D w ∈ D ζ ∈ ∂D
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	 (a)	 . 

	 (b)	  is a regular boundary point of . 
Proof: 
	 Step I: (a)  (b) 
	 If  when  is a barrier at  by definition and so  is 

	 regular. 
	 Step II: (b)  (a) 
	 Conversely, suppose that  is a regular boundary point of . Let  be a relativ- 
	 ely compact neighbourhood of  in , and define  by 

 

	 Then  solves the generalized Dirichlet problem on  with bound- 
	 ary function  (see Corollary 4.10.1), so by uniqueness Theorem 1.5 one has 

, . 
	 Hence, as  is a regular point for , and thus also for . By Theorem 4.3 it 
	 follows that 

. 

	 	 	 	 	 	 	 	 	 	 	 	 	  
    This result provides a characterization of regular points which is internal to . This 
has some interesting consequences, for example: 
Example 4.6: Regularity Is Stable Under Conformal Mapping 
	 If a domain  is regular, then so is every domain  conformally equivalent to 
	 , regardless of how  is embedded in .		  
    In fact, Example 4.6 is a consequence of the Kelvin transform, see Port and Sidney 
Section 4.3. 
    We now use Example 4.6, in conjunction with the symmetry property of Green fu-
nction, to prove a strong converse to the subordination principle we proved for Green 
function in Theorem 4.22. 
Theorem 4.27: Characterization of Conformal Mapping via Green Function 
	 Let  and  be domains in  with non-polar boundaries, and let  
	  be a meromorphic function. 
	 (a)	 If there exist distinct points  such that 

. 
	 	 Then   and  injective. 
	 (b)	 If in addition  is a regular domain, then  is also surjective, and is ther- 
	 	 efore a conformal mapping of  onto . 
Proof: 
	 Step I: (a) 
	 Define, for , that 

. 

lim
z→ζ

gD(z, w) = 0

ζ D

⇒
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ζ D N
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φ(ζ ) := {0, ζ ∈ ∂D
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gD( ⋅ , w) D∖N
φ

gD(z, w) = HD∖Nφ(z) z ∈ D∖N
ζ D D∖N

lim
z→ζ

gD(z, w) = φ(ζ ) = 0

□
D

D D̃
D D̃ ℂ∞ ⋄

D1 D2 ℂ∞

f : D1 → D2
z0, w0 ∈ D1

gD2(f (z0), f (w0)) = gD1
(z0, w0)

gD2(f (z), f (w)) = gD1
(z, w) ∀z, w ∈ D1 f

D1 f
D1 D2
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	 Then  is subharmonic on  and by the subordination principle 
	 Theorem 4.22  there. Since, by assumption in (a), , it follows 
	 from the maximum principle Theorem 2.5 that  and hence 

, . 
	 Now by the symmetry Theorem 4.25 we can switch the rôles of  and , rep- 
	 eating the argument gives 

, . 
	 This implies that  is injective since 

 

	 Step II: (b) 
	 Suppose not, that is, . Then an elementary connectedness argument 
	 shows that . Let  be a point in this set, and choose  
	  such that . Replacing  by a sequence, if nece- 
	 ssary, we may also suppose that . Then for any , we have 

 

	 where the first equality holds by (a), the second equality holds by continuity in 
	 Theorem 4.23, and the last equality holds by positivity in Theorem 4.21. 
	 Therefore, by Theorem 4.26  must be an irregular point of , contradicting 
	 assumption in (b). Thus if  is a regular domain, then necessarily . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   As an application of this result, we obtain a simple proof of the Riemann mapping 
theorem. 
Theorem 4.28: Riemann Mapping Theorem 
	 If  is a simply connected proper subdomain of , then there exists a  
	 conformal mapping of  onto the unit disc . 
Proof: 
	 By Theorem 4.6,  is a regular domain. In particular,  is non-polar, so  
	 has a Green function  by Theorem 4.20. Fix , we define 

, . 
	 Then  is harmonic on  and bounded near , so by the removable 	  
	 singularity theorem Corollary 3.13.1  extends to be harmonic on . Applying 
	 Theorem 1.1 (i), we can write  for some holomorphic function on 
	 . Define 

, . 
	 Then  is holomorphic on  and . Moreover, 

, , 

u D1∖{w0}
u ≤ 0 u(z0) = 0

u ≡ 0
gD2(f (z), f (w0)) = gD1

(z, w0) z ∈ D1
z w0

gD2(f (z), f (w)) = gD1
(z, w) z, w ∈ D1

f
z ≠ w ⇒ gD1

(z, w) < ∞ (Definition of Green Function (a))

⇒ gD2(f (z), f (w)) < ∞ (Above Display)
⇒ f (z) ≠ f (w) (Definition of Green Function (b))

f (D1) ≠ D2
∂f (D1) ∩ D2 ≠ ∅ η

{zn}n≥1 ⊂ D1 f (zn) → η {zn}n≥1
zn → ζ ∈ ∂D1 w ∈ D1

lim
n→∞

gD1
(zn, w) = lim

n→∞
gD2(f (zn), f (w))

= gD2(η, f (w))
> 0

ζ ∂D1
D1 f (D1) = D2

□

D ℂ
D Δ

D ∂D D
gD w ∈ D

h(z) := gD(z, w) + log |z − w | z ∈ D∖{w}
h D∖{w} w

h D
h := Re( f1) f1

D
f (z) := (z − w)e−f1(z) z ∈ D

f D f (w) = 0
log | f (z) | = − gD(z, w) z ∈ D
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	 which shows that  maps  into  and that 
, . 

	 Theorem 4.27 (b) applies and we conclude that  is the desired conformal  
	 mapping from  onto . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Remark 4.7: Conformal Mapping Does Not Extend to Homeomorphism of Closures 
	 In general, the conformal mapping  will not extend to a homeomor- 
	 phism of the closures.	  
   For this to be possible, it is clear that every boundary point of  must be accessi-
ble, in the following sense. 
Definition: Accessible Point 
	 A point  is said to be accessible if, for each sequence  with 
	 , there exists a path  with  such that 

	  for some increasing sequence . 
    It turns out that this simple necessary condition is also sufficient. 
Theorem 4.29: Sufficiency for Extension to Homeomorphism on Closure 
	 Let  be a bounded simply connected domain in , and let  be a co-	  
	 nformal mapping of  onto the unit disc .  
	 (a)	 If  is accessible then  extends continuously to  and  
	 	 . 
	 (b)	 If  are distinct accessible points then . 
	 (c)	 If every boundary point of  is accessible then  extends to a homeomor- 
	 	 phism of  onto . 
Proof: 
	 Step I:  in (a) 
	 One has 
	 	 	  ,	 (4.5) 

	 where the first equality holds by Theorem 4.22 conformal case, the second  
	 equality holds by Theorem 4.27 (a), and the last by Theorem 4.26 (a). So any	  
	 continuous extension of  to  must satisfy . 
	 Step II: Extension in (a) exists 
	 To show that such an extension exists, we argue by contradiction. Suppose not, 
	 then there exists a sequence  with  such that 

 and  
	 for some . From (4.5) it is clear that 

. 
	 Multiplying a constant to , we may assume that . Let  be an integer 

	 such that , and define 

,  

f D Δ
gΔ(f (z), f (w)) = gD(z, w) z ∈ D

f
D Δ

□

f : D → Δ
⋄

D

ζ ∈ ∂D {zn}n≥1 ⊂ D
lim
n→∞

zn = ζ Γ : [0,∞) → D lim
t→∞

Γ(t) = ζ

Γ(tn) = zn tn → ∞

D ℂ f : D → Δ
D Δ

ζ ∈ ∂D f D ∪ {ζ}
| f (ζ ) | = 1

ζ, ζ̃ ∈ ∂D f (ζ ) ≠ f (ζ̃ )
D f

D Δ

| f (ζ ) | = 1

lim
z→ζ

| f (z) | = lim
z→ζ

e−gΔ( f (z),0) = lim
z→ζ

e−gD(z, f (0)) = 1

f ζ | f (ζ ) | = 1

{zn}n≥1 ⊂ D lim
n→∞

zn = ζ

f (z2n) → α f (z2n+1) → β
α ≠ β

|α | = |β | = 1
f β = α N

2π
N

< |α − β |

u(z) := log f −1(z) − ζ z ∈ Δ
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, . 

	 Then  and  are subharmonic on  by Corollary 1.1.1 and 
. 

	 We now seek to estimate this quantity. Choose a path  as in the definition of 
	 accessible point. Given , there exists  such that 

 . 
	 Then 

 on , 
	 therefore 

 on , 

	 where  is the reflection of  in the -axis. Moreover, since  accumulates 
	 at both  and  by assumption, the choice of  implies that  separates   
	 from . Hence by the ordinary maximum principle Theorem 2.5, 

. 

	 Since  is arbitrary, sending  yields , thus , co- 
	 ntradicting the fact that . 
	 Step III: (b) 
	 We argue by contradiction. Suppose that . As both  and  are 
	 accessible, by definition, we can find paths 

 
	 such that 

 and . 

	 Then  and  are two paths in , both ending at , along which  has 
	 limits  and , respectively. It follows that the function 

 

	 which is bounded and holomorphic in the upper half-plane, has distinct asymp- 
	 totic values  and , which contradicts Lindelöf’s theorem Corollary 4.17.1. 
	 Step IV: (c) 
	 Using (a) and (b), if every boundary point of  is accessible, then  extends to  
	 a continuous injection of  onto  by definition of accessible points. A standa- 
	 rd compactness argument now shows that 

 
	 and therefore  is continuous on , proving  is indeed the desired homeom- 
	 orphism. 
	 	 	 	 	 	 	 	 	 	 	 	 	  

4.5 The Poisson-Jensen’s Formula 

v(z) :=
N

∑
k=1

(u(e2πik/N z) + u(e2πik/N z)) z ∈ Δ

u v Δ
v(0) = 2Nu(0) = 2N log f −1(0) − ζ

Γ
ε > 0 t0
|Γ(t) − ζ | < ε ∀t ≥ t0

u ≤ log ε S := f({Γ(t)}t≥0)

v ≤ (2N − 1) sup
Δ

u + log ε T :=
N

⋃
k=1

e2πik/N(S ∪ S*)

S* S x f (Γ)
α β N T {0}

∂Δ
v(0) ≤ sup

T
v ≤ (2N − 1) sup

Δ
u + log ε

ε > 0 ε ↓ 0 v(0) = − ∞ f −1(0) = ζ
f −1(0) ∈ D

f (ζ ) = f (ζ̃ ) = α ζ ζ̃

Γ, Γ̃ : [0,∞) → D

lim
t→∞

Γ(t) = ζ lim
t→∞

Γ̃ (t) = ζ̃

f (Γ) f ( Γ̃ ) Δ α f −1

ζ ζ̃

z ↦ f −1(α
z − i
z + i )

ζ ζ̃

D f
D Δ

f (D ) = Δ
f −1 Δ f

□
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   If  is a subharmonic function on a domain containing a closed disc , then we saw 
in Theorem 2.9 (b) that  on . The difference  measures how far  
is from being harmonic on , and one would expect this to depend on the size of the 
generalized Laplacian . The following theorem not only makes this precise, but 
extends it to a wider class of other domains. It is the culmination of a whole sequence 
of earlier results. 
Theorem 4.30: Poisson-Jensen’s Formula for Subharmonic Functions 
	 Let  be a bounded regular domain in , and let  be a function subharmonic 
	 on a neighbourhood of  with  on . Then 

 

	 where . 
Proof: 
	 We begin with the claim that, if , then 

	   	 (4.6) 

	 In proving (4.6) we consider , , and , respectively.  
	 Step I: (4.6) holds when . 
	 Suppose , then (4.6) follows from the fundamental identity for logarit- 
	 hmic potential Theorem 4.24. 
	 Step II: (4.6) holds when . 
	 Suppose , then the function 

 
	 is harmonic on a neighbourhood of  by Corollary 1.1.1, and so in this case 
	 (4.6) follows from the definition of harmonic measure (b). 
	 Step III: (4.6) holds when . 
	 Finally, suppose that  then as  is connected one has 

 

	 where the first equality holds by the definition of non-thin, for which holds by 
	 Theorem 3.26 as  is connected, the second equality holds by the fundamental 
	 identity for logarithmic potential Theorem 4.24, the third equality holds by the 
	 continuity of , and the last equality holds by Theorem 4.26 (a) and  
	 the assumption that  is a regular domain. Thus (4.6) is proved. 
	 Step IV: Desired equality 
	 Now choose a bounded domain  containing  such that  is subharmonic on  
	 a neighbourhood of . By the Riesz decomposition Theorem 3.23 we can  

u Δ
u ≤ PΔu Δ PΔu − u u

Δ
Δu

D ℂ u
D u ≢ − ∞ D

u(z) = ∫∂D
u(ζ )dωD(z, D) −

1
2π ∫D

gD(z, w)Δu(w)

z ∈ D

z ∈ D

∫∂D
log |ζ − w |dωD(z, ζ ) = {log |z − w | + gD(z, w), w ∈ D

log |z − w | , w ∈ ℂ∖D
w ∈ D w ∈ ℂ∖D w ∈ ∂D

w ∈ D
w ∈ D

w ∈ ℂ∖D
w ∈ ℂ∖D

z̃ ↦ log | z̃ − w |
D

w ∈ ∂D
w ∈ ∂D D

log∂D log |ζ − w |dωD(z, ζ ) = lim sup
w̃ →w, w̃ ∈D (∫∂D

log |ζ − w̃ |dωD(z, ζ ))
= lim sup

w̃ →w, w̃ ∈D
(log |z − w̃ | + gD(z, w̃ ))

= log |z − w | + lim
w̃ →w, w̃ ∈D

gD( w̃ , z)

= log |z − w | ,

D

log |z − w |
D

D1 D u
D1
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	 write 
 on , 

	 where  and  is harmonic on . Then for  we have 

 

	 where the first equality holds since  on  and  is harmonic on , 
	 the red term in the second equality holds by Fubini’s theorem and the last term 
	 in the second equality holds by Theorem 4.13 (b) as  is non-polar for the 
	 existence of a harmonic measrue (see Theorem 4.11), the third equality holds 
	 by equation (4.6), and the last equality holds by the definition of . Rearrang- 
	 ing the terms yields the desired result. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    As a special case, we recapture the classical Poisson-Jensen’s formula for holomor-
phic functions on a disc, use, for example, in value-distribution theory. 
Corollary 4.30.1: Poisson-Jensen’s Formula for Holomorphic Functions on Disc 
	 Let  be a function holomorphic on a neighbourhood of  with .  
	 Then 

, 

	 where ,  are the zeros of  in , counted according to 
	 multiplicity. 
Proof: 
	 Set  and recall that 

 

	 by Example 4.2 and 

 

	 by Example 4.4. Moreover, by Theorem 3.22,  consists of  
	 -masses at the zeros of . The result follows by feeding these facts into Poisson- 

u = pμ + h D1

μ = (2π)−1Δu
D1

h D1 z ∈ D1

 ∫∂D
u(ζ )dωD(z, ζ )

= ∫∂D (∫D1

log |ζ − w |dμ(w))dωD(z, ζ ) + ∫∂D
h(ζ )dωD(z, ζ )

= ∫D1
(∫∂D

log |ζ − w |dωD(z, ζ ))dμ(w)+h(z)

= ∫D
gD(z, w)dμ(w) + ∫D1

log |z − w |dμ(w) + h(z)

=
1

2π ∫D
gD(z, w)Δu(w) + u(z)

u = pμ + h D1 h D1

∂D

μ

□

f Δ(0,1) f ≢ 0

log | f (z) | =
1

2π ∫
2π

0

1 − |z |2

|eiθ − z |2 log | f (eiθ) |dθ −
n

∑
j=1

log
1 − zwj

z − wj

|z | < 1 w1, ⋯, wn f Δ(0,1)

Δ := Δ(0,1)

dωΔ(z, eiθ) =
1

2π
1 − |z |2 |eiθ − z |2 dθ

gΔ(z, w) = log
1 − zw
z − w

Δ(log | f |) 2π
f
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	 Jensen’s formula for subharmonic functions Theorem 4.30. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Remark 4.8:  Being Harmonic on N.B.D. of  Is Necessary in Theorem 4.30 
	 If we merely suppose that  is subharmonic on , rather than on a neighbou- 
	 rhood of , then  may be an infinite measure on , and it is no longer clear 
	 whether the integral 

 

	 converges.	  
   In fact, the convergence turns out to be dependent on whether  has a harmonic 
majorant, a concept which we shall now define. 
Definition: Harmonic Majorant 
	 Let  be a subharmonic function on a domain . A harmonic majorant of  is a 
	 harmonic function  on  such that  there. 
Definition: Least Harmonic Majorant 
	 Let  be a subharmonic function on a domain  and let  be its harmonic maj- 
	 orant. Then  is called the least harmonic majorant if for every other harmonic 
	 majorant  of , . 
    In some literature, the harmonic majorant (respectively, harmonic minorant) is also 
called the harmonic correction. The following result tells us that the least harmonic 
majorant exists and without the harmonic majorant problem prescribed in Remark 
4.8 may occur. 
Theorem 4.31: Existence of Harmonic Majorant Prevents  Being Infinite Measure 
	 Let  be a subdomain of  such that  is non-polar, and let  be a subharmo- 
	 nic function on  with . 
	 (a)	 If  has a harmonic majorant on , then it has at least one least harmonic 
	 	 majorant and 

, . 

	 (b)	 If  has no harmonic majorant on  then 

, . 

Proof: 
	 Step I: Construct harmonic functions via Theorem 1.14 
	 Let  be a sequence of relatively compact subdomains of  such  
	 that 

 and . 

	 Without loss of generality, we may assume that each component of  	  
	 contains at least two points, so that by Theorem 4.7, each  is a regular 
	 domain. For , define 

□
u D

u D
D Δu D

∫D
gD(z, w)Δu(w)

⋄
u

u D u
h D h ≥ u

u D h
h

k u h ≤ k

Δu
D ℂ ∂D u

D u ≢ − ∞
u D

u(z) = h(z) −
1

2π ∫D
gD(z, w)Δu(w) z ∈ D

u D
1

2π ∫D
gD(z, w)Δu(w) = ∞ z ∈ D

{Dn}n≥1 ⊂ D D

D1 ⊂ D2 ⊂ D3 ⊂ ⋯ ⋃
n≥1

Dn = D

ℂ∞∖Dn
Dn

n ≥ 1
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, , 

	 then by the definition of harmonic measure (b),  is harmonic on . Now by 
	 Poisson-Jensen’s formula for subharmonic functions Theorem 4.30 one has 

 

	 for each . By Corollary 4.22.1  on , where  satisfies 

	 	 	  , 		 	 (4.7) 

	 by Theorem 1.14, also, either  is harmonic on  or  there. We now 
	 consider these two cases, for which should agree with (a) and (b) respectively. 
	 Step I: (a) 
	 Suppose first that  has a harmonic majorant  on . Then for each , it foll-	 
	 ows from the definition of  that 

, , 

	 where the inequality holds by the definition of harmonic majorant, and hence 
	  on . In particular , so  must be harmonic on . Now equation 
	 (4.7) then shows that  is a harmonic majorant of , and it is the least as  is  
	 arbitrary. Thus (a) is proved. 
	 Step II: (b) 
	 Now suppose that  has no harmonic majorant on . Then  cannot be harm- 
	 onic, for otherwise it would be such a marjorant. Consequently  on , 
	 and we conclude from (4.7) that 

, . 

	 This completes the proof for (b). 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    This has an interesting consequence for holomorphic functions. For the sakeness of 
simplicity we shall use h.m. to denote the harmonic majorant whenever necessary. 
Corollary 4.31.1: Criterion for Finite Growth of Holomorphic Zeros via H.M. 
	 Let  be a domain in  such that  is non-polar, let  be a holomorphic  
	 function on , and let  be a point in  such that . Then the  
	 followings are equivalent: 
	 (a)	  has a harmonic majorant on . 
	 (b)	 , where  are the zeros of . In particular, this 

	 	 series must converge if  is bounded. 
Proof: 
	 If we write , then  consists of -masses at the zeros of , and  
	 so 

hn(z) := ∫∂Dn

u(ζ )dωDn
(z, ζ ) z ∈ Dn

hn Dn

u(z) = hn(z) −
1

2π ∫Dn

gDn
(z, w)Δu(w)

z ∈ Dn hn ↑ h D h

u(z) = h(z) −
1

2π ∫D
gD(z, w)Δu(w) z ∈ D

h D h ≡ ∞

u k D n
hn

hn(z) ≤ ∫∂Dn

k(ζ )dωDn
(z, ζ ) = k(z) z ∈ Dn

h ≤ k D h ≢ ∞ h D
h u k

u D h
h ≡ ∞ D

1
2π ∫D

gD(z, w)Δu(w) = ∞ z ∈ D

□

D ℂ ∂D f
D z0 D f (z0) ≠ 0

log | f | D

∑
j≥1

gD(z0, wj) < ∞ w1, w2, ⋯ f

f

u := log | f | Δu 2π f
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. 

	 Result follows from Theorem 4.31. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   The Carleman-Milloux theorem, which arises naturally out of the problem of esti-
mating the harmonic measure, is to find the best upper bound for a subharmonic 
function  on  satisfying 
	 	 	    and , .	 	 (4.8) 

As an application of the “Green machinery”, we now present the beautiful solution 
found by Beurling and Nevanlinna. 
Theorem 4.32: Beurling-Nevanlinna Theorem 
	 Let  be a subharmonic function on  satisfying (4.8). Then 

, , 

	 and this bound is sharp. 
    The proof of Theorem 4.32 relies on two lemmas, the first of them is an elementa-
ry inequality for Green functions on the disc. 
Lemma 4.33: Rotational Bounds for Green Function Over Unit Disk 
	 If  then 

 
	 for . 
Proof: 
	 Let  and write  and . Then 

, 

	 which is maximized when , and minimized when  
	 . Thus we obtain the natural bounds 

, 

	 finally, using the formula in Example 4.4 we obtain 

. 

	 Plugging  into the above display yields the desired result. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Lemma 4.34: Subharmonic Function Formula in Unit Disk via Harmonic Majorant 
	 Let  and , and define  on  by 

 

	 Then  is subharmonic on  and harmonic on . Moreover, 

,  

∫D
gD(z, w)Δu(w) = ∑

j≥1

gD(z, wj)

□

u Δ(0,1)
sup
|z|=r

u(z) ≤ 0 inf
|z|=r

u(z) ≤ − 1 0 ≤ r < 1

u Δ(0,1)

u(z) ≤ −
2
π

sin−1( 1 − |z |
1 + |z | ) |z | < 1

Δ = Δ(0,1)
gΔ( − |z | , |w | ) ≤ gΔ(z, w) ≤ gΔ( |z | , |w | )

z, w ∈ Δ

z, w ∈ Δ z := |z |eiα w = |w |eiβ

1 − zw
z − w

2
= 1 +

(1 − |z |2 )(1 − |w |2 )
|z |2 + |w |2 − 2 |z | |w |cos(α − β )

cos(α − β ) = 1
cos(α − β ) = − 1

1 + |z | |w |
|z | + |w |

2
≤

1 − zw
z − w

2
≤

1 − − |z | |w |
|z | − |w |

2

gΔ(z, w) =
1 − zw
z − w

gΔ(z, w)
□

Δ := Δ(0,1) I := [0,1) v Δ

v(z) := {−ωΔ∖I(z, I ), z ∈ Δ∖I
−1, z ∈ I

v Δ Δ∖I

v(z) =
1

2π ∫I
gΔ(z, w)Δv(w) z ∈ Δ
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	 and 

, . 

Proof: 
	 By Theorem 4.13 (a)  is harmonic on  and thus the Gluing Theorem 2.11 
	 applies, it follows that  is subharmonic on . It left us to prove the moreover  
	 statement. 
	 Step I: First identity in the moreover statement 
	 Since  is defined to be non-positive,  is clearly a harmonic majorant of . In 
	 fact, it is also the least one, for if  is another least harmonic majorant of  then 

, , 

	 where the inequality holds since  thus  and the equality holds  
	 by Corollary 4.10.1, so by the extended maximum principle Theorem 3.17  
	 (b)  on . Applying Theorem 4.31 (a), we deduce that 

, , 

	 where  is the least harmonic majorant of  and the integral is taken over  
	 since  is harmonic on  and thus  there. 
	 Step II: Second identity in the moreover statement 
	 We calculate the harmonic measure under conformal mapping as given in 
	 Example 4.3 and obtain 

 

	 for . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
Proof of Theorem 4.32: 
	 We first verify the bound and then show that it is sharp. First, we set up our 
	 assumptions for the above two lemmas to apply. Let  and 

, 
	 where  is taken in order to match the form in Lemma 4.34. 
	 We may, without loss of generality, assume that 

 for all  

	 as otherwise we can work with  and sending . Thus if we define 
 

	 by  and , where  is the same as in Lemma 4.34. Now 
	 both lemmas are ready to be applied. We proceed to verify the bound. 
	 Step I: Verifying the bound in the assertion 
	 Let  be defined in Lemma 4.34. Given , we can find a compact subset  	  
	  of  such that . Then by “Existence of Pushforward Measure  

v(−x) = −
2
π

sin−1( 1 − x
1 + x ) x ∈ I

v Δ∖I
v Δ

v 0 v
k v

lim sup
z→ζ

− k(z) ≤ lim
z→ζ

− v(z) = 0 ζ ∈ ∂Δ∖{1}

k ≥ v −k ≤ − v

k ≥ 0 Δ

v(z) = 0 −
1

2π ∫I
gΔ(z, w)Δv(w) z ∈ Δ

0 v I
v Δ∖I Δv = 0

ωΔ∖I(z, I ) = 1 −
2
π

arg(
1 + z

z − z )
z ∈ Δ∖I

□

Δ := Δ(0,1)
U := {z ∈ Δ : u(z) < − 1}

−1

inf
|z|=r

u(z) < − 1 r

u − ε ε ↓ 0
T : Δ → I

T(z) = |z | T(U ) = I I

v ρ < 1
K U T(K ) = [0,ρ]
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	 under Surjection”  there exists a finite Borel measure  on  such that  5

	 . Define a function  on  by 

, . 

	 Now by Lemma 4.34  is harmonic on  and  .  

	 Moreover, if  we get 

 

	 where the first inequality holds by the upper bound in Lemma 4.33 and the  
	 second inequality holds since  and taking negation, the first equality 
	 holds by “Existence of Pushforward Measure under Surjection”, the second  
	 equality holds by holds by the first identity in Lemma 4.34, and the last equal- 
	 ity holds by the definition of  on . 
	 Hence, if  then 

, 

	 and so by the maximum principle Theorem 2.5 (b)  on . Since also 
	  on , we in fact have  on the whole of . Applying now the 
	 lower bound in Lemma 4.33, we deduce that, for each , 

, 

	 where the inequality holds by the lower bound in Lemma 4.33 and the equality 
	 holds by the second identity in Lemma 4.34. As this holds for each , we 
	 can send  and obtain 

, 

μ K
μT−1 = Δv

[0,ρ]
h Δ

h(z) = −
1

2π ∫K
gΔ(z, w)dμ(w) z ∈ Δ

h Δ∖K lim
z→ζ

h(z) = 0 ∀ζ ∈ ∂Δ

z ∈ Δ

h(z) ≥ −
1

2π ∫K
gΔ( |z | , |w | )dμ(w)

= −
1

2π ∫[0,ρ]
gΔ( |z | , w)Δv(w)

≥ −
1

2π ∫I
gΔ( |z | , w)Δv(w)

= v( |z | ) = − 1

[0,ρ] ⊆ I

v I
ζ ∈ ∂(Δ∖K )

lim sup
z→ζ,z∈Δ∖K

(u − h)(z) ≤ {0, ζ ∈ ∂Δ
u(ζ ) − (−1), ζ ∈ ∂K

≤ 0

u ≤ h Δ∖K
u ≤ − 1 ≤ h K u ≤ h Δ

z ∈ Δ

u(z) ≤ −
1

2π ∫K
gΔ( − |z | , |w | )dμ(w) = −

1
2π ∫[0,ρ]

gΔ( − |z | , w)Δv(w)

ρ < 1
ρ ↑ 1

u(z) ≤ −
1

2π ∫I
gΔ( − |z | , w)Δv(w) = v( − |z | ) = −

2
π

sin−1( 1 − |z |
1 + |z | )

 Theorem: (Existence of Pushforward Measure under Surjection): Let  and  be compact metric 5

spaces, and let  be a continuous surjection. Then, given , the collection of 
all Borel probability measures, there exists  such that  so that





for , the space of all continuous functions .

X Y
T : X → Y ν ∈ 𝒫(Y )

μ ∈ 𝒫(X ) μT−1 = ν

∫X
φ ∘ T (x)dμ(x) = ∫Y

φ(y)dν(y)

φ ∈ C(Y ) φ : Y → ℝ
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	 where in the first inequality the limit can be passed since the integral is bound-	
	 ed by Theorem 4.31 (a), the second equality holds by definition of , and the  
	 last equality holds by the second identity in Lemma 4.34. This proves the desi- 
	 red bound for . 
	 Step II: The desired bound is sharp 
	 To show that the bound is sharp, we note that for each , the function 

 
	 satisfies the hypotheses of the theorem, and so any general upper bound for  
	  must be at least as large as 

 

	 where the first equality holds by definition and the last equality holds by the 
	 second identity in Lemma 4.34. This observation concludes the proof. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    As a consequence of this result, we can derive some general estimates for harmonic 
measure on a simply connected domain. 
Corollary 4.32.1: Bounds for Harmonic Measure of Connected Domain without Zero 
	 Let  be a simply connected subdomain of  such that , and let . 
	 (a)	 If  and  then 

. 

	 (b)	 If  and  then 

. 

Proof: 
	 Step I: Assertion (a) 
	 Define  on  by 

 

	 As  is simply connected, Theorem 4.6 guarantees that it is a regular domain,  
	 and hence the gluing Theorem 2.11 applies to show that  is subharmonic on 
	 . Evidently, . Also no circle  can be entirely contained in  
	 for then it would separate  and , both of which lie outside , contradicting 
	 the fact that  is simply connected. Hence 

, . 

	 Applying Theorem 4.32 to the function  on , we deduce that 

, , 

	 which proves (a). 
	 Step II: (b) 

	 Let  be the image of  under the inversion . Then if  one has 

v

u

θ
uθ(z) := v(eiθz)

u(z)

sup
θ

uθ(z) = sup
θ

v(eiθz) = v( − |z | ) = −
2
π

sin−1( 1 − |z |
1 + |z | )

□

D ℂ 0 ∉ D ρ > 0
z ∈ D |z | < ρ

ωD(z, ∂D ∩ Δ(0,ρ)) ≥
2
π

sin−1( ρ − |z |
ρ + |z | )

z ∈ D |z | > ρ

ωD(z, ∂D ∩ Δ(0,ρ)) ≤
2
π

cos−1( |z | − ρ
|z | + ρ )

u Δ(0,ρ)

u(z) := {−ωD(z, ∂D ∩ Δ(0,ρ)), z ∈ Δ(0,ρ) ∩ D
−1, z ∈ Δ(0,ρ)∖D

D
u

Δ(0,ρ) u ≤ 0 |z | = r D
0 ∞ D

D
inf

|z|=r
u(z) = − 1 0 ≤ r < ρ

z̃ ↦ u(ρ z̃ ) Δ(0,1)

u(z) ≤ −
2
π

sin−1( 1 − |z /ρ |
1 + |z /ρ | ) z ∈ Δ(0,ρ)

D* D z ↦
1
z

z ∈ D
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	 Applying part (a) to , it follows that if also  then 

 

	 which completes the proof. 
	 	 	 	 	 	 	 	 	 	 	 	 	  

Summary of Chapter 4 
  Since the ordinary Dirichlet problem not necessarily has a solution for general 
domains, it is desired to derive a natural reformulation of the Dirichlet problem that 
always has a solution. We generalize the domain  to be any proper subdomain of 

 and we generalize the continuous boundary condition to bounded boundary 
condition. Then we define the Perron function, for which is defined in a way that if 
the generalized Dirichlet problem has a solution then it is the Perron function. 
Therefore we proved "Perron Function Is Always Bounded Harmonic", for the proof 
we used the lemma "Poisson Modification". But so far there are still cases for the 
generalized Dirichlet probelm not having solutions, and the reason is that the isolated 
boundary point lack sufficient influence to the subharmonic function and thus the 
Perron function has wrong boundary limit there. To this end we defined the Barrier, 
from which we defined the regularity and irregularity of boundary points, and finally 
regularity for the domain. Then our construction allows us to prove "Sufficiency for 
Perron Function Solving Dirichlet Problem", for the proof relies on a property that 
"Perron Function Is Antisymmetric" and a globalization for barriers "Bouligand’s 
Lemma". As a consequence for Perron function solving Dirichlet problem, we can 
prove "Existence and Unique Solution to the Dirichlet Problem". Moreover the 
regularity is necessary and sufficient for the existence of the solution. This answers 
part of our motivation and the other part will be told after Kellogg's theorem.                       

    In the second section, we aim to find the criterion for regularity. We first proved 
that "Simply Connected Domain Smaller than  Is Regular", and then we localize 
the result to obtain a sufficient condition for regularity of a single point "Boundary 
Point in Non-Trivial Component Is Regular". As the other extreme, we are also able 
to tell the irregularity "Boundary Point with Polar Neighbourhood Is Irregular". 
Summarizing we derive the desired "Criterion for Regularity". As a consequence we 
can show that the set of irregular points is always small, this result is also known as 
"Kellogg’s Theorem", a consequence of this is to finish the construction that the 
Generalized Dirichlet problem always has a solution, namely, "Solution of the 
Generalized Dirichlet Problem".                     

ωD(z, ∂D ∩ Δ(0,ρ)) = ωD*( 1
z

, ∂D*∖Δ(0,1/ρ))
≤ 1 − ωD*( 1

z
, ∂D* ∩ Δ(0,1/ρ))

D* |z | > ρ

ωD(z, ∂D ∩ Δ(0,ρ)) ≤ 1 −
2
π

sin−1( 1/ρ − 1/ |z |
1/ρ + 1/ |z | )

=
2
π

cos−1( |z | − ρ
|z | + ρ )

□

D
ℂ∞

ℂ∞
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    In the third setion, we need to verify that explicit solution to the Dirichlet problem 
over disk holds also for the generalized one. To this end we need to extend the 
Poisson integral to general domains. This motivates us to define the harmonic 
measure, for which is the common value between the Perron function and the 
generalized Poisson integral. This definition is confirmed by "Existence and 
Uniqueness for Harmonic Measure", as in our definition of harmonic measure the 
boundary condition is assumed to be continuous, it is natural to extend the definition 
of harmonic measure to bounded boundary condition, namely "  for All 
Bounded Borel Function  On Non-Polar ". Since the Perron function solves the 
generalized Dirichlet problem, it should be harmonic, this is confirmed by the 
"Characterization of Harmonic Measure". Moreover, a measure property for 
harmonic measure is proved, namely, "Mutual Absolute Continuity for Harmonic 
Functions". As desired, the harmonic measure does not charge polar sets, this is 
proved by "Borel Polar Subset Has Harmonic Measure Zero". Unfortunately the 
converse is not true. Since the harmonic measure is itself subharmonic, it has the 
desired properties we proved, and even better.  "Two Constant Theorem for Harmonic 
Measure" gives a generalized extended Maximum principle, "Subordination Principle 
for Harmonic Measure", and "Domain Monotonicity for Harmonic Measure". We can 
then tell the growth rate of subharmonic functions by introducing the concept of 
asymptotic value and "Asymptotic Value for Subharmonic Growth on Sector of Half-
Plane", for which the bound is sharp. Furthermore, we proved "Lindelöf Theorem" 
which tells us that the bounded holomorphic function over half-line can have at most 
one asymptotic value. These two results allow us to find the "Harmonic Measure for 
Half-Plane". Finally, we compare the equilibrium measure and the harmonic measure 
by showing that "Equilibrium and Harmonic Measure Agree on Component with ".                      

    In the fourth section we introduced the Green function, for which the existence and 
uniqueness is verified by "Existence and Uniqueness of Green Function". Some 
properties are derived: "Green Function Is Positive", "Subordination Principle for 
Green Function", "Domain Monotonicity for Green Function", and "Green Function 
Is Continuous in Increase of Domain". With the help of Green function we derived 
the "Fundamental Identity for Logarithmic Potential", which in turn tells us that the 
Green function is symmetric in the space variables, namely, "Symmetry Theorem for 
Green Function". Moreover, the relation between solvability of Generalized Dirichlet 
Problem and Green function is found in "Criterion for Solvability of Dirichlet 
Problem via Green Function". A consequence of the symmetry enables us to prove 
the strong converse of subordination principle, which is "Characterization of 
Conformal Mapping via Green Function", this yields a simple proof of the "Riemann 
Mapping Theorem". However, the conformal mapping will not extend to a 
homeomorphism of the closures, it is then natural to ask when it is possible. It is clear 
that every boundary point must be accessible, this is also sufficient: "Sufficiency for 
Extension to Homeomorphism on Closure".               
    Finally, in the last section, we proved "Poisson-Jensen’s Formula for Subharmonic 
Functions" and compared it with the "Poisson-Jensen’s Formula for Holomorphic 
Functions on Disc", for the latter is a consequence of the former. For the first result to 

HDφ = PDφ
φ ∂D

∞
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hold, the function has to be harmonic on the neighbourhood of the closure for the 
domain, as otherwise the Laplacian may be an infinite Radon measure. For us to 
control this term we defined the harmonic marjorant and the least harmonic majorant, 
and indeed they did their job as "Existence of Harmonic Majorant Prevents  Being 
Infinite Measure". As a corollary, we derived "Criterion for Finite Growth of 
Holomorphic Zeros via Harmonic Majorant". This motivates us to give bound 
estimates for harmonic measure, namely the Carleman-Milloux theorem, and we 
derived the green function version "Beurling-Nevanlinna Theorem". The proof relies 
on two technical lemma, the first is "Rotational Bounds for Green Function Over Unit 
Disk" and the second is "Subharmonic Function Formula in Unit Disk via Harmonic 
Majorant". Finally, as a consequence, we are able to find the "Bounds for Harmonic 
Measure of Connected Domain without Zero". 

5. Capacity 
5.1 Capacity as a Set Function 

   Even though polar sets have played a prominent rôle in the theory developed so far, 
we still lack an effective means of determining whether or not a given set is polar. 
Thus it was only by a very indirect method that we were able to demonstrate the 
existence of uncountable polar sets in Section 3.5, and nothing we have yet proved 
will tell us whether, for example, the Cantor set is polar. 
   More generally, it is desirable to be able to gauge, in some way, how close a set is 
to being polar. In the case of a compact set, the energy  of its equilibrium measure 
, a quantity that has already cropped up several times, provides just such an 

indicator. Taking exponentials in order to make it positive, we are led to the following 
definition. 
Definition: Logarithmic Capacity 
	 The logarithmic capacity of a subset  is given by 

, 

	 where the supremum is taken over all Borel probability measures  on   
	 whose support is a compact subset of . In particular, if  is a compact set with 
	 equilibrium measure  then . 
    Here it is understood that , so that  precisely when  is polar. Th-
ere are several other capacities with this property, but the logarithmic capacity enjoys 
the advantage of particularly close links with complex analysis. Since it is the only 
one we shall study, it will henceforth be referred to simply as ‘the capacity’. 
    We begin with proving some of its elementary properties. 
Theorem 5.1: Some Elementary Properties of Logarithmic Capacity 
	 (a)	 If  then .	 	 (Monotone) 
	 (b)	 If  then . 
	 (c)	 If  then  . 
	     	 (Positive Homogeneous in Scaling, Invariant in Constant Translation) 
	 (d)	 If  is a compact subset of  then . 
Proof: 

Δu

I(ν)
ν

E ⊆ ℂ
c(E ) := sup

μ
eI(μ)

μ ℂ
E K

ν c(K ) = eI(ν)

e−∞ = 0 c(E ) = 0 E

E1 ⊂ E2 c(E1) ≤ c(E2)
E ⊂ ℂ c(E ) = sup {c(K ) : K ⊂ E are compact subsets}
E ⊂ ℂ c(αE + β ) = |α |c(E ) ∀α, β ∈ ℂ

K ℂ c(K ) = c(∂eK )
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	 Both (a) and (b) are immediate consequences of the definition for logarithmic 
	 capacities. An application of Theorem 3.21 gives (d). It left us to prove (c). 
	 Let  be the map . Then  if and only if 
	 , and 

 
	 by the definition of energy. This proves (c). 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Since capacity is a monotone set function, it is natural to ask if it is continuous wi-
th respect to increasing or decreasing sequences. The following result gives the 
answer. 
Theorem 5.2: Capacity Is Continuous in Monotone Sequences 
	 (a)	 If  are compact subsets of  and  then  

. 

	 (b)	 If  are Borel subsets of  and  then 

. 

Proof: 
	 Step I: (a) 
	 By Theorem 5.1 (a) we certainly have 
	 	 	 	       .	 	 	 (5.1) 
	 In the other direction, for each  let  be an equilibrium measure for . 
	 Then  for all . By a diagonal argument, there is a subsequence  
	  which is weak -convergent to some . Using Lemma 3.6, 
	 we deduce that 

. 

	 Moreover, since  for all , it follows that , and also 
	 . Thus we obtain 

, 

	 and combining this with (5.1) yields the desired conclusion. 
	 Step II: (b) 
	 Again using Theorem 5.1 (a), we have 
	 	 	 	      .	 	 	 (5.2) 
	 In the other direction, let  be a compact subset of , and let  be an equilibri- 
	 um measure for . Since 

 as . 
	 The regularity of finite Borel measure gives compact sets  such  
	 that 

 and . 
	 For  sufficiently large we have , and for these  we define 

T : ℂ → ℂ T(z) := αz + β supp(μ) ⊂ E
supp(μT−1) ⊂ αE + β

I(μT−1) = I(μ) + log |α |

□

K1 ⊃ K2 ⊃ ⋯ ℂ K := ⋂
n≥1

Kn

c(K ) = lim
n→∞

c(Kn)

B1 ⊂ B2 ⊂ ⋯ ℂ B := ⋃
n≥1

Bn

c(B) = lim
n→∞

c(Bn)

c(K1) ≥ c(K2) ≥ c(K2) ≥ ⋯
n ≥ 1 νn Kn

νn ∈ 𝒫(K1) n ≥ 1
{νnk

}k≥1 * ν ∈ 𝒫(K1)

lim sup
n→∞

I(νnk
) ≤ I(ν)

supp(νn) ⊂ Kn n supp(ν) ⊂ K
eI(ν) ≤ c(K )

lim sup
k→∞

c(Knk
) ≤ c(K )

c(B1) ≤ c(B2) ≤ c(B3) ≤ ⋯
K B ν

K
ν(Bn ∩ K ) → ν(K ) n → ∞

Kn ⊂ Bn ∩ K

K1 ⊂ K2 ⊂ K3 ⊂ ⋯ ν(Kn) → 1
n ν(Kn) > 0 n
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. 

	 Thus  is a Borel probability measure on  and 

. 

	 As , we have  and  -almot everywhere, so 

. 

	 Since each  is supported on a compact subset of , we have 
 

	 and it follows that 
. 

	 Finally, since  is an arbitrary compact subset of , Theorem 5.1 (b) implies  
	 that 

, 

	 together with (5.2) yields the desired result. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Theorem 5.2 (a) is false for general Borel sets, indeed even for bounded opens ets. 
Example 5.1: Theorem 5.2 (a) Fails for Bounded Open Sets 
	 Consider the sequence 

 

	 for . Then clearly  and . But also each set 

	  contains a translation of the non-polar set , and so 
 . 

	 On the other hand, since  is polar, , therefore 
, 

	 thus the continuity fails.	  
    However, it can be shown that, given a bounded Borel set , we have 
	 	 	 	 .	 	 	 (5.3) 
This result, due to Choquet, looks like dual to Theorem 5.1 (b), but actually it lies 
much deeper, and we shall not prove it here (see Port and Sydney Theorem 6.78). 
    Capacity is not an additive set function, like a measure. 
Example 5.2: Capacity Is NOT an Additive Set Function 
	 Consider the unit disk , which has finite capacity, contains infinitely 
	 many disjoint translations of the unit interval , which has strictly positive 
	 capacity since it is non-polar.	  
    There is however a relation between capacity and unions. 
Theorem 5.3: Bound Estimates for Capacity of Borel Union 

μn :=
ν |Kn

ν(Kn)
μn Kn

I(μn) =
1

ν(Kn)2 ∫K ∫K
log |z − w |1Kn

1Kn
(w)dν(z)dν(w)

n → ∞ ν(Kn) → 1 1Kn
↑ 1K ν

lim
n→∞

I(μn) = ∫K ∫K
log |z − w |dν(z)dν(w) =: I(ν)

μn Bn
c(Bn) ≥ eI(μn)

lim inf
n→∞

c(Bn) ≥ c(K )

K B

lim inf
n→∞

c(Bn) ≥ c(B)

□

Un := {z ∈ ℂ : − 1 < Re(z) < 1,0 < Im(z) <
1
n }

n ≥ 1 U1 ⊃ U2 ⊃ U3 ⊃ ⋯ ⋂
n≥1

Un = ∅

Un [0,1]
c(Un) ≥ c([0,1]) > 0 ∀n ≥ 1

∅ c(U ) = 0
c(U ) = 0 < lim

n→∞
c(Un)

⋄
B

c(B) = inf {c(U ) : open U ⊃ B}

Δ(0,1)
[0,1]

⋄

112



	 Let  be a (finite or infinite) sequence of Borel subsets of , let  
	 , and let . 

	 (a)	 If  then  and 

	 	 	 	 .	 	 	 (5.4) 

	 (b)	 If   then 

	 	 	         .	 	 	 (5.5) 

   Hence, we interpret  as  and  as . Thus, for example, part (a) re-proves the 

result that a countable union of Borel polar sets is polar at least provided the union 
is bounded, but the unbounded case can then be deduced from Theorem 5.2 (b) , for 
which we proved in Corollary 3.4.2. 
Proof of Theorem 5.3: 
	 Step I:  in (a) 
	 We begin noting that if  then, for any probability measure  that is 
	 compactly supported on , we have 

, 

	 where the equality holds by the definition of energy and the inequality holds by 
	 assumption . Therefore  by definition of capacity. 
	 Step II: (5.4) in (a) 
	 As for (5.4), it suffices to prove it in the case where there are just two sets   
	 and . The case for  set then follows by induction, and for infinitely many  
	 sets the result can be deduced from Theorem 5.2 (b). By scaling, we can also 
	 suppose that . 
	 Let  be a compact subset of  and let . Our claim is to show that 

	 	 	 .	 	 (5.6) 

	 This inequality is clear if , so we may as well assume that . 
	 In that case , where  is the equilibrium measure for . Since 

, 
	 where the inequality holds by subadditivity of  and the equality holds since 	 
	 . Now by the regularity of finite Borel measure we can find compact sets 

,  
	 such that 

. 
	 For , let  be the equilibrium measure for . Then we have 

{Bn}n≥1 ℂ
B := ⋃

n≥

Bn d > 0

diam(B) ≤ d c(B) ≤ d
1

log(d /c(B))
≤ ∑

n≥1

1
log(d /c(Bn))

dist(Bj, Bk) ≥ d ∀j ≠ k
1

log+(d /c(B))
≥ ∑

n≥1

1
log+(d /c(Bn))

1
0

∞
1
∞

0

(
)

c(B) ≤ d
diam(B) ≤ d μ
B

I(μ) = ∫B ∫B
log |z − w |dμ(z)dμ(w) ≤ ∫B ∫B

(log d )dμ(z)dμ(w)

diam(B) ≤ d c(B) ≤ d

B1
B2 n

d = 1
K B ε > 0

1 − ε
log(1/c(K ))

≤
1

log(1/c(B1))
+

1
log(1/c(K2))

c(K ) = 0 c(K ) > 0
I(ν) > − ∞ ν K

ν(B1 ∩ K ) + ν(B2 ∩ K ) ≥ ν(K ) = 1
ν

d = 1
Kj ⊂ Bj ∩ K j = 1,2

ν(K1) + ν(K2) > 1 − ε
j = 1,2 νj Kj
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, 

	 where the first relation holds as  on  by Theorem 3.7 (a), the second 
	 holds by Fubini’s theorem, the third holds as  on  (recall that  
	 ), and the fourth holds since  n.e. and hence -a.e. 
	 on  by Theorem 3.7 (b).  
	 Now  since , and likewise for , so 	  
	 we obtain 

, . 

	 Summing over  gives (5.6). Finally, letting  in (5.6), and taking the supre- 
	 mum over all compact subset  yields (5.4). 
	 Step III: (b) 
	 As in (a), we can suppose that there are just two sets , and that . 
	 Let  be compact subsets of , , respectively. This time, our aim is to 
	 show that 

	 	         .	 (5.7) 

	 We can assume that , since otherwise (5.7) is clear any- 
	 way. For , let  be the equilibrium measure of  and set 

, 

	 where . Since , it follows that , and 

	 hence  is a probability measure with 

. 

	 Now  is supported on  so  and hence 

. 

	 Since  and  are all negative, when the inequality is inverted it 
	 becomes (5.7). Finally, taking supremum in (5.7) over all compact subsets  	  
	 of  and  of  gives (5.5). 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    We conclude by mentioning that capacity can behave badly with respect to comple-
ments. 
Example 5.3: Capacity Behave Bad in Set Complements 
	 Given , one can show that there exists an  set  such that  
	 . Let  be a subset of  which is not . Then every  subset 
	  of  satisfies 

I(ν) ≤ ∫Kj

pνdνj = ∫K
pνj

dν ≤ ∫Kj

pνj
dν = I(νj)ν(Kj)

pν ≥ I(ν) ℂ
pνj

≤ 0 K
diam(K ) ≤ d = 1 pνj

= I(νj) ν
Kj

I(ν) = log c(K ) ≤ 0 diam(K ) ≤ d = 1 I(νj)

ν(Kj)

log(1/c(K ))
≤

1
log(1/c(Kj))

≤
1

log(1/c(Bj))
j = 1,2

j ε ↓ 0
K ⊂ B

B1, B2 d = 1
K1, K2 B1 B2

1
log+(1/c(B))

≥
1

log+(1/c(K1))
+

1
log+(1/c(K2))

0 < c(Kj) ≤ c(B) < 1
j = 1,2 νj Kj

μ := (1 − t)ν1 + ν2

t :=
I(ν1)

I(ν1) + I(ν2)
−∞ < I(νj) < 0 0 < t < 1

μ

I(μ) ≥ (1 − t)2I(ν1) + t2I(ν2) =
I(ν1)I(ν2)

I(ν1) + I(ν2)
μ K1 ∪ K2 ⊂ B I(μ) ≤ log c(B)

log c(B) ≥
log c(K1)log c(K2)

log c(K1) + log c(K2)
log c(B) log c(Kj)

K1
B1 K2 B2

□

E ⊂ ℂ Fσ F ⊂ E
c(F ) = c(E ) S [0,1] Fσ Fσ
F [0,1] × S
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. 
	 Based on this one can construct a set  of positive capacity such that every  
	 subset  of  satisfies .	  

5.2 Computation of Capacity 
    Though our definition for capacity is fine for the purpose of deriving theoretical pr-
operties of capacity, it is not well studied to computing the capacity of specific sets. 
Even for the simplest one, that of a disc, requires some work, and most other sets are 
virtually impossible. 
   Fortunately, for compact sets at least, there are easier alternatives. They are based 
on the following relation between capacity and Green functions. 
Theorem 5.4: Capacity of Compact Non-Polar Set via Green Function 
	 Let  be a compact non-polar set and let  be the component of  which 
	 contains . Then, as , 
	 	 	        .	 	 	 (5.8) 
Proof: 
	 Let  be the equilibrium measure for . From the way that  was constructed 
	 in Theorem 4.20 we have 

, , 
	 where the first equality holds by Theorem 4.20 Step II.1 and the second holds 
	 by the definition of capacity. Now using Theorem 3.1 (ii) we also know that 

 as . 
	 Combining these two facts yields the desired result. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    As a consequence, we can read off the capacity of a disc. 
Corollary 5.4.1: Capacity of Closed Disc 
	 If  and , then . 
Proof: 
	 Setting , we have 

, 

	 where the first equality holds by the definition of  and the second holds by  
	 Theorem 5.4. Combining this with (5.8) we deduce that . 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    The subordination principle for Green functions gives rise to a useful inequality for 
capacity, as the inequality goes the other direction, we refer to it the inversed subord-
ination principle. 
Theorem 5.5: Inversed Subordination Principle for Capacity 
	 Let ,  be compact subsets of , and let  be the components contain- 
	 ing  of  and  respectively. If there is a meromorphic function  
	  such that 
	 	 	 	         as .		 	 	 (5.9) 
	 Then 

c(([0,1] × S )∖F) ≥ c([0,1]) > 0
E Fσ

F E c(E∖F ) = c(E ) ⋄

K D ℂ∞∖K
∞ z → ∞

gD(z, ∞) = log |z | − log c(K ) + o(1)

ν K gD

gD(z, ∞) = pν(z) − I(ν) = pν(z) − log c(K ) z ∈ D∖{∞}

pν(z) = log |z | + o(1) z → ∞

□

w ∈ ℂ r > 0 c(Δ(w, r)) = r

D := ℂ∞∖Δ(w, r)

gD(z, ∞) = log
z − w

r
= log |z | − log r + o(1)

D
c(Δ(w, r)) = r

□

K1 K2 ℂ D1, D2
∞ ℂ∞∖K1 ℂ∞∖K2

f : D1 → D2
f (z) = z + O(1) z → ∞
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, 
	 with equality if  is a conformal mapping from  onto . 
Proof: 
	 If  is polar then  and the inequality is clear. Thus, without loss of 
	 generality, we may assume that  is non-polar. We consider two cases for the 
	 inequality, namely,  is non-polar and  is general. 
	 Case I:  is non-polar 
	 Suppose that  is also non-polar. Then the Green function  and  both 
	 exists by Theorem 4.20, and by subordination principle Theorem 4.22, 

, . 
	 Now from Theorem 5.4, as , 

, 
	 and from (5.9), 

 

	 Combining these facts, we deduce that  in this case. 
	 Case II:  not necessarily non-polar 
	 For a general , take  and set 

. 
	 This set is non-polar by Corollary 3.4.1, so by Case I, we have 

. 
	 Sending  and using Theorem 5.2 (a), we again obtain , and 
	 so, in fact,  was non-polar anyway. 
	 Finally, assume that  is a conformal mapping from  onto . Then we can  
	 apply the same argument to  to deduce that 

, 
	 together with the meromorphic case we conclude the proof. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Using this, we can find the capacity of an interval. 
Corollary 5.5.1: Capacity for Interval 

	 If  then . 

Proof: 

	 The function  maps  conformally onto   

	 and satisfies (5.9), so using Theorem 5.5 in the first equality, 
, 

	 where the second equality holds by Corollary 5.4.1. For a general , the  
	 result follows by translating and scaling. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    In principle, the same technique works for any compact connected set  with more 
than one point. 

c(K2) ≤ c(K1)
f D1 D2

K2 c(K2) = 0
K2

K1 K1
K1

K1 gD1
gD2

gD2(f (z), ∞) ≥ gD1
(z, ∞) z ∈ D1

z → ∞
gD1

(z, ∞) = log |z | − log c(K1) + o(1)

gD2(f (z), ∞) = log | f (z) | − log c(K2) + o(1) (by (5.9))
= log |z | − log c(K2) + o(1) (meromorphic)

c(K2) ≤ c(K1)
K1

K1 ε > 0
Kε

1 := {z : dist(z, K1) ≤ ε}
c(K2) ≤ c(Kε

1)
ε ↓ 0 c(K2) ≤ c(K1)

K1
f D1 D2

f −1

c(K2) ≥ c(K1)

□

a ≤ b c([a, b]) =
b − a

4

f (z) := z +
1
z

ℂ∞∖Δ(0,1) ℂ∞∖[−2,2]

c([−2,2]) = c(Δ(0,1)) = 1
a, b

□
K
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Example 5.4: Capacity for Non-Trivial Connected Compact Set 
	 Let  be a non-trvial connected compact set. Using Riemann mapping theorem 
	 Theorem 4.28,  can be mapped conformally onto the unit disc, and, by 
	 composiing with a suitable Möbius transformation, we can find , and a  
	 conformal mapping 

 
	 which satisfies (5.9). The capacity of  is then given by 

, 
	 where the first equality holds by the conformal case in Theorem 5.5 and the 
	 second holds by Corollary 5.4.1.	  
    In practice, however, it is only possible to compute the conformal map  explicitly 
for relatively simple sets , such as those bounded by a finite number of straight lines 
and circular arcs. A table of some calculations is available in the appendix. 
    Capacities also behaves well under taking inverse images by polynomials. 
Theorem 5.6: Capacity under Inverse Image of Polynomials 

	 Let  be a compact set, and let , where . Then 

. 

Proof: 
	 Let  and  be components containing  of  and  respec- 
	 tively. Then, as is easily checked, 

 and . 
	 Case I:  is a regular domain 
	 Assume so, then by Theorem 4.26 (a), 

, . 

	 Moreover, by the definition of Green function (a),  is harmonic on 
	 , and as , 

, 
	 where the first equality holds by the definition of Green function (b) and the  
	 term  appearing in the second is due to the degree of the polynomial. Now by 
	 the uniquness part of Theorem 4.20, it follows that 

, . 
	 From Theorem 5.4 we also know that as , 

 

	 where the first equality holds by Theorem 5.4 and the second holds by the blue 
	 display above, the constant  is the  term by assumption. Also, 

 
	 by Theorem 5.4 once more. Putting these facts together, we obtain 

K
ℂ∞∖K

r > 0

f : ℂ∞∖K → ℂ∞Δ(0,r)
K

c(K ) = c(Δ(0,r)) = r

⋄
f

K

K q(z) :=
d

∑
j=0

ajzj ad ≠ 0

c(q−1(K )) = (c(K )
|ad | )1/d

D D̃ ∞ ℂ∞∖K ℂ∞∖q−1(K )

q( D̃ ) = D q(∂ D̃ ) = ∂D
D

lim
z→ζ,z∈ D̃

gD(q(z), ∞) = 0 ζ ∈ ∂ D̃

gD(f (z), ∞)
D̃ ∖{∞} z → ∞

gD(q(z), ∞) = log |q(z) | + O(1) = d log |z | + O(1)

d

gD(q(z), ∞) = d ⋅ gD̃ (z, ∞) z ∈ D̃
z → ∞

gD(q(z), ∞) = log |q(z) | − log c(K ) + o(1)
= d log |z | + log |ad | − log c(K ) + o(1),

log |ad | O(1)
gD̃ (z, ∞) = log |z | − log c(q−1(K )) + o(1)

117



, 
	 which gives the desired result. 
	 Case II: General  
	 For a general  and hence a general , take  and set 

.	  
	 Since no component of  is a singleton, it follows that the corresponding  
	 domain  is regular by Theorem 4.6. Therefore, by Case I, 

. 

	 The desired result now follows by letting  and using Theorem 5.2 (a). 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   This result can be used to compute the capacity of a few disconnected set which 
possesses symmetry. As an illustration, we do this for a union of two intervals of 
equal length. 
Corollar 5.6.1: Capacity for Simple Symmetric Disconnected Set 

	 If  then . 

Proof: 
	 Taking , we have 

, 

	 where the first equality holds by Theorem 5.6, the second holds by the definit- 
	 ion of , and the last holds by Corollary 5.5.1. 
	 	 	 	 	 	 	 	 	 	 	 	 	  

5.3 Estimation of Capacity 
    Even for relatively simple sets, such as a square, calculation of the capacity requir-
es some effort. For more complicated sets it is usually impossible, and we have to be 
content with estimates. 
    In this section we shall derive various upper and lower bounds for capacity in ter-
ms of other, more easily computed geometric quantities. As in the previous section, 
we shall restrict attention to compact sets, relying on the results such as Theorem 5.1 
(b) to cater for more general sets. 
     Many of the estimates rely on the following elementary result. 
Theorem 5.7: Upper Bound Estimate for Capacity under Bounded Mapping 
	 Let  be a compact subset of  and let  be a mapping satisfying 
	 	 	       , 	 	 (5.10) 
	 where  and  are positive constants. Then 

. 
Proof: 
	 Let  be an equilibrium measure for the compact set . By the “Existence  
	 of Pushforward Measure under Surjection” (see page 106), there exists a Borel 
	 probability measure  on  such that . Then 

d log c(q−1(K )) = log c(K ) − log |ad |

D
K D ε > 0

Kε := {z : dist(z, K ) ≥ ε}
Kε

Dε

c(q−1(Kε)) = (c(Kε)
|ad | )1/d

ε ↓ 0
□

0 ≤ a ≤ b c([−b, − a] ∪ [a, b]) =
b2 − a2

2

q(z) := z2

c([−b, − a] ∪ [a, b]) = c(q−1[a2, b2]) = c([a2, b2])1/2 = (b2 − a2

4 )1/2

q
□

K ℂ T : K → ℂ
|T(z) − T(w) | ≤ A ⋅ |z − w |α z, w ∈ K

A α
c(T(K )) ≤ Ac(K )α

ν T(K )

μ K μT−1 = ν
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	 where the equalities hold y the definition of energy and the inequality holds by 
	 the assumption (5.10). Hence, from the definition of capacity, we have 

, 
	 where the first and the last relations hold by the definition of capacity, and the  
	 second by the above display. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   Using this theorem in conjunction with Corollary 5.5.1, we deduce a number of 
“1/4 estimates” for capacity. 
Theorem 5.8: Quarter Estimates for Capacity of Certain Compact Sets 
	 Let  be a compact subset of . 

	 (a)	 If  is connected and has diameter , then .	  

	 (b)	 If  is a rectifiable curve of length , then . 

	 (c)	 If  is a subset of the real axis of Lebesgue measure , then . 

	 (d)	 If  is a subset of the unit circle of arc-length measure , then 
	 	 . 

   The example of a line segment or that of a circular arc in case (d)  shows that all 
these inequalities are sharp. 
Proof of Theorem 5.8: 
	 Step I: (a) 
	 Rotating and translating, we can suppose that . Let  denote  
	 the orthogonal projection onto the real-axis. Then  is a connected set con- 
	 taining , so it contains , and hence 

, 

	 where the first relation holds by Theorem 5.1 and the last by Corollary 5.5.1. 
	 On the other hand,  satisfies (5.10) with , so by Theorem 5.7 

, 

	 result follows. 
	 Step II: (b) 
	 Let  be the arc-length parametrization of . Then  satisfies  
	 (5.10) with , so by Theorem 5.7 using in the first realtion and  
	 Corollary 5.5.1 using in the second, one has 

I(ν) = ∫K ∫K
log |T(z) − T(w) |dμ(z)dμ(w)

≤ ∫K ∫K
log(A |z − w |α )dμ(z)dμ(w)

= log A + αI(μ)

c(T(K )) := eI(ν) ≤ AeαI(μ) ≤ Ac(K )α

□

K ℂ

K d c(K ) ≥
d
4

K ℓ c(K ) ≤
ℓ
4

K m c(K ) ≥
m
4

K a
c(K ) ≥ sin( a

4 )
( )

0,d ∈ K T : ℂ → ℝ
T(K )

0,d [0,d ]

c(T(K )) ≥ c([0,d ]) =
d
4

T A = α = 1

c(T(K )) ≤ c(K ) ≤
d
4

T : [0,ℓ] → K K T
A = α = 1
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, 

	 as desired. 
	 Step III: (c) 
	 Define  by , where  denotes the  
	 Lebesgue measure. Then , so 

. 

	 Again  satisfies (5.10) with , so the result follows as in (a). 
	 Step IV: (d) 
	 If  is contained within a semicircle, then one can employ an argument similar 
	 to that in (c), using the circular version  of Corollary 5.5.1. For a general set  6

	 , however, it is necessary to proceed somewhat differently.	  
	 Define  by 

, 

	 so that  is holomorphic on , with  and . Also, 

, 

	 where the second equality holds by Poisson integral, from which it follows that 
	 	 	 	 , .	 	 	 (5.11) 

	 Now define  by 

, 

	 so that  is holomorphic on , with  and . 
	 Also (5.11) implies that  , and so, using Schwartz’s  
	 lemma, it follows that 

, . 

	 Finally, define  by 
, 

	 so that  is meromorphic on , with  as . Then 
, . 

c(K ) ≤ c([0,ℓ]) =
ℓ
4

T : ℝ → ℝ T(x) := Leb(K ∩ (−∞, ∞]) Leb
T(K ) = [0,m]

c(T(K )) = c([0,m]) =
m
4

T A = α = 1

K

K
f1 : ℂ∞∖K → ℂ

f1(z) :=
1
4 ∫K

z + ζ
z − ζ

|dζ |

f1 ℂ∞∖K f1(∞) =
a
4

f1(0) =
−a
4

Re(f1(z)) =
1
4 ∫K

|z |2 − 1
|z − ζ |2 |dζ | =

−π
2 ∫K

P(z, ζ ) |dζ |

−
π
2

≤ Re(f1(z)) ≤
π
2

z ∈ ℂ∞∖K

f2 : ℂ∞∖K → ℂ

f2(z) :=
eif1(z) − e−ia/4

eif1(z) + eia/4

f2 ℂ∞∖K f2(∞) = ieia/4 sin(a /4) f2(0) = 0
| f2(z) | ≤ 1 ∀z ∈ ℂ∞∖K

f2(z)
z

< 1 z ∈ ℂ∞∖K

f3 : ℂ∞∖K → ℂ∞

f3(z) = f2(∞)
z

f2(z)
f3 ℂ∞∖K f3(z) = z + O(1) z → ∞

| f3(z) | > | f2(∞) | = sin(a /4) z ∈ ℂ∞∖K

 Theorem: (Capacity of Simple Symmetric Disconnected Set - Circular Version) Let  be the 6

circular arc , where , and let 	 


, 


where the square root is taken so that  as . Then  maps  
conformally onto , and .

K
{eiθ : |θ | ≤ α /2} 0 < α < 2π

f (z) :=
1
2 (z − 1 + (z − eiα/2)(z − e−iα/2))

f (z) = z + O(1) z → ∞ f ℂ∞∖K
ℂ∞∖Δ(0, sin(α /4)) c(K ) = sin(α /4)
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	 Now by Theorem 5.5 we deduce that 
, 

	 as claimed. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    As an application of this result, we prove the celebrated Koebe one-quarter theor-
em for univalent functions. 
Theorem 5.9: Koebe’s One-Quarter Theorem 
	 If  is an injective holomorphic function on  with  and .  
	 Then 

. 

   That  contains some disc about the origin is a consequence of the open 
mapping theorem. The point of Koebe’s theorem is that this disc always has radius at 

least . The constant  is sharp, as can be seen by considering the function 

. 

Proof of Theorem 5.9: 
	 Let  be the compact set given by 

 

	  and define  by 
. 

	 Then  is a conformal homeomorphism, and  as . Thus 
	 by Theorem 5.5 conformal case using in the first and Corollary 5.4.1 using in 
	 the second, we have 

. 
	 Moreover,  is homeomorphic to , which is simply connected, 
	 and hence  is connected. Therefore by Theorem 5.8 (a), 

. 
	 As , we deduce that , from which the result follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   As we saw in Theorem 5.3, it is an easy consequence of the definition of capacity 
that 

 
for every compact set . But in fact this can be improved. 
Theorem 5.10: Capacity Upper Bound for Compact Set with Finite Diameter 
	 If  is a compact subset of  with diameter . Then 

. 

    The example of a disc shows that this inequality is sharp. 
Proof of Theorem 5.10: 

c(K ) ≥ sin( a
4 )

□

f Δ(0,1) f (0) = 0 f′￼(0) = 1

f(Δ(0,1)) ⊃ Δ(0,
1
4 )

f(Δ(0,1))
1
4

1
4

f (z) =
z

(1 − z)2

K

K := {z ∈ ℂ :
1
z

∉ f(Δ(0,1))}
f1 : ℂ∞∖Δ(0,1) → ℂ∞∖K

f1(z) =
z

f (1/z)
f1 f1(z) = z + O(1) z → ∞

c(K ) = c(Δ(0,1)) = 1
ℂ∞∖K ℂ∞∖Δ(0,1)
K

diam(K ) ≤ 4c(K ) = 4
0 ∈ K K ⊂ Δ(0,4)

□

c(K ) ≤ diam(K )
K

K ℂ d

c(K ) ≤
d
2
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	 Replacing  by its convex hull, which increases the capacity but leaves the di- 
	 ameter unchanged, we can assume that  is convex. We may also suppose that 
	  contains more than one point, so by the Riemann mapping Theorem 4.28  
	 there is a conformal map  with . Define 

 
	 by 

, 

	 so that  is subharmonic on . Then, using Theorem 5.4, we have 

 as , 

	 and so we can remove the singularity at  by Theorem 3.13 via setting 

. 

	 Now 
 as . 

	 Therefore, 

, . 

	 Hence by the maximal principle Theorem 2.5 (b),  on , and in  
	 particular , result follows from Theorem 5.4. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   Since there are sets, such as line segments, which have positive capacity but zero 
area, we would not expect to find an upper bound for capacity in terms of area. But 
there is a lower bound, which can be viewed as a kind of isoperimetric inequality for 
capacity. 
Theorem 5.11: Lower Bound for Capacity of Compact Sets with Finite Area 
	 If  is a compact susbet of  with area , then . 
    The example of a disc shows that this inequality is sharp, though if  is connected 
then it can be generalized to take account of the “dispersion” of  (see Exercise 5). 
The proof of Theorem 5.11 proceeds with a lemma, which is of interest in its own 
right. 
Lemma 5.12: Ahlfors-Beurling Inequality 
	 If  is a compact subset of  with area , then 

, . 

Proof: 
	 We begin by making some reductions. First of all, if  has zero area then the  
	 inequality is obvious, so we may as well assume that . Also, it is enough 
	 to prove the inequality for the special case ; as the general case then foll- 
	 ows by applying this to the translate . Finally, we can suppose that 

K
K

K
f : ℂ∞∖K → ℂ∞∖Δ(0,1) f (∞) = ∞
u : ℂ∖K → [−∞, ∞)

u(z) := log
z − f −1( − f (z))

d
− gℂ∞∖K(z, ∞)

u ℂ∖K

u(z) = log
2z
d

− log |z | + log c(K ) + o(1) z → ∞

∞

u(∞) = log( 2
d ) + log c(K )

dist(f −1( − f (z)), ∂K) → 0 dist(z, ∂K ) → 0

lim sup
z→ζ

u(z) ≤ log
d
d

− 0 = 0 ζ ∈ ∂K

u ≤ 0 ℂ∞∖K
u(∞) ≤ 0

□

K ℂ A c(K ) ≥ A /π
K

K

K ℂ A

∫K

1
w − z

d A(w) ≤ πA z ∈ ℂ

K
A > 0

z = 0
K − z

122



, 

	 otherwise just rotate  about the origin until it became true. 

	 Let  be the disc , where the radius  is chosen so 

	 that  and  have the same area, in other words, . Then 

 

	 where the first relation holds as  is chosen so that  and  have the same  
	 area, the second holds by the subadditive and assumption , 
	 the third holds as  and  have the same area, the fourth by the assumption 
	 , and the fifth by change of coordinates. This display gives 
	 the desired inequality. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   This result tells us that the size of the kernel over a compact set is bounded above 
by a constant multiple of the measure of the set (in our case the area of the set). 
Proof of Theorem 5.11: 
	 Let  be the component of  containing , and define  by 

. 

	 Then  is meromorphic,  as , and by Lemma 5.12   
	 maps  onto . Hence by Theorem 5.5 using in the first and 
	 Corollary 5.4.1 using in the second, one has 

, 

	 as claimed. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Finally, in this section, we return to the problem mentioned at the beginning of this 
chapter, to determine whether or not the Cantor set is polar. In fact we shall study the 
generalized Cantor set, constructed as follows. 
Definition: Generalized Cantor Set 

∫K
w−1d A(w) ≥ 0

K

Δ {w ∈ ℂ : Re( 1
2 ) >

1
2a } a

Δ K πa2 = A

∫K

1
w

d A(w) = ∫K
Re( 1

w )d A(w)

≤ ∫K∩Δ
Re( 1

w
d A(w) + ∫K∖Δ

1
2a

d A(w)

= ∫K∩Δ
Re( 1

w )d A(w) + ∫Δ∖K

1
2a

d A(w)

≤ ∫Δ
Re( 1

w )d A(w)

= ∫
π/2

−π/2 ∫
2a cos θ

0

cos θ
r

rdrdθ

= πa = πA,
a Δ K

Re(1/w) > 1/2a
Δ K

Re(1/w) > 1/2a

□

D ℂ∞∖K ∞ f : D → ℂ∞

f (z) := ( 1
A ∫K

1
z − w

d A(w))−1

f f (z) = z + O(1) z → ∞ f
D ℂ∞∖Δ(0, A /π)

c(K ) ≥ c(Δ(0, A /π)) = A /π

□
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	 Let  be a sequence of numbers such that  .  
	 Define  to be the set obtained from  by removing an open interval of 
	 length  from the center. 
	 At the -th stage, let  be the set obtained by removing from the mi- 
	 ddle of each interval in  an open sub-interval whose length is a  
	 proportion  of the whole interval. We thereby obtain a decreasing sequence of 
	 compact sets , and the corresponding generalized Cantor set 
	 is defined to be 

. 

	 It is readily checked that  is a compact, perfect, totally disconnected set of 
	 Lebesgue measure . 
    We now investigate the capacity of the generalized Cantor set. 
Theorem 5.13: Capacity Bounds for Generalized Cantor Set 
	 Let  and . Then 

. 

   Thus, for example, the standard one-third Cantor set, which is obtained by taking 

 for all , has capacity at least , and in particular it is non-polar. 

Example 5.5: Uncountable Polar Set 
	 If we set , then  is polar, thereby providing the long- 
	 promised example of uncountable polar set.	  
Proof of Theorem 5.13: 
	 Step I: Upper Bound 
	 We begin with proving the upper bound. Put , and let ,  
	 denote the left hand side and right hand side of , respectively.  
	 As , we can apply Theorem 5.3 (a) with  to obtain 

. 

	 By the symmetry , so the above inequality simplifies to 

. 

	 Now , and  is just the set  scaled down by a  

	 factor , so the inequality becomes 

. 

	 Sending  yields 

, 

s := {sn}n≥1 0 < sn < 1 ∀n ≥ 1
C(s1) [0,1]
s1
n C(s1, ⋯, sn)

C(s1, ⋯, sn−1)
sn

{C(s1, ⋯, sn)}n≥1

C(s) := ⋂
n≥1

C(s1, ⋯, sn)

C(s)
Πn≥1(1 − sn)

p := Πn≥1(1 − sn)1/2n q := Πn≥1s1/2n
npq

2
≤ c(C(S )) ≤

p
2

sn =
1
3

n
1
9

sn := 1 − (1/2)2n C(S )
⋄

K := C(s1, ⋯, sn) K1 K2
K

diam(K ) = 1 d = 1
1

log(1/c(K ))
≤

2

∑
j=1

1
log(1/C(Kj))

c(K1) = c(K2)

log c(K ) ≤
1
2

log c(K1)

K = C(s1, ⋯, sn) K1 C(s2, ⋯, sn)
1 − s1

2
log(c(C(s1, ⋯, sn))) ≤

n

∑
j=1

1
2 j

log(
1 − sj

2 ) +
1
2n

log c([0,1])
n → ∞

log c(C(s)) ≤
∞

∑
j=1

1
2 j

log(
1 − sj

2 )
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	 which gives the desired upper bound. 
	 Step II: Lower Bound 
	 The lower bound is proved in a similar fashion. With  as before, we  
	 have , so applying Theorem 5.3 (b) with  gives 

. 

	 If , then this simplifies to 

. 

	 If , then this inequality is clear anyway, since . Repeat- 
	 ing the argument used in the first step leads to 

, 

	 which yields the lower bound. 
	 	 	 	 	 	 	 	 	 	 	 	 	  

5.4 Criterion for Thinness 
    As we saw in Theorem 4.9 (b), the question of whether a given point is regular for 
the Dirichlet problem on a domain  is equivalent to whether  is non-thin at 
the point. Unfortunately, at that time we had no general criterion for thinness, but 
with the theory of capacity at our disposal, we are now in a position to put that right. 
Theorem 5.14: Wiener’s Criterion for Thinness 
	 Let  be an  subset of  and let . Let  be a constant with , 
	 and for  define 

. 
	 Then  is thin at  if and only if 
	 	 	 	         .	 	 	 	 (5.12) 

Proof: 
	 Since thinness and capacity both remain invariant under translation, we may as 
	 well suppose from the outset that . We can also suppose that , and 
	 that   (otherwise just remove , and add an appropriate counta- 
	 ble set). 
	 Step I:  
	 Assume first that (5.12) holds, we shall show that  is thin at . As each  is  
	 an  set, we may write it as , where  is an increasing 

	 sequence of compact sets. For each pair , let  be an equilibrium meas- 
	 ure for  (the existence is guaranteed by Theorem 3.21). Then 

 n.e. on , 
	 where the first relation holds by Frostman’s Theorem 3.7, the second holds by 

K, K1, K2
dist(K1, K2) = s1 d = s1

1
log+(s1/c(K ))

≥
2

∑
j=1

1
log+(s1/c(Kj))

c(K ) < s1

log c(K ) ≥
1
2

log s1 +
1
2

log c(K1)

c(K ) ≥ s1 c(K ) ≥ c(K1)

log c(C(s)) ≥
∞

∑
j=1

1
2 j

log sj +
∞

∑
j=1

1
2 j

log(
1 − sj

2 )
□

D ℂ∞∖D

F Fσ ℂ ζ0 ∈ ℂ γ 0 < γ < 1
n ≥ 1

Fn := {z ∈ F : γn < |z − ζ0 | ≤ γn−1}
F ζ0

∑
k≥1

n
log(2/c(Fn))

< ∞

ζ0 = 0 0 ∉ F
Fn ≠ ∅ ∀n ≥ 1 0

⇐
F 0 Fn

Fσ Fn := ⋃
n≥1

Knm {Knm}m≥1

n, m νnm
Knm

pνnm
= I(νnm) = log c(Knm) ≤ log c(Fn) Knm

125



	 definition of capacity, and the last holds by Theorem 5.1 (a). Moreover, as 
	 , which has diameter , we have 

 on . 
	 Lastly, since , it follows that 

, 

	 where the first relation holds by the definition of logarithmic potential and the 
	 second holds by our assumption on . Now set 

. 

	 By our assumption, , so we can find a sequence of positive num- 
	 bers  such that  and still . For each , def- 
	 ine  on  by 

. 

	 Then by Theorem 2.12,  is subharmonic on , and 
 n.e. on  

 on  
 

	 Next, define  on  by 
, 

	 where  denotes the upper semicontinuous regularization, thus Theorem 3.9  
	 (a) tells us that  is subharmonic on , and by Theorem 3.9 (b) 

 n.e. on  
 on  

. 

	 In particular, if we set 
, 

	 then 
, 

	 where the first relation holds since  n.e. on , the second holds by 
	 assumption of , and the last by the bound of  we showed above. 
	 Therefore,  is thin at  by definition. But  is an  polar set (since  
	  n.e. on , thus  on polar sets, Corollary 3.4.2 then tells us  
	 that  is polar), therefore by Theorem 3.25,  is thin at  too. It follows that   
	 is thin at 0, as desired. 
	 Step II:  

Knm ⊂ Δ(0,1) 2
pνnm

≤ log 2 Δ(0,1)
Knm ∩ Δ(0,γn) = ∅

pνnm
(0) = ∫Knm

log |w |dνnm(w) ≥ n log γ

Fn

αn :=
1

log(2/c(Fn))
Σn≥1nαn < ∞

{βn}n≥1 βn → ∞ Σn≥1nαnβn < ∞ m ≥ 1
um Δ(0,1)

um := ∑
n≥1

αnβn(pνnm
− log 2)

um Δ(0,1)
um ≤ − βn Knm

um ≤ 0 Δ(0,1)
um(0) ≥ ∑

n≥1

αnβn(n log γ − log 2)
u Δ(0,1)

u := ( lim sup
m→∞

um)*

*
u Δ(0,1)

u ≤ − βn Fn
u ≤ 0 Δ(0,1)

u(0) ≥ ∑
n≥

αnβn(n log γ − log 2)

E := ⋃
n≥1

{z ∈ Fn : u(z) ≥ − βn}

lim sup
z→0,z∈F∖E

u(z) ≤ lim
n→∞

− βn = − ∞ < u(0)

u ≤ − βn Fn
βn u(0)

F∖E 0 E Fσ
u ≤ − βn Fn u ≥ − βn

E E 0 F

⇒
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	 Now we suppose that  is thin at . By the definition of thinness, there exists a  
	 subharmonic function  on a neighbourhood of  such that 

. 

	 By the Riesz decomposition Theorem 3.23, we may take  to be of the form 
	 , where  is a finite Borel measure on . Then in particular 

, 
	 and hence, writing 

, 
	 we have 

, . 

	 Now we decompose the summation into three parts and consider the value on  
	 the right hand side respectively:  

, , and . 
	 Case I:  
	 Now, if  and , where , then , and so 

. 

	 Case II:  
	 Also, if  and , where , then , so 

. 

	 Case III:  
	 Lastly, since  is supported on , we have 

. 

	 It follows that, given any , there exists  such that , 

, . 

	 Thus, combining the three cases we have proved, we can choose an  sufficie- 
	 ntly small so that 

. 

	 Then, increasing  if necessary, we have that, for all , 

, . 

	 For each , write , where  is an increasing seque- 

	 nce of compact sets, and let  be the equilibrium measure for  (again, the 

F 0
u 0

lim sup
z→0,z∈F

u(z) < u(0)

u
u = pμ μ Δ(0,1)

pμ(0) > − ∞

Ak := {w : γk < |w | ≤ γk−1}

pμ(z) − pμ(0) = ∑
k≥1

∫Ak

log 1 −
z
w

dμ(w) z ∈ ℂ

1 ≤ k ≤ n − 2 n + 2 ≤ k < ∞ n − 1 ≤ k ≤ n + 1
1 ≤ k ≤ n − 2
z ∈ An w ∈ Ak k ≤ n − 2 |z /w | ≤ γn−k−1

inf
z∈An

n−2

∑
k=1

∫Ak

log 1 −
z
w

dμ(w) ≥
n−2

∑
k=1

log(1 − γn−k−1)μ(Ak)
n→∞

0

n + 2 ≤ k < ∞
z ∈ An w ∈ Ak k ≥ n + 2 |z /w | ≥ γ−1

inf
z∈An

∞

∑
k=n+2

∫K
log 1 −

z
w

dμ(w) ≥
∞

∑
k=n+2

log(γ−1 − 2)μ(Ak)
n→∞

0

n − 1 ≤ k ≤ n + 1
μ Δ(0,1)

n+1

∑
k=n−1

∫Ak

log |w |dμ(w) ≤ 0

ε > 0 n0 ∀n ≥ n0
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∑
k=n−1

∫Ak

log |z − w |dμ(w) ≤ pμ(z) − pμ(0) + ε z ∈ An

ε

lim sup
z→0,z∈F

pμ(z) < pμ(0) − 2ε

n0 n ≥ n0
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∑
k=n−1

∫Ak

log |z − w |dμ(w) ≤ − ε z ∈ Fn

n ≥ n0 Fn := ⋃
m≥1

Knm {Knm}m≥1

νnm Knm
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	 existence is guaranteed by Theorem 3.21). Then replacing the last inequality 
	 by  yields 

. 

	 Now by Frostman’s Theorem 3.7 (a), 
 on . 

	 Hence, 

 for , . 

	 Sending  and rearranging the terms yields 

, . 

	 Thus to show that (5.12) holds, it suffices to show that 
	 Claim: . 

	 This is done by observing that if  then  
. 

	 Therefore, 

. 

	 This completes the proof. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    As we have seen in the proof, we interchange the use of energy, capacity, and pote-
ntial whenever one makes us more advantageous. This interchange can be done via 
the bridge given by Frostman’s Theorem 3.7. Moreover, we can add subharmonic 
functions into display by Riesz’s decomposition Theorem 3.23. 
    Even though the criterion (5.12) is rather complicated, it can be combined with the 
results of the previous section to provide simpler conditions which are necessary for 
thinness, or, equivalently, ones which are sufficient for non-thinness. 
Theorem 5.15: Set Thin at Zero Has Finite Logarithmic Measure 
	 Let  be an  subset of . If  is thin at , then 

 
	 is a set of finite logarithmic measure, that is, 

. 

Proof: 
	 Let , and for  define 

. 
	 Let  denote the circular projection . Then, by applying 
	 Theorem 5.8 (c) in the first relation and Theorem 5.7 in the second to a seq- 

pνnm
n+1

∑
k=n−1

∫Ak

pνnm
(w)dμ(w) ≤ − ε

pνnm
≥ I(νnm) = log c(Knm) ℂ

n+1

∑
k=n−1

log c(Knm)μ(Ak) ≤ − ε n ≥ n0 m ≥ 1

m → ∞
1

log(1/c(Fn))
≤

1
ε

n+1

∑
k=n−1

μ(Ak) n ≥ n0

∑
n≥1

(n − 1)μ(An) < ∞

w ∈ An
log |w | ≤ − (n − 1)log(1/γ)

∑
n≥1

(n − 1)μ(An) ≤ − ∑
n≥1

∫An

log |w |
log(1/γ)

dμ(w) = −
pμ(0)

log(1/γ)
< ∞

□

F Fσ ℂ F 0
E := {r ∈ (0,1] : reiθ ∈ F for some θ}

∫E

1
x

d x < ∞

0 < γ < 1 n ≥ 1
Fn := {z : γn < |z | < γn−1}

T : ℂ → ℝ T(z) := |z |
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	 uence of compact sets incraesing to , we obtain 

. 

	 Since , it follows that 

, 

	 where the first inequality holds since  and , and 
	 the definition of ; the second inequality holds by the above display. Note that 

	  for , 

	 thus by Theorem 5.3 (a), 

. 

	 Hence 

, 

	 and since  is thin at , this result is finite by Theorem 5.14. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
  Using radial projection instead of circular projection leads to a different type of 
result. In particular, Theorem 5.15 and Theorem 5.16 would allow us to construct 
polar set from  set. 
Theorem 5.16: Polar Set Derived from Thin Set via Radial Projection 
	 Let  be an  subset of . If  is thin at , then 

 
	 is a polar set. 
Proof: 
	 Again, let  and define 

. 

	 This time, let  be the radial projection . 

	 Then, by applying Theorem 5.7 to a sequence of compact sets increasing to  
	 we have 

. 

	 Now, 
, 

	 it follows that for every , using Theorem 5.1 (a) in the first relation, 
	 Theorem 5.3 (a) in the second relation, and the display above for capacity  
	 bound, one obtains that 

Fn

∫T(Fn)
d x ≤ 4c(T(Fn)) ≤ 4c(Fn)

E := ⋃
n≥1

T(Fn)

∫E

1
x

d x ≤ ∑
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1
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d x ≤ ∑
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4c(Fn)
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T(z) := |z | E = ∪n≥1 T(Fn)
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1

log(1/t)
t ∈ (0,1)

c(Fn)
γn

≤
2

log(2γn /c(Fn))

∫E

1
x

d x ≤ 8∑
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1
log(2γn /c(Fn))

F 0
□
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F Fσ ℂ F 0
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0 < γ < 1
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|z |
Fn
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γn
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⋃
n≥m

T(Fn)
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	 Again, if  is thin at , then by Theorem 5.14, the last series converges, and, 
	 hence, sending  gives  and it follows that  is polar. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    This has the following pleasant consequence. 
Corollary 5.16.1: Radial Convergence for Subharmonic Functions Near Origin 
	 If  is a function subharmonic on a neighbourhood of  then 

 for n.e. . 

Proof: 
	 For each , define 

. 

	 Then  is an open set which is thin at , so by Theorem 5.16, 

 for n.e. . 

	 As a countable union of Borel polar set is polar by Corollary 3.4.2, we have 
 for n.e. . 

	 On the other hand, by upper semicontinuity, we ccertainly have 
 for all . 

	 Combining these inequalities yields the desired result. 
	 	 	 	 	 	 	 	 	 	 	 	 	  

5.5 Transfinite Diameter 
    There is another approach to capacity which is actually more direct than our defini-
tion in the first section. As well as giving further useful estimates for capacity, it has 
close links with the theory of uniform approximation. It is based on the following 
definition. 
Definition: n-th Diameter 
	 Let  be a compact subset of  and let . The -th diameter of  is given 
	 by 

. 

Definition: Fekete n-Tuple 
	 An -tuple  for which the supremum is attained is called the 

1
log(2/c(E ))

≤
1

log(2/c( ∪n≥m T(Fn)))
≤ ∑

n≥m

1

log(2/c(T(Fn)))
≤ ∑

n≥m

1
log(2γn /c(Fn))

F 0
m → ∞ c(E ) = 0 E

□

u 0
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1
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lim sup
r→0
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□

K ℂ n ≥ 2 n K

δn(K ) := sup { ∏
j,k:j<k

|wj − wk |2/n(n−1) : w1, ⋯, wn ∈ K}
n w1, ⋯, wn ∈ K
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	 Fekete -tuple for . 
    As  is compact, a Fekete -tuple always exists, though it needs not to be unique. 
The maximum principle Theorem 2.5 shows that in fact it must lie in . 
    Evidently,  is just the usual diameter of , and  for all . 
Indeed, as we shall shortly see, the sequence  is decreasing, so it has a 
limit, often called the transfinite diameter of . Actually, as the following theorem 
suggests, this is nothing than the capacity. 
Theorem 5.17: Fekete-Szegö Theorem 
	 Let  be a compact subset of . Then the sequence  is decreasing 
	 and 

. 

Proof: 
	 In order to simplify the notation, throughout the proof we shall denote  as 
	 . 
	 Claim I:  is decreasing 
	 Let  and choose  such that 

. 

	 Then, since  is an Fekete -tuple in , by definition one has 
. 

	 There are  such inequalities in all, the -th tuple ( ) one 
	 obtained by omitting the terms involving . Multiplying them all together  
	 gives 

. 

	 Hence  as desired. 
	 Claim II:  . 
	 Next, we show that  for all . If . Then taking log 
	 on both sides and using the definition of energy give 

. 

	 Integrating this inequality with respect to , where  is an equ- 
	 ilibrium measure for  (existence and uniqueness by Theorem 3.21), we have 

. 

	 Hence , thus by the definition of capacity  . 
	 Claim III:  . 

	 Choose  and set 

n K
K n
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. 

	 For each , let  be normalized Lebesgue measure on the circle  and  

	 put . Then  is given by 

. 

	 Now for each , 

, 

	 where the last equality holds by Corollary 3.21.1 and Corollary 5.4.1. 
	 Moreover, for each pair , 

, 

	 where the first relation holds by the definition of potential and the second by 
	 the upper semicontinuous since  is subharmonic by Theorem 3.1 (a). 
	 Furthermore, using the same argument, we have 

 

	 since  is subharmonic by Theorem 2.19. 
	 Summing these together yields 

 

	 where the second term in the last equality comes from the definition for -th 
	 diameter. Since  is supported on , it follows that 

. 
	 Hence . Finally, since  is arbitrary, sending  and 

	 using Theorem 5.2 (a) yield the desired result. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Much of the importance of this theorem derives from its connection with polynom-
ial approximation. For several reasons, it is of interest to find monic polynomials  
for which the sup-norm on , 

, 
is relatively small. We now consider one such class. 
Definition: Fekete Polynomial 
	 Let  be a compact subset of  and let . A Fekete polynomial for  of 
	 degree  is a polynomial of the form 
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=
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log ε +
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□
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, 

	 where  is a Fekete -tuple for . 
Theorem 5.18: Capacity Bounds via Fekete Polynomial 
	 Let  be a compact subset of . 
	 (a)	 If  is a monic polynomial of degree , then . 
	 (b)	 If  is a Fekete polynomial of degree , then . 
Proof: 
	 Step I: Assertion (a) 
	 Since 

 

	 we have , . Thus . 
	 It follows that 

 

	 where the first realation holds by monotonicity of capacity in Theorem 5.1 (a),  
	 the second holds by Theorem 5.6 where  since monic, and the last by 
	 Corollary 5.4.1. 
	 Step II: Assertion (b) 

	 Suppose that , where  is an Fekete -tuple for . 

	 If , then  is an -tuple for , so 

, 

	 and hence 

, 

	 where the first relation holds by the above display, the second holds since  is 
	 decreasing as we have shown in the first claim for the proof of Theorem 5.17, 
	 and the last holds by the definition of the Fekete -th diamter. 
	 Finally, since  is chosen arbitrarily, the desired inequality follows. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
   In particular, the second inequality in Theorem 5.18 together with Theorem 5.17 
tells us that, sending , the left hand side is the sup norm and the right hand 
side is nothing but the capacity for . Thus we have a lower bound for capacity via 
Fekete -th diameter. This aligned with our intuition. 
    Combining the last two theorems leads immediately to another characterization of 
capacity. 
Corollary 5.18.1: Characterization of Capacity via Monic Polynomial 

q(z) :=
n

∏
j=1

(z − wj)
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	 Let  be a compact subset of , and for each  let 
. 

	 Then 
. 

Definition: Chebyshev Polynomial 
	 A monic polynomial  of degree  for which  is said to be a  
	 Chebyshev polynomial. 
Remark 5.1: Comparison of Chebyshev Polynomial and Fekete Polynomial 
	 It can be shown that the Chebyshev polynomial exists and, provided that  has  
	 at least  points, is unique. However, the Fekete polynomials have the advant- 
	 age that, unlike the Chebyshev polynomials, their zeros always belong to .	  
    As an illustration of this, we now use them to prove a strong form of Lemma 3.12. 
It states that for every compact polar set, there exists a Borel probability measure 
whose potential is minus infinity, hence zero energy. 
Theorem 5.19: Evan’s Theorem 
	 Let  be a compact polar set. Then there exists a Borel probability measure   
	 on  such that 

 . 
Proof: 
	 Given , let  be a Fekete -tuple for , and let  be the corresp- 
	 onding Fekete polynomial. If  denotes the probability measure on  consist- 

	 ing of  - masses at , then 

,  

	 where the first relation holds by the definition of potential and Fekete -tuple, 
	 the second holds by the definition of Fekete polynomial, and the last holds by  
	 Theorem 5.18 (b). Now by Fekete-Szegö Theorem 5.17, 

. 

	 So, replacing  by a sequence, we may suppose that 
 on  for all . 

	 If we set , then  is a Borel probability measure on , and 

, . 

	 Thus  has the desired property. 
	 	 	 	 	 	 	 	 	 	 	 	 	  
    Knowledge of  also gives us information about how  behaves off . If  is a 
bounded component of  then  

 , 

K ℂ n ≥ 1
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lim
n→∞

mn(K )1/n = inf
n≥1

mn(K )1/n = c(K )

q n ∥q∥K = mn(K )

K
n

K ⋄

E μ
E

pμ(z) = − ∞ ∀z ∈ E

n ≥ 2 w1, ⋯, wn n K qn
μn K

1
n

w1, ⋯, wn

pμn
(z) =

n

∑
j=1
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∞
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□
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by the maximum principle Theorem 2.5. The next result tells us what happens when 
 is the unbounded component. The first part contains the basic inequality, and the 

second part gives some indication of its sharpness. 
Theorem 5.20: Berstein’s Lemma 
	 Let  be a non-polar compact subset of  and let  be the component of  
	  containing . 
	 (a)	 If  is a polynomial of degree  then 

, , 

	 	 where  is the Green function of . 
	 (b)	 If  is a Fekete polynomial for  of degree  then 

, , 

	 	 where  denotes the Harnack’s distance for . 
Proof: 
	 Step I: Assertion (a) 
	 Multiplying  by a constant, we can suppose that it is monic. If we define 

, . 

	 (To see this, take logarithm on both sides of the desired inequality). Then  
	 is subharmonic on . Moreover, as , by Theorem 5.4, 

. 

	 Therefore, setting 

 

	 makes  subharmonic on . Now since , we have 

, , 

	 where the first inequality holds by the upper semicontinuity of  and the seco- 
	 nd holds by the definition of , which is the supremum of . Thus, by 
	 the maximum principle Theorem 2.5,  on , as desired. 
	 Step II: Assertion (b) 
	 If  is a Fekete polynomial, then in particular by Remark 5.1 all its zeros lie in 
	 , and therefore  is actually harmonic on . Also, from part (a),  on ,  
	 so we may apply Harnack’s inequality Corollary 1.10.2 to  to obtain 

, . 
	 Now by Theorem 5.18 (b) using in the second relation, one has 

. 

	 Combining the above displays yields the desired result.	  
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    We offer a heuristic interpretation for Bernstein’s lemma. Since Chebyshev polyno-
mial offers us an approximation result for the capacity of  via components in 

, it is naturally to ask what happens for unbounded component in . 
Bernstein's lemma tells us that, the growth rate of the approximation is bounded by 
the exponential of Green function on that component, thus the approximation near 
infinity does not go wild. Moreover, if the polynomial is further Fekete, then all zeros 
of this polynomial lay in , thus a convexity argument yields the sharpness. 
    We end this section with an application to polynomial convexity. 
Definition: Polynomially Convex 
	 A compact subset  of  is polynomially convex if for each , there 
	 exists a polynomial  such that 

. 
Remark 5.2: Necessary and Sufficient Condition for Polynomially Convex 
	 The definition will not make sense if  belongs to a bounded component of  
	 , so for  to be polynomially convex it is necessary that  is conne- 
	 cted. This condition also turns out to be sufficient.	  
Example 5.6: Connectedness of  Is Sufficient for Polynomially Convex 
	 A simple compactedness argument shows that, given an open neighbourhood 
	  of , there is a finite set of polynomials  such that 

	 	 	 	    , .	  

    What is less obvious in Example 5.6 is that in fact one polynomial will do the job. 
Theorem 5.21: Hilbert-Lemniscate Theorem 
	 Let  be a compact subset of  such that  is connected, and let  be an 
	 neighbourhood of . Then there exists a polynomial  such that 

, . 

Proof: 
	 We can suppose that  is non-polar, otherwise just adjoin a small line segment 
	 in . 

(Figure 5.1: Adjoining line segment in compact polar set make it non-polar) 
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	 Let  and put 
 and , 

	 so that  and . Then by Theorem 5.20 (b), if  is a Fekete polyno- 
	 mial for  of degree , then 

, . 

	 Since  as  by Theorem 5.17, the right hand side will  
	 exceed  for all sufficiently large . 
	 	 	 	 	 	 	 	 	 	 	 	 	  

Summary of Chapter 5 
    Lacking the criterion for polarity, we introduce the concept of capacity to provide a 
characterization. In the first section, we constructed the capacity. Moreover, as it is a 
set function, some of its properties can be compared with the ones of measures: We 
first proved some of “Elementary Properties of Logarithmic Capacity”, then 
“Capacity Is Continuous in Monotone Sequences”. So far the connection with 
measures looks perfect, but capacity is not additive, so for the union operations under 
capacity we proved “Bound Estimates for Capacity of Borel Union” instead.  
    In the second section we studied the computation of capacity for certain sets, whi-
ch are based on the connection of capacity and Green function, namely, “Capacity of 
Compact Non-Polar Set via Green Function”. Then immediately “Capacity of Closed 
Disc” is derived. We proved an inversed version “Inversed Subordination Principle 
for Capacity”, as a result, “Capacity for Interval” is computed explicitly. Then we 
proved “Capacity under Inverse Image of Polynomials”, which has a corollary 
providing a formula for certain disconnected sets, that is, “Capacity for Simple 
Symmetric Disconnected Set”. 
    For some other sets that do not have good shapes or properties, the computation for 
capacity can be very hard. Thus in the third section we proved some estimation 
results. The first among these is “Upper Bound Estimate for Capacity under Bounded 
Mapping”, then we derived a collection of quarter estimates for certain compact sets - 
“Quarter Estimates for Capacity of Certain Compact Sets”. As an application, a result 
in complex analysis is proved via capacity, that is, “Koebe’s One-Quarter Theorem”. 
For compact sets with finite diameter, we proved “Capacity Upper Bound for 
Compact Set with Finite Diameter”. The area and the capacity is also related by 
“Lower Bound for Capacity of Compact Sets with Finite Area”, for the proof of this 
result we introduced a lemma “Ahlfors-Beurling Inequality” stating that the size of 
the kernel over a compact set is bounded above by a constant multiple of the area of 
the set. Finally, we constructed the generalized Cantor set and proved “Capacity 
Bound for Generalized Cantor Set”. All of these bounds are SHARP! However, for 
the generalized Cantor set, the polarity really depends on how it is constructed. 
    In the fourth section, we studied the Criterion for thinness, which enables us to tell 
if a set is polar or not. This is the famous “Wiener’s Criterion for Thinness”. As a 
result, we proved “Set Thin at Zero Has Finite Logarithmic Measure” and “Polar Set 
Derived from Thin Set via Radial Projection”. These two results offered us a way to 
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construct certain polar sets. Finally we proved a corollary - “Radial Convergence for 
Subharmonic Functions Near Origin”. 
   In the last section we introduced the concept of transfinite diameter. We started with 
the definition of Fekete tuple and proved “Fekete-Szegö Theorem”, which tells us 
that the Fekete tuple for a compact set converges to the capacity of the same set. This 
enables us to introduce the Fekete polynomial and “Capacity Bounds via Fekete 
Polynomial”. In particular, if we introduce the Chebyshev polynomial, then we can 
characterize the capacity via “Characterization of Capacity via Monic Polynomial”. 
Then we proved “Evan’s Theorem”, which tells us that compact polar set has Borel 
probability measure with minus infinity potential. It is natural to ask how the 
approximation behaves on unbounded domains, the growth rate is bounded and the 
bound is sharp, which is proved in “Bernstein’s Lemma”. Finally, as the sharpness 
requires convexity, we defined the polynomial convexity and proved that 
connectedness of its component is necessary for a set to be polynomially convex, and, 
also, sufficient, by “Hilbert-Lemniscate Theorem”. 
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