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Lecture Notes for Ergodic Theory (Week 2)

This note is divided into two parts. In the first section, we give two proofs of Krylov-
Bogoliubov theorem with the only difference being using weak convergence and using regular
Borel measure property. Then we prove the Kac’s lemma. In the second section, we introduce
the isomorphism between measure preserving systems, and introduce the ergodicity of this
system together with a criterion and several important examples.

1 Krylov-Bogoliubov Theorem and Kac’s Lemma

We start with two proofs of the famous Krylov-Bogoliubov theorem, also known as the
easy Kakutani theorem, which states that given a compact metric space and a continuous
transformation (not necessarily measure-preserving), there exists a Borel probability measure
that is invariant under this transformation.

Theorem 1.1 (Krylov-Bogoliubov Theorem). Let (X, d) be a compact metric space and
T : X → X is a continuous transformation. Then there exists a Borel probability measure µ
with µ ◦ T−1 = µ, i.e., a invariant Borel probability measure.

Proof. Let µ ∈ ∆(X), where ∆(X) denotes the space of all Borel probability measures on
X. Define

νn :=
ν + ν ◦ T−1 + ν ◦ T−2 + · · ·+ ν ◦ T−(n−1)

n
. (1.1)

Since ∆(X) is convex then νn ∈ ∆(X) as well. We need to show that for a suitable subse-

quence {nk} ⊆ N we have νnk

weak*−−−−→
k↑∞

µ.

Let C(X) be the collection of all continuous real-valued functions f defined on X and
let Cb(X) denote the space of all bounded real-valued functions f defined on X. Since X is
compact Cb(X) = C(X).

It suffices to show that ∆(X) is weak*-compact, that is, given any {νn} we can find a
weak*-convergence sequence. Let {fj}j≥1 be a countable dense sequence in ∆(X), if for a
subset S1 ⊆ N such that ∫

f1dµn −−−→
n∈S1

limit.

Then for S2 ⊆ S1 we have ∫
f2dµn −−−→

n∈S2

limit.

Continue this fashion, we obtain that for every j ≥ 2, for Sk ⊆ Sk−1,∫
fjdµn −−−→

n∈Sj

limit.
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Let nj ∈ {j-th element of Sj} then ∀i ≥ 1,∫
fidµnj

−−→
j↑∞

limit.

Denote this limit as ψ(f), an application of Riesz’s Representation theorem guarantees that
there exists a measure µ ∈ ∆(X) such that ψ(f) =

∫
fdµ, thus the weak*-compactness of

∆(X) follows.
Finally, we have

νn ◦ T−1 − νn =
ν ◦ T−n − ν

n

weak*−−−−→
n↑∞

0

where the first equality holds by 1.1. Moreover, since∫
f(dνnk

◦ T−1) =

∫
(f ◦ T )dνnk

weak*−−−−→
k↑∞

∫
(f ◦ T )dµ

=

∫
fd(µ ◦ T−1)

where in the first and the last equalities we used the fact that
∫
fd(µ ◦ T−n) =

∫
f ◦ T ndµ

for all bounded f , and in the convergence we used the assumption that T is continuous.
Therefore,

νnk
◦ T−1 weak*−−−−→ µ ◦ T−1

as desired.

We also present another version of the proof, where Riesz’s representation theorem is not
applied to guarantee the weak*-convergence, but to guarantee the existence of regular Borel
measure.

Proof. (Alternative proof) Let x ∈ X be fixed and define

SNf (x) :=
1

N

N−1∑
n=0

f
(
T n(x)

)
. (1.2)

Let F be a countable dense subset of C(X,R), the collection of all continuous functions
f : X → R. Then a diagonal argument, together with the fact that f(X) is bounded (since
Cb(X,R) = C(X,R) if X is a compact metrizable space, where Cb(X,R) is the collection
of all bounded continuous functions from X into R). It is easy to prove that there exists a
strictly increasing sequence Nk such that SNk

f (x) converges ∀f ∈ F .

Since F is dense in the uniform topology, SNk
g (x) also converges ∀g ∈ C(X,R). Now let

Sg(x) := lim
k↑∞

SNk
g (x).

and denote Lx(g) := Sg(x). Then Lx : C(X,R) → R is a continuous positive linear func-
tional.
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Now we can use Riesz’s representation theorem to show that there is a regular measure µ
on B(R), the Borel σ-algebra, such that

Lx(g) =

∫
gdµ

for every g ∈ C(X,R). A simple computation shows that

Lx(g ◦ T ) = Lx(g),∀g ∈ C(X,R), (1.3)

which holds by the continuity assumption of T (Indeed, Lx acts on continuous functions,
and we need continuity of T to guarantee that so is g ◦ T ). Thus∫

X

gdν =

∫
X

g ◦ Tdµ =

∫
X

gdµ.

where ν := µ ◦ T−1. Since ν is a finite measure and X is a compact metrizable space, then
µ = ν, therefore µ is T -invariant as desired.

Now we introduce the Kac’s lemma, which describes the expected return time.

Theorem 1.2 (Kac’s Lemma). Let (X,F , µ, T ) be a measure-preserving system and A ∈ F .
Define for every x ∈ X

τ(x) = τA(x) := inf{n ≥ 1 : T n(x) ∈ A},

with inf ∅ = ∞ by convention. Then∫
A

τ(x)dµ = 1− µ(B∞), (1.4)

where B∞ := {x ∈ X \ A| where τ(x) = ∞}.

The restriction τ |A is called return time map and the Poincáre recurrence theorem
tells us that τ(x) <∞ for µ-almost every x ∈ A.

Proof. Let A \ A∞ = ∪k≥1Ak, where Ak := {x ∈ A|τ(x) = k} also for k = ∞. Recall that
µ(A∞) = 0. Similarly, we denote X \ A = B and observe that

B \B∞ =
⋃
k≥1

Bk,

where Bk := {x ∈ B|τ(x) = k}. Thus one has

1− µ(B∞) = µ(X \B∞) =
∑
k≥1

[
µ(Bk) + µ(Ak)],

where the summation in the last equality is over finite values.
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Figure 1: T−1(B1) ⊆ B2 ⊎ A2 for disjointed B2 and A2

We have T−1(B1) ⊆ B2 ⊎A2, where ⊎ is to stress the ”disjoint union”. Thus, T−1(Bk) =
Bk+1 ⊎ Ak+1. Since T is measure preserving, applying the measure to each side gives

µ(Bk) = µ(Bk+1) + µ(Ak+1)

= µ(Bk+2) + µ(Ak+2) + µ(Ak+1)

= · · ·

= µ(Bk+ℓ) +
ℓ∑

j=1

µ(Ak+j)

by induction on ℓ. Therefore, letting ℓ ↑ ∞ and the fact that 1− µ(B∞) is convergent give
us

µ(Bk) =
∞∑
ℓ=1

µ(Ak+ℓ) =
∑
r>k

µ(Ar).

It follows that

1− µ(B∞) =
∞∑
k=1

∑
r≥k

µ(Ar)

=
∞∑
r=1

r · µ(Ar)

=:

∫
A

τdµ

since the last equality is just the definition of Lebesgue integral by noting that µ(Ar) =
µ
(
{x ∈ A|τ(x) = r}

)
.

Now we give some examples. Let X = [0, 1) and F := B(X) be the Borel σ-algebra on
X. Then Tx := 2x mod 1 is a measure-preserving system with the measure µ = Leb, the
Lebesgue measure on [0, 1). Indeed, since

T−1
x [a, b) = [

a

2
,
b

2
) ∪ [

a+ 1

2
,
b+ 1

2
)

for 0 ≤ a < b < 1. We have

µ ◦ T−1[a, b) =
b− a

2
+

(b+ 1)− (a+ 1)

2
= b− a = µ[a, b).
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Let I :=
⋃
i Ii be a finite or countable union of disjoint intervals [ai, bi) we have

µ(I) =
∑
i

|bi − ai|

and µ ◦ T−1
x (I) = µ(I) holds for all I, then a monotone class argument guarantees that the

same holds for I ∈ B(X).

2 Isomorphic Measure Preserving System and Ergod-

icity

In this section we study the isomorphism between measure preserving systems and the er-
godicity along with a criteria. We start with the definition of homomorphism.

Definition 2.1. A homomorphism ψ : (X,F , µ, T ) → (Y,B, ν, S) between two measure
preserving systems is a measurable map ψ : X → Y . That is, ψ−1(B) ∈ F for every B ∈ B
and µ ◦ ψ−1 = ν on B.

The diagram

X X

Y Y

T

ψ ψ

S

where ψ ◦ T = S ◦ ψ, is also called a factor map in ergodic

theory.

For example, if T : [0, 1)2 → [0, 1)2 where T (x1, x2) = (2x1, 3x2) and ψ(x1, x2) = x1 then
ψ is a factor map. In general, it suffices that ψ : X1 → Y where µ(X \X1) = 0 for X1 ∈ F ,
that is, the homomorphism only needs to be defined µ-almost everywhere.

Definition 2.2. A factor map ψ is called an isomorphism between measure preserving
systems (X,F , µ, T ) and (Y,B, ν, S) if there exists a factor map

ψ̃ : (Y,B, ν, S) → (X,F , µ, T )

(which can be defined ν-almost everywhere) such that ψ̃ ◦ ψ = IdX µ-almost everywhere and

ψ ◦ ψ̃ = IdY ν-almost everywhere.

Let S :=
{
|z| = 1

∣∣z ∈ C
}
be the unit circle in C, B be the Borel sigma-algebra on S,

µ be the uniform measure on S, and S(z) := zb be a transformation. Then this measure
preserving system is isomorphic to ([0, 1],F ,Leb, Tb), where Tb(x) := bx mod 1. Indeed, the
transformation can be defined by ψ : [0, 1) → S, where ψ(x) = e2πix.

Another example is the full shift on b-symbols. Let A = {0, 1, 2, . . . , b − 1} be a finite
alphabet and W = AN denote the space of all infinite sequences of symbols from A. The
left shift transformation S : W → W is defined as: S(w) := (a2, a3, . . . ) where w =
(a1, a2, . . . ) ∈ W. The measure ν on W is the product measure (1

b
, 1
b
, . . . , 1

b
)N. Define the

mapping ψ : W → [0, 1) as: ψ(a1, a2, a3, . . . ) =
∑∞

i=1 aib
−i. This mapping takes each

sequence w = (a1, a2, . . . ) to a b-ary expansion of a real number in [0, 1) and one can verify
that this is indeed an isomorphism.
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Definition 2.3. A measure preserving system (X,B, µ, T ) is said to be ergodic if ∀A ∈ B
such that T−1(A) = A we have µ(A) ∈ {0, 1}.

Remark 2.4. Suppose in a measure preserving system (X,B, µ, T ) and A ∈ B such that

µ(A∆T−1A) = 0 then there exists an Ã that is T -invariant, that is, T−1Ã = Ã and

µ(Ã∆A) = 0. Thus the invariance only needs to be defined almost everywhere.

It is useful sometimes to give some criteria for ergodicity. We here offer a stronger
terminology called mixing.

Definition 2.5. An measure preserving system (X,B, µ, T ) is called mixing if ∀A ∈ B we
have µ(T ∩ T−nA) −−→

n↑∞
µ(A)2.

To verify mixing it suffices to verify on an algebra that generates B, or on any dense set
in the metric µ(A∆B) on B (recall that µ(A∆B) identifies a metric). Then using

µ
((

(A∩ T−n(A)
)
∆
(
(B ∩ T−n(B)

))
≤ µ(A∆B) + µ

(
T−n(A)∆T−n(B)

)
≤ 2µ(A∆B). (2.1)

Using mixing we can also use very nice sets that approximate every sets. Recall the shift S
on AN where A = {0, 1, · · · , b − 1}. A rich class of measure preserving system is obtained
by taking X ⊂ AN that is S-invariant and closed in the product topology (hence compact).
Then X is a compact metric space under the metric

d
(
(x1, x2, · · · ), (z1, z2, · · · )

)
:=

1

exp
{
min{n|xn ̸= zn}

}
and (X,S) is then called a subshift.

An example of the subshift is the Golden shift. By taking X = {ω ∈ {0, 1}N|ωjωj−1 =
0∀j ≥ 1}. Indeed, the number of allowed sequences of length n in the Golden Shift is exactly

Fn+2 = Fn+1 + Fn and n
√
Fn −−→

n↑∞
φ = 1+

√
5

2
, which is the golden ratio.

Lemma 2.6. Mixing implies Ergodicity.

Proof. If A = T−1A then µ(A) = µ(A ∩ T−nA) −−→
n↑∞

µ(A)2 which is either 0 or 1.

The full shift with any product measure is mixing If:

A :=
{
ω ∈ W = {0, · · · , bn}N

∣∣(ω1, · · · , ωn) ∈ Ãn ⊂ {0, · · · , bn−1}n
}
,

where Ãn is a subset of finite sequences of length n, such sets are called cylinder sets and
generate the sigma-algebra of measurable sets in W. Then µ(A ∩ T−mA) = µ(A)2 for every
m > n. In fact, we can also deduce the ergodicity of the full-shift from Kolmogorov’s 0-1
law.

We finally obtain that Tb(x) := bx mod 1 on [0, 1) is ergodic by the isomorphism. In
fact, if X is ergodic and ψ : X → Y is a factor map, then it suffices to conclude that Y is
also ergodic.
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