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Lecture Notes for Ergodic Theory (Week 2)

This note is divided into two parts. In the first section, we give two proofs of Krylov-
Bogoliubov theorem with the only difference being using weak convergence and using regular
Borel measure property. Then we prove the Kac’s lemma. In the second section, we introduce
the isomorphism between measure preserving systems, and introduce the ergodicity of this
system together with a criterion and several important examples.

1 Krylov-Bogoliubov Theorem and Kac’s Lemma

We start with two proofs of the famous Krylov-Bogoliubov theorem, also known as the
easy Kakutani theorem, which states that given a compact metric space and a continuous
transformation (not necessarily measure-preserving), there exists a Borel probability measure
that is invariant under this transformation.

Theorem 1.1 (Krylov-Bogoliubov Theorem). Let (X,d) be a compact metric space and
T: X — X is a continuous transformation. Then there exists a Borel probability measure
with po T~ = p, i.e., a invariant Borel probability measure.

Proof. Let p € A(X), where A(X) denotes the space of all Borel probability measures on

X. Define
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Since A(X) is convex then v, € A(X) as well. We need to show that for a suitable subse-

*
quence {n;} C N we have v, %) I
o0

Let C(X) be the collection of all continuous real-valued functions f defined on X and
let Cp(X) denote the space of all bounded real-valued functions f defined on X. Since X is
compact Cp(X) = C(X).

It suffices to show that A(X) is weak*-compact, that is, given any {1,} we can find a
weak™-convergence sequence. Let {f;};>1 be a countable dense sequence in A(X), if for a
subset S; € N such that

/fldun — limit.
nesSy
Then for Sy C S; we have
neSs

Continue this fashion, we obtain that for every 57 > 2, for Sy C Si_1,
/fjdpm —— limit.
HESj
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Let n; € {j-th element of S;} then Vi > 1,
/ Jidptn; — limit.
jToo

Denote this limit as ¢(f), an application of Riesz’s Representation theorem guarantees that
there exists a measure y € A(X) such that ¢(f) = [ fdu, thus the weak*-compactness of
A(X) follows.
Finally, we have
volT™ — v weak*

vpoT ' —y, = 0
n ntoo

where the first equality holds by [I.1} Moreover, since

/f(dunk oT™1) = /(f o T)dv,,

M/(foT)du

kToo

= [ satuor

where in the first and the last equalities we used the fact that [ fd(poT™™) = [ foT"du
for all bounded f, and in the convergence we used the assumption that 7" is continuous.
Therefore,

Up, 01~ ! —>W€ak X oT !

as desired. ]

We also present another version of the proof, where Riesz’s representation theorem is not
applied to guarantee the weak*-convergence, but to guarantee the existence of regular Borel
measure.

Proof. (Alternative proof) Let # € X be fixed and define

2

SN (2) = % Z F(T7()). (12)

n=0

Let F be a countable dense subset of C'(X,R), the collection of all continuous functions
f: X — R. Then a diagonal argument, together with the fact that f(X) is bounded (since
Cy(X,R) = C(X,R) if X is a compact metrizable space, where C,(X,R) is the collection
of all bounded continuous functions from X into R). It is easy to prove that there exists a
strictly increasing sequence Ny such that S}Vk(x) converges Vf € F.
Since F is dense in the uniform topology, S;' () also converges Vg € C(X,R). Now let
— Ni,

Sy() 1= lim S ().
and denote L,(g) := Sy(x). Then L, : C(X,R) — R is a continuous positive linear func-
tional.



Now we can use Riesz’s representation theorem to show that there is a regular measure p
on B(R), the Borel o-algebra, such that

La(9) = / gdp
for every g € C(X,R). A simple computation shows that
Ly(goT) = L,(g9),¥g € C(X,R), (1.3)

which holds by the continuity assumption of 7' (Indeed, L, acts on continuous functions,
and we need continuity of T' to guarantee that so is g o T'). Thus

/gdl/:/gonp:/gdu.
b's b's b's

where v := o T~!. Since v is a finite measure and X is a compact metrizable space, then
1 = v, therefore p is T-invariant as desired. O]

Now we introduce the Kac’s lemma, which describes the expected return time.

Theorem 1.2 (Kac’s Lemma). Let (X, F,u,T) be a measure-preserving system and A € F.
Define for every x € X

7(x) = Ta(z) ;== inf{n > 1:T"(z) € A},

with inf ) = co by convention. Then

| @ =1~ u(B2), (1.4)

where By := {x € X \ A| where 7(z) = co}.

The restriction 7|4 is called return time map and the Poincdre recurrence theorem
tells us that 7(z) < oo for p-almost every x € A.

Proof. Let A\ As = Up>1 Ak, where Ay, := {z € A|r(x) = k} also for k = co. Recall that
1(As) = 0. Similarly, we denote X \ A = B and observe that

B\ By, = | ] B,

k>1

where By := {z € B|r(z) = k}. Thus one has

1 — pu(Bs) = u(X \ Bxo) = Z [1(By) + p(Ap)],

k>1

where the summation in the last equality is over finite values.



Figure 1: T-Y(B;) C By W A, for disjointed By and A,

We have T~1(B;) C By W Ay, where W is to stress the ”disjoint union”. Thus, T~1(By) =
By W Ay, Since T is measure preserving, applying the measure to each side gives

1(By) = p(Br+1) + p(Agt1)
= (Bira) + p(Aki2) + (A1)

¢
= (Bye) + Z 1(Ak+5)

J=1

by induction on ¢. Therefore, letting ¢ T co and the fact that 1 — u(By) is convergent give
us

p(Br) =Y p(Aree) = > p(A,).

/=1 r>k
It follows that
I M(Boo) = Z Z :u(Ar)
k=1 r>k
= Z r- ILL(AT)
r=1
=: [ Tdu
A

since the last equality is just the definition of Lebesgue integral by noting that p(A,) =
p({z € Alr(z) =1}). O

Now we give some examples. Let X = [0,1) and F := B(X) be the Borel o-algebra on
X. Then T, := 2x mod 1 is a measure-preserving system with the measure u = Leb, the
Lebesgue measure on [0,1). Indeed, since

a b a+1 b+1

T;l[a,b):[§,§)U[ 5 ' 9 )

for 0 <a < b<1l. We have
b—a+(b+1)—(a+1)
2 2

poT ta,b) = =b—a=ula,b).



Let I :=J, I; be a finite or countable union of disjoint intervals [a;, b;) we have
p(l) =Y |bi — ail

and g o T, 1(I) = u(I) holds for all I, then a monotone class argument guarantees that the
same holds for I € B(X).

2 Isomorphic Measure Preserving System and Ergod-
icity

In this section we study the isomorphism between measure preserving systems and the er-
godicity along with a criteria. We start with the definition of homomorphism.

Definition 2.1. A homomorphism ¢ : (X, F,u,T) — (Y, B,v,S) between two measure
preserving systems is a measurable map ¢ : X — Y. That is, yp"Y(B) € F for every B € B
and proyp™! = v on B.
X 15X
The diagram wl ld) where Y oT = S o1, is also called a factor map in ergodic
theory.

For example, if T': [0,1)? — [0,1)? where T'(z,x2) = (221, 3x5) and ¥(xy, 3) = 71 then
¥ is a factor map. In general, it suffices that ¢ : X; — Y where pu(X \ X;) =0 for X; € F,
that is, the homomorphism only needs to be defined p-almost everywhere.

Definition 2.2. A factor map v is called an isomorphism between measure preserving
systems (X, F,u, T) and (Y, B,v,S) if there ezists a factor map

(Y, B,v,S) = (X, F,p, T)

(which can be defined v-almost everywhere) such that zZo v = Idx p-almost everywhere and
o = Idy v-almost everywhere.

Let S := {|z[ = 1|z € (C} be the unit circle in C, B be the Borel sigma-algebra on S,
i be the uniform measure on S, and S(z) := 2° be a transformation. Then this measure
preserving system is isomorphic to ([0, 1], F, Leb, T},), where Ty(z) := bz mod 1. Indeed, the
transformation can be defined by v : [0,1) — S, where ¢(z) = >,

Another example is the full shift on b-symbols. Let A = {0,1,2,...,b — 1} be a finite
alphabet and W = AN denote the space of all infinite sequences of symbols from A. The
left shift transformation S : W — W is defined as: S(w) := (ag,as,...) where w =

(ay,a9,...) € W. The measure v on W is the product measure (%, %, . %)N. Define the
mapping ¢ : W — [0,1) as: ¢(a1,a2,a3,...) = Y .o a;b~". This mapping takes each
sequence w = (ay, ag,...) to a b-ary expansion of a real number in [0,1) and one can verify

that this is indeed an isomorphism.



Definition 2.3. A measure preserving system (X, B, u,T) is said to be ergodic if VA € B
such that T~1(A) = A we have u(A) € {0,1}.

Remark 2.4. Suppose in a measure preserving system (X, B, u,T) and A € B such that
u(AAT-TA) = 0 then there exists an A that is T-invariant, that is, T'A = A and
1(AAA) = 0. Thus the invariance only needs to be defined almost everywhere.

It is useful sometimes to give some criteria for ergodicity. We here offer a stronger
terminology called mixing.

Definition 2.5. An measure preserving system (X, B, u,T) is called mixzing if VA € B we
have p(T NT""A) T—) p(A)2.

To verify mixing it suffices to verify on an algebra that generates B, or on any dense set
in the metric u(AAB) on B (recall that u(AAB) identifies a metric). Then using

,u(((A NT"(A))A((BN T‘"(B))) < WAAB) + p(T(A)AT(B)) < 2u(AAB). (2.1)

Using mixing we can also use very nice sets that approximate every sets. Recall the shift S
on AN where A = {0,1,---,b— 1}. A rich class of measure preserving system is obtained
by taking X C AN that is S-invariant and closed in the product topology (hence compact).
Then X is a compact metric space under the metric

d((171,952,"')7 (21722, . )) = exp{min{;x" #+ Zn}}

and (X, 5) is then called a subshift.
An example of the subshift is the Golden shift. By taking X = {w € {0, 1}MN|ww,;_; =

0Vj > 1}. Indeed, the number of allowed sequences of length n in the Golden Shift is exactly

Fryo = Fup1 + F, and VF, nT? p= 1+2\/5’ which is the golden ratio.

Lemma 2.6. Mixzing implies Ergodicity.
Proof. If A =T7'A then u(A) = u(ANT"A) — u(A)? which is either 0 or 1. O

ntoo

The full shift with any product measure is mixing If:
A= {w cW={0,--- 7bn}N‘(UJ1,"' Lwy) € A, C {0, >bn71}"},

where Kn is a subset of finite sequences of length n, such sets are called cylinder sets and
generate the sigma-algebra of measurable sets in W. Then u(ANT"™A) = u(A)? for every
m > n. In fact, we can also deduce the ergodicity of the full-shift from Kolmogorov’s 0-1
law.

We finally obtain that Ty(z) := bz mod 1 on [0,1) is ergodic by the isomorphism. In
fact, if X is ergodic and ¢ : X — Y is a factor map, then it suffices to conclude that Y is
also ergodic.
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