
Physics4A Week 6

    There are different types of collisions: explosions, inelastic, and eleastic. 

   The first possibility is that a sigle object may break apart into two or more pieces. 
These can be difficult to analyze if the number of fragments after the collision is 
more than about three or four; but nevertheless, the total momentum of the system 
before and after the explosion is identical. When such collision happens, the kinetic 
energy of the system increases.

   The second possibility called inelastic is the reverse: that two or more objects collid 
with each ot-her and stick together, thus after the collision forming one single 
composite object. The total mass of this composite object is the sum of the masses of 
the original objects, and the new single object moves with a velocity dictated by the 
conservation of momentum. However, it turns out again that, although the total 
momentum of the system of object remains constant, the kinetic energy does 
decrease.

  An collision where the objects stick together will result in the maximum loss of 
kinetic energy (i.e.,  will be a minimum). Such a collision is called perfectly 
inelastic. In the extreme case, multiple objects collide, stick together, and remains 
motionless after the collision. Since the objects are all motionless after the collision, 
the final kinetic energy is also zero; therefore, the loss of kinetic energy is a 
maximum.


	 	 


   The extreme case on the other end is that if two or more objects approach each 
other, collide, and bounce off each other, moving away from each other at the same 
relative speed at which they approached each other. In this case, the total kinetic 
energy of the system is conserved. Such an interaction is called elastic.

    In an interaction of closed system of objects, the total momentum of the system is 
conserved, i.e.,  but the kinetic energy may be not.


	 	 	      .


   We have , expressing both the force and the momentum in component form 

yields , , and . Expressing the momentum into 

decomposed form again yields 

	 	 	  and .

Then one has


Kf

0 < Kf < Ki ,  inelastic
Kf lowest, or the enerygy lost is most , perfectly inelastic
Kf = Ki ,  elastic

pf = pi
0 < Kf < Ki ,  inelastic

Kf = 0 ,  perfectly inelastic
Kf = Ki ,  elastic
Kf > Ki ,  explosion

F =
dp
dt

Fx =
dpx

dt
Fy =

dpy

dt
Fz =

dpz

dt

pf,x = p1,i,x + p2,i,x pf,y = p1,i,y + p2,i,y
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	 	  and .


It follows that combining these components using the Pythagorean theorem yields

	 	 	 	      .


    Suppose that we have an extended object of mass , made of  interacting particl-
es. We label their mass as , for . Then 


	 	 	 	 	      .


If we apply some net external force  on the object, every particle experriences 
some “share” or some fraction of that external force. Let

	 the fraction of the external force that the th particle experiences.

Notice that these fractions of the total force are not necessarily equal; indeed, they 
virtually never are. (They can be, but they usually are not.) In general, therefore,

	 	 	 	         .

    Next, we assume that each of the particles making up our object can interact every 
other particle of the object, we refer to them as the internal force:

	 	 the net internal force that the th particle experiences 

	 	 	  from all other particles that make up the object.

Now, the net force is

	 	 	           , for .

As a result of the fractional force, the momentum of each particle gets changed:


	 	 	 	  and .


     The net force  on the object is the vector sum of these forces.


	 	  	 .


This net force changes the momentum of the object as a whole, and the net change of 
momentum of the object must be the vector sum of all the individual changes of 
momentum of all of the particles.


	 	 	        .


The conservation tells us that


	 	 	 	  and .


As a result, one has


	 	 	 	 	 .


    Remember that our actual goal is to determine the equation of motion for the entire 
object (the entire system of particles). To that end, we define


vf,x =
m1v1,i,x + m2v2,i,x

m
vf,y =

m1v1,i,y + m2v2,i,y

m

vf = |vf | = v2
f,x + v2

f,y
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	 	 the total momentum of the system of  particles.

Then we have


	 	 	 	 	     .


It follows that


	 	 	 	 	     .


    We now want  being involved, one has


	 	 	 	 	   


and thus one has


	 	 	 	   ,


which follows since the derivative operation is linear (provided they are differentia-
ble). Now,  is the momentum of the th particle. Defining the positions of the 
constituent particles as  one then has


	 	 	 	         .


Summarizing, we have


	 	 	        .


Dividing both sides by non-zero mass  yields


	 	 	 	       .


Then we can define the center of mass of an object to be


	 	 	 	         .


Indeed, we have an alternative expression


	 	 	 	            ,


provided  is integrable. Therefore we can regard the first expression as the discrete 
case and the second expression as the continuous case.

    Suppose we have  objects with masses  and initial velocities . 
The center of mass of the objects is


	 	 	 	           .


Its velocity is


pCM := N
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	 	 	 	 .


Thus the initial momentum of the center of mass is


	 	 , where .


After these masses move and interact with each other, the momentum of the center of 
mass is then


	 	 	 	 	 .


But conservation of momentum tells us that the RHS of both equations must be equal, 
then we have

	 	 	 	 	 .

And it follows that

	 	 	 	 	    .

    Lastly we consider the rocket propulsion. We define the rocket’s instantaneous vel-
ocity to be ; this velocity is measured relative to an inertial inference system. 
Thus, the initial momentum of the system is

	 	 	 	 	       .

The rocket’s engines are burning fuel at a constant rate and ejecting the exhaust gases 
in the -direction. During an infinitesimal time interval , the engines eject a 
(positive) infinitesimal mass of gas  at velocity , note that although the 
rocket velocity  is measured with respect to Earth, the exhaust gas velocity is 
measured with respect to the (moving) rocket. Measured with respect to the Earth, 
therefore, the exhaust gas has velocity .

    Then we have

	 	     .

Since all vectors are in -direction, we then have


,

,


,

And .


Now  and  are each very small, thus their product is very small hence we can 
neglect this term.

	 	 	 	 , where .	 

Then one has


	 	 	 	 , or, .


Integrating both sides yields


vCM =
drCM

dt
=

1
M

N

∑
j=1

mj
drj

dt

[M
drCM

dt ]i
=

N

∑
j=1

mj
drj,i

dt
MvCM,i =

N

∑
j=1

mjvj,i
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MvCM, f = MvCM,i

vCM, f = vCM,i

v = v ̂i

pi = mv ̂i

x dt
dmg u = − u ̂i

v ̂i

(v − u) ̂i

pf = proc + pgas = (m − dmg)(v + dv) ̂i + dmg(v − u) ̂i
x

pi = pf
mv = (m − dmg)(v + dv) + dmg(v − u)

mv = mv + mdv − dmgv − dmgdv + dmgv − dmgu
mdv = dmgdv + dmgu

dmg dv

mdv = dmgu dmg = − dm

mdv = − dmu dv = − u
dm
m

4



	 	 	 .


It follows that

.


This result is called the rocket euqation, originally derived by the Soviet physicist 
Konstantin Tsiolkovsky in 1897.

    If we consider the rocket in a gravitational field, it means that we need to consider 
one more dimension — the -direction.

    We have  and this force applies an impulse , whi-
ch is equal to the change of momentum. This gives us


,

,


,

and .


Next we replace  with , then

 .


Dividing both sides by  yields


,


Integrating both sides (provided integrable) one has

.


∫
v

vi

dv = − u∫
m

m0

1
m

dm ⇒ v − vi = u ln( m0

m )

Δv = u ln( m0

m )

y
F = − mg ̂j dJ = Fdt = − mgdt ̂j

dp = dJ
pf − pi = − mgdt ̂j

[(m − dmg)(v + dv) + dmg(v − u) − mv] ̂j = − mgdt ̂j
mdv − dmgu = − mgdt

dmg −dm
mdv + dmu = − mgdt ⇒ mdv = − dmu − mgdt

m

dv = − u
dm
m

− gdt

Δv = u ln( m0

m ) − gΔt
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