
Lecture Notes Week 7    


Part I:

    Uniform circular motion is motion in a circle at constant speed. Although this is the 
simplest case of rotational motion, it is very useful for many situations, and we use it 
here to introduce rotational variables. 

  The coordinate system is fixed and serves as a frame of reference to define the 
particle’s position. Its position vector from the origin of the circle to the particle 
sweeps out the angle  , which increases in the counterclockwise direction as the 
particle moves along its circular path. The angle  is called the angular position of 
the particle. As the particle moves in its circular path, it also traces an arc length .

    The angle is related to the radius of the circle and the arc length by

	 	 	 	 	 	   .	 	 	 	 	 (1.1)


    The angle , the angular position of the particle along its path, has units of radians 
(rad). There are  radians in . Note that the radian measure is a ratio of length 
measurements, and therefore is a dimensionless quantity. As the particle moves along 
its circular path, its angular position changes and it undergoes angular displacements 

.

    We can assign vectors to the quantities (1.1) and then by elementart arithmetic one 
can then derive the equation

	 	 	 	 	          .	 	 	 	 	 (1.2)

The magnitude of the angular velocity, denoted by , is the time rate of change of the 
angle  as the particle moves in its circular path. The instantaneous angular velocity 

is defined as the limit in which  in the average angular velocity . It 

follows that


	 	 	 	          ,	 	 	 	 (1.3)


where  is the angle of rotation. The units of angular velocity are radians per second 
(rad/s). Angular velocity can also be referred to as the rotation rate in radians per 
second. In many situations, we are given the rotation rate in revolutions/s or cycles/s. 
To find the angular velocity, we must multiply revolutions/s by , since there are  
radians in one complete revolution. Since the direction of a positive angle in a circle 
is counterclockwise, we take counterclockwise rotations as being positive and 
clockwise rotations as negative. 

   Since , we then taking derivative on both side with respect to  and noting 
that the radius  is a constant, one has


,


where . Here  is just the tangential speed  of the particle, thus, by (1.3) 

one has
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That is, the tangential speed of the particle is its angular velocity times the radius of 
the circle. That is, the tangential speed of the particle is its angular velocity times the 
radius of the circle. 


(Figure 1.1)

Two particles are placed at different radii on a rotating disk with a constant angular 
velocity. As the disk rotates, the tangential speed increases linearly with the radius 
from the axis of rotation. We see that in the figure  and . But the 
disk has a constant angular velocity, so . This means that  or 

. Thus, since , we know .


   Up until now, we have discussed the magnitude of the angular velocity , 

which is a scalar quantity — he change in angular position with respect to time. The 
vector  s the vector associated with the angular velocity and points along the axis of 
rotation. This is useful because when a rigid body is rotating, we want to know both 
the axis of rotation and the direction that the body is rotating about the axis, 
clockwise or counterclockwise. The angular velocity  ives us this information. The 
angular velocity  has a direction determined by what is called the right-hand rule. 
The right-hand rule is such that if the fingers of your right hand wrap 
counterclockwise from the -axis (the direction in which  increases) toward the 
-axis , your thumb points in the direction of the positive -axis. An angular velocity  
hat points along the positive -axis therefore corresponds to a counterclockwise 
rotation, whereas an angular velocity  hat points along the negative -axis 
corresponds to a clockwise rotation. 
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(Figure 1.2)

  We have just discussed angular velocity for uniform circular motion, but not all 
motion is uniform. Envision an ice skater spinning with his arms outstretched—when 
he pulls his arms inward, his angular velocity increases. Or think about a computer’s 
hard disk slowing to a halt as the angular velocity decreases. We will explore these 
situations later, but we can already see a need to define an angular acceleration for 
describing situations where  changes. The faster the change in , the greater the 
angular acceleration. We define the instantaneous angular acceleration  as the 
derivative of angular velocity with respect to time: 


,


where we have taken the limit of the average angular acceleration,  as 

. The units of angular acceleration are (rad/s)/s, or rad/s . 

   In the same way as we defined the vector associated with angular velocity , we 
can define , the vector associated with angular acceleration. If the angular velocity 

is along the positive -axis and  is positive, then the angular acceleration  is 

positive and points along the -axis. Similarly, if the angular velocity  is along the 

positive -axis and   is negative, then the angular acceleration is negative and 

points along the -axis.
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    We can express the tangential acceleration vector as a cross product of the angular 
acceleration and the position vector. This expression can be found by taking the time 
derivative of . 

    We can relate the tangential acceleration of a point on a rotating body at a distance 
from the axis of rotation in the same way that we related the tangential speed to the 
angular velocity. If we differentiate with respect to time, noting that the radius  is 
constant, we obtain . 


Part II:

    Using our intuition, we can begin to see how the rotational quantities  
are related to one another. For example, we saw in the preceding section that if a 
flywheel has an angular acceleration in the same direction as its angular velocity 
vector, its angular velocity increases with time and its angular displacement also 
increases. On the contrary, if the angular acceleration is opposite to the angular 
velocity vector, its angular velocity decreases with time. We can describe these 
physical situations and many others with a consistent set of rotational kinematic 
equations under a constant angular acceleration. The method to investigate rotational 
motion in this way is called kinematics of rotational motion. 

    To begin, we note that if the system is rotating under a constant acceleration, then 
the average angular velocity follows a simple relation because the angular velocity is 
increasing linearly with time. The average angular velocity is just half the sum of the 
initial and final values: 


. 


From the definition of the average angular velocity, we can find an equation that 
relates the angular position, average angular velocity, and time:


.


Solving for , we have 

,


where we have set . his equation can be very useful if we know the average 
angular velocity of the system. Then we could find the angular displacement over a 
given time period. Next, we find an equation relating . To determine this 

equation, we start with the definition of angular acceleration:  

.


We rearrange this to get  nd then we integrate both sides of this equation 
from initial values to final values, that is, from  to  and  to . In uniform 
rotational motion, the angular acceleration is constant so it can be pulled out of the 
integral, yielding two definite integrals
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.

Rearranging yields


,

where  is the initial angular velocity. Note that this is the rotational counterpart to 
the linear kinematics equation .


    Let’s now do a similar treatment starting with the equation . We rearrange it to 

obtain  and integrate both sides from initial to final values again, noting 
that the angular acceleration is constant and does not have a time dependence. 
However, this time, the angular velocity is not constant (in general), so we substitute 
in what we derived above: 


.


Then


, 


where we have set . Rearranging yields


. 


This is the rotational counterpart to the linear kinematics equation found in the 

motion in linear equation .


   We can find an equation that is independent of time by solving for  and then we 
have


	 	 	 


	 	 	    


	 	 	    .


It follows that . Hence .


Part III:

  In Rotational Variables, we introduced angular variables. If we compare the 
rotational definitions with the definitions of linear kinematic variables from Motion 
Along a Straight Line and Motion in Two and Three Dimensions, we find that there is 
a mapping of the linear variables to the rotational ones. Linear position, velocity, and 
acceleration have their rotational counterparts, as we can see when we write them 
side by side: 
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	 	 	          Linear		 	           Rotational

	 Position	 	    	 	 	 	       	 


	 Velocity	         	 	 	  


	 Acceleration	        	 	 	  


   Let’s compare the linear and rotational variables individually. The linear variable of 
position has physical units of meters, whereas the angular position variable has 
dimensionless units of radians, as can be seen from the definition of , which is 

the ratio of two lengths. The linear velocity has units of m/s, and its counterpart, the 
angular velocity, has units of rad/s. In Rotational Variables, we saw in the case of 
circular motion that the linear tangential speed of a particle at a radius r from the axis 
of rotation is related to the angular velocity by the relation . This could also 
apply to points on a rigid body rotating about a fixed axis. Here, we consider only 
circular motion. In circular motion, both uniform and nonuniform, there exists a 
centripetal acceleration (Motion in Two and Three Dimensions). The centripetal 
acceleration vector points inward from the particle executing circular motion toward 
the axis of rotation. The derivation of the magnitude of the centripetal acceleration is 
given in Motion in Two and Three Dimensions. From that derivation, the magnitude 
of the centripetal acceleration was found to be 


	 	 	 	 	 	 , 	 	 	 	 	 (1.4)


where  is the radius of the circle.

  Thus, in uniform circular motion when the angular velocity is constant and the 
angular acceleration is zero, we have a linear acceleration—that is, centripetal 
acceleration—since the tangential speed in (1.4) is a constant. If nonuniform circular 
motion is present, the rotating system has an angular acceleration, and we have both a 
linear centripetal acceleration that is changing (since  is changing) as well as a 
linear tangential acceleration. 

  The centripetal acceleration is due to the change in the direction of tangential 
velocity, whereas the tangential acceleration is due to any change in the magnitude of 
the tangential velocity. The tangential and centripetal acceleration vectors  and  
are always perpendicular to each other. To complete this description, we can assign a 
total linear acceleration vector to a point on a rotating rigid body or a particle 
executing circular motion at a radius r from a fixed axis. The total linear acceleration 
vector  is the vector sum of the centripetal and tangential accelerations, 


.

Since  one then has


.

Note that if the angular acceleration is zero, the total linear acceleration is equal to 
the centripetal acceleration. 
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  Generally speaking, the linear kinematic equations have their rotational coun-
terparts. 

	 	 	 Rotational	 	 	 	 Translational

	 	 	 	 	 	 

	 	 	 	 	 	 


	 	 	 	 	 


	 	 	 	 	 	 

    The second correspondence has to do with relating linear and rotational variables 
in the special case of circular motion. 

	 	 Rotational	 	 Translational	 	 Relationship

	 	       	 	 	          	 	 	      


	 	      	 	 	         	 	 	      


	 	      	 	 	         	 	 	      


	 	   	 	 	         	 	 	      


Part IV:

   Any moving object has kinetic energy. We know how to calculate this for a body 
undergoing translational motion, but how about for a rigid body undergoing rotation? 
This might seem complicated because each point on the rigid body has a different 
velocity. However, we can make use of angular velocity—which is the same for the 
entire rigid body—to express the kinetic energy for a rotating object. This system has 
considerable energy, some of it in the form of heat, light, sound, and vibration. 
However, most of this energy is in the form of rotational kinetic energy. 

   Energy in rotational motion is not a new form of energy; rather, it is the energy 
associated with rotational motion, the same as kinetic energy in translational motion. 

However, because kinetic energy is given by , translating to the rotational 

variable, we have


.


Applying the center of mass , one then has


,


Since  for all masses, it follows that


	 	 	 	            .	 	 	 	 (1.5)
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If we compare (1.5) to the way we wrote kinetic energy in Work and Kinetic Energy, 

that is, , this suggests we have a new rotational variable to add to our list of our 

relations between rotational and translational variables. The quantity  is the 

counterpart for mass in the equation for rotational kinetic energy. This is an important 
new term for rotational motion. This quantity is called the moment of inertia , with 
units of , given by


.


     For now, we leave the expression in summation form, representing the moment of 
inertia of a system of point particles rotating about a fixed axis. We note that the 
moment of inertia of a single point particle about a fixed axis is simply , with  
being the distance from the point particle to the axis of rotation. In the next section, 
we explore the integral form of this equation, which can be used to calculate the 
moment of inertia of some regular-shaped rigid bodies. By substituting, the expres-
sion for the kinetic energy of a rotating rigid body becomes 


.


We see from this equation that the kinetic energy of a rotating rigid body is directly 
proportional to the moment of inertia and the square of the angular velocity. We 
summarize the comparison into the following table

	 	 	 Rotational	 	 	 	 Translational





	 	 	 	 	 	 	  


Part V:


   We defined the moment of inertia  of an object to be  for all the point 

masses that make up the object. Because  is the distance to the axis of rotation from 
each piece of mass that makes up the object, the moment of inertia for any object 
depends on the chosen axis. The need to use an infinitesimally small piece of mass 
dm suggests that we can write the moment of inertia by evaluating an integral over 
infinitesimal masses rather than doing a discrete sum over finite masses: 


 becomes .


This, in fact, is the form we need to generalize the equation for complex shapes. It is 
best to work out specific examples in detail to get a feel for how to calculate the 
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moment of inertia for specific shapes. This is the focus of most of the rest of this 
section. 

    The similarity between the process of finding the moment of inertia of a rod about 
an axis through its middle and about an axis through its end is striking, and suggests 
that there might be a simpler method for determining the moment of inertia for a rod 
about any axis parallel to the axis through the center of mass. Such an axis is called a 
parallel axis. There is a theorem for this, called the parallel-axis theorem, which we 
state here but do not derive in this text. 

Theorem 1.1: Parallel-Axis Theorem

	 Let  be the mass of an object and let  be the distance from an axis through

	 the object’s center of mass to a new axis. Then we have

	 	 	 	 .

   we can reason that a compound object’s moment of inertia can be found from the 
sum of each part of the object: 

	 	 	 	 	 	 .


Part VI:

  So far we have defined many variables that are rotational equivalents to their 
translational counterparts. Let’s consider what the counterpart to force must be. Since 
forces change the translational motion of objects, the rotational counterpart must be 
related to changing the rotational motion of an object about an axis. We call this 
rotational counterpart torque. 

Definition: Torque

	 When a force  is applied to a point  whose position is  relative to its center

	 , the torque  around  is then .

    By the definition of cross product, one has . The SI unit 
of torque is newtons times meters, usually written as . The quantity  
is the perpendicular distance from  to the line determined by the vector  and is 
called the level arm. Note that the greater the level arm, the greater the magnitude of 
the torque. In terms of the level arm, the magnitude of the torque is

	 	 	 	 	       .

Any number of torques can be calculated about a given axis. The individual torques 
add to produce a net torque about the axis. When the appropriate sign (positive or 
negative) is assigned to the magnitudes of individual torques about a specified axis, 
the net torque about the axis is the sum of the individual torques: 

	 	 	 	 	    .


Part VII:

    Recall that the magnitude of the tangential acceleration is proportional to the mag-

nitude of the angular acceleration by . Substituting this expression into 
Newton’s second law, we obtain . Multiplying both sides by  yields 

.

Since , we have
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.

The torque on the particle is equal to the moment of inertia about the rotation axis 
times the angular acceleration. We can generalize this equation to a rigid body 
rotating about a fixed axis. 

Theorem 1.2: Newton’s Second Law for Rotation

	 If more than one torque acts on a rigid body about a fixed axis, then the sum of 

	 the torques equals the moment of inertia times the angular acceleration: 

	 .


    The term  is a scalar quantity and can be positive or negative (counterclockwise 
or clockwise) depending upon the sign of the net torque. Remember the convention 
that counterclockwise angular acceleration is positive. Thus, if a rigid body is rotating 
clockwise and experiences a positive torque (counterclockwise), the angular 
acceleration is positive. 


Part VIII:


    The rotational work done by a rigid body is . The total work done on 

a rigid body is the sum of the torques integrated over the angle through which the 
body rotates. The incremental work is . Similarly, we found the 

kinetic energy of a rigid body rotating around a fixed axis by summing the kinetic 
energy of each particle that makes up the rigid body. 

Theorem 1.3: Work-Energy Theorem for Rotation

	 The work-energy theorem for a rigid body rotating around a fixed axis is 


	 , where , and the rotational work done by a net force


	 rotating a body from point  to point  is .


    The relationship to the linear motion is summarized into the following table

	 	 	 Rotational	 	 	 	 Translational
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