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Lecture Notes on Statistical Inference
This lecture note is divided into five parts. We start the investigation of point esti-
mation in the first section, the interval estimation in the second section, then the
hypothesis testing in the third section. The Bayesian approach to statistical inference
is provided in the fourth section, as a complementary material to the first three. We
introduce also the linear regression in the last section.
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Review on Point Estimation
Tianyu Zhang!

Abstract:

In this monograph we offer a discription about the point estimators. Starting
with the evaluation of the point estimations, we introduce some important
properties one point estimator may be equipped with. We introduce then the
methods of finding point estimators, where, there are four common ways, the
MLE, the Bayesian, the method of moments, and the expectation maximization;
we treat the MLE in the fourth section and we leave the Bayesian approach in a
separater paper.
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1. Introduction

In this section we are going to offer a generalization of the discussion of point esti-
mators, seeing the MLE and Bayesian estimators in the previous two sections, let us
now generalize the methodology in both finding and evaluting point estimators, the
materials are mainly from [1], some supplementary literature are drawn from [2].

Recall that the main assumption of the mathematical statistics is that the sequence
given by

X=X, X, forn €N,
has a cumulative distribution function, namely F(x, #) where 6 is the unknown para-
meter, which can be any number (resp. vector) in ®. The main task is to obtain some
information about this parameter.

We shall also assume that for each X; where 1 < i < n are independent and 1dentic-
ally distributed (i.1.d.), 1.e. each X; has the same distribution as others and they are
independent of one another.

Example 1.1: Life Time of Smartphones
Look at the sample of X, fori = 1,2,---, n, where each X; is a lifetime of a
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smartphone and model X; as an exponential random variable with mean 6.
Potentiall, this € can be any number in ® = (0,00). Our task is for a specific
realization of random variables X; derive a conclusion about the parameter 6.

x1/9

1
Our assumption means that the density of X; is fy, (x;) = Ee , the density

1
of X, is fXQZeXZ/ 9 so on and so forth.

The joint density of independent datapoints is simply product of the individual

densities for each datapoint. In our example, we have

x1/6 lelee. L lexn/e _ ie(Zlei)/H. I

T X 3, X1 Xy 002 X)) = € 0 o

In statistics, if we think about the joint density as a function of the model paramet-
er 6, we call it the likelihood function and denote it by

L0, x) = gie(Z?zl)Ci)/e'

Now we want to get some information about the parameter 6 from the x. For exam-
ple, we could look for a function of x which would be close to 8. This is called the
point estimation problem since we try to find a point (an estimator) which would be
close to 6. In fact, this example naturally derives the definition of the point estimator.
Notation:
If 6 is a parameter to be estimated, then 0 denotes its estimator or a value of the
estimator for a given sample. More carefully it is a function of the data
0 := 00X, X).
Note that § = (Xy, -+, X)) 1s random since its value changes from sample to sam-
ple.
Definition: Point Estimator
A point estimator is any function 9(X1, .-+, X)) of a sample; i.e. any statistic is
a point estimator.
In this definition we applied the terminology called the statistic which is defined by
the following convention.
Definition: Statistic
Let Xj, ---, X,, be a random sample of size n from a population and let
T'(xy, -++, x,) be a real-valued or vector-valued function whose domain includes
the sample space of (X, ---, X,,). Then the random variable or random vector
Y :=T(Xy, -, X,) is called a statistic. The probability distribution of a statistic
Y is called the sampling distribution of Y.
Remark:
A function of the dat sample is called a statistic hence an estimator is a
statistic. I
Most of the terminologies we have encountered so far are statistics, e.g. recall the
mean y and the variance 6%. We now generalize these concepts to the form, that as a
function of the random variable (resp. random vector), 4 and o2 are themselves ran-
dom variables.
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There are many different approaches to find the estimators, one of the very many
we have seen previously are the maximum likelihood function (MLE) and Bayesian
estimators. In fact we can also use the method of moments, the expectation maximiz-
ation (EM) to find estimators, we shall go through the first one in details later.
Now we discuss the evaluation of the estimator. First we shall need to know when
to call an estimator a good one. Second we need to compare different estimators.
Note that the comparablhty is based on the “distance” to the 6, the less the better. For
an estimator 9 however, the distance d(0, 0 ) is not a metric.
The distribution of this random variable & depends on the true value of the parame-
ter 6. One of the things that we can ask from the estimator is that its expected value
equal to the true value of the parameter. This is called the unbiasedness. In symbols it
1s defined by
Definition: Bias
The bias of a point estimator 0ofa parameter 6 is the difference between the
expected value of 6 and 0. That is, Biasd := E6 — 6.

Definition: Unbiased
An estimator whose bias is identically (in 6) equal to 0 is called unbiased and
satisfies EQ = V0 € ©.

The second useful property is that when we increase the size of the sample, the est-
imator converges to the true value of the parameter in the sense of convergence
inprobability. This is called consistency.

2. Evaluation of Point Estimators

In this section we are going to introduce some methods in evaluating the point esti-
mator. We shall discuss the biasedness and variance in|2.1] the consistency in|2.2} and
then in|2.3| we shall prove that the existence of unbiased estimators are not always
valid. In|2.4| we are goin to introduce the asymptotc normality, which is mostly done
by CLT, or sometimes Slutsky’s Theorem. Then in [2.5|we introduce the risk function
with only introduction, the detailed treatment could be seen in the previous chapter.
In|2.6|we shall introduce the concept of sufficient statistics and use sufficient statistic
sto derive the BUE.

2.1 Biasedness and Variance
The bias can depend on the true value of the parameter. A good estimator should
have zero or at least small bias for values of the true parameter.
Example 2.1:
Consider our previous example about the lifetime of smartphones. What is the
bias of the following two estimators: & = X and 0 = X,?
In fact, X appear to be better than X;. The reason is that the variance of X
decreases as the sample size grows, while the variation of X; does not depend
on the size of the sample. I
This example naturally derives the definition of variance of a given estimator 0.
Definition: Variance
Vard = E(9 — E0)? = EO? — (EH)>.

4
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We of course want that Var to be small for all values of the true parameter 6. Idea-
lly, both the bias and the variance of the estimator should be small. Sometimes we
value unbiasedness more than anything else. We want to make sure that an estimator
is unbiased and only after this condition is satisfied we compare the variance with the
principle being smaller is better.

However, sometimes we can tolerate that an estimator is a bit biased. In fact, this is
a trade-off, it depends on the practical terms, whether we value the unbiasedness
more or we value the variance more. Moreover, in some cases it 1s very difficult or
even impossible to find an unbiased estimator. In this case, it is useful to define a
combined measure of the quality of an estimator.

Definition: Mean Squared Error (MSE)
The mean squared error of an estimator 0ofa parameter 6 is the function of 6
defined by MSE() := E(0 — 6)* = Varf + (Bias0)>.

This definition is good since it combines the two different perspective in measuring
the performance of 0. However, we must point out its advantage before we dive
deeper.

Disadvantage: MSE
It can be argued that the MSE, while being reasonable for location parameter,
1s not reasonable to scale parameters since MSE penalizes equally for
overestimation and underestimation, which is fine in the location case; in the
scale case however, 0 is a natural lower bound, so the estimation is not
symmetric. I
We now prove that the definition of MSE is well defined.
Theorem 2.1: MSE Decomposition
MSE(@) := E(0 — 6)* = Vard + (Biasd).
Proof:
Since the expectation is a linear operator, it preserves scalar multiplication and
vector addition, hence it follows that
E((0 - 0)?) =E((@ —EO +EI - 0)?)
= E(0 — EA)* + 2E((0 — EO)ED - 0)) + (EH — 6)*
= Var0 + (Biasd)’ + 2E((0 — EO)(ED - 0)).
Since Ef — 6 is a scalar hence we can, by liearity of E, plug it out
= Vard + (Biasf)? + 2(E0 — 0)E() — ED)).
Then by the fact that E(9 — EQ) = EQ — EQ = 0, result follows.
[]

If one finds a biased estimator 6, one can sometimes easily corrects the bias to get
an unbiased estimator. However, e.g. if we tried an estimator & and found that it has
EO = \/5, so we cannot correct the bias by simply taking the square of . The new

estimator 6 := 6% will not be unbiased for 6. If we call the formula for the second
moment of the random variable, then in this particular case we can even compute the
bias

EO? = ([Eé)2+Varé = 0+ Vard,
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so the bias of the estimator 62 equals Varf. In general, it is often quite difficult to find
an unbiased estimator.

We will offer some other alternatives to the MSE later. Now we shall introduce an-
other perspective in measuring the performance of a given estimator.

2.2 Consistency
The consistency is actually defined by the convergence, a topological property. Be-
fore introducing this concept we need some important results. Let (X, &, u) be a
measure space where X is an arbitrary set and & is the o-algebra generated by X, y is
the corresponding measure. Then in saying that, given a sequence of measurable
functions (random variables) {f,} of almost everywhere finite valued (i.e. there are
only finitely many points make f,, infinite), f, convergest to a measurable function f, if

Ve > 0, lim,u({x| | f,(x) = f(x)| > 8}) = (. Since probability is a special case of

measure, we have the definition of convergence in probability.
Definition: Converge in Probability
A sequence of random variables {X,} is said to be convergent in probability to
a random varaible X if Ve > 0 one has IimP(| X, — X| > ¢) = 0.
n

Note that the sequence {f,} needs not to be countable, but we are dealing in most
cases a countable sequence of random variables, so it does not lose any generality by

just denoting lim P(|X, — X | > €) = 0. In fact, we shall later on use X, Prob X to

n—-oo

denote that X, converges to X in probability as n being sufficiently large.

Moreover, when we speak about an estimator 0 = é(Xl, -+, X,), in fact the distri-
bution of the estimator depends on 7, so it would be more correctly speak about a
sequence of random variables én

Usually, we expect that when the size of the sample becomse larger, i.e. as n — oo,
the distribution of the estimator §, become concentrated more and more around the

true value of the parameter 6. This is the minimal requirement that we can impose
on the family of estimators that depend on the sample size. If this requirement is
not satisfied, then the estimator is not very useful. Technically this property of an
estimator is called consistency.
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A very good intrepretation for the consistency is that it combines the WLLN and
SLLN in a natural way. A sample Xl,Xz, - from the distribution n(0,1/4) was

generated with 8 = 10 and we compute Hk =X+ - +X)/k.F shows a

path of Gk. It suggest that if k — oo, Hk converges to the true value 9. In fact, this is a
consequence of the Strong Law of Large Numbers (SLLN), which says that this
behavior is observed with probability 1. On the other hand, shows that as
k — o0, @k converges to the true value @ asymptotically. This is the consequence of
the Weak Law of Large Numbers (WLLN). Since we have used these two results,
we state, without proof, as facts.

Theorem 2.2: SLLN

Let X, X,, -+ be i i.d. random variables with EX; = y and VarX; = 6% < oo,

define X, := —ZX Then Ve > 0, one has that P( lim | X, —u| <¢) =1,
i=1 n—>oo
i.e. X, converges almost surely to u.
Theorem 2.3: WLLN
Let X;, X,, -+ be i i.d. random variables with EX; = y and VarX, = 6% < co.

Deﬁne)_(n:=—ZX Then Ve > 0, lim P(|X, —u| <e) = 1;ie.

n—oo
i=1

)_(nPr—ObWL

Remark:
We shall denote that f, converges to f almost surely by the notation f, a5 f.

Note that
almost surely convergence = Convergence in Probability
almost surely convergence < Convergence in Probability. I
Now we offer the formal definition of consistency.
Definition: Consistent

An estimator é is said to be a consistent estimator of 6 if 9n converges in
probability to 6, i.e. 9 Pr_ob) 0.

Consistency describes a property of the estimator in the n — oo limit. Unlike unbi-
asedness, it is NOT meant to describe the property of the estimator for a fixed n, it is
a tendency. Moreover, since the constisency is defined under the convergence in mea-
sure (in fact, convergence in probability measure), hence the consistency is entirely
determined by the underlying topological structure. Analyzing the consistency theref-
ore falls in to the field of functional analysis.

Note that an unbiased estimator can be inconsistent and a biased estimator can be
consistent. Consistency 1s more important than unbiasedness since it ensures that if
the data size is sufficiently large, then we will eventually learn the true value of the
parameter.

We now offer a criterion in determining whether a given MSE is consistent.
Theorem 2.4: MSE Being Consistent
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If MSE(én) — 0 as n — oo then the estimator én is consistent.
Inspired by the asymptotically convergent, we derive a weaker property than unbi-
asedness.
Definition: Asymptotically Unbiased
An estimator 9 is said to be asymptotically unbiased if Blas(H ) = Oas
n— 0.
Therefore another way to interpret Theorem 2.4|is that: Any estimator which is
asymptotically unbiased and has its variance converging to 0 as n — oo is consistent.
However, it 1s sometimes cumbersome to calculate MSE of an estimator. There are
some other tools to establish consistency of an estimator. We will talk about them
later.
Unbiasedness vs Consistency:

. Unbiasedness:
concerns expectation;
for fixed n.
. Consistency:
concerns bias and variance (and whether they vanish for large n);
forn — oo;
However, does not necessarily imply unbiasedness for finite 7.
. Biased Estimator can be Consistent and Unbiased estimator can be
Inconsistent.
We shall now introduce some common unbiased estimators. Let us now assume that
Y|, -, Y, 1s a random sample of n i.1.d. observations from a popula-tion with mean y

and variance o2

An Estimator for the Population Mean:

Estimator: =Y=— Z Y.

o2
Variance: Var(g) = —.
n

2
MSE: MSEf = Varfi + (Biasf)* = —
An Estimator for the Variance:
> (¥ —Y)
Estimator: §2:= ——=1 ,
n-—1

The variance of this estimator is more complicated to derive and we will not perfo-
rm it here. However, it turns out that it goes to 0 as n — oo. In particular this
estimator is consistent.

Since consistency is all about convergence in probability, here are some properties
of this mode of convergence of random variables.

Theorem 2.5:
Prob Prob

Suppose that 9 —— fand 9’ —— 6" Then
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i) 6,+0, —=0+0.
Gy 6 x6 g%
, Prob ’ ’
(111) (9 /0 —— 0/0' provided 0" # 0.
(iv) For any continuous function g, g (0 ) Pr_ob) 2(0).
(v)  For any continuous bifunction g, g(Gn, (9,’1) Pr_ob) 2(0,0).

(vi) For {a,},cp a collection of numbers such that a, — a implies

Prob
a, — a, where a,, are viewed as special random variables.

If an estimator is not consistent, then it will not produce the correct estimation even
if we are given the unlimited amount of data. Hence consistency is very important in
evaluating if an estimator is “good”. However, consistency does not necessarily
guarantee the good performance.

2.3 The Non-Existence of Unbiased Estimators
We have seen above the several natural parameters have unbiased estimators. So it
is natural to ask whether it is always possible to find an unbiased estimator for a
parameter of interest, i.e. can the existence of the unbiased estimator be guaranteed?
The answer 1s no and we offer a counterexample in this subsection.
Example 2.2: Counterexample to the Existence of Unbiased Estimator
In this example, each observation is taken from Bernoulli distribution with
parameter p. That is, X; = 1 with probability p and X; = 0 with probability
1 — p. Of course, there is an unbiased estimator for p, namely p = X. The twist
of this example is that we try to estimate @ = — Inp € ® = (0,00). Suppose,
by seeking contradiction, that 0 is an unbiased estimator of @ and therefore,
E§)=60=—1In p. Rewrlte it by definition

EQ Z Z O(xp, -+, x, )PX; = x, -+, x, = x,).
x1=0
For Bernoulli random Varlable we can write P(X; = x;) = p*i(1 — 0)! 7% where
x; can only take two values, 0 or 1. By independence of random variables
Xy, ..., X, one has
PX, = x;, X, = x,) = p2i="%(1 — p)'~ Zimt %
So, if 0 is unbiased, then

~Inp = Z Z O(x,,x,)p Zim (1 — )T, (3.1)
X1= =0
and this should be true for every p € (0,1) since the estimator is assumed to be
unbiased for every —In p € (0,00). However, this means that the logarithmic
function of p equals to a polynomial in p. This is impossible, e.g. the limit of
the LHS in (3.1) for p — 0 is oo while the RHS is finite.
9
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We got a contradiction, so that means there is no unbised estimator of
6 =—Inp. [

2.4 Asymptotic Normality
Definition: Asymptotically Normal

6 —0
An estimator 9 1s said to be asymptotically normal if g converges in
Var@

distribution to the standard normla distribution N(0,1).

Typically, Var(én) ~ 6%/n, and the constant 62 is called the asymptotic variance of
the estimator. Intuitively, as n grows, the error of the estimator becomes more and
more like a normal random variable with variance ¢/n.

In order to prove the asymptotic normality of a given estimator, we usually use the
Central Limit Theorem (CLT). Recall that
Theorem 2.6: CLT

Let X;, X,, --- be a sequence of 1.1.d. random Variables whose mgfs exist in a
neighbourhood of 0. Let EX; = p and VarX; = 62 > 0 be both finite. Define
X, =— Z X; and let G, (x) denote the cdf of ——— \/_( #) . Then,

i=1

V — 00 < x < 00, one has that lim G,(x) = e yz/zdy, 1.e.

* 1
~ n—ooo [_00 \/_
\/;(Xn - /’t)

has a limiting standard normal distribution.
CLT is valid in much more general way than it is stated. The only assumption on
the parent distribution is that it has finite variance.
An approximation tool that can be used in conjunction with the CLT is known as
the Slutsky’s Theorem.
Theorem 2.7: Slutsky’s Theorem

If X,, - X in distribution and Y, Pr_ob) a where a 1s a constant. Then

(1)  Y,X, — aXin distribution.
(1) X,+Y, = X+ ain distribution.
(i) X,/Y, = X/c in distribution providede ¢ # 0.

2.5 Risk Functions and Comparison of Point Estimators

We have seen how to tell an estimator is good by describing its unbiasedness, its
consistency, and its asymptotic normality. Now we need to know given more than one
estimators, how do we tell which one is better.

Recall that the mean squared error of a point estimator 0 is given by

MSE;(0) = E(@ - 0)*.

We wrote it here as a function of 6 to emphasize that the MSE depends on the true
value of 6.

10
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This is the special case of the risk function of an estimator. More generally,

Definition: Risk Function
The risk function of an estimator 8 is given by Ry(0) := [E(u(é — 9)2).

The function u in the above definition is called the loss function, which is non-neg-
ative and might depend on a particular application. So intuitively the risk function is
the expected loss from a mistake made while predicting the parameter 6. In the case
of MSE, the loss function is simply the quadratic function u(x) := x.

The discussion of the risk function is detailed in the previous chapter, we shall ign-
ore the detailed treatment here.

2.6 Sufficient Statistics

Recall that in studying linear algebra, it is sometimes hard to deal with rather big

vector spaces, even its vector subspaces; to that end, we find it useful to work only

through a small collection of elements that contain all the information of the vector
space, hence we introduced the basis, as well as subbasis.

Same problems may arise when we are dealing with a big set of data. We wish, the-
refore, to use a small collection that contains all the information of the original data.
However, not every data reduction methods could discard no information, so we wish
to have one that preserve as much as possible. We shall introduce three data reduction
methods in this subsection. The sufficiency principle promotes a method that preserve
the information while achieving summrization of the data. The likelihood principle
describes a a function of the parameter, determined by the observed sample, that
contains all the information about @ that is available from the sample.

Definition: Sufficient statistic
A statistic T(X) is a sufficient statistic for € if the conditional distribution of
the sample X given the value of 7(X) does not depend on 6.
Theorem 2.8: Criterion for Sufficient Statistic
If p(x| @) is the joint pdf or pmf of X and g(z| ) is the pdf or pmf of T(X),
p(x|6

q(T(x)|0)

then 7T'(X) is a sufficient statistic for 6 if Vx € X, is constant as a

function of 6.
Theorem 2.9: Factorization Theorem
Let f(x| @) denote the joint pdf or pmf of a sample X. A statistic T(X) is a
sufficient statistic for @ < there exist functions g(¢|6) and i (x) such that,
for all sample points x and all parameter points 6, f(x|0) = g(T(x) | @)h(x).
It is easy to find a sufficient statistic for an exponential family of distributions usin-
g the factorization theorem. Recall that the exponential family is defined by
Definition: Exponential Family
A family of pdfs or pmfs is called an exponential family if it can be expressed
as

k
Fx10) = h()c@)exp{ Y wi(O)(x)},
i=1
where h(x) > 0, #,(x), ---, ,(x) are real-valued functions of the observation x

11
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(they cannot depend on 6), and c(€) > 0, w (@), -+, w,(0) are real-valued

functions of the possibly vector-valued parameter 8 (they cannot depend on x).
Remark:

The continuous families — normal, gamma, and beta, the discrete families —

binomial, Poisson, and negative binomial, are all exponential families. I

Because of the numerous sufficient statistics in a problem, we might ask whether
one sufficient statistic is any better than another. Recall that the purpose of a suffi-
cient statistic is to achieve data reduction without loss of information about the
parameter €; thus, a statistic that achieves the most data reduction while still
remaining all the information about & might be considered preferable. The definition
of such a statistic is the minimal sufficient statistic.

Definition: Minimal Sufficient Statistic
A sufficient statistic 7(X) is called a minimal sufficient statistic if, for any
other sufficient statistic 7"(X), T'(x) is a function of 7'(X).

That is to say, T'(x) = T'(y) = T(x) = T(y), or, equivalently, if {B,|t' € T} are
the partition sets of 7'(X) and {A,|t € I} are the partition sets for 7(x), then every
B, is a subset of A,. Thus, the partition associated with a minimal sufficient statistic,
1s the coarsest possible partition for a sufficient statistic, and a minimal sufficient
statistic achieves the greatest possible data reduction for a sufficient statistic.
Theorem 2.10: Criterion for Minimal Sufficient Statistic

Let f(x| &) be the pmf or pdf of a sample X. Suppose that there exist a function

1s constant

T'(x) such that for every two sample points x and y, the ratio 7010
y
as a function of @ & T'(x) = T(y). Then T'(X) is a minimal sufficient statistic

for 6.
However, a minimal sufficient statistic is not unique. Any one-to-one function of a
minimal sufficient statistic is also a minimal sufficient statistic.
Definition: Complete Statistic
Let (] 0) be a family of pdfs or pmfs for a statistic 7(X ). The family of
distributions is called complete if Eyg(7T) = 0V then Py(g(T) =0) =1
V. Equivalently, 7(X) is called a complete statistic.
Theorem 2.11: Complete Statistic in the Exponential Family
Let Xj, ---, X,, be 1.1.d. observations from an exponential family with pdf or pmf

k
of the form f(x| 0) = h(x)c(@)exp{ Y wi(O)t(x)}, where 0 = (6, -+, 6),).
n /=1 n
Then the statistic 7(X) := (Z H(X;), -, Z tk(Xi)) is complete if
i=1 i=1
{(wl(ﬁ), ey wk(G)) |9 € @} contains an open set in R,
The proof of this theorem depends on the uniqueness of a Laplace transform. It sho-

uld be noted that the minimality of the sufficient statistic was not used in the proof of
Basu’s theorem. Indeed, the theorem is true with this word omitted, since a fundame-

12
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ntal property of a complete statistic is that it is minimal. However, the condition that
it contains an open set is necessarily needed.
Theorem 2.12:
If a minimal sufficient statistic exists, then any complete statistic is also a
minimal sufficient statistic.

So even though the word “minimal” is redundant in the statement of Basu’s theore-

m, it was stated in this way as a reminder that the statistic 7(X) in the theorem is a
minimal sufficient statistic.
In many cases, the MSEs of two estimators will cross each other, showing that ea-ch
estimator is better with respect to the other in only a small portion of the parameter
space. However, even this partial information can sometimes provide guidelines for
choosing between given estimators. In some worse cases however, only more inform-
ation 1s gathered but no absolute answer 1s obtained.

One of the reason is that the class of all estimators is too large as a class. So instead
of stucking in MSE, we have another alternative that is to reduce the size of this
class. A popular way of restricting the class of estimators is to consier only unbiased
estimators.

If W, and W, are both unbiased estimators of a parameter 0, i.e. E,W, = E,W, = 0
then their MSE are equal to their variances, so we should choose the estimator with
the smaller variance. If we can find an unbiased estimator with uniformly smallest
variance — a best unbiased estimator — then we are done.

Suppose that there is an estimator W* of 6 with E,W* = 7(0) # 6 and we are inte-
rested in investigating the worth of W*. Consider the class of estimators given by

C, ={W|E,W =1(0)}.
For all the choice of W, W, € C,, Biasy(W,) = Biasy(W,) so one has
E (W, — 0)? — Ey(W, — 0)* = Varg(W,) — Vary(W,)

and MSE comparisons, within the class C_, can be based on variance alone. Thus,
although we speak in terms of unbiased estimators, we really are comparing
estimators with the same expected value 7(8).
Definition: Best Unbiased Estimator (BUE)

An estimator W* is a best unbiased estimator of 7(0) if it satisfies

E,W* = 7(0)V0, and for any other estimator W with E,2W = 7(0).
Definition: Uniform Minimum Variance Unbiased Estimators (UMVUE)

A BUE W* is said to be a uniform minimum variance unbiased estimator if for

any other estimator W with E,W = 7(0), one always has VaryW* < VaryW V0.

Suppose that, for estimating a parameter 7(6) of a distribution f(x | #), we can spe-
cify the lower bound, say B(#), on the variance of any unbiased estimator of 7(@). If
we can find an unbiased estimator W* such that VargW* = B(0), then we have found
the BUE. This is the approach taken with the use of the Cramér-Rao lower bound.
Theorem 2.13: Cramér-Rao Inequality

Let X;, --+, X,, be a sample with pdf f(x|6), and let W(X) = W(X,, ---, X,) be
any estimator satisfying

13



Lecture Notes on Statistical Inference Tsinghua University

d 0
() —EW0) = L W@ x| 0)dx

(i) VargW(X) < 0.

(%[EQW(X))z

d 2\
Eo( (55 loefX10)))
If we add the assumption of independent samples, the calculatin of the lower boun-
d could be simplified. The expectation in the denominator becomes a univariate
calculation, as the following corollary implies.
Corollary 2.13.1: Cramér-Rao Inequality, i.i.d. case
Let X;, -+, X, be an i.i.d. sample with pdf f(x | ) and let
W(X) .= W(X,, ---, X, be any estimator such that
d 0
i —EW(X) = —Wm)f(x|0)dx
() EWO) [Qxae @ 10)
(1) VargW(X) < oo.

Then VargW(X) >

(LE,W(X))*

nﬂE9<(a% 10gf(X|0))2> |

Note that the Cramér-Rao lower bound does not only work for the continuous ran-

Then VaryW(X) >

0
dom variables but also the discrete ones. The quantity [E9<(£ log f(X |9))2> is

called the information number, or Fisher information of the sample. This terminology
reflects the fact that the information number gives a bound on the variance of the
BUE of 0. As the information number increases, the bound on the variance of BUE
gets smaller.

For any differentiable function 7(6), we now have a lower bound on the variance
of any estimator W such that E,2W = 7(6). The bound depends only on 7(€) and
f(x]0) and is a uniform lower bound for the variance. Any candidate estimator
satisfying E,W = 7(0) and attaining this lower bound is a BUE of 7(0).

Remark:
Even if the Cramér-Rao is applicable, there is no guarantee that the bound is
sharp. That is to say, the value of the Cramér-Rao lower bound may be strictly
smaller than the variance of any unbiased estimator.

In fact, the most we can say by applying Cramér-Rao is that there exists a parame-
ter 7(#) with an unbiased estimator that achieves the Cramér-Rao lower bound;
however, in other typical situations, for other parameters, the bound may not be
attainable. Hence we need results dealing with its attainment.

Corollary 2.14: Attainment of Cramér-Rao Lower Bound
Let X, -+, X,, be i.i.d. f(x | @) where f(x | @) satisfies the conditions of Cramér-
n

Rao Theorem. Let L(0 | x) := H f(x;]16) denote the likelihood function. If
i=1

14
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W(X) = W(X,, ---, X)) is any unbiased estimator of 7(@), then W(X) attains
the Cramér-Rao lower bound if and only if

0
a(@)(Wx) —(0)) = ~510gL@10)

for some function a(@).

The attainment of the Cramér-Rao lower bound still leaves some questions. Firstly,
what if the f(x|60) does not satisfy the assumptions of the Cramér-Rao Theorem?
Secondly, what if the bound is still unattainable for legal estimators?

One way of answering these questions is to search for methods that are more wide-
ly applicable and yield sharper (i.e. greater) lower bounds. Much research has been
done on this topic, with perhaps the most famous one is Chapman and Robbins
(1951). We leave this to interested readers and we now introduce the study of BUE
from another view, using the concept of sufficiency.

In the previous discussion, the concept of sufficiency was not used in our search f-
or unbiased estimates. We will now see the consideration of sufficiency is a powerful
tool indeed. The main result of this method relates the sufficient statistic to unbiased
estimate. Recall that EX = [E([E(XI Y)) and VarX = Var([E(Xl Y)) + |E<Var(X| Y)).
Theorem 2.15: Rao-Blackwell

Let W be any unbiased estimator of 7(€) and let T be a sufficient statistic for 6.
Define ¢ (T) := E(W |T). Then

()  Epp(T)=1(6).

(i)  Varyp(T) < VargW V6.

That is , @(T') is a uniformly better unbiased estimator of 7(0).

Therefore, conditioning any unbiased estimator on a sufficient statistic will result in
a uniform improvement, so we need consider only statistics that are functions of a
sufficient statistic in our search for best unbiased estimator.

In fact, conditioning on anything will result in an improvement, but the problem is
that the resulting quantity will probably depend on € and therefore not be an estima-
tor.

We now state and prove a powerful result stating that a best unbiased estimator is
unique.

Theorem 2.16:
If W is a best unbiased estimator of 7(6) then W is unique.
Proof:
Suppose that W’ is another best unbiased estimator, and consider the estimator

1
W#* = E(W+ W’). Note that E,W* = 7(€) and

1 1 1 1 1
VargW#* = Val'g(EW + EW’) = ZV&I‘QW + ZV&I‘QW/ + ECOVQ(W, W’

1 1 1 1
< ZVargW + ZVargW’ + 3 (VargW- VargW’) > (Cauchy-Schwartz)
= VaryW. (VaryW = VaryW’ by assumption)

But if the above inequality is strict, then the best unbiasedness of W is
contradicted, so we must have equality for all 6. Since the inequality is an

15
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application of Cauchy-Schwartz we can have equality only if
W' = a(0)W + b(8). Now applying properties of covariance, we have
Covy(W, W) = Covg(W,a(0)W + b(0))
= Varg(W, a(0)W) = a(6)VargW,
but Covy(W, W) = VargW hence a(d) = 1. Since E,2W’ = 7(0) we must have
b(0) = 0 therefore W = W’, uniqueness follows.
[]
To see when an unbiased estimator is best unbiased, we might ask how could we
improve upon a given unbiased estimator? The relationship of an unbiased estimator
W with unbiased estimators of 0 (i.e. E,U = 0V0) is crucial in evaluating whether W
1s best unbiased. This relationship, in fact, characterizes the best unbiasedness.
Theorem 2.17:
If E,W = 7(0), W is the best unbiased estimator of 7(6) < W is uncorrelated
with all unbiased estimators of 0.
Remark: Random Noise
Note that an unbiased estimator of 0 is nothing more than random noise; 1.e.
there is no information in an estimator of 0. Therefore, if an estimator could be
improved by adding random noise to it, the estimator probably is defective. ||
Although we now have an interesting characterization of BUEs, its usefulness is li-
mited in application. It is often a difficult task to verify that an estimator is uncorrela-
ted with all unbiased estimators of O since it is usually difficult to describe all
unbiased estimators of 0.
It is worthwhile to note once again that what is important is the completeness of th-
e family of distributions of the sufficient statistic. Completeness of the original family
is of no consequence. This follows from the Rao-Blackwell Theorem, which says that
we can restrict attention to functions of a sufficient statistic, so all expectations will
be taken with respect to its distribution.
We sum up the relationship between completeness and best unbiasedness in the fol-
lowing theorem.
Theorem 2.18:
Let T be a complete sufficient statistic for a parameter 6 and let ¢ (T") be any
estimator based only on 7. Then ¢ (T") is the unique BUE of its expected value.
In many situations, there will be no obvious candidate for an unbiased estimator of
a function 7(0), much less a candidate for BUE. However, in the presence of comple-
teness, Theorem 2.18 tells us that if we can find any unbiased estimator, then we can
find the best unbiased estimator.
Theorem 2.19: Lehmann-Scheffé
Unbiased estimators based on complete sufficient statistics are unique.

3. Methods in Finding Point Estimators
We have offered two methods in finding point estimators in the first two chapters.
In the first chapter we see how can we find the MLE and in the second chapter we see
a way to draw the Bayesian estimators. In this section we are going to introduce the
methods of moments and the Expectation Maximization method.
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3.1 Methods of Moments
The method of moments is, perhaps, the oldest method of finding point estimators,
it has the virtue of being quite simple to use and almost always yields some sort of
estimate. In many cases, unfortunately, this method yields estimators that may be
improved upon. However, it is a good place to start when old methods prove
intractable.
Algorithm 3.1: Methods of Moments
Let X|, ---, X,, be a sample from population with pdf or pmf f(x|8,, -+, 6,).
Methods of moments estimators are found by equating the first £ sample
moments to the corresponding k population moments, and solving the resulting
system of simultaneously equatlons More premsely, define

— ZX,’

my = —Zxk,ﬂk = EX*.
i=1
The population moments y; will typically be functlgn of 91 ,**+, 0, namely
/,t_;(el, -++, 0;). The method of moments estimators (0, -+, 6,) of (8;, ---, ;)
is obtained by solving the following system of equations for (6, ---, 6,) in
terms of (my, -+, my).
ml = ﬂi(ela ) ek)a
m2 = /’té(ela ) ek)a
my = (0, -+, ).

The method of moments can be very useful in obtaining approximations to the dist-
ribution of statistics. This technique, is sometimes called the moment matching, gives
us an approximation that is based on matching moments of distributions. In theory,
the moments of distribution of any statistics could be matched, however, in practical
terms, it 1s best to have distributions that are similar.

We now illustrate some examples in using moments to find point estimators.
Example 3.1: Normal Method of Moments

Suppose that X;, ..., X, are iid N(6, 62). In the preceding notation, 8, = € and

1 - 1
) _ _ _ 2
Gz—a.Wehaveml—; E Xi—Xandmz—; E X7, and

ui =0, =06+ c>
Solving for @ and o7 yields the Method of Moments estimator:

- _ 1 — 1 _
O=m =Xandé6>=m,—m?=— Y X?-X?=— X. — X)2
| 2= mi=— Y X; ~ (X, -X) ||

17



Lecture Notes on Statistical Inference Tsinghua University

In this simple example, the Method of Moments solution coincides with our intuiti-
on and perhaps gives some credence to both. The method is somewhat more helpful,
however, when no obvious estimator suggests itself.

Example 3.2: Binomial Method of Moments
Let X, ..., X, be ii.d. Binomial(k, p), i.e.,

k
PX; = x|k,p) = < )px(l —p)* x =0,1,...k.
X

Here we assume that both k and p are unknown and we desire point estimators
for both parameters.

Equating the first two sample moments to those of the population yields the
system of equations:

— 1
X=kp, — Z Xl.2 = kp(1 — p) + k*p?, which must now be solved for k and p.
n

After a little algebra, we obtain the Method of Moments estimators:

_ 1 - - X’
X2=k2p2=>—ZXi2—X2=kp(l —p)=kp —kp*=X-—.
n . _ k
. X2 X
Therefore, k = — ; —. and p = —.
X-—2X-X) k

Admittedly, these are not the best estimators for the population parameters.

In particular, it is possible to get negative estimates of k and p, which, of

course, must be positive numbers(This is the case where the range of the

estimators does not coincide with the range of the parameter it is estimating.)

However, in fairness to the Method of Moments, note that negative estimates

will occur only when the sample mean is smaller than the sample variance,

indicating a large degree of variability in the data.

The Method of Moments has, in this case, at least given us a set of candidates

for point estimators of k and p.

Although our intuition may have given us a candidate for an estimator of p,

coming up with an estimator of k is much more difficult. I

The method of moments can be very useful in obtaining approximations to the dist-

ributions of statistics. This technique, is sometimes called “moment matching”, gives
us an approximation that is based on matching moments of distributions. In theory,
the moments of the distribution of any statistic can be matched to those of any distri-
bution but, in practice, it is best to use distributions that are similar.

3.2 Expectation Maximization

The last method that we will look at for finding estimators is inherently different in
its approach and specifically designed to find MLEs. Rather than detailing a proce-
dure for solving for the MLE, we specify an algorithm that is guaranteed to converge
to the MLE. This algorithm is called Expectation Maximization (EM) algorithm. It is
based on the idea of replacing one difficult likelihood maximization with a sequence
of easier maximizations whose limit is the answer to the original problem. It is
particularly suited to “missing data” problems, as the very fact that there are missing
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data can sometimes make calculations cumbersome. However, filling in the “missing
data” will often make the calculation go more smoothly.

In using the EM algorithm we consider two different likelithood problems. The first
problem that we are interested in solving is the “incomplete data” problem and the
problem that we actually solve is the “complete-data’problem. Depending on the
situation, we can start with either problem.

Expectation Maximization(EM) Algorithm is that conditions for convergence to the
incomplete-data MLEs are known, although this topic has obtained an additional bit
of folklore. We shall not dive in to deep to this algorithm and we offer some readings
for those has interests, [4], [5], and [6], also some lecture notes [7], and a well-
organized one [8].

4. Maximum Likelihood Estimation
Serving as a method in searching for estimators, the method of maximum likeliho-
od is, perhaps, by far the most popular technique for deriving estimators. Recall that
if X|, -+, X,, are an i.i.d. sample from a pupulation with pdf or pmf f(x|6,, ---, 8,), the
likelihood function is defined by

L(elx) = L(ela "'aeklxl’ '"axn) = Hf(xilel’ "'aek)'
i=1

Definition: Maximum Likelihood Estimator (MLE)
For each sample point x, let é(x) be a paramater value at which L(€ | x) attains
its maximum as a function of 4, with x fixed. A maximum likelihood estimator
(MLE) of the parameter 8 based on a sample X is A(X). In short, it is the value
of 6 that maximizes the likelihood function.

Notice that, by this construction, the range of the MLE coincides with the range of
the parameter. We also use the abbreviation MLE to stand for Maximum Likelihood
Estimate when we are talking about the realized value of the estimator. Intuitively, the
MLE is a reasonable choice for an estimator. The MLE is the parameter point for
which the observed sample is most likely. In general, the MLE is a good point
estimator, processing some of the optimality properties.

One good interpretation for the fact that maximizing over the likelihood function
gives as a more accurate estimate is coming from [10]. Recall that the likelihood
function is defined as
Definition: Likelihood Function

Let f(x| @) denote the joint pdf or pmf of the sample X = (X|, --+, X,,). Then,
given that X = x is observed, the function of @ defined by L(0|x) = f(x|0) is
called the likelihood function.

Clearly L(€|x) depends on the data X = (X, ---, X,)), but they’re treated as functi-
ons of @ only. The likelihood function is not the pdf or pmf of  so it does not make
any sense to integrate over 6 values. What we are really interested in is the shape of
the likelihood curve or, equivalently, the relative comparisons of the L(8|x) for
different 8’s. That is to say:

Remark: Interpratation for Likelihood Functions
IfL(O,|x) > L(6,]|x) (resp. log L(0,|x) > log L(6, | x)), then 8, is more likely
19
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to have been responsible for producing the observed X = (X, ---, X,)). I
In statistical theory, one of the most important concern to the MLE, as it stated in

this way, is the optimization. The most natural treatment on this topic is by differenti-
ation; we know that if the first derivative of a function f vanishes at a point x,, then
the function has much more probability in gaining a local extrema at x,. Unfortuna-
tely, what really interest us is the global extrema, this sometimes could be troubles-
ome since in guaranteeing the global behavior we need to check all the possible
points, this is a tedius work. To that end, the convex optimization offers some insights
in determining the global extema, for example, in [9], if we konw that a point x is
where f has finite local minimum and 0 € df(x), then f has its global minimum at x.
Properties of MLE:

(1)  Translation Invariant

(1))  Consistent

(111))  Asymptotic Normal

We have proved the translation invariant property, so we just restate it here. The

consistency and asymptotic normality are from both [10] and [11].
Theorem 4.1: Translation Invariant

If § is the MLE of 0, then for any function 7(€), the MLE of 7(8) is r(é).
Proof:

Let # be the value that maximizes the induced likelihood function L*(# | x).

WTS I. L*(7 | x) = L*(z(0) | x).

By definition, the maximum of L and L* coincide, therefore, it follows that

L(@|x)=sup sup L(§|x)=supL(f]|x)=L(@|x),
n {01@)=n) 0
where the last equality is by the definition of 8. On the other hand, we have
L@|x)= sup L(@|x) (@isthe MLE)
(612(0)=1(9)}
= L*(z(0) | x). (Definition of L*)

Hence, 7(6) is the MLE of 7(6) and the invariance follows.
[
Remark:
The invariance property for MLE is still valid for the multivariate case. |
In stating the consistency, we need first to clarify what do we mean in saying that
an MLE is consistent. Before that recall two important results in probability theory,
the Law of Large Numbers (LLN) and the Central Limit Theorem (CLT), we
assume the readers are already familiar with these two facts so we state them without

proof.
Fact4.2: LLN
If the distribution of i.i.d. sample X, ---, X, is such that | EX, | < oo, then
v . X1++Xn Prob . =
X, = EX,,ie. P(|X,—EX,| >¢)>0asn = oo.
n
Fact 4.3: CLT

If the distribution of i.i.d. sample X, ---, X, is such that | EX, | < co and
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distribution
—_—

02 = VarX < oo then \/;()_(n - EX)) N(0,0?), that is to say

a —x2
P(\/Z()_(n - EX) € [a,b]) — [ e22dx Va,b € R. That is to say,
a

2ro
ﬁ (X, — EX,) behaves as normal random variable as n being sufficiently
large.
The terminology “consistency” follows directly from these two facts.
Definition: Consistent

. A : .~ 5 Prob :
We say that an estimate 6, is consistent if 0 —— 6* as n — co where n is the

sample size and 6* is the “true” but unknown value. That is,
lim P(|0,— 6% >¢) =0Ve > 0.

n—-oo

Rule 1: Identifiability
If @ # 0’ then f, and f, share different distributions.
Rule 2:
The support of fy, i.e. suppfy := {x| fy(x) > 0} is the same VO € O.
Rule 3:
6* is an interior point of ©.
Theorem 4.4: Consistent
Under|Rule 1, Rule 2, and Rule 3|, the MLE 0 is consistent, i.e. 0 — 0% as
n— .
Corollary 4.4.1:
If Rule 1/and|Rule 2 hold, then for any 6 # 6%,
lim P(L6*|x) > L@]x) = 1.

n—-oo

The consequence of |Corollary 4.4.1 is that, the likelihood function at the true 6*
tends to be larger than any other likelihood value. So if we estimate 6 by maximizing
the likelihood, that maximizer ought to be close to 6*.

We close our first section by introducing the asymptotic normality of the MLE. We

want to show that \/ﬁ(é -0) M}

N(O,avaLE) and then compute avaLE.

This asymptotic variance in some sense measures the quality of MLE. First we

introduce the notion called Fisher Information.

Definition: Fisher Information
Denote (X | 0) := log f(X | 9) and by saying £’(X | @) we mean the first
derivative with respect to 6. The Fisher information of a random variable X
with distribution PP, form the family {Py|6 € ©} is defined by

P 2
10,) = E, (£(X16,))’ = [E9n<£ log f(X|0) |9:9 ) .

Remark:
Let us give a very informal interpretation of the Fisher Information. The
‘X |6
derivative /(X |8,) = (log f(X|6,)) = % can be interpreted as a
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measure of how quickly the distribution density will change when we slightly
change the parameter 6 near 6,. When we square this and take expectation (so
we get the form in the definition) we get an averaged version of this measure.
(1)  When Fisher Information is large, this means that the distribution will
change quickly when we move the parameter, i.e. a small change with
respect to the parameter leads to a huge perturbation.
(1)  When the Fisher Information is small, on the other hand, the distribution
is very similar for either at 6, or the points near ,. I
We now state a result without proof for which could relax our computation on the
Fisher Information.
Lemma 4.5:

[Egnf//(X | Qn) == |E0n

2
02 log f(X6,) = - 1(6,).

We now state but without proof of the asymptotic normality of the MLE. For those
readers who are interested in this topic one may consult [11].
Theorem 4.6: Asymptotic Normal

We have, for the MLE é, that \/;(9 -0,)—> N (0

)asn—>oo.

"1(6,)
It should be pointed out that the MLE does not always exists. For the conditions
the MLE exists, we found the article [12] very useful, we state it here and one could
consult [13] for detailed treatment.
Condition for the Existence of MLE:
The MLE exists if the parameter space ® is compact and the likelihood
function L(@ | x) is continuous V6 € ©O.
Condition for the Uniqueness of MLE:
The MLE is unique if the parameter space ® is convex and the likelihood
function L(@ | x) is concave.
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Review on Interval Estimation
Tianyu Zhang?

Abstract:

Serving different approach as the point estimation, the interval estimation
provides us a way to describe the error size and a confidence level for the
estimation to coincide with the realized values. In this short survey we introduce
the methods in finding, and in evaluating the interval estimations. Since we have
treated the Bayesian Interval Estimation independently, we shall not offer the
Bayesian Approach to the interval estimation, hence the optimization in the
decision theory (a way to evaluation).
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1. Introduction

While point estimation gives a single value as the best estimate for a parameter, in-
terval estimation provides a range of values to account for the uncertainty associated
with the estimation process. Interval estimation is valuable for capturing the potential
variability in the estimate and conveying the level of confidence in the result.
Definition: Interval Estimator/Estimate

An interval estimate of a real-valued parameter € is any pair of functions,

L(x, -+, x,) and U(x,, -*-, x,)), of a sample that satisfy L(x) < U(x)Vx € X. If
X = x is observed, the inference L(x) < 6 < U(x) is made. The random
variable [L(X), U(X)] is called an interval estimator.

The purpose of using an interval estimator rather than a point estimator is to have
some guarantee of capturing the parameter of interest. The centainty of this guarantee
1s quantified by the following definitions.

Definition: Coverage Probability
For an interval estimator [L(X ), U(X)] of a parameter 6, the coverage
probability of [L(X), U(X)] is given by Py(6 € [L(X), UX)]) or

P(0 € [LC), UG |0).

2 BIMSA, bidenbaka@gmail.com, obamalgb@cantab.net
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Definition: Confidence Coefficient
For an interval estimator [L(X ), U(X)] of a parameter 6, the confidence
coefficient of [L(X), U(X)] is inf IP’@(G € [L(X), U(X)]).
0

We may also use the value 1 —a = P9(0 e [L(X), U(X)]) to denote the (1 — a)

100% confidence interval [L(X), U(X)], where 1 — a is called the degree of confide-
nce while L(X) and U(X) are called the lower and upper confidence limits, respecti-
vely. For instance, if @ = 0.05 then the degree of confidence is 95%.

In the next section we shall discuss the estimation of means and variances. Then we
proceed to discuss the method in finding the general interval estimation, where we
are going to talk about (i) Inverting a test statistic, (i1) Pivotal Quantities, and (ii1)
Bayesian intervals. Lastly we talk about some evaluation methods, which are (1) Size
and coverage probability, (2) Test-related optimization, (3) Bayesian optimization,
and (4) Loss function optimization.

2. Pivot Method

In this section we are going to introduce some special estimation results. In[2.1|we
will introduce the interval estimation for normal means, with either known or unkn-
own variance; both the univariate and the bivariate (hence multivariate) cases are
discussed in this section. In|2.2] we shall proceed to the talk about the interval
estimation for the variance of the normal populations; both the univariate and the
bivariate (hence multivariate) cases are discussed in this section. In|2.3|we will offer
the treatment for the interval estimation in binomial case, still, botht the univariate
and the bivariate (hence multivariate) cases are performed. Serving as specific
examples for the first three subsections, in|2.4/ we introduce the pivot method in
finding the interval estimation, which generalizes the first three parts.

Recall the z-values we introduced before. For a non-standard normal random varia-
ble X ~ N(u,0?), the standardizing involves the change-of-variable Z := Xy ,

o

where the denominator is ¢ since otherwise it would not scale the deviation correctly,
and the resulting standardized variable would not have the desired properties.

The z,,, 1s often valuable in finding the interval estimators. The reason is that, sup-
pose we are going to find an interval estimator [L(X), U(X)] of a parameter € with
confidence coefficient 0.95, then what we really do is to calculate

Py(@ < L(X)) = Py(0 > UX)) =0.025,
where Py(6 € [L(X), UX)]) = 0.95.

Recall also the z-distribution. The #-distribution arises in statistical inference when
dealing with small sample sizes or when the population standard deviation is unkn-
own. It is commonly used in hypothesis testing and constructing confidence intervals
for the mean.

Remark:
The t-distribution is symmetric and bell-shaped, similar to the normal
distribution. The shape is determined by the degrees of freedom. As the
degrees of freedom increases, the ¢-distribution approaches the standard normal
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distribution. |
Lastly we refer to the F-distribution. The F-distribution is used in statistical hypot-
hesis testing, specifically in the context of comparing variances. It arises when comp-
aring the variability of two independent samples.
Fact 1: F-Distribution
If 512 and 522 are the variances of independent random samples of sizes n; and
n, from normal populations with the variances 012 and 022, then
S?/et 0638}
S3les  o1S3
is a random variable having an F distribution with n; — 1 and n, — 1 degrees
of freedom.

2.1 Estimation of Normal Means
To illustrate how the possible size of errors can be appraised in point estimation,
suppose that the mean of a random sample is to be used to estimate the mean of a

normal population with the unknown mean p and known variance ¢2. Then the
2

— o
sampling distribution of X is N(u,—). One has
n

where Z = and z,, 1s such that the integral of the standard normal density

o/l\/n
from z,,, to co equals to a/2. It follows that
- c
P“X—u|<;m-;;>=l—a. @.1)
n

This is summarized in the following theorem:
Theorem 2.1: Coverage Probability

If X, the mean of a random sample of size n from a normal population with the

known variance 62, is to be used as an esimator of the mean of the population,

o
then the probability is 1 — « that the error will be less thatn z,/, - —.
n

To construct a confidence interval for estimating the mean of a normal population
with the known variance 62, one can rewrite as
P()_(—za/z-i </4<)_(+Za/2'i> =1-a.
Vn Vn
We generalize this into the following result, which offers a way in finding the interval
estimator with the desired coverage probability.
Theorem 2.2: Estimation for Mean, Known Variance
If X is the value of the mean of a random sample of size n from a normal
population with the known variance o2, then

(2.2)

_ (o) _ (o)
X—=Zgpn —— < U< XF+Zy ——

Vi Vi

isa (1 — a) 100% confidence interval for the mean of the population.
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When we are dealing with a random sample from a normal population, e.g. n < 30,
and o is unknown. Then| Theorem 2.1/and [Theorem 2.2| cannot be used. Instead, we
make use of the fact that

_X-u

S

is a random variable having the z-distribution with n — 1 degrees of freedom. Substi-

T

for T in

tuting
Si/n
P( = tapno1 < T <lyppo1) = 1-a,
summarizing, we have the following result.
Theorem 2.3: Estimation for Mean, Unkown Variance
If X and s are the values of the mean and the standard deviation of a random
sample of size n from a norsmal population, then

s
X—t g — <u<xi++t =
al2,n—1 \/Z H al2,n—1 \/Z
isa (1 — a) 100% confidence interval for the mean of the population.

The method by which we constructed confidence intervals in this subsection consi-
sted essentially of finding a suitable random variable whose values are determined by
the sample data as well as the population parameters, yet whose distribution does not
involve the parameter we are trying to estimate. This method of confidence interval
construction is called the pivotal method and it is widely used in finding interval
estimators.

Now we introduce some results in finding the interval estimation for the difference

between means, i.e. rather than estimating only Z = , we shall proceed to the

L oc/\/n
(X1 - Xz) - (,Ul - /42)

02 02 ’

e BT

n np

which has the standard normal distribution. If we substitute this expression for Z into
the pivotal method yields the following result.
Theorem 2.4: Estimation for Difference between Means, Known Variance

If X, and X, are the values of the means of independent random samples of

sizes n, and n, from normal populations with the known variances o7 and

0'22, then

o of 03 . of o3

F=F)=Zap A —F+ = <= <E =F)+ 2y —+—
() e m

isa (1 — a) 100% confidence interval for the difference between the two
population means.
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By virtue of the Central Limit Theorem, this confidence interval formula can also
be used for independent random samples from non-normal populations with known
variances when n; and n, are large.

For the unknown variance case, we have the following result:

Theorem 2.5: Estimation for Difference between Means, Unknown Variance
If x|, X,, 5|, and s, are the values of the means and the standard deviations of
independent random samples of sizes n; and n, from normal populations with
equal variances s, then

1 1
(X — X)) — Larzpy+n,—2 Sy — T — <H1— I
np  np
L 1 1
< (X =X) + o pany—2 Sy — +—
np  n

1sa (1 — a) 100% confidence interval for the difference between the two
population means.
Since this confidence interval formula is used mainly when n; and/or n, are small,

e.g. less than 30, we refer to it as a small sample confidence interval for p; — u,.

2.2 Estimation for Normal Variances

Given a random sample of size n from a normal distribution, we can obtain a

— 1)s?
(1 — @) 100% confidence interval for 2 by making use of the fact that % is a
c

random variable having a chi-square distribution with n — 1 degrees of freedom.
Thus,
(n—DS* >

2
P (ﬂf l—ai2n—-1 < < Xan.n-1

=1—-a
02 ’

by simple calculation we have , ,
P((n DS col< n—-1)S )
Xarn-1 X —arn-1
Summarizing, we have the following result.
Theorem 2.6: Estimation for Variance
If 52 is the value of the variance of a random sample of size n from a normal

population. Then
(n—1s*> 5  (n—1)s?
— <0< —

Xarn-1 Xi—al2,n-1
isa (1 — a) 100% confidence interval for o2.
Corresponding (1 — @) 100% confidence limits for ¢ can be obtained by taking the
square roots of the confidence limits for ¢2.
If 512 and 522 are the variances of independent random samples of sizes n; and n,
from normal populations, then, according to and
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1

b

fl—a/2,n1—1,n2—l =f/2 T
[04 ,nz— ,I’ll—

we have the following result.
Theorem 2.7: Estimation for Ratio of Variances
If 512 and 522 are the values of the variances of independent random samples of

sizes n; and n, from normal populations, then

s? 1 o} < s? 7
- By — “Jal2,n,—1,n,—-1
S22 fa/Z,nl—l,nz—l 022 S22 ? 1
of
isa (1 — a) 100% confidence interval for —
o
2
o
Corresponding (1 — a) 100% confidence limits for —L can be obtained by taking
)
i,
the square roots of the confidence limits for —12
03

2.3 The Estimation of Proportions (Binomials)

In many problems we must estimate proportions, probabilities, percentages, or the
rates. In many of these it is reasonable to assume that we are sampling a binomial
population and, hence, that our problem is to estimate the binomial parameter 6.
Thus, we can make use of the fact that for large n the binomial distribution can be

approximated with a normal distribution, 1.e.
X —n6

\/né(l —0)
can be treated as a random sample having approximately the standard normal

distribution. Substituting the expression for Z into
P(=24p <Z <2zgp) =1-a,

one has
X—n6

\/né(l —90)

I]:D<—Za/2< <Za/2) =1-a.

Summarizing, we have the following result.
Theorem 2.8: Interval Estimation.

If X ~ Binomial(n, 8). If n is large and 0 = i, then
n
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In many problems we must estimate the difference between the binomial paramete-
rs 0, and 6, on the basis of independent random samples of sizes n; and n, from two
binomial populations.

Theorem 2.9: Estimation for Differences between Proportions
If X, is a binomial random variable with the parameters n; and 0, X; is a
binomial random variable with the parameters n, and 6,. If n; and n, are large

N X N X,
and 0, := — and 0, := —, then
n ny
. 0,(1-0) 6,1-0
(91—‘92)—Za/2'\/ 1\ 1)+ 2 ) <0,-6,
ny n,
S 0,(1-0,) 6,(1-0
<(91—92)+Za/2'\/ 1 1)+ A )
n ny

is an approximate (1 — a) 100% confidence interval for 6, — 6,.

2.4 The Pivotal Method
The use of pivotal quantities for confidence set construction, resulting in what has
been called pivotal inference, is mainly due to Barnard (1949, 1980) but can be traced
as far back as Fisher (1930), whose used the term inverse probability. Closely related
is D.A.S. Fraser’s theory of structural inference (Fraser 1968, 1979). An interesting
discussion of the strengths and weakness of these methods is given in Berger and
Wolpert (1984).
Definition: Pivotal Quantity (Pivot)
A random variable Q(X, 0) = Q(X,, ---, X,,, 0) is a pivotal quantity (or pivot) if
the distribution of Q(X, ) is independent of all parameters. That is, if
X ~ F(x|0), then Q(X, ) has the same distribution for all values of 6.
The function Q(x, #) will usually explicitly contain both parameters and statistics,
but for any set A, Py(Q(X,0) € A) cannot depend on 6. The technique of constru-

cting confidence set from pivots relies on being able to find a pivot and a set A so that
the set {0| O(x,0) € A} is a set estimate of 6.

We have seen in the previous subsections methods in finding pivots, for estimating
means (resp. difference between means) for known/unknown variances, for estima-
ting variances (resp. ratio between variances), and estimation for binomials (resp.
difference between binomials). Thef( —mtechniques we used is mainly by the
rewriting the pdf, or, rooting by the location-scale property. We summarize this
method in the following table.

Form of PDF Type of PDF Pivotal Quantity
fx—p) Location X—u
1 x Scale X
—f(=) —
c o o
1 x—u Location-Scale X -
o o S
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(Table 2.1)

Alternatively, if we base our confidence interval construction for a parameter 6 on
a real-valued statistic 7 with cdf F(¢|6). We will first assume that 7 is a continuous
random variable. The situation where 7T is discrete is similar but has a few additional
technical details to consider. We therefore state the discrete case in a separate
theorem. To do so we need a new definition.

Definition: Stocahstically Increasing (Decreasing)
A family of cdfs F(¢| 0) is stochastically increasing (resp. decreasing) in 6 if
for each t € T, the sample space of T, F(¢| ) is a decreasing (resp.
decreasing) function of 6.

In what follows, we need only the fact that /' is monotone, either increasing or dec-
reasing. The more statistical concepts of stochastic increasing or decreasing merely
serve as interpretations.

Theorem 2.10: Pivoting a Continuous CDF

Let T be a statistic with continuous cdf Fi7(¢| ). Let a; + a, =: a with

0 < a < 1 be fixed values. Suppose that for each t € J, the functions 6, ()

and 0,(7) can be defined as follows:

(i) IfFy(¢]0) is a decreasing function of @ for each ¢, define 6, (7) and 6;,(¢)
by Fy(t|0,(¢)) = ayand Fr(¢|0,(1) = 1 — a,.

(i) If F(¢] @) is an increasing function of € for each ¢, define 6, () and
Oy (1) by Fr(t|0,(t)) = 1 —a, and Fr(2]|0,(1)) = a.

Then the random inverval (QL(T), QU(T)) i1s a 1 — a confidence interval for 6.

As for the discrete case.

Theorem 2.11: Pivoting a Discrete CDF

Let T be a discrete statistic with cdf Fi.(¢|0) = P(T <t]0). Leta, + a, =: a

with O < a < 1 be fixed values. Suppose that for each ¢t € I, the functions

0;(t) and () can be defined as follows:

(i) IfF;(t]|0) is a decreasing function of @ for each ¢, define 6, (7) and 6;,(?)
by P(T < t|0y(2)) = a; and P(T > t]6,(2)) = a,.

(i) If Fp(¢] @) is an increasing function of @ for each ¢, define 6, (¢) and
Oy (1) by P(T 2 1|0y(1)) = a; and P(T < 1] 0,(1)) = as.

Then the random inverval (HL(T), GU(T)) is a 1 — a confidence interval for 6.

3. Inverting a Test Statistic
There is a very strong correspondence between hypothesis testing and interval esti-
mation. In fact, we can say in general that every confidence set corresponds to a test
statistic and vice versa.
The acceptance region of the hypothesis test, the set in the sample space for which
H, : u = pg 1s accepted, is given by

Apg) = {(x}, -+, x,)

Ho— Zgn—= =X < fo+ Zap
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and the confidence interval, the set in the parameter space with plausible values of p,
is given by
_ o _ o
C(xy, -, x,) = {,u X = Zp = SH=X+ za,z—}
\n \/n
These sets are connected to each other by the relation
(X7, *++, x,,) € A(pg) © po € Clxy, -+, x,,). (3.1)

We now summarize this correspondence in the following theorem.
Theorem 2.12:

Vo, € O, let A(6,) be the acceptance region of a level a test of H, : 0 = ).

Vx € &, define C(x) := {6,| 6, € A(x)}. Then the random set C(x)isa 1l — &

confidence set. Conversely, let C(X) be a 1 — a confidence set. V6, € O,
define A(6y) := {x|6, € C(x)}. Then A(H,) is the acceptance region of a level
atestof Hy: 0 = 6,.
Proof:
Since A(6,) 1s assumed to be the acceptance region of a level a test, therefore,
one has Py(X € [A(0))]°) L a © Py(X € A(f))) > 1 — a. Since 6 is
arbitrary, w.l.o.g., we may use 6 to replace 6, then one has, by the definition of
Cx),Py0eCX)=PyXeAB)) >21—-a=>CX)isal — aconfidence
set.
Conversely, the Type I Error probability for the test of H, : 8 = 6, with
acceptance region A(0) is:
Py(X € [A(6p)]°) = Py(@ € [CX)]) < a,

result follows.

[]

This makes it clear why we really have a family of tests, one for each value of
0, € ©, that we invert to obtain one confidence set.

The fact that tests can be inverted to obtain a confidence set and vice verse is an in-
teresting theoretical task, but in fact only the first part of the theorem is at the most
usefulness. Constructing a level a acceptance region could be an easy task, but cons-
tructing a confidence set is sometimes, in fact, most of the times, a more difficult
task. Therefore, the method of finding(obtaining) such a set by inverting an accept-
ance region is useful; all the techniques we used to find tests could offer help in
finding(constructing) confidence sets.

One practice, when constructing a confidence set by test inversion, we will have in
mind an alternative hypothesis such as H; : 6 # 6, or H, : 6 > 6,. The alternative
will dictate the form of A(6,)) that is reasonable, and the form of A(6,) will determine
the shape of C(x).

In fact, this inverting process could be affected by the property. For example, unb-
iased tests, when inverted, will produce unbiased confidence sets. As it menti-oned,
we can use sufficient statistics to find good confidence sets.

Example 3.1: Inverting a Normal Set
Let Xi,..., X, be ud N(u, 02) and considering testing Hy : p = p versus
H, : u # py. For a fixed a level, a reasonable test(in fact the most powerful
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unbiased test) has rejection region {x| | X — pol > za/za/\/ﬁ}.

o
Note that H, is accepted for sample points with |X — u| < z,,,——, or,
n

equivalently,
_ o _ o
X=Zgp—= SHo S X+ Zyp—F-

Vi Vi
Since the test has size a, this means that P(H,, rejected |y = p,) = a, or,
stated in another way,
P(Hyaccepted | = py) =1 —a.
Combining this with the above characterization of the acceptance region, one
has that:
- o — o
P<X ~Zap—= S o S X—=Zyp——
n n
But this probability statement is valid Vy, hence one has

— O — (a2
H:D<X_ Za/2_ < H <X- Za/2_

\/Z \/;)=1—a

[)T Z ° X+z ° ]
al2 \/E al2 \/Z
is obtained by inverting the acceptance region of the level a test,isa 1l — a
confidence interval. I
We close this section by introducing finding the interval estimator by inverting an

LRT (likelihood Ratio Test).
Example 3.2:

Suppose that we want a confidence interval for the mean 4, of an

Exponential(4) population. We can obtain such an interval by inverting a level
a test of

,uz,uO):l—a.

1s true. The interval

Hy: A =Ayversus H| : 1 # 4.
If we take a random sample X|, ..., X,, the LRT statistic 1s

1
i 2] el - Bl _ 3
nai

Xi Yiele™ DEAIR
1 1 '
sup; -, exp{ — >, x;/4} ¢ 0
For feed 4, the acceptance region is given by

XX

(==)em 2o > k),
4o

where k* is a constant chosen such that P, (X € A(4;)) = 1 — a. Inverting this

—n

A(dy) = {x

acceptance region gives the 1 — a confidence set:

(in

Cx) = {4 T)"e_zxf’” > k) (3.2)
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The expression defines C depends on x only through Z x;, so the confidence

interval can be expressed in the form:
CCY, %) = 1A|L(Y x) AU, 5},

where L and U are functions determined by the constraints in|(3.2) with
probability 1 — a and
n n
<L> o~ ZA/L(Tx) — (L) o- ZH/UCE %),
L(x) U(xx)
Without loss of generality, we may set
2 X 2 X
———=tgand ——— =:b
L(Xx) U(x)

such that ¢ > b are constants. Then one has a”"e ™ = b"e " which yields easily

to numerical solution.
To work with details, let n = 2 and note that Z X; ~ Gamma(2,4) and

Z X;/A ~ Gamma(2,1). Hence the confidence interval becomes
1 1
1 1 > X
P(— ) X, <A<—) X)=Pb<=—<a)=1-a
(X XSAS- Y X) =Pl <= <a)
and a’e™% = b%e?, thus,

2 X

b
P < = <a)= [ te7ldt =e (b +1)— e %a+1).

where a and b satisfy

To get, e.g., a 90 % confidence interval, we must simultaneously satisfy the
probability condition and constraints, to the third decimal, say a = 5.480 and
b = 0.441, with confidence coefficient 0.90006. Thus

1 1
P X, <i<——Y X,) =0,90006.
5250 2Xishs 0.441 2% |

4. Methods in Evaluating Interval Estimators

We now have seen many methods for deriving confidence sets and, in fact, we can
derive different confidence sets for the same problem. In such situations we would, of
course, want to choose a best one. Therefore, we now examine some methods and
criteria for evaluating set estimators.

One of the most straightforward one may be to increase the coverage probability
and reduce the size of interval estimator. We will also talk about some optimization
results, either optimization with respect to the loss or with respect to the correspo-
nding test statistics. We start with the coverage probability and size and then we
discuss the optimization with respect to the corresponding test statistics. The
optimization with respect to the loss function, together with the Bayesian interval
estimation, 1s discussed in our second lecture notes, hence omitted here.
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4.1 Size and Coverage Probability
We consider what appears to be a simple, constrained minimization problem. For a
given, specified coverage probability find the confidence interval with the shortest
length. We first consider an example.
Example 4.1: Optimizing Length
Let X;,..., X, be 1d N(u, 0'2), where o 1s known. From the fact that

X_
z=2"F

is a pivot with a standard normal distribution, any a and b such
o/l\/n

that P(a £ Z < b) =1 — awill give a | — a confidence interval

{/,tlyf—bi <u Sf—ai}.

n n

It is natural to ask which choice of a and b is the best? More formally, which
choice of a and b will minimize the length of the confidence interval while
preserving the 1 — a coverage? Notice that the length of the confidence
interval is equal to (b — a)a/\/g , since the factor o/4/n is part of each interval
length, it can be ignored and therefore the length turns out to be (b — a). Thus,
we want to find a pair of numbers of @ and b suchthat P(a < Z<b)=1-a«a
and minimizes b — a.

Take a = — z,,, and b = 7,5, but no mention of optimality. If we take
I —a =0.9. Then

a b Probability b—a
-1.34 233 P(Z<a)=0.09,PZ >b)=0.01 3.67
-1.44 1.96 P(Z < a)=0.075,P(Z > b) = 0.025 3.40
-1.65 1.65 P(Z <a)=0.05P(Z > b) =0.05 3.30

This numerical study suggest that the choice of (a, b) = (—1.65,1.65) gives
the best interval, and, in fact, it does. In this case splitting a equally is the best
strategy. I
The strategy of splitting a equally, which is optimal in the above case, is not alwa-
ys optimal. What makes the equal a split optimal in the above case is the fact that the
height of the pdf is the same at —z,,, and z,,. We now prove a theorem that will
demonstrate this fact, a theorem that is applicable in some generality, needing only
the assumption that the pdf is unimodal.
Definition: unimodal
A pdf f(x) is said to be unimodal if there exists x* such that
) { non-decreasing, if x < x*
fx)is . . :
non-increasing, if x > x*
Theorem 4.1:
Let f(x) 1136 a unimodal PDF. If the interval [a, b] satisfies that

(1) [ fdx=1-a

(i) fa@)=fb) >0
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(i) a < x* < b, where x* is a mode of f(x).
Then [a, b] is the shortest among all intervals satisfying (i).
Proof:
Without loss of generality, we may assume that [a’, b'] is any other interval

suchthatb’ —a’ < b — a.
b/

WTS: J' fdx <1-—a.
oz
The result will be proved only for a’ < a, the proof being similar if

a < a'. Also, two cases need to be considered, b’ < a and b’ > a.
i) Ifd'<a =>a <b <a<x*and

b
J J@dx < f(B)D'—a") (x <D< x* = f(x) < f(D)

/

< flayb' - a) (b < a < x* = f(b) < f(@))

< f(a)(b — a) (b'—a" <b—aandf(a) > 0)
b

< [ f(x)dx ((i1), (ii1), unimodality = f(x) > f(b))

= la— a.

(i) Ifb'>a=a <a<b <bforifb’'>bthenb’—a">b —a.
In this case, one writes

b’ b a b
J FO)dx =[ Fodx + [ f(x)dx—J f(x)dx]
a a a’ b’

=(-a)+

a b
[ fx)dx — J f(x)dx] .
a b

a b
[Claim] J flx) < J f(x)dx.
a b

Using the unimodality of f, the orderinga’ < a < b’ < b

and by assumption (ii), one has
~a

Jx)dx < f(a)(a' - a) and J Jx)dx = f(D)(b" - D).
Jy b

Thus, one has,

rd b

J@)dx — J fdx < fla)(a’ —a) - f(b)(D' - b)

b
=f@lla—a’)— (b -b)]
=f@(b —a')— (b —a)]

where the first equality holds since f(a) = f(b) by

assumption, and the last expression is negative if

(b'—a')<(b—-a)andf(a) > 0.

’

va

[

If more assumptions are applied to the theorem, e.g., continuity of f, will simplify
the proof. Moreover, the equal a split will be optimal for any symmetric unimodal
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pdf. Furthermore, this theorem may even apply when the optimality criterion is
somewhat different from the minimum length.

4.2 Test-Related Optimization
Since there is a one-to-one correspondence between confidence sets and the tests of
hypotheses, there is some correspondence between optimality on them. The proba-
bility of covering the false values, of the probability of false coverage, indirectly me-
asures the size of a confidence set.
Definition: Uniformly Most Accurate(UMA) confidence set
A 1 — a confidence set that minimizes the value of false coverage over a class
of 1 — a confidence sets is called a uniformly most accurate (UMA)
confidence set.
Remark:
UMA confident sets are constructed by inverting the acceptance regions of
UMP tests. UMA confidence sets, unfortunately, exists only in a small range of
circumstances. UMP is usually one-sided = so are UMA intervals. I
Theorem 4.2: UMA Lower Confidence Bound
Let X ~ f(x|0), where 0 is a real-valued parameter. For each 6, € O, let
A*(6,) be the UMP level a acceptance region of a test of H;, : @ = 6, versus
H, : 0 > 0,. Let C*(x) be the 1 — a confidence set formed by inverting the
UMP acceptance regions. Then, for any other 1 — a confidence set C,
Py(0" € C*(X)) <Py € C(X))VO < 0.
Proof:
Let @' be any value smaller than 6. Let A(6") be the acceptance region of the
level a test of Hy : @ = 6’ obtained by inverting C. Since A*(6') is the UMP
acceptance region for testing H, : @ = 6, versus H, : 6 > 6, by assumption
and since 8 > @', one has:
Py(0 € C*(X)) = Py(X € A*(0')) (Invert the confidence set)
<P,X € A(@)) (Since A* is UMP and true for any A)
=P, € C(X)) (Invert A to obtain C)
Notice that the above inequality is “<” because we are working with
probabilities of acceptance regions. This is 1 —power, so UMP tests will
minimize these acceptance region probabilities. Therefore, we have established
that for 8’ < 6, the probability of false coverage is minimized by the interval
obtained from inverting the UMP test.
[]
The UMA confidence set in the above theorem is constructed by inverting the fam-
ily of tests for the hypotheses
Hy:0 =0,versus H, : 0 > 0,,
where the form of confidence set is governed by the alternative hypothesis. The
above alternative hypothesis, which specify that 6 is less than a particular value, they
are of the form [L(X), 00).
Example 4.2: UMA Confidence Bound
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Let X;,..., X, be 1d N(u, 0'2), where 62 is known. The interval

Cx)={ulp>x- za/20/\/z} is a 1 — a UMA lower confidence bound
since it can be obtained by inverting the UMP test of H,y : u = p versus

H, : u > pg. The more common two-sided interval,

Cx):={u|x - za/za/\/ﬁ <u<x+ za/za/\/ﬁ} is not UMA, since it is
obtained by inverting the two-sided acceptance region from the test

Hy: pu = pgversus H; : u # p,, hypothesis for which no UMP test exists. ||

In the testing problem, when considering two-sided tests, we found the property of
unbiasedness to be both compelling and useful. In the confidence interval problem,
similar ideas apply. When we deal with two-sided confidence intervals, it is
reasonable to restrict considerations to unbiased confidence sets. Remember that an
unbiased test is one in which the power in the alternative is always greater than the
power of the null.

Definition: Unbiased 1 — a Confidence Set
We say a 1 — a confidence set C(x) is unbiased if Py(0' € C(X)) <1 —«
Vo #0.

Thus, for an unbiased confidence set, the probability of the false coverage is never
more than the minimum probability of true coverage. Unbiased confidence sets can
be obtained by inverting the unbiased sets. That is, if A(6,) is an unbiased level a
acceptance region of a test of H,: 0 = 0, versus H; : 6 # 6, and C(x) is the ]| —a
confidence set formed by inverting the acceptance regions, then C(x) is an unbiased
1 — a confidence set.

Sets that minimize the probability of false coverage are also called Neymann short-
est. The fact that there is a length connotation to this name is somewhat satisfied by
the following theorem:

Theorem 4.3: Pratt
Let X be a real-valued random variable with X ~ f(x | @), where 6 is a real-
valued parameter. Let C(x) := [L(x), U(x)] be a confidence interval for 8. If
L(x) and U(x) are both increasing functions of x. Then, for any values of 6%,
one has

Ey«[Length(C(X))] = " P,«(0 € C(X))do.
0£0*
Pf:

From the definition of the expected values, one has

E,[Length(C(X))] = { Length(C(X)) - (x| 0%)d x
X

= J [UX) - L(X)]-f(x|6*)dx (def of Length)

U(x)
= J' <J > f(x|0%)dx  (test 8 as dummy variable)
VA L(x)
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- L7
= <J' f(xl@*)dx)d& 4.1)
Jo \Ju-1(x)

(invert the order of integration)

| [pg*<u—l(9> <X< L-1<9)>]d9
© (by definition)

= Py«(0 € C(X))dO
J oo+
The last equality holds by the fact that removing the point & = 6* does not
change the value of the integration(a measure 0 set removed). In step|(4.1), the
interchange of integrals is formally justified by Fubini’s Theorem but is easily
seen to be justified as long as all of the integrands are finite.
Moreover, the inversion of the confidence interval is standard, where we use
the relationship

6 €{0|Lx) <O<UW} < xe {x|UO) <x <L 0),
which is valid because of the assumption that L and U are both increasing
functions Vx € Z'. Furthermore, the theorem could be modified to apply to an
integral with decreasing endpoints.

[

This theorem says that the expected length of C(x) is equal to the sum(integral) of
the probability of false coverage, where the sum(integral) is taking over all false
values of the parameter.
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Review on Hypothesis Testing
Tianyu Zhang3

Abstract:

In this short monograph we offer a review on hypothesis testing. Serving as a
complementary estimation other than point estimators, the interval estimations
could offer us a way in describing the error and the chance of success. We
introduce the methods of evaluating the tests and then proceed to talk about the
methods in finding them.

Table of Contents:
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2.3 The p-Values|
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3.1 The Likelihood Ratio Tests |

3.2 The UIT and the IUT

3.3 Evaluation on UIT and IUT‘
Reference

Appendix

1. Introduction

Once we have an estimator for a parameter 6, it is vital to know how good (or bad)
this estimator perform. The performance is evaluated by either the biasedness and
variance, the consistency, the translation invariance property, or sometimes the
asymptotic normality. Since the existence of the UMVE does not always exist, nor
even the unbiased estimators, then given a collection of estimators we should be able
to have them comparable one with another, this is done by the loss function with the
corresponding risk. Comparing the loss function leads to a “wise” choice, or at least
offers us a way to optimize the estimators.

This methodology does not only suit for the point estimators, serving as a special
type of point estimation, the interval estimators find themselves fitted too. We also
know that one of a way to find the interval estimation is by inverting the test statistic.
This natural correspondence leads to the investigation of hypothesis testing. In fact,
after making a prediction, we need to know if our prediction is reasonable, hence we
use a test statistic to describe its behavior, serving this purpose, a good test statistic
also has the important information about the parameter.

Our investigation of the test statistic follows the same structure as we introduced
the others. We start with the method of evaluating test statistics, then we introduce the
methods in finding them. We do not discuss the Bayesin hypothesis testing and for
interested readers may consult [1].

3 YMSC, BIMSA, bidenbaka@gmail.com
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2. Methods in Evaluating Tests
Definition: Hypothesis
A hypothesis is a statement about a population parameter.

The definition of a hypothesis is rather general, but the improvement point is that a
hypothesis makes a statement about the population. The goal of a hypothesis test is to
decide, based on a sample from the population, which of two complementary hypot-
heses is true.

Definition: Null and Alternative Hypothesis
The two complementary hypotheses in a hypothesis testing problem are called
the null hypothesis and the alternative hypothesis. They are denoted by H,, and
H,, respectively.

In a hypothesis testing problem, after observing the sample the experimenter must
decide either to accept H,, as true or to reject H,, as false and decide H, is true.
Definition: Hypothesis Testing Procedure/ Hypothesis Test

A hypothesis testing procedure or hypothesis test is a rule that specifies
(1)  For which sample values the decision is made to accept H,, as true.
(1)  For which sample values H,, 1s rejected and H, is accepted as true.

The subset of the sample space for which H,, will be rejected is called the rejection
region or critical region. The complement of the rejection region is called the accepta-
nce region.

In deciding to accept or reject the null hypothesis H,, an experimenter might be m-
aking a mistake. Usually, hypothesis tests are evaluated and compared through their
probabilities of making mistakes. In this subsection we discuss how these error
probabilities can be controlled. In some cases, it can even be determined which tests
have the smallest possible error probabilities.

We will go through five methods in this subsection, in|2.1| we introduce the (1)
Error Probabilities and Power Function, then in|2.2| we treat the (2) Most Powerful
Tests, next in[2.3| we discuss the (3) p-Values to close this section.

2.1 Error Probabilities and Power Function

Suppose that R denotes the rejection region for a test. Then for 6 € O, the test wi-
Il make a mistake if x € R, so the probability of a Type I Error is Py(X € R). For
0 € Oy, the probability of a Type II Error is Py(X € R®). This switching from R to R®
is a bit confusing but if we realize that Py(X € R°) = 1 — Py(X € R). This consider-
ation leads to the following definition of the power function.
Definition: Power Function

The power function of a hypothesis test with rejection region R is the function

of 6 defined by
probability of a Type I Error, 0 € ©,
p(0) = Py(X €R) = . - .
one minus the probability of a Type Il Error, 0 € ©j
Remark:

The ideal power function is 0 VO € ©jand 1 VO € ©. Except in trivial
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situations, this ideal cannot be attained. Qualitively, a good test has power
function near 1 for most € € B and near 0 for most 6 € O, |

Example 2.1: Binomial Power Function
1 1
Let X ~ Binomial(5,0). Consider testing H;y : 0 < 3 versus H, : 6 > 7

Consider first the test that rejects Hy < all “success” are observed. The power
function for this test is:

Bi(0) =Py(X € R) = Py(X =5) = 6°.
Although the probability of a Type I Error is reasonable low, i.e.,

1 1
p1(0) < (5)5 =0.312 V4 < >
the probability of a Type II Error is too high, i.e., ,(0) is too small for most
1 1
0 > > The probability of Type Il Error is less than > only if

1.
6 > (=)5 = 0.87.
(3)

To achieve smaller Type II Error probabilities, we might consider using the test
that rejects H if X = 3,4, or 5. The power function then will be:

Br(0) = Py(X € {34,5}) = <§>93(1 — 02+ <i>94(1 _o)+ <§>95.

The second test achieves a smaller Type II Error than the first test, but as a
consequence, it has bigger Type I Error than the first test. I

Therefore, when choosing the test, sometimes we are facing a trade-off problem,
whether deciding which side the optimization occurs, the de-optimization inevitably
occurs on the other side, so the researchers should be careful in choosing the test in
achieving their goals.

Typically, the power function of a test will depend on the sample size n. If n can be
chosen by the experimenter, consideration of the power function might be helpful in
determining what sample size is appropriate for an experiment.

For a fixed sample size, it is usually impossible to make both types of error proba-
bilities arbitrarily small. In searching for a good test, it is common to restrict conside-
ration to tests that control the Type I Error probability at a specified level. Within this
class of tests we then search for tests that have Type Il Error probability that is as
small as possible. The following two terms are useful when discussing tests that
control Type I Error probabilities.

Definition: Size a Test
For 0 < a < 1, a test with power function (8) is a size a test if
sup f(0) = a.
€0,
Definition: Level o Test
For 0 < a < 1, a test with power function (8) is a size a test if

sup f(0) < a.
6e0),
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Some authors do not make distinction between these two definitions. We made the
distinction here to stress out the fact that sometimes having a size a test is difficult, so
in practical terms, one should make compromises with the alternative level « test.
Remark:

Typical a level tests use @ = 0.01, 0.05, and 0.10, but be aware that in fixing
the level a test, the experimenter is controlling only the Type I Error. An
LRT is one rejects Hy if A(X) < ¢, for example. [

Other than «a levels, there are other features of a test that might also be of concern.

For example, we would like a test to be more likely to reject Hyy if 6 € ©f than if

0 € ©,. This property is called unbiased.

Definition: Unbiased Power Function
A test with power function () is unbiased if $(6") > (0") V0" € O and
Vo' € 0O,.

In most problems there are many unbiased tests. Likewise, there are many size o
tests, LRTs, etc. In some cases we have imposed enough restrictions to narrow the
consideration to one test. In other cases there remain many tests from which to
choose. We discussed only the one that rejects H, for large values of 7. In the
following discussion we will discuss other criteria for selecting one out of a class of
tests, criteria that are all related to the power functions of the tests.

2.2 The Uniform Most Powerful Tests

We have seen that the a tests could control the probability of a Type I Error, 1.e. le-
vel a tests have Type 1 Error probabilities at most a for all 0 € ©,. A good test in
such a class would also have a small Type II Error probability, 1.e. a large power
function for € € ©j. If one test has a smaller Type II Error probability than all other
tests in the class, it would certainly be a strong contender for the best test in the class,
a notion that is formalized in the next definition.
Definition: Uniformly Most Powerful (UMP) Test

Let € be a class of tests for testing H, : 0 € © versus H| : 0 € 0O, A test in

class €, with power function (@), is a uniformly most powerful class € test
if f(0) > p'(0)V0 € Ogand V' € 6.

In this subsection, the class € will be the class of all level a tests. The test describ-
ed in the above definition is then called a UMP level a test. For this test to be
interesting, restriction to the class € must involve some restriction on the Type |
Error probability. A minimization of the Type II Error probability without some
control of the Type I Error is not very interesting.

The requirements in this definition are so strong that UMP does not exist in many
realistic problems. But in problems that have UMP tests, a UMP test might well be
considered the best test in the class. Thus, we would like to be able to identify UMP
tests if they exist. The following famous theorem clearly describes which tests are
UMP level a tests in the situation where the null and alternative hypotheses both
consist of only one probability distribution for the sample.

Theorem 2.1: Neymann-Pearson Lemma
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Consider testing H, : 6 = 6, versus H, : 0 = 0, where the pdf or pmf

corresponding to 6, is f(x | 6,), i = 0,1, using a test with rejection region R such

that

() x€R, iff(x|0,) > kf(x|6),

(i) xe€RS iff(x|6) <kfx|6y),

forsome k > 0and a = Py, (X € R). Then

(a)  Any test that satisfies (i) and (i1) is a UMP level a test.  (Sufficiency)

(b) Ifthere exists a test satisfies (i) and (i1) with £ > 0, then every UMP
level a test is a size a test and every UMP level a test satisfies the first
condition except perhaps on a set with probability measure 0, i.e. on a
set A such that [P’HO(X €A = PQI(X eA)=0. (Necessity)

Proof:

We will prove the theorem for the case that f(x|6,) and f(x | 8,) are PDFs

of continuous random variables. The proof of discrete random variables can

be accomplished by replacing integrals with sums.

Note first that any test satisfies a = |]3’90(X € R) is a size a and, hence, a level

a test because sup Py(X € R) = Py(X € R) = a, since O has only one point.

0€0,

WTS I: (a) is true.

To ease notion, we define a test function, a function such ¢ defined by

Ppx) = {éj i 2 ~ 1.€., it is the indicator function of the rejection
region.

Let ¢p'(x) be the test function of any other level a test and let (), f'(0)
be the corresponding power function of ¢(x) and ¢'(x), respectively.
Since 0 < ¢'(x) < 1, by the first assumption,
XER=>Px)=12¢'(x),aswell as f(x|0,) > kf(x]|6,), hence
[p(x) — @' (O] - [f(x]6)) — kf(x][6p)] =0 Vx.

Then we apply the integration and obtain:
0 < [1900 - 41 Lx10) = ka1l
= p(0)) — p'(0)) — k[p(6y) — p'(6))].

Since ¢’ is a level a test and ¢ is a size a test, then one has
p6,) — p'(6y) = a— B0, > 0; moreover, k > 0 by assumption, hence
0 < BO) — B'6,) — kLB — BO)] < f(6,) — B ()
= f(0,) > p'(0;) = ¢ has greater power than ¢".
Since ¢’ is an arbitrary level a test and 6, is the only point in ©, then ¢
is a UMP level a test.
WTS II: (b) 1s true.
Let ¢p' now be the test function for any UMP level a test. By part (a), the
test satisfies the assumptions is also a UMP level a test, thus
pO) = f ).
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Since 0 < f(0,) — B'(0)) — k[B(6y) — p'(6,)] and k > O by assumption,
then one has 0 < B(0,) — p'(0,) — kla — p'(6y)]

= a — f'(6y) = () — p'(6,) < 0since (0,) = f'(0,).

Moreover, ¢'is a level a test, then #'(6,) < a. Thus #'(6,) = a since
P (0,) > a by the above inequality, thus, ¢'is a size a test, and this
further implies that 0 = (8,) — p'(8,) — k[a — p'(6,)]

= a—p'(0) =) — F'(0) =0 < a=p0).
But the nonnegative integrand J[q’)(x) — @' )] - [f(x]0) —kf(x]|6y]

will have a zero integral only if ¢’ satisfies the first assumption except

on a set A with J f(x|6)dx = 0.
A

[

The following corollary connects the[Neyman-Pearson Lemma to sufficiency.
Corollary 2.1.1:
Under the same settings as in Theorem 2.1| Suppose that 7(X) is a sufficient
statistic for @ and g(z | 8;) is the pdf or pmf of T corresponding to 6, for i = 0,1.
Then any test based on 7" with rejection region S is a UMP level a test if it
satisfies

(1) res, ifg|0) > kg(r]|6y),
(2) reS5ifgr]|0)) <kg(r]|6y),
for some k > 0, where a = IP’HO(T €9).
Proof:
In terms of the original sample X the test bound on 7 has the rejection region

R = {x|T(x) € §}. By the Factorization Theorem, the PDF or PMF of X can
be written as

f(x|6) = g(T(x)|6)h(x),i =01,
for some nonnegative function A(x). Multiply with the assumptions, one has:

x€R , iff(x|6) = g(T(0)|6;)h(x) > kg(T(x)|6p)h(x) = kf(x|6p)
x RS, iff(x|0) = g(T()[6;)h(x) < kg(Tx)|Op)h(x) = kf(x|6,)
By the second assumption that @ = Py(T € ), one has
Py, (X € R) =Py (T(X) €S) =a.
Now all the conditions of the first part of Neyman-Pearson Lemma are met,
it follows that the test based on 7 is a UMP level a test.

[]
Hypotheses, such as H, and H, in the Neyman-Pearson Lemma, that specify only

one possible distribution for the sample X are called simple hypotheses. In most
realistic problems however, the hypotheses of interest specify more than one possible
distribution for the sample. Such hypotheses are called composite hypotheses. Since
the definition of UMP requires the test to be most powerful against each individual

| |
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0 € ©, the Neyman-Pearson Lemma can be used to find UMP tests in problems
involving composite hypotheses.

In particular, hypotheses that assert that a univariate parameter is large, for exampl-
e,H:0 >0, orsmall, e.g. H: 0 < 0, are called one-sided hypotheses. Hypotheses
that assert that a parameter is either large or small, e.g. H : 8 # 6,, are called two-
sided hypotheses. A large class of problems that admit UMP level a test involve one-
sided hypotheses and pdfs or pmfs with the monotone likelihood raito property,
which is given below.

Definition: Monotone Ratio Likelihood Ratio (MLR)
A family of pdfs or pmfs {g(¢|0)|6 € ©} for a univariate random variable T
with real-valued parameter 6 has a monotone likelihood ratio (MLR) if, for
every 6, > 6,, g(t|6,)/g(t]6,) is monotone (nonincreasing or nondecreasing)
function of  on {r| g(¢]|6,) > O or g(¢|6,) > 0}. Note that ¢/0 is defined as oo
if0 < c.

Many common families of distributions have an MLR. For example, the normal (k-
nown variance, unknown mean), the Poisson, and binomial all have an MLR. Indeed,
any regular exponential family with g(¢|0) = h(t)c(0)e"®" has an MLR if w(0) is a
nondecreasing function.

Theorem 2.2: Karlin-Rubin
Consider testing H,, : 8 < 6, versus H; : 6 > 6,. Suppose that T is a sufficient
statistic for € and the family of pdfs or pmfs {g(z|0) |6 € O}of T has an MLR
then for any £, the test that rejects H, < T > 1, is a UMP level a test where
a =Py (T > 1)

By an analogous argument, it can be shown that under the conditons of Karlin-
Rubin, the test that rejects H,: 0 > 0, in favor of H,: 0 < 6, © T <, is a UMP
level a test with a = IP’QO(T < 1p).

However, the UMP does not always exist.

Example 2.2: Nonexistence of UMP test
Let X, ..., X, be iid N(0,6?) with 62 known. Consider the test H, : § = 6,
versus H, : 0 # 0. For a simplified value of a, a level a test in this problem
is any test such that Py(reject H,)) < a.
Consider an alternative parameter point ; < 6,. Among all tests that satisfy
P,(reject Hy) < a, the test that rejects H, if X < — 6Z,/4/n + 0, has the
highest possible power at 8,. Call this Test 1.
Furthermore, by part (b) of Neyman-Pearson Lemma), any other level a test
that has as high a power as Test I at 6, must have the same rejection region as
Test I except perhaps for a set A such that

[ f(x]6)dx = 0.
A

Thus, if a UMP level a test exists for this problem, it must be Test I because no

other test has as high a power as Test I at 6,.

Alternatively, we may consider a Test II, which rejects Hy if X > 6Z,/ \/; + 6,
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The Test 11 is also a level a test. Let 5,(6) denote the power function of Test I.
For any 6, > 6, one has

5,(65) P<X>6%+9> P<X4%>Z+%_%)
20) =1y 0) = %o a
? n ? 0/\/; a/\/z

=Py (Z > z,) Since Z ~ N(0,1),  (“>7since 6, — 0, <0)

X-0, 0, — 6,
:P@<—%)>%X <7+ >
ol\/n ol\/n

0%,

=mxi<— +%)=mwg

n
Thus Test I is not a UMP level a test because Test II has a bigger power than
Test I at 6,. Earlier we showed that if there were a UMP level a test, it would

have to be Test I. Therefore, UMP level a test does not exist in this problem. ||

2.3 The p-Values
After a hypothesis test is done, the conclusions must be reported in some statistic-

ally meaningful way. One method of reporting the results of a hypothesis test is to
report the size, a, of the test used and the decision to reject H,, or accept H,,. The size
of the test carrise important information. If a is small, the decision to reject H; is
fairly convincing, but if « is large, the decision to reject H, is not very convincing
since the test has a large probability of incorrectly making that decision. Another way
of reporting the results of a hypothesis test is to report the value of a certain kind of
test statistic called a p-value.
Definition: p-Value

A p-value p(X) is a test statistic satisfying 0 < p(x) < 1 for every sample

point x. Small values of p(X) give evidence that H| is true. A p-value is valid

if Vo € Oyandevery 0 < a <1, Py(p(X) < a) L .

If p(X) is valid it is then easy to construct a level a test based on p(X). The test
that rejects H,, if and only if p(X) < a is a level a test. An advantage to reporting a
test result via a p-value is that each reader can choose the a and then can compare the
reported p(x) to a and know whether these data lead to acceptance or rejection of H,,.
Morover, the smaller the p-value, the stronger the evidence for rejecting H,,. Hence, a
p-value reports the results of a test on a more continuous scale, rather than just
accepting H,, or Rejecting H,,.

The most common way to define a valid p-value is given by the following result.
Theorem 4.5: Valid p-Value
Let W(X) be a test statistic such that large values of W give evidence that H| is

true. For each sample point x, define p(x) = sup Py(W(X) > W(x)). Then,
6€0,
p(X) is valid.
Proof:
Fix 0 € ©,, let F(w) be the CDF of —W(X). Define
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Po(x) 1= Py(W(X) 2 wx)) = Pp(—W(X) < —w(x)) = Fy(—W(x)).
Hence, by the Probability Integral Transformation), the distribution of p,(X)

is stochastically greater or equal to Uniform(0, 1) distribution. That is,
VO<a <1, PypyX) <a) La,

because
p(x) = sup py(x) 2 py(x) Vx,
0'€0,
hence
Py(p(X) < @) < P(py(X) < @) < a.
This is true VO € ©yand VO < a < 1, then by the definition of p-value,
p(X) is a valid p-value.

[

3. Methods in Finding Tests
In this section we are going to introduce some methods in finding the hypothesis
testing. In we shall treat the Likelihood Ratio Test, then in|3.2| we treat the UIT
and IUT, i.e. the Union-Intersection Tests and the Intersection-Union Tests. Instead of
talking the evaluation of IUT and UIT in|2| we introduce the evaluation of these tests
in 3.3.

3.1 The Likelihood Ratio Tests
The likelihood ratio method of hypothesis testing is related to the maximum likeli-
hood estimators and likelihood ratio tests are as widely applicable as maximum
likelihood estimation. Recall that if X, ---, X, 1s a random sample from a population

with pdf or pmf f(x | @) (0 may be a vector), the likelihood function is defined as
L©O|x;, -+ x,) = LO|x) =f(x]0) = [ [ Fx10).

i=1
Let ® denote the entire parameter space. Likelihood ratio tests are defined as follows.
Definition: Likelihood Ratio Test Statistic
The likelihood ratio test statistic for testing H,, : 6 € © versus H; : 0 € Oy is
supg, L(0 | x)

supg L(6]x)

Definition: Likelihood Ratio Test (LRT)
A likelihood ratio test (LRT) is any test that has a rejection region of the form
{x|A(x) < c} where c is any constant such that 0 < ¢ < 1.

Recall that in the MLE, the maximization of the likelithood function is, not about
making the data itself more probable but rather about finding the parameter values
that make the observed data most consistent with the assumed model. The motivation
for the LRT is quite the same.

Example 3.1: Normal LRT
Let X;,..., X, be a random sample from a N(0,1) population. Consider testing
Hy: 0 = 0,versus H, : 0 # 0,. Here 0, is a number fixed by the experimenter
prior to the experiment. Since there is only one value of 8 specified by H,,, the
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numerator of A(x) is L(6, | x). We know that the unrestricted MLE of 0 was

found to be X, the sample mean. Thus, the denominator of A(x) is L(X | x). So
the LRT statistic is:

Q) "exp{ - X, (5 — 6,)*/2}
Qr)Pexp{ - X (x;—X)*/2}

(Zr, 0= 002 + X, = %7)
=exp{ _ }

2
The expression could be simplified by noting that
n n

D =0 =) (5, —X)* +n(x - ).
i=1 i=1

Thus the LRT statistic 1s

Alx) =

n(x — 6,)?
A(x) = exp [ — u] .
2
An LRT is a test that rejects H,, for small values of A(x), then the rejection
region {x|A(x) < c} can be written as

2(lo
{x| % — 6| z\/—ﬂ}.
n
—2logc
As c ranges between 0 and 1, 4 /| —— ranges between 0 and oo.
n

Thus, the LRTs are just those tests that reject H;, : 0 = 0, if the sample mean
differ from the hypothesized value 6, by more than a specified amount. I
It coule be best interpreted in the situation in which f(x|8) is a pmf of a discrete r-
andom variable. In this case, the numeraotr is maximized over the whole parameter
space © while the denominator is maximized over the ©,. The less the ratio is shows
that more consistent our model is.
Connection with MLEs:
If we think of maximizing over both the entire parameter space and a subset of
the parameter space, then the correspondence between the LRTs and MLEs
become very clear. Suppose that 0, an MLE of 0, exists; 0 is obtained by doing
an unrestricted maximization of L (6 |x). We can also consider the MLE of 0,
call it 90, obtained by doing the restriced maximization, assuming that © is the

parameter space. That is, éo = éo(x) is the value of 6 € O that maximizes
L(90 | X)

L(@]x)

For a sufficient statistic of a random sample X, namely 7'(X), we know that all the
information about 6 could be found in 7(X'), the test based on 7 should be as good as
the test based on the complete sample X. In fact, the tests are equivalent.

Theorem 3.1:
If T(X) is a sufficient statistic for 8 and A*(¢) and A(x) are the LRT statistics

L(0|x). Then, the LRT statistics is given by A(x) =
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based on T and X, respectively. Then A*(7T'(x)) = A(x) Vx € Q.
Proof:
According to the Factorization Theorem, the pdf or pmf of X can be written
as f(x|0) = g(T(x)|0)h(x), where g(¢|8) is the pdf or pmf of 7" and h(x) does
not depend on 6. Thus,
supg, L(O|x)  supg, f(x|0)
Ax) = =

supe L(0]%) _ supo f(x]6)
supg, 8(T'(x) | 0)h(x) . .
= (T 1s sufficient)
supe (7' (x) | 0)h(x)
supe, &(T(x)]6)
= (h does not depend on 6)
supg &(T'(x) | 0)
supg, L*(0| T(x)) (2 is the pdf £of )
= is the pdf or pmf o
supo L¥(0] T()) g1 epEOmp

=: A*¥(T(x)).

[

LRTs are also useful in situations where there are nuisance parameters, i.e., param-
eters that are present in a model but are not of direct inferential interest. The presence
of such nuisance parameters does not affect the construction of the LRT but, as might
expected, the presence of nuisance parameters might lead to a different test.

3.2 The UIT and the IUT
In some situations, tests for complicated null hypothesis can be developed from te-
sts for simpler null hypothesis. There are two corresponding methods, the UIT and
the IUT, standing for the Union-Intersection test and the Intersection-Union test,
respectively. The motivation for these two methods is very straightforward, in
practical problems we often see the null hypothesis is expressed under the set oper-
ations.
Algorithm 3.2: Union-Intersection Method
The Union-Intersection method of test construction might be useful when the
null hypothesis is conveniently expressed as an intersection, namely
Hy:0€()©
yel

7/9

where I is an arbitrary index set.
Suppose that tests are available for each of the problems of testing
H), :0 € ©, versus H,,: 0 € ©,.

Say the rejection region for the test of Hy, is {x|7,(x) € R, }. Then the
rejection region for the Union-Intersection test is

Uumme&}

yell
The rationale is simple. If any one of the hypothesis H), is rejected then H,

should be rejected. On the other hand, H, is true one if each of the hypothesis
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H,,
When 6, is defined to be the intersection of some subsets of the parameter space,
instead of checking each 6, to be true which is the only way for 6, to be true, we

take the union of each rejection region and proceed with rejecting 6, as long as 6, is

false for some A, with accepting otherwise. In some situations a simple expression for
the rejection region of a Union-Intersection test has a rejection region of the form
{x] T,(x) > c}, where ¢ does not depend on y. The rejection region for the Union-

1s accepted as true. I

Intersection test could be expressed as
U {xlTy(x) > c} = {xl sup T,(x) > c}.
yer yel’
Thus the test statistic for testing H, is 7'(x) = sup T,(x).
yell
Example 3.2: Normal Union-Intersection Test
Let Xi, ..., X, be a random sample from N(u, o2) population. Consider testing
Hy: u = pgversus Hy : u # p,y, where p is a specified number. We can write
H, as the intersection of two sets: Hy : {p|p < po} N {p|p > py}.
The LRT of Hy; @ pt < pig versus Hyy > py is rejecting Hyy, @ p < p in

favor of Hy; : u > pg if i > 1;. Similarly, the LRT of Hy; : pu > py
n
versus Hy, @ p < pi is rejecting Hyy, : pp 2 pig in favor of Hy ;@ p < puy if

X — pig
Si/n
H, : p # p formed from these two LRTs is

< t. Thus, the Union-Intersection test of Hjy : y = u versus

X — X—p

Reject Hy if > 1; or 0 < Iy
Si/n Sh/n
Ift;, = —t; > 0, the Union-Intersection test can be more simply expressed as
the form: B
X —
Reject Hy if - #ol 5

Si/n
It turns out that this Union-Intersection test is also the LRT for this problem
and is called the two-sided ¢ test. I
The analogous Intersection-Union method is formulated in a similar way.
Algorithm 3.3: Intersection-Union Method
Suppose we wish to test the null hypothesis H, : 0 € U ®,. Suppose that
yell
Vyerl, {xlTy(x) € Ry}
is the rejection region for a test of
H), :0 € O, versus H,,: 0 € ©,.
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Then the rejection region for the Intersection-Union test of H versus H| is
ﬂ {x|T,(x) € R,}.
yel’

H, is false < all of the H,), is false, so Hj, can be rejected < each of the

individual hypothesis H;, can be rejected. I

Again, the test can be greatly simplified if the rejection region for the individual
hypothesis are all of the form {x|7,(x) > ¢}, where ¢ is independent of y. In such

cases, the rejection region of H, is
([ (xIT,00 2 ¢} = {x] inf T,(0) >},
yel’
yell

Here, the Intersection-Union test statistic is inf 7 (x), and the test rejects H,, for large
yell

values of this statistic.

3.3 Evaluation on UIT and IUT
Because of the simple way in which they are constructed, the sizes of the UIT and
the IUT can often bebounded above by the sizes of some other tests. Such bounds are
useful if a level a test is wanted, but the size of the UIT or IUT is too difficult to
evaluate. In this subsection we discuss the bounds and give examples in which the
bounds are sharp, i.e. the size of the test is equal to the bound.
First consider UITs. Recall that, in this situation, we are testing a null hypothesis of

the form H,: 0 € ©, where O, = ﬂ Op. To be specific, let 4,(x) be the LRT
yel’

statistic for testing H,,, : 6 € ©, versus H;,, : 0 € ©), and let 1(x) be the LRT statistic

for testing Hy, : 0 € © versus H| : 6 € 0. Then we have the following relationships

between the overall LRT and the UIT based on 4,(x).

Theorem 3.4:
Consider testing H, : 0 € O versus H, : 0 € ©; where O := ﬂ 0, and 1,(x)
yell
is defined as above. Define T'(x) := inf 4,(x), and form the UIT with rejection

yell
region {x|4,(x) < c forsomey € I'} = {x|T(x) < c}. Also consider the usual
LRT with rejection region {x|A(x) < c}. Then
(@) T(x) > A(x) for all x.
(b) If r(x) and f,(x) are the power functions for the tests based on 7 and 4,
respectively, then ,(0) < () for every 0 € ©.
(c) Ifthe LRT is a level a test, then the UIT is a level « test.
Proof:

Since © = ﬂ @7, C (9),, then by the definition of LRT, one has ﬂy(x) > A(X)
yell

VxVy el.

Because the region of maximization is bigger for the individual 4, then
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T(x) := inf /ly(x) > A(x), then (a) follows.
yel’

By (a), {x|T(x) < ¢} C {x|A(x) < c}, therefore one has
Pr(0) :=Py(T(X) < c) SPyA(X) < c) =: ,(0) VO € O then (b) follows.
Since (b) holds VO € O, therefore, sup (0) < sup f,(6) < a by assumption,

0e® =0
therefore (c) holds.

[

Since the LRT is uniformly more powerful in the above theorem than UIT, we mig-
ht ask why we should use the UIT. One reason is that UIT has a smaller Type I Error
probability for every 8 € ©,. Moreover, if H;, is rejected, we may wish to look at the
individual tests of H), to see why, for which UIT provides us an access.

We now investigate the sizes of IUTs. A simple bound for the size of an IUT is rel-
ated to the sizes of the individual tests that are used to define the IUT. Recall that in
this situation the null hypothesis is expressible as a union, i.e. we are testing

H,: 0 € O, versus H| : 0 € O, where O, = U 0,.
yell
An I[UT has a rejection region of the form R = ﬂ R, where R, is the rejection region
yell

foratestof Hy, : 6 € ©,.
Theorem 3.5:

Let a, be the size of the test of H), with rejection region R,. Then the IUT with

rejection region R = ﬂ R, isalevel @ = sup a, test.

yer yell

Proof:

Let & € ©. Then € € O, for some y € I' and one has

PyX € R) < Py(X € R)) < a, < a.Since a := supa,. Since 6 € O, was

yell
chosen arbitrarily, then the IUT is a level a test.

[

Typically, the individual rejection regions R, are chosen so that @, = a Vy. In such

a case, Theorem 3.5|states that the resulting IUT is a level a test. Moreover, this
theorem provides an upper bound for the size of an IUT, is somewhat more useful
than Theorem 3.4, which provides an upper bound for the size of a UIT.
Remark:
'Theorem 3.4/ applied only to UITs constructed from LRTs while Theorem 3.5
applies to any IUT. I
The bound in Theorem 3.4[is the size of the LRT, which, in a complicated proble-
m, may be difficult to compute. In Theorem 3.5 however, the LRT need not be used

to obtain the upper bound. Any test H),, with unknown size @, can be used, and then

the upper bound on the size of the IUT is given in terms of the known sizes @,y € I'.
The IUT in Theorem 3.5/is a level a test. But the size of the IUT may be much less
than a; the IUT may be very conservative. The following theorem gives conditions
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under which the size of the IUT is exactly @ and the IUT is not conservative in this

case.
Theorem 3.6:

n

Consider testing H,, : 0 € U 0, where k is a finite possible integer. For each
j=1

J = L,...,k, let R; be the corresponding rejection region of a level a test of Hy;.

Suppose that for some i = 1,...,k, there exists a sequence of parameter points,
6, € ©, for [ = 1,2,..., such that:
(1) limPy(X€R) =a.

[— 00

() Vj#i imP,(X€R) = 1.
>0

k
Then, the IUT with rejection region R = ﬂ R; is a size a test.
j=1

Proof:
k
To show that the IUT with rejection region R = ﬂ R; is a size a test is to show
j=1
that sup Po(X € R) = a.
0€0,
CCS’Q:
By|Theorem 3.5/and Bonferroni’s Inequality, R is a level a test, i.e.,
supPy(X € R) < a.
(=C)
6&2’3:
Because all the parameter points 6, satisty 6, € ©, C O, therefore, one
has
sup Py(X € R) > lim PQI(X € R)
N [=c0

k
= lim Py(X € ﬂ R)

[—> 00

j=1
k
> lim Z‘ Po(X € R) + (1 —k)
= (k- 1)+ a — (k — 1) by (i) and (ii)
= Q.
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Appendix:
Theorem A: Probability Integral Transformation
Let U follow a uniform distribution and if F~! is the quantil function of X then
F~Y(U) and X has the same distribution.
Theorem B: Factorization Theorem
Let f(x| @) denote the joint pdf or pmf of a sample X. A statistic T(X) is a
sufficient statistic for @ < there exist functions g(¢| ) and i (x) such that,
for all sample points x and all parameter points @, f(x|0) = g(T(x) | 0)h(x).
Appendix C: Bonferroni’s Inequalities

n
LetA,,...,A, be events in a probability space (€2, Z ,P)and letA := UAi‘
i=1
n n
Then one has I]:D(ﬂAl-) >(1-n+ 2 P(A)).
i=1 i=1
Proof:
Forn =1,P(A,) > (1 — 1) + P(A,) always holds. Without loss of generality,
we may assume that £ > 1 and the inequality holds for &, i.e.,

P((k]A,.) > (1-k)+ zk: PA,).

i=1 i=1
k+1 k+1

WIS: P(((|4) 2 (1 =0 + ), P(4)
i=1 i=1

k
LHS =P (ﬂAl) N Ak+1]

i=1

k /K |
= [FD(ﬂAi) +PA) — P <ﬂAi> UAi

i=1 - =1

k k ]
> Z PA) + PA,,) - P (ﬂAl) VA +(1 =K

i=1 - =1

k+1 k
=Y P@A) - P[(ﬂAl) UA,,,
i=1

i=1

k
By definition, P K N A,.> UA,

ket =1 k+1
> ZP(Ai)—1+1—k = ZP(A,.)—k.
i=1 i=1
Result follows by induction.

(By assumption)
+ (1 = k).

< 1, therefore,
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On The Bayesian Statistical Approach
Tianyu Zhang*

Abstract:

We introduced the Bayesian statistical appraoch as a complementary to the
long-frequentist approach. The three major ingredients of Bayesian analysis, the
data, the prior, and the loss functions, except the first one which is assumed to be

well-behaved, are discussed in this review. Before having the data the
experimenters based on their beliefs offer a prior distribution, the good priors
should meet some standards we discuss in the second section. After having the
prior, we need to know how much the deviation between esimation and realized
values is, the derived loss function, along with some often-used forms are
disucssed in the third section. The evaluation, hypothesis testing, and the
interval estimation are treated in the fourth section. We discuss also the validity
of Bayesian and we introduce the Bayes convolution to close this review.

Table of Contents:
1. Introduction to Bayesian|
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1. Introduction to Bayesian
We start with a short review of the long-run frequentists in then we introduce
the Bayesian approach in Regarding the data collection is well performed, three
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ingredients of the Bayesian statistics: data, prior, and loss function are introduced in
this section. In|1.3 we introduce the prior and posterior, and we close this section with
the loss function introduced in

1.1 Long-Run Frequensits
Practically, in all statistics courses, we learn how to make decisions under uncertai-
ty. Formally, we are looking for a decision J that belongs to an action space &/ — a
set of all possible decisions that we are allowed to take.
We also know that statisticians collect random samples of data and do their statisti-
cs based on them. So, their decisions are functions of data, namely,
0 = o(data) = 6(Xy, -+, X). (1.1)
This is the frequentist approach. According to it, uncertainty comes from a random
sample and its distribution. The only considered distributions, expectations, and vari-
ances are distributions, expectations, and variances of data and various statistics com-
puted from data. Population parameters are considered fixed. Statistical procedures
are based on the distribution of data given these parameters,
F@x10) = f(Xy, -+, X, 1 0). (12)
Properties of these procedures can be stated in terms of long-run frenquencies. For
example:
Example 1.1: Long-Run Frenquencies
(1)  An estimator 0 is unbiased if in a long run of random samples, it
averages to the parameter 6.
(i) A test has significance level a if in a long run of random samples, 100 %
of times the true hypothesis is rejected.
(ii1))  An interval has confidence level (1 — a) if in a long run of random
samples, (1 — a) 100% of obtained confidence intervals contain the
parameter. I
However, there are many situations when using only the data is not sufficient for
reasonable decisions. Also, the frequentist concept of a long run may inadequately
reflect performance of statistical procedures.
Summary:
Frequentist statistical decision making takes into account only the uncertainty
of the data. Statistical decisions are based on the data only, and their
performance 1s evaluated in terms of a “long-run”. However, there are
situations where such an approach is deficient, unnatural, or even misleading in
various ways.

1.2 Bayesian Approach
Different from the long-frequentist approach, there is another method, the famous
Bayesian approach. According to this perspective of view, uncertainty is attributed
not only to the data but also to the unknown parameter 6. Some values of 8 are more
likely than others. Then, as long as we talk about the likelihood, we can define a
whole distribution of values of #. We call it the prior distribuion, and it reflects our
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ideas, beliefs, and past experiences about the parameter before we collect and use the
data.

One benefit of this approach is that we no longer have to explain our results in ter-
ms of a “long-run”. Often we collect just one sample for our analysis and don’t
experience any long run of samples. Instead, with the Bayesian approach, we can
state the result in terms of the distribution of parameter 8. For example, we can
clearly state the probability for a parameter to belong to a certain interval, or the
probability that the hypothesis is true. This would have been impossible under the
frequentist approach.

Another benefit is that we can use both pieces of information, the data and the pri-
or, to make better decisions. In Bayesian statistics, decisions are

0 = oO(data, distribution). (1.3)

1.3 Prior and Posterior
Now we have two sources of information to use in our Bayesian inference:
(1)  collected and observed data;
(1)  prior distribution of the parameter.

These two pieces are combined via the Bayes formula
P(A | B)P(B)
P(B|A) = : (1.4)
P(A)

Prior to the experiment, our knowledge about the parameter 6 is expressed in terms of
the prior distribution (prior pdf or pmf) z(€). The observed sample of data
X = (Xi, .-+, X,,) has distribution (pmf or pdf)
Fx16) = f(x;, -+, x,10). (1.5)

This distribution is conditional on . That is, different values of the parameter 6 gen-
erate different distributions of data, and thus, conditional probabilities about X
generally depend on the condition 6.

Observed data add information about the parameter. The updated knowledge about
0 can be expressed as the posterior disribution, namely,

7Z'(9|)C)=72’(9|X=X)=M, (1.6)
m(x)

where m(x) represents the unconditional distribution of data X. This is the marginal
distribution (pdf or pmf) of the sample X. Being unconditional means that it is

constant for different values of the parameter 6. It can be computed by
{ D p f(x]0)x(0), for discrete piror distirbutions 7z
m(x) =

I ) f(x]60)7(0)d6, for continuous prior distributions 7

Note that the posterior distribution of the parameter 6 is now conditioned on data
X = x. Naturally, conditional distributions f(x|6) and z(6|x) are related via the

Bayes rule|(1.4).

Notation:
7(0) = prior distribution
7(0|x) = posterior distribution
f(x]0) = distribution of data (model)
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m(x) = marginal distribution of the data

X = Xy, --+, X)), sample of data

X = (xy,',x,), observed values of X, ---, X,.
Summary:

Bayesian approach presumes a prior distribution of the unknown parameter.
Adding the observed data, the Bayes Theorem converts the prior distirbution
into the posterior which summarizes all we know about the parameter after
seeing the data. Bayesian decisions are based on this posterior, and thus, they
utilize both the data and the prior.

1.4 Loss Function

Besides the data and the prior distribution, is there any other information that can
appear useful in our decision making?

How about anticipating possible consequences of making an error? We know that
under uncertainty, there is always a chance of making inaccurate decisions. The third
component of the Bayesian Decision Theory is the loss function, defined as below.
Definition: Loss Function

The loss function L : ® X &f — R, or sometimes L : ©® X &f — [0,00) which
isamap (0,0) — ¢ € R (resp. ¢ € [0,00).

This penalty may be 0 if the decision is perfect, for example, if we accept the true
null hypothesis or estimate a parameter € with no error.

Equipped with the loss function, we are looking for optimal statistical decisions.
Those that minimize the loss. But minimize with respect to what? The loss function
L(60,6) = L(0,6(X)) has uncertainty — unknown parameter 6 and X = (X, -+, X).
Definition: Risk

The risk, or frequentist risk is the expected loss over all possible samples,
given a parameter 6. It is defined by R(6,0) := [Ei)( L(0,6(X)), there [E)Q( means

the expectation depends both on X and . Note that
[E)g(L(H, o(X)) = Z L0, 6(x))P(x) or J L(0,6(x)f (x)dx.
X —Q0

With respect to the risk, the optimal decisions are still not clear since R(8, 6(X))
depends on the unknown parameter 8. However, it is clear which rules we should not
use. Moreover, by this convention, we can tell which action is better than another by
just comparing the corresponding risks, this leads to a natural comparability.
Definition: R-better

We say decision 9, is R-better than decision 6, if either
(i)  R(6,6,) < R(6,6,)V0, or
(i)) R(6,6,) < R(0, 5,) for some 6.

With this partial odering, we can further deduce for what decisions are acceptable

and for what decisions are not.

Definition: Inadmissible, Admissible
Decision ¢ 1s inadmissible if there exists a decision R-bettern than o.
Alternatively, decision o is admissible if it is not inadmissible.
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It turns our that we can minimize the bad influence brought up by the worst case,
1.e. we minimize the maximum of the risk, this leads to a natural application of the
minimax theory.

Definition: Minimax Decision
Decision ¢ is said to be minimax if it minimizes iI;f R(6, 6), the worst possible

risk over all @ € ©. That is, sup R(0, 6yinimax) = 1nf sup R(0, 5).
0 oed ¢

Note that minimax decisions are conservative because they protect against the wo-
rst situation where the risk is maximized. They are the best decisions in a game
against an intelligent opponent who will always like to give you the worst case. In
statistical games, the players know that they are acting against intelligent opponents,
and therefore, they devise minimax strategies. This is one of the interest in game
theory.

So far we have introduced the loss and risk without letting the prior distribution
being involved. Now let us define when the case it is not excluded.
Definition: Bayes Risk
The Bayes risk is the expected frequentist risk
r(z,0) = E"R(9,5) = EXL(0,5),
where the expectation is taken over the prior distribution 7z (). So it is the loss
function averaged over all possible samples of data and all possible parameters.

As we have already seen, the Bayes decisions are based on the posterior distributi-
on, that is, conditioned on the known data X.

Definition: Posterior Risk
The posterior risl is the expected loss, where the expectation is taken over the
posterior distribution of parameter 6,

p(m,81X) = ER’OL©,5) = E(LH,6)|X).

So, the posterior risk is the loss function averaged over parameters 6, given
known data X.

Definition: Bayes Decision Rules
The Bayes decision rules minimize the Bayes risk and, as we’ll see pretty soon,
they also minimize the posterior risk. That is,

p(x, 5Bayes | X) = inf p(x,6|X)
oed
for every sample X and r(z,0) = inf r(x,d).
sedl

Summary:
Simple frequentist statistics are based on just the observed data. Decision
theory takes into account the data and the loss function. Bayesian statistics
is based on the data and the prior distribution. Thus, the Bayes decision rules
are based on three components:
(1)  The data,
(1)  The Prior disribution,
(ii1)) The Loss.
Bayes rules minimze the posterior risk, given the observed data. Minimax rules
minimize the largest or the worst possible risk.
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2. Choice of a Prior Distribution
Recall that Bayes decision rules are based on three components, the data, the prior
distrubtions, and the loss. That is, 5Bayes = 0(X, m,L). So, for Bayesian decision

making, we need
(1)  Tocollect data X = (X, ---, X))
(i1))  To choose a prior distribution of unknown parameters 7(8).
(iii) To choose a loss function L(68, 6).
We mainly focus on the introduction to (ii). There are perhaps four general ways to
choose a prior distribution:
(1)  Quantify your personal beliefs, express your uncertainty about the

parameter 6 in a form of a distribution. (Subjectively)
(2)  Let the data suggest the prior distribution. People often use historical
data or data on similar cases. (Empirically)

(3) Take a convenient form of the prior 7(€) in order to get a

mathematically tractable posterior distribution z(6 | X ).
(Conveniently)

(4) In the absence of any information about the parameter prior to the
experiment, which prior distribution would most fairly reflect this
situation? (Non-Informatively)

We offer a short treatment of (1) in|2.1, then we move to the discussion of the emp-
irical Bayes solutions in[2.2, where the parametric, non-parametric, and the hierarchy
(i.e. we use Bayesian statistical approach to the prior) Bayesian are discussed. We
introduce the important terminology “conjugate family” in , where we offer some
conjugate relationships between familiar distribution families. We give a brief introd-
uction to the non-informative Bayes in[2.4, we also generalize the Bayes rules in this
subsection.

2.1 Subjective Choice of a Prior Distribution

Subjectively determined prior does not have a direct mathematical formula. It is ju-
st an attemp to express one’s original beliefs about the unknown parameter and one’s
uncertainty about it in a usable mathematical form.

Often we can determine a few related probabilities and fit a distribution of them.
Sometimes we can compare probabilities of different values of @ or probabilities of
intervals. Usually, it is easy to compare the chances of events and their complements
like P(0 € [a, b]) and P(O & [a,b]) — which one is more likely? Sometimes one
can determine some percentiles, say, with probability 25%, parameter € does not
exceed what...

2.2 Empirical Bayes Solutions
The general idea of empirical Bayes analysis is to estimate the prior distribution
from the data. This can be done in several ways.
. Parametric Empirical Bayes. A family of prior distributions z (€| 1) is
chosen, but its parameter(s) 4 is unknown. This A4 will then be estimated
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from the marginal distribution m(x) = m(x| 4).

Nonparametric Empirical Bayes. No family of prior distribution is
assumed. Thus, there is no form of the posterior as well. Instead, the
form of a Bayes decision rule is obtained directly, bypassing the
posterior.

Hierarchical Bayes. We can also take a “completely Bayes™ approach,
assume a family of prior distributions 7 (6| A1) and estimate unknown A
in the Bayesian way. That is, we put a prior distribution p(4) on 4 and
estimate it, before estimating the parameter of interest 8. This second-
level prior is called a hyperprior, and parameter A is a hyperparameter.
Sometimes this hierarchy of priors and their parameters has more than
two levels (but countably many...)

2.3 Conjugate Priors

Let us focus on the mathematically convenient families of prior distribution. A suit-
ably chosen prior distribution of @ may lead to a very tractable form of the posterior.
Definition: Conjugate

A family of prior distributions 7 is conjugate to the model f(x | @) if the
posterior distribution belongs to the same family.

Recall in our lecture notes on statistical inference, we have the concept that
Definition: Conjugate Family

Let & denote the class of pdfs or pmfs f(x|6) indexed by 8. A class I1 of prior
distributions is a conjugate family for & if the posterior distribution is in the
class Il Vf € &, all priors in I, and all x € X.

We state some conjugate relationships without proving.

Gamma family is conjugate to the Poisson model.

Having observed a Poisson sample X = x, we update the Gamma(a, 1)
prior distribution of 8 to the Gamma(a + Xx;, 4 + n) posterior.

Beta family is conjugate to the Binomial model.

Posterior parameters are o, = a + 2x; and . = f + nk — 2x;.
Normal family is conjugate to the Normal model.

nX/lo*+ ult? 5 1

nlo? + 1/72 T nle?+ 1/72

Posterior parameters are y, =

2.4 Non-Informative Prior Distributions and Generalized Bayes Rules

One of the main arguments of the non-Bayesians against Bayesians was the subjec-
tive choice of the prior distribution. Indeed, it is not always trivial to come up with a
realistic distribution that truly reflects our prior knowledge and uncertainty about the
unknown parameter.

An extreme case, what can we do if we have no prior knowledge whatsover? No
information about the parameters until we see the actual data... However, we still
would like to use Bayesian methods because of its nice properties. It is natural to ask
the question that is there a “fair” prior distribution that reflects our absence of the
knowledge. Such a distribution would be called a non-informative prior distribution.
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However, this approach has two possible problems, the first is that there are trans-
formations not “preserving” the distributions. That is,
Example 2.1: Bad Tranformations
Consider estimation of parameter 6 of Binomial(k, ) distribution. We know
that @ € [0,1], and suppose that nothing els is known about 8. Then, we should
choose a prior distribution that gives equal weights to all values of 8, making
them all “equally likely”. So let 7(€) ~ Uniform(0,1)?
Indeed this seems to be the most natural non-informative choice. However,
any non-linear transformation of 6, its reparametrization, appears non-
Uniform. |
Another problem is that, since high prior variance means a lot of uncertainty about
the unknown parameter; if we consider the extreme case under normal distribution,
when Varf =: 72 > o0, we are infinitely uncertain about #. Moreover, as 2 5 o0,
the Normal(u, 7) prior density becomes more and more flat, converging to a constant.
This leads to a serious problem! There is no constant density on R. There is a cons-
tant measure, the Lebesgue measure, with 7(f) = 1V60 € R but

(60] (6.¢]
" z(0)do = " df = oo,
—o0 —o0
hence it is not a probability measure.
Nevertheless, Lebesgue measure gives us a fine posterior distribution

7(©1) ~ f(x]10)w(©0) ~ exp{ (0% - e—z)i} ~exp{ - 20 N0
27 o2 26%/n ’ '
Therefore, without any prior information, after seeing the data, we have exactly as
much as uncertainty about 6 as the data contain. This is quite reasonable. So, such a
prior worth consideration, even though it is not, strictly speaking, a distribution.

Definition: Improper Prior Distribution
An imporper prior distribution is an infinite measure on the parameter space

O (i.e. | dn(0) = o0) which produces a proper posterior distribution.
©
Definition: Generalized Bayes Rule

Decision that minimizes the posterior risk under an improper prior is called a
generalized Bayes rule. Generalized Bayes rules are limits of proper Bayes
rules.

3. Standard Loss Functions and Corresponding Bayes Decision Rules
In this section we shall introduce some common loss functions, they are squared-
error loss in|3.1], absolute-error loss in[3.2, and the zero-one loss in|3.3. Note that one
deci-sion remains better than another in Bayes or minimax sense if the entire loss
function is increased by a constant or multiplied by a positive coefficient. Therefore,
. We can drop constant coefficients and shifts.
. We can only consider the non-negative losses.
One interesting finding is that, the posterior mean is the Bayes decision with respe-
ct to the squared-error loss, the posterior median is the Bayes decision with respect to
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the absolute-error loss, and the posterior mode is the Bayes decision with respect to
the zero-one loss. We start with the first one.

3.1 Squared-Error Loss
Definition: Squared-Error Loss Function
The squared-error loss function is defined to be L(0,0) := (0 — o )2, where 0 is
the parameter and ¢ is its estimator.
The corresponding squared-error posterior risk is given by

2
p(x,81X) = E((0 = 62| X) = B((0 — u0)* | X) + (1x — 600))",
which can be interpreted as the posterior variance of @ plus posterior bias squared.
Here uy := E(6| X) is the posterior mean of 6.7

The Bayes decision with respect to the squared-error loss is the one that minimizes
the posterior risk which we shall write as

p(m,81X) =E°((0 - 56)* |X) =62 —26E0|X) + E(0*|X).

Therefore, the minimum of the Bayes risk is attained at

Shaves = — 1) _ Eg1x) =
Bayes = > = = Hx-
Summary:
The posterior mean of € is the Bayes decision with respect to the squared-error
loss.

3.2 Absolute-Error Loss
Definition: Absolute-Error Loss Function
The absolute-error loss function is defined to be L(8,6) := |6 — 6|, where 0
1s the parameter and ¢ is its estimator.

Unlike the squared-error loss function, the absolute-error loss function does not pe-
nalize as much for large deviations of the estimator 6 from the parameter 8. We now
state and prove our main result in this subsection.

Theorem 3.1:
The posterior median is the Bayes decision with respect to the absolute-error
loss.

Proof:
Consider M, the median of z(€| X ), and 6, some decision, and compare their
losses.
Casel. 6 < M.
In this case, the difference of losses is given by

LO,0)—-LOM)=10—-056|—10—-M]|

M -6, ifo >M
= < a linear continuous function, ifé <60 < M.

Taking expected values with respect to the posterior distribution 7(0|X ), we
obtain the difference of the posterior risks,
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p(m,0|X)—p(,M|X) 2 —M—-56)PO <M|X)+M-5)PO =2M|X)
=(M-68)(P(0 2 M|X)-P@O <M|X)).
Since M is defined to be the median of 7(@| X)), one has
PO >M|X)>PO<M).
It follows that
p(,0|X)—px,M|X) > 0.
Casell: 6 > M
Analogous to Case 1.
[]
Summary:
The posterior median is the Bayes decision with respect to the absolute-error
loss.

3.3 Zero-One Loss

Generally, the zero-one loss function gives a penalty of 1 for any wrong decision
and no penalty for the correct decision. This makes sense in hypothesis testing —
Type I and Type II errors are penalized while correct acceptance and correct reject-
ions are not.

In estimation, a zero-one loss can be defined as,
Definition: Zero-One Loss Function

The zero-one loss function is defined to be
1,if0 # 6

L(0,5)=I(97é5)={0 o s

However, this only makes sense in discrete cases, when 8 = ¢ with a non-zero pro-
bability. Then, in considering the Bayes decision under this loss function, we comp-
ute the posterior risk,

p(r,81X) =E°(1(0 # 6)|X) =P@ #6|X)=1-z(5|X).

Now, the Bayes rule should minimize this posterior risk. To that end, it maximizes
7(6|X). The Bayes rule is the point of maximum of the posterior distribution (pmf)
7(0]X). In fact, this is the posterior mode.
Summary:
Posterior mode is the Bayes decision with respect to the zero-one loss.
In the continuous case, on the other hand, the probability of & = 6 is 0, so there is
noting to maximize. For this reason, the 0-1 loss function is often defined as
0.6 =110 -5 1,if |0 -6| > ¢
©.8)=1(1 |>8>_{0,if|0—5|58’
allowing the estimator ¢ to differ from the paramter 6 by at most a small €. The Bayes
decision ¢ in this case maximizes the probability P(6 —e <0 <d+€|X), and it
converges to the posterior mode as we send € to 0 (since € is chosen arbitrarily). This
lead to a natural refinement, or we should call the generalized maximum likelihood
estimator.
Definition: Generalized Maximum Likelihood Estimator
The generalized MLE of the parameter @ is the posterior mode, the value of 6
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that maximizes the pdf or pmf.

4. Bayesian Inference: Estimation, Hypothesis Testing, and Prediction

By now we have obtained all the three components needed for the Bayesian decis-
ion making. We collected data, and we determine the prior distribution and the loss
function. Then, combining the data and the prior, we obtained the posterior distrib-
ution. All the knowledge about the unknown parameter is now included in the
posterior, and that is what we shall see in this section.

In|4.1 we introduce the unbiasedness and the variance of the Bayesian estimation,
then in we discuss the Bayesian interval estimation, where we talk about the HPD
region in we offer a treatment on the Bayesian hypothesis testing, we introduce
the Bayesian prediction problem in 4.4/ to close this section.

4.1 Bayesian Estimation and Precision Evaluation
As we have seen in the last section, the Bayesian estimator may take in different
forms. The most common one among them is of course the posterior mean, which is
given by
2 0f(X10)(0)
> fX10)x©)
J0f(X10)x(0)d6
[fX10)x(©)dg °

A 29 On(0]X) = if @ is discrete
OBayes = E(0]X) =

if @ is continuous

J,07(01X)d0 =

Posterior mean is the conditional expectation of @ given data X. In abstract terms, the
Bayes estimator QBayes is what we expect 0 to be, after we observed a sample.

A natural question to ask is that “how accurate is such an estimator?” Among all
estimators, 9Bayes = E(A| X) has the lowest squared-error posterior risk

E((0-07|x)
and also the lowest Bayes risk ﬂE[E(é — 0)?, where this double expectation is taken

over the joint distribution of X and 6.

For the Bayes estimator 9Bayes» posterior risk equals posterior variance, which sh-
ows variability of 6 around éBayes-

A parameter @ is estimated by an estimator 6 = 0. How accurate is this decision? A
frequentist measure of precision is the mean-squared error (MSE) given by

. 2
MSE(@S) := E5 (6 — 0)* = E¢(6 — Ep5)* + (EyS — 0)> = Var(5) + (Bias(5)) " .

Here all the expectations are taken in the frenquentist way, i.e. they integrate over all
samples of X, given a fixed parameter 6.

Following from the Bayesian appraoch, the same expectations are taken with resp-

ect to the posterior distribution of 6, given a fixed, already observed sample X. This is
called posterior variance of estimator 9,

Vx(8) = EZ(5 - 0)*
= E((0 = i | X) + 5 = )’
= T)% + (5 - ”X)za
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where py := E(0|X) is the mean and 7)2( := Var(@| X) is the variance of the posterior
distribution 7 (0| X).

There are two variance components in the posterior variance of . One is the poste-
rior variance of the parameter 8, and the other is the squared deviation of estimator o
from the posterior mean py. So, the total variability of our estimation consists of the
variability of @ around its mean and the distance between that posterior mean and our
estimator, this is very reasonable.

Definition: Posterior Variance

Var(@|X) or r)% = ((9 — Uy) |X ), the posterior variance of the parameter 6,

variance of the posterior distribution 6.
Vy(6) = T)z( + (0 — TX)Z, posterior variance of the estimator 6.

4.2 Bayesian Credible Sets
Bayesian and frequentist approaches to the confidence estimation are quite differe-

nt. In Bayesian analysis, having a posterior distribution of 8, we no longer have to
explain the confidence level (1 — @) in terms of a long run of samples. Instead, we
can give an interval [a, b] or a set C that has a posterior probability (1 — a) and state
that the parameter 0 belongs to this set with probability (1 — a). Such a statement was
impossible before we considered prior and posterior distributions. This set is somet-
imes called a (1 — a) 100% credible set.
Definition: (1 — a) 100% Credible Set

A set Cis said to be a (1 — a) 100% credible set for the parameter 6 if the

posterior probability for 8 to belong to C is (1 — a). That is,

P@OeCl|X)= J 7(0|X)dO =1 — a. Note that such a set may not be
C
unique.

Hyndman mentioned in [8] a region possessing the minimized size but with highest
probability. This is the notion of Highest Density Regions (HDR), and in Bayesian
approach we call it the highest posterior density regions (HPD), or sometimes HPD
sets.

Definition: Highest Density Regions (HDR)
. The region covering the sample space for a given probability 1 — a,
should have the smallest possible volume.
. Every point inside the region should have probability density at least as
large as every point outside the region.
Then such a region is called the highest density region (HDR).

One of the most distinctive property of HDR’s is that of all possible regions of pro-
bability coverage, the HDR has the smallest region possible in the sample space.
“Smallest” mean with respect to some simple measure such as the usual Lebesgue
measure; in the one-dimensional continuous case that would be the shortest interval,
and in the two-dimensional case that would be the smallest area of the surface.
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Similar to this idea, minimizing the length (resp. area) of the set C among all the
(1 —a) 100% credible sets, we just have to include all the points € with a high
posterior density z(6 | X ), namely,
Definition: Highest Posterior Density (HPD)
The HPD is the set of the form C := {0 |x(0|X) > ¢} for some constants c.
One very useful example is the N(uy, 7y) posterior distribution of 8, the (1 — a)
100% HPD set is given by

Hy + Zal2Tx = [iux — ZanTo My T Za/ZTx]' (4.1)
In fact, all the HPD are Bayesian decitions under the loss function given by
L(0,C) = 2| C| + lygc, (4.2)

where | C| is the size, usually the length of C, and 4 is a coefficient.

4.3 Bayesian Hypothesis Testing

Bayesian hypothesis testing is very easy to interpret. We can compute the prior and
the posterior probabilities for the hypothesis H,, and alternative H, to be true and
decide from there which on to accpet or to reject.

Computing such probabilities was not possible without prior and posterior distribu-
tions of the parameter 6. In non-Bayesian statistics, @ is not random, thus H,, and H,
were either true (with probability 1) or false (with probability 1).

For the Bayesian tests, on the other hand, in order for H, and H, to have meaning-
ful, non-zero probabilities, they often represent disjoint sets of parameter values,
namely,

Hy:0€0yversusH, : 0 € O,. (4.3)
(Which makes sense because exact equality 6 = 6, is unlikely to hold anyway, and in
practice it is understood as 0 = 6)).

Comparing poseterior probabilities of H, and H, yields P(®,|X) and P(®,|X),
we decide whether P(®, | X) is large enough to present significant evidence and to
reject the null hypothesis. One can again compare it with the (1 — a) such as 0.90,
0.95, and 0.99, or state the result in terms of likelihoods, “the null hypothesis is this
much likely to be true”.

Often one can anticipate the consequences of Type I and Type II errors in hypothe-
sis testing and assign a loss L (60, a) associated with each possible error. Here 6 is the
parameter, and a is our action, the decision on whether we accept or reject the null
hypothesis.

Each decision then has its posterior risk p(a), defined as the expected loss comput-
ed under the posterior distribution. The action with the lower posterior risk is our
Bayes decision.

Suppose that the Type I error causes the loss given by

wy = Loss(Type I error) = L(6, reject Hy), for 6 € O,
and the Type II error causes the loss given by
wy = Loss(Type II error) = L(0, accept Hy)), for 0 € O,.
That is the zero-w; loss function (for i = 1, or 2), and it generalizes the zero-one loss.
Posterior risks of each possible action are then computed as
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p(m, reject Hy| X) = wym (4] X),

p(m, accept Hy| X) = w(7(O, | X).
Now we can determine the Bayesian decision. If wyz(®,|X) < wm(0y|X), the
Bayesian action is to accept Hy, if w;z(0,; | X) < wyr (0| X), the Bayesian action is
to reject H,,.

Following this algorithm, the Bayesian approach to hypothesis testing naturally ge-
neralizes to the case of more than two hypotheses. Instead of classifying the unknown
parameters into eitehr ©, (accept H) or ©, (reject Hy), it can be classified into one of
disjoint subsets of ®, i.e. for a partition {®, ---,0,} of O,

H:0€0,-,H:0€0,. (4.4)
A loss function will then include L(6,6) = w;;, a penalty for accepting hypothesis H;
whereas hypothesis H, 1s true.

Similarly, we can include an action of making no decision and concluding that the-
re is not enough information for or against either hypothesis. This also carries a pre-
determined penalty wy;, and sometimes “no action” may be the optimal comparing

ij>

with the penalty of accepting a wrong hypothesis; note this happens mostly when we
have no access in gaining further information, sometimes it may happen that even
with enough details, we arrive at doing nothing all the same.

A popular tool for the Bayesian hypothesis testing is Bayes factors.

Definition: Bayesian Factor
: (0| X)/7(O;]X) :
The Bayes factor is defined to be B := , the posterior odds
7(00)/n(0)

ratio divided by the prior odds ratio.
Often the Bayes factors are quite stable or insensitive to the choice of prior probab-
ilities 7(®,) and 7 (O,).
How do we use the Bayes factors for hypothesis testing? Given the Bayes factor B,
anyone multiplies it by the prior odds ratio #(®,)/7(®,) and obtains the posterior

®
odds ratio 7(0, | X)/z(0, | X) = B( E(G)O; ) and use it decide H,, or H,.
Vi1

1

4.4 Prediction
We are going to predict a random variable Z that is somehow related to the unkno-
wn parameter @ to close this section. We first formulate the problem.
Bayesian Prediction Problem:
A sample X = (X, -++, X),) is observed from f(X | #). Unknown parameter &
has a prior distribution 7(8). Random variable Z has distribution given by
g(z|0). We wish to find the predictive density of Z, which is p(z| X), the
distribution of Z given the observed X.
As always in the Bayesian analysis, the solution to the Bayesian prediction proble-
m is based on the posterior distirbution of 6.
First, combine the posterior of 8 with the distribution of Z given 6 to obtain the joi-
nt distribution of Z and 6,
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8(z,0|X) = gz|)x(0]X).
Then integrate the joint density over @ to obtain the marginal distribution of Z,

piz|X) = Jg(z,QIX)dQ = Jg(zl@)ﬂ(élX)dQ. (4.5)

This is the prediction density of Z. This integral also represents the expectation

E ( g(z|9) |X ) , taken with respect to the posterior distribution of 6, i.e.
E(2zl0)]X) =[4.5)

If X and Z are, unfortunately, not independent, given 6, then the density of Z is given
by g(z| 6, X).

5. Validity for Bayesian Approach — A Short Discussion

A probability formula was used by Bayes ([10]) to combine a mathematical prior
with a model plus data; it gave just a mathematical posterior, with no consequent
objective properties. An analogy provided by Bayes did have a real and descriptive
prior, but it was not part of the problem actually being examined.

A familiar Bayes example uses a special model, a location model; and the resulting
intervals have attractive properties, as viewed by many in statistics.

Fisher ([11]) and Neyman ([12]) defined confidence. And the Bayes intervals in the
location model case are seen to satisfy the confidence derivation, thus providing an
explanation for the attractive properties.

In [9], D.A.S. Fraser showed that the proportion of true statements in the Bayes ca-
se depends critically on the presence of linearity in the model; and with departure
from this linearity the Bayes approach can be a poor approximation and be seriously
misleading. Beyesian integration of weighted likelihood thus provides a first-order
linear approximation to confidence, but without linearity can give substantially
incorrect results.

The only source of variation available to support a Bayes posterior probability cal-
culation is that provided by the model, which is what confidence uses.

Lindely ([13]) examined the probability formula argument and the confidence arg-
ument and found that they generated the same result only in the Bayes location model
case; he then judged the confidence argument to be wrong.

If the model, however, is not location and, thus, the variable is not linear with resp-
ect to the parameter, then a Bayes interval can produce correct answers at a rate quite
different from that claimed by the Bayes probability calculation; thus, the Bayes
posterior may be an unreliable presentation, an unreliable approximation to confiden-
ce, and can thus be judged to be wrong.

The failure to make true assertions with a promised reliability can be extreme with
the Bayes use of mathematical priors (Stainforth et al., [ 14]; Heinrich, [15]).

The claim of a probability status for a statement that can fail to be approximate co-
nfidence is mis-representation. In other areas of science much false claims would be
treated seriously.
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Using weighted likelihood, however, can be a fruitful way to explore the informat-
ion available from just a likelihood function. But the failure to have even a confiden-
ce interpretation deserves more than just gentle caution.

A personal or a subjective or an elicited prior may record useful background to re-
corded in parallel with a confidence assessment. But to use them to do the analysis
and just get approximate or biased confidence seem to overextend the excitement of
exploratory procedures.

6. Bayesian Convolution

A general convolution theorem within a Bayesian framework is presented in this
section as a result of [16]. Consider estimation of the Euclidean parameter € by an
estimator 7" within a parametric model. Let W be a prior distribution for 8 and define
G as the W-average of the distribution 7' — @ under the parameter 6. In some cases,
for any estimator 7' the distribution G can be written as a convolution G = K % L
with K a distribution depending only on the model, i.e. on W and the distribution
under 0 of the observations. In such a Bayesian convolution result optimal estimators
exist, satisfying G = K.

Before we proceed, we introduce some basic results from Fourier analysis. We ass-
ume the readers are already familiar with the concepts, so we shall not perform the
proofs of these results, for those readers who are not familiar with this topic may
concult [17].

If f is an integrable function given on an interval [a,b] C R such thatb —a =L,
then the nth Fourier coefficient of fis defined by

n 1 orinlL
f(n) = 7 f(x)e " =dx, n € N. (6.1)
The Fourier series of f is given formally by

Zoi f(n)eZﬂinx/L. (6.2)

n=—oo

Whenever we use a, we refer to the nth Fourier coefficients of f, denoted by
400

f(X)N Z ane2ﬂinx/L. (63)

n=—oo
to indicate that the series on the RHS is the Fourier series of f.

Given two 2z-periodic integrable functions f and g on R, we define their convolut-
ion, denoted by f * g, on [—x, 7], by

1 ("
(f * 8)x) = p Jglx —y)dy. (6.4)
Also, since the functions are assumed to be_periodic, we can rewrite it as
1 ("
(f x 9x) = > J(x=y)g(ydy. (6.5)

J—m

Theorem 6.1: Properties of Convolution
Suppose that f, g, and A are 2z-periodic integrable functions. Then
i) [fr@E+h)=(*xg+(f*xh.
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(i) (cf)xg=c(f*kg =f*(cg) VceC.
(i) fHg=g*f.

(v) (fxg*xh=f*(g*h).

(v) f/*i is continuous.

(vi)  fxgm)=fn)gh).

Suppose that we have a random element X ~ & := {P,|0 € © C R*}, on a meas-
urable space (X, &), where & is the o-algebra generated by the subsets of X. On the
basis of this sample we want to estimate the parameter 6. In a Bayesian set-up we
choose a weight function or prior W on RX, putting its mass in ©, and we consider the
average distribution function

G(y) = J Py(T— 0 < y)dW(9),y € R, (6.6)
Rk
where T := t(X) is an estimator of 6.

The following observation tells us that for general dimension k the average distrib-
ution G is the convolution of a distribution, which depends on & and W, but which
does not depend on the estimator 7, and any other distributions.

Let y : X — R* be a measurable function such that y (X ) — 9 and X are independ-
ent, where 9 ~ W. Then w(X) — 9 and t1(X) —w(X) are also independent. Since
T — 9 could be rewritten as

T-9=1tX)-9 ={yX) -9} +{tX) —y(X)},

we may conclude that G(-) = P(T—d < -) is a convolution of the distribution of
IX)-39, 1e. K(-)=PHAOX)—-39<:), which indeed does not depend on T.
Consequently, there exists a distribution L such that G = K * L. We will call this
identity the Bayes Convolution Theorem. Furthermore, we will call T = w(X) the
best estimator in the sense G = K % L, since this choice makes L degenerate at 0. We
summarize these into the following result.
Theorem 6.2: Bayes Convolution Theorem

Let 9 be a random variable taking values in ® C R¥ and let the conditional

distribution of X given 9 = 0 be P, on (X, &). If the measurable function

w : X —» RFis such that (X ) — 9 and X are independent, then the distribution

G(-)=P(T-39 <-)of T— 3 is the convolution of the distribution

K(-)=PyX)—39 <-)and some other distribution L, i.e. G = K % L.

If such a y exists, the best estimator with respect to the Bayes risk is (X)) + ¢, for
¢ € RF¥may depend on the loss function. Indeed,

ir;f EL(T—39)=infEL(w(X)—39 +¢) (6.7)

holds for all convex loss functions L in view of the Conditional Jensen inequality.
If for k = 1 the distribution of (X ) — & is strongly unimodal, then|(6.7) holds for
all loss functions which are decreasing-increasing, and again the best estimator is
determined by y and does not depend on the loss function apart from a shift by c.
This may be seen as follows. First, note that the convolution with K strongly
unimodal implies that G is at least as spread out as K, i.e. that the quantiles of G are
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at least as far apart as those of K. Subsequently, if there exists a u, € [0,1] with
G~ !(uy) = 0 then this spread property
ol

EL(T-9)= | L(G'(w) — G (up))du

J0
r1

> | L(K™'(u) — K" (up))du

Jo
= EL(y(X) — 9 — K~ '(up)). (6.8)
Finally, note that (6.8) may be adapted to the case where O is not a quantile of G.
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Review on Elmentary Linear Regression
Tianyu Zhang5

Abstract:
In this short review article we present both the univariate linear regression and
bivariate linear regression, along with the properties and methods in evaluation.
Special cases of inferences are also provided in the fourth section.

1. Introduction
If we are given the joint distribution of two random variables X and Y, and X is

known to take on the value x, the basic problem of bivariate regression is that of
determining the conditional mean py,,, 1.e. the “average” value of ¥ for the given
value of X. The term “regression”, as it is used here, dates back to Francis Galton,
who used it to indicate certain relationships in the theory of heredity. In problems
involving more than two random variables, i.e. the multiple regression, we are conce-
med with quantities cuh as yy, |, the mean of Z for given values of X and Y.
Definition: Bivariate Regression

If f(x,y) is the value of the joint density of two random variables X and Y, the

bivariate regression consisits of determining the conditional density of Y, given

X = x, and then evaluating the integral

Hy = E(Y |x) = [ y-w(ylxdy,

where w(y|x) is the conditional distribution. The resulting equation is called
the regression equation of ¥ on X. Alternatively, the regression equation of X
on Y is given by

pxpy = EX|y) = J x - flx|y)dy.

Example 1.1:
If X and Y have the multinomial distribution

Fexy) = ( ) 0361 - 6, — Gy
X, y,n—Xx—Yy

forx =0,1,---,nand y = 0,1,:--,n with x + y < n. Find the regression
equation for Y on X.

Solution:
The marginal distribution of X is given by

g =y < ! ) - 6163(1 — 6, — )"

=0 \GY,n—x =y

n
= ( >9;(1 )
X

forx = 0,1,:--, n, which we recognize as a bimomial distribution with the

5 BIMSA, bidenbaka@gmail.com
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parameters n and 6,. Therefore, one has

ey (57)aa-o-er
w(ylx) = = —
g(x) (1 -6

fory =0,1,---, n — x, rewriting the formula yields

Wl = <n;x><1 fzgl >y< 1 —10_1;192>n—x—y‘

We find by inspection that the conditional distribution of ¥ given X = xis a

binomial distribution with parameters n — x and , So the regression

- Y1

equation of Y on X is pty), = ——. |

An important feature of Example 1.1/is that the regression equation is linear; i.e. it
is of the form

My = a + fx,
where a and f are constants, called the regression coefficients.

We now introduce a model in which one variable X affect another one Y and the
relation is assumed to be linear up to a random vector. That is to say, we have n
observations of variables X and Y: (x;,y,), (x5,¥,), -+, (x,,¥,) and we assume that
they satisfy the folloing model:

i = Po+ Bix; + €. (L.1)
Here f, and 3, are unknown parameters that we want to estimate. The quantities x;,
fori = 1,---,n are known as parameters, which are called explanatory variables, or
independent random variables as we do in high school algebra. The variables ¢; are
error terms. They are responsible for the randomness of the model. They are always
assumed to have zero mean: E¢; = 0. They are also often but not always assumed to
have unknown variance o, that does not depend on the index i, i.e. E¢; = 0,. Even
more restrictively, they are often assumed to be normally distributed €; ~ N(0,0,).

The values y; are random since they are functions of ¢; (We could write them Y fol-
lowing our usual convention about the random variables.) They are usually called the
response variables or dependent random variabels as we did in high school algebra.
Therefore, y,, -+, y, are n independent observations of the response variable Y.

In fact,|(1.1)]is called the regression model. It is often written in a short form that
omits the subscript index i.

y=py+px+e (1.2)
A general linear regression model includes more than one explanatory variable:
i = Po+ Bix! + fox? + - + B x0 + e, (1.3)

Or in short the notation:
Y=0+px' + - +Bx"+e (1.4)

This model is very flexible and can be used to model non-linear dependencies as
well. For example, if we believe Y depends on X as a polynomial of degree 3, we can
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add explanatory variables that corresponds to squares and cubes of X. Then we only
need to estimate the regression model given by

Y = By + pix! + fox? + fix’ + e (1.5)
In some other cases we can only consider a transformation of random variable Y so as
to get a more suitable distribution for random error terms .

As usual, we aim to estimate the estimators f, ---, §, and test some hypothesis cor-
repsonding to their values. There is another goal which we have not seen before. We
might be interested in predicting the response Y for some other values of x. In
addition we might be intereseted in having some kinds of confidence interval for our
prediction.

2. Simple Linear Regression
In this subsection we shall introduce the linera regression model for one variable,
namely ¥ = f, + f;x' + --- + B, x", which is a polynomial of degree n.

2.1 Least Squares Estimator

Here we look at the simple linear regression given by y = f, + p,x + ¢, although
the methods are also applicable to the general linear regression models.

In order to estimate the parameters f, and f; we could use the MLE by writing the
likelihood function of the random quantities y; and maximizing it with respect to both
B, and f,. It turns out that for normally distributed & ~ N(0,5%) this method gives the
same estimates as a simple method describes below.

This 51mple method aims to minimize the deviation of the fitted values glven by

ﬁo + ﬂlxl, from the observed values of y;, by a choice of the estimates ﬂo and ﬂl

Spec1ﬁcally, the method of least squres aims to minimize the sum of squared Errors
(SSE), which is defined by
Definition: Sum of Squared Errors (SSE)

n n

SSE:= Y (v;— 9> = D (3 — By — Bix)? which is minimized by a choice
i=1_ i=1
of ﬁo and ﬁl
As usual, this minimization can be done by using the First Order Conditions. The
first-order condition is obtained by setting the derivative (or gradient) of the log-
likelihood function equal to zero.
Definition: Ordinary Least Squared Estimators
The values of ﬁAO and ﬁAl which solve the SSE are called the ordinary Least
Square estimators of the linear regression model.

The estimators are called ordinary LS estimators, because sometimes in the definit-
ion of SSE the terms have different weights. In this case the solution is called the
weighted least squared estimators.

It is a bit simpler to do it for a modified model, in which the explanatory variables
are centered by subtractiing their mean:
yi=ag+ (x;—X) + €. (2.1)
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Clearly, this model is equivalent to the original simple regression with £, = oy — f|X.
It is also clear that the LS estimators in these regression problems are related by the
similar equations ﬂo = Qy— ﬂlx

Theorem 2.1:
The least squares estimators are glven by the following formulas
Sx
Gy =7, P = where S, = Y (- 005~ 3) and s, Z (5 = %),
a i=1

This implies that for our original problem, we have also the followmg least
squares estimator for the parameter f3:

Po=ay—piXx =3 - pix.
Proof:
Step I 4y = y.
Taking the partial derivative on SSE with respect to o yields
n ~ 5 —\\12
dSSE 8{ i i = (@ + f1(x; = 1)) }
06y 0d
—22 — (8o + A1, = 3))] - (= D).

Setting this to 0 glves us
Since by (5.6) we have centered it hence the red part vanishes and this gives us

0=Zyl-—n&o;\&0=y.
i=1

. S
Step II: f, = =

XX

Similarly, taking the partial derivative on SSE with respect to ,BA | yields the
result, we leave the proof as an exercise.

[

2.2 Properties of LS Estimators
We aim to calculate the expectation and the variance of LS estimators ,BAO and ,BAI.
This information is important for calculation of the bias of the estimators and for
construction of confidence interval.
We start with ﬁ 1» which is typically more useful in practice since f}; measures the
effect of X on Y.
Theorem 2.2:
Assume that the error terms in the simple linear regression model
y; = Py + PBix; + € have the properties Ee; = 0 and Vare; = o2. Then
(i) ES =5
(i) VarB, = 6*/S,..
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If, in addition, &; are normal, then ﬁA | 1s also normal.
Before proving this theorem, let us derive some consequences. First, we see that f3,
n

is an unbiased estimator of ;. Second, if S,, = Z (x; —X)> = 00 as n — oo, then
i=1

V/ ; 1s a consistent estimator of f;. The condition S, = co as n — oo means that as
the samlpe grows we continue to observe sufficient variation in explanatory variables
X;.

This consequence may look surprising since it states that the larger the deviation
between X and x; is, the better performance of ﬁl is guaranteed. One good interpreta-
tion for this anti-intuitive result may be that, loosely speaking, consider x; are from
the probability space (y, 8y, Py) and y; are from (Qy, &'y, Py) along with a mapp-
ing f : Qy — Qy, then the “larger” the space Qy is, i.e. the more values we can take
for x, the more possible we can find a ﬁl to achieve our requirement, or, equivalently,
the more confident we are at this ﬂAl. Now we proceed to the proof.
Proof of Theorem 2.2:

It is convenient to work with the modified form (2.1), i.e.

yi=oy+ (x;—X) + ¢,

Note that x;, X, and y are not random. One has
S,y = Z (x5 = X)(y; — ¥)
= Z (x; — X)y, — yz (x;—Xx) (yis not random)
= Z —X)y; (sum of variance is always 0)

Step I: UE,BI ﬁl
[E,B1 [E% (by Theorem 2.1)

= éz (x; — X)Ey,
1

=2 =D+ A=) by
1 1

= S—aoz (x; —X)+ Zs—ﬁl Z(Xi—f)(xi—f)

1
= Z S B Z (x; —X)(x; —X) (sum of variance is always 0)

=,  (by the definition of S,)
Step II Varﬂl =02/S,..
Similarly, we calculate the variance, it is helpful to denote Vary, = Vare; = ¢>.
One has, taking the variance operation with respect to ,31

. S
Varf, = Var% (by Theorem 2.1))

XX
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1
— _ =2
= 52, Z (x; — X )~ Vary,
1
= S—ZSMG2 (definition of S, and Vary; = )
=0%/S,..

Step III: ¢; normal = ﬂAl normal.
Finally, if ¢; are normal, then y; are also normal. Note that 3, is a weighted sum

of y; and the coefficients in this sum are non-random. We know that this
implies that the sum itself is also normal.

[

In addition, we need to point out that the variance of ¢, in|Theorem 2.2, defined as

o2, is necessarily to be finite. For other estimators we have the similar results.
Theorem 2.3:

Assume that the error terms in the simple linear regression model

y; = ag + f(x; — X) + €, has the property that Ee; = 0 and Vare; = >
Then,

(1) Eay=a.

(ii) Vara, = ¢*/n.

(iii) Cov(dy, B, = 0.

If, in addition, &; is normal, then &, is also normal.

Proof:
(1):
For the expectation, one has
Ea, =7y (Theorem 2.1)
1
= — Z Ey; (Definition)
n
1
=— Y (ag+p(x,—%)  (Eg=0)
= Q. (sum of variance is always 0)
(i1):
For the variance, simple calculation yields
Vard, = Vary (Theorem 2.1)
1
=— Z Vary;  (Definition and property of Var)
n? l
1
= —2no'2 (Variance provided by ¢;’s)
n
= ¢2/n.
(ii1):

Finally, if €, are normal, then y; are also normal, and since &, is the average of
¥;, 0 1s also normal.

[
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Therefore, & is an unbiased and consistent estimator of ¢. Since f, = @, — f;x
and both &, and /3, are unbiased and consistent estimators, we can conclude the same

result for ﬂAo-
Theorem 2.4:
Assume that the error terms of the simple linear regression model

y; = ag + f(x; — X) + €, has the property that Ee; = 0 and Vare; = 6% Then

@) Eby=ps i
. s o1 X
(1)) Varfy=o0 <n + S)@)'
Gii) Cov(fy,f)) = az(Si>.

In addition, if €; are normal, then ﬂAo is also normal.
We state one last result to conclude this subsection.

Theorem 2.5:
1 I < c A oA
6% = — SSE = — ; (y,— ) = ; (y; — Py — B1x;)? is an unbiased

estimator of 2. If the error terms are normal, then 62

freedom.

1s independent from ﬁ 1>
@, and 3, and (n — 2)62 /62 has the y? distribution with n — 2 degrees of

The reason we define 6% =

SSE is that as a consequence of Theorem 2.4/(ii)

n-—1

we see that the original definition of S? as an estimator of ¢ is not appropriate since
y; are no longer identically distributed. The fact that we have n — 2 in the denomi-
nator instead of n — 1 could be interpreted as we are now treating two parameters

instead of one and so lost two degress of freedom.

We now summarize the properties of the Least-Squares estimators for simple linear

regression to close this subsection.
Properties of LS Estimators:

(1)  The estimators f3, and 3, are unbiased, i.e. Ef; = §; fori = 0,1.
ZX;

(2) VarﬁAO = Cy02, Where ¢y :=
n XX

3 Varf, = ¢ o2, where ¢;, = —.
1 11 11
XX

A A —-X
(4) COV(ﬂo, ﬂl) = COIO'Z, where Co1 = S_
" SSE
(5)  An unbiased estimator of 67 is S* = ( X where SSE :=§, — f,S
n —

and S, = Z (y; — ¥)>%.
If, in addition, the &, for i = 1,2,---, n are normally distributed.
(6) Both f, and f; are normally distributed.
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(7)  The random variable — has a y? distribution with degree of
o

freedom n — 2.
(8)  The statistic S? is independent of both Poand ;.

2.3 Confidence Intervals and Hypothesis Tests for Coefficients
Once we know the variances of the parameters, it is easy to construct the confide-
nce intervals. The procedure is essentially the same as what we did when we estima-
te the mean of a sample.
For example, a large sample two-sided confidence interval for the parameter 3, can
be written as follows

N 6 A o
<ﬁ1 — Zyn——P1 + Za/Z—)’ (2.2)
V SXX V SXX
where a is the confidence level.

If the sample is small, on the other hand, but we assume that the error terms are
normal, we can use our previous theorems to come to conclusion that

ﬁ1 2]
611/ S,

is a pivotal quantity (i.e. the distribution is dependent on all parameters) that has ¢
distribution with n — 2 degrees of freedom. In this case an appropriate confidence
interval is

3 (n— 2)_ n-2_ 9 G
<'B fary /—'Bl tarn g ) (2.3)

Similarly, if the null hypothesis is ﬂ ﬂ(o) we can form the test statistic as
-5
T = (2.4)
614/ S,
and use the test statistic to test the null hypothesis against various alternative.
Summary:
If the sample is large (e.g. n > 30) then T is distributed as a standard normal
random variable. If the sample is small, then we rely on the assumption that ¢;
have normal distribution and then 7 has the ¢ distribution with degrees of
freedom being n — 2.
Similar procedures can be easily established for other parameters, that 1s for o or
By- We only need to use the appropriate variance of the estimator instead of the
6%1S,..

2.4 Statistical Inference for the Regression Mean
In applications we sometimes want to make some inferences about linera combina-
tions of parameters. In this section we study a particular example of this problem.
Suppose that we want to build the confidence interval for the regression mean of Y,
when x is equal to some specific value, namely x*,
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ECY | x*) = By + Bx*. (2.5)
The natural estimator for this quantity is the predicted value given by
y* = Po+ ﬁA X
This estimator is unbiased since both f, and f; are unbiased estimators of £, and /.

In order to build the confidence interval, we also need to calculate its variance. It is
more convenient to use the other form of the regression for this task:

% = g+ B+ — %), (2.6)
That is, centering x* around its mean. Then
Vary* = Vard, + (x* — X)?Varf, + 2(x* — X)Cov(@, ;) (By|(2.6))
ol -x)?
=0 (n+ S ). (2.7)
Using this information we can build the confidence interval for y*. For example, if
the sample size is large then the two-sided confidence interval with significance level
ais

. L[l (x*=Xx)°
P*t 7,064 — + ———,
n Sex
SSE

n—2

If the sample 1s small, on the other hand, but we assume that ¢; are normal, then we

can use the ¢ distribution with n — 2 degrees of freedom and the confidence interval
because

Where 6 =

is the estimate for ¢ = Vare;.

—\2
% 4 (=25 l + —(x* —X)
Y Ehn " <

XX
And for testing hypothesis H;, : y* = y,, we use the statistic
*
T — Y =X
A [1 , (F-X)
o

~ +

n Syx

2.5 Prediction Interval
When predicting Y we are often interested not in variation of our predictions y aro-
und the true regression mean but rather in variations of the actual quantities y around
the true regression mean. The random quantity y has larger variation than y since in
addition to uncertainty due to the error in parameter estimation it also includes the
variation due to the error terms ¢;.
We define the prediction interval with confidence level 1 — a as a random interval:
Definition: Prediction Interval
The prediction interval with confidence level 1 — a is given by the random
interval (L, U) such that P(L <y, < U) =1 — a, where L and U are some
statistics, so they msut be computable from data.
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In order to construct the prediction interval we use the pivotal quantity technique
and consider
y* — 5}*
SE(y* = 3%)
where SE stands for “stand error”. Here y* is a new observation which we try to
predict and y* is the prediction.
Note that

yE=3*=py +ﬂ£x* +e* — (PO + 1 x*)
= By = Po) + (f1 = Px* + €*.
Since ﬁo and ﬁl are unbiased estimators of £, and f3;, we see that this quantity has
expectation 0.
Moreover, if ¢; are normal then we see that y* — $* is also normal. What is the sta-
ndard error of y* — $*? Note that we have
Var(y* — y*) = Var(f, + pix* + €* — 3*) = Vare*+Vary*,
because the new error term €* is uncorrelated with the prediction y*. Indeed, the
coefficients ﬁo and ﬁl were estimated using the old error terms ¢ and x* is not
random.
We calculated the variance of y* in the previous subsection, so we have

=2
Var(y* —5) = 6% + 62<% + (X*S—x)) (by (2.7))
_ 2 1 (x* = %)
=0 (1 + " + — >

It follows that
yE — P

* _ v)2
n Sx

has the standard normal distribution.

| SSE
It can be shown that if we use the estimator 6 = > instead of the unknown
n —

/Z =

o, then the quantity
yE — P

Py [1+]1 n (x* —X)2
n Syx

has the ¢ distribution with n — 2 degrees of freedom.
So it follows that the prediction interval for y* can be written as

1 (x* —)?)2 A A 1 (x* —)T)Z
y*_|_t0(:/12 )O'\/l+—+— ﬂ()+ﬂ1x>k+t0((72 )O' 1+_+—

n X n XX

T =

The interpretation is that with probability 1 — a the deviation of our prediction y*
from the actual realization of y* will be smaller than the value
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1 (x*—3%)°
(n=-2)A _ A
ta/z 0\/1 + + q .

n XX

2.6 Correlation and R-Squared
Sometimes, x; can be interpreted as observed values of some random quantity X.
That is, we have n observations (x;,y;) sampled from the joint distribution of the
random quantities X and Y. In this case, the coefficient #; in the regression
y; = By + Pix; + €; can be interpreted as a measure of dependence between X and Y.

On the other hand, we know that another measure of dependence between Y and X

is the correlation coefficient given by
Cov(X,Y)

v/ VarX VarY ’

Sty

\/ SxxSyy
S

Since ﬂAl = 2 we see that we have the following relation between the estimates of
XX
correlation coefficient p and linear regression parameter f3:

S
R =pn == (2.10)
Sxx
So there is a clear relationship between these two measures of association.
The statistic 7> (called R-squared) has another useful interpreation, which will be
later generalized for multiple linear regression model. Namely, it measures the
goodness of fit in the simple linear regression model.

Indeed, it is possible to derive the following useful formula.

S = Z =5 = Z (vi—7 —Bl(xi—f))z
— 2()’;'_?)2_ Z,BLIZ(yi—y)(xi—f) +'BA%Z (x; — )2

’Sz
— a2 — Xy
_Syy_ﬁlsxx_Syy_ :

and we can estimate it as

R:= (2.9)

XX
Now §,, = 2 (y; — 7)? can be thought as the variation in the response variable if no
i

explanatory variable is used, and SSE is the variation in the response after the explan-

atory variable is used. So the difference is the reduction in the variation due to the
explanatory variable X. In particular, one has
SZ

;S p— (2.11)

SeS

XX™~Yyy
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Being the reduction measured in percentage terms. To summarize, R> is the
proportion of response variable variation that is explained by the explanatory variable
X once it is brought into observation.

3. Multiple Linear Regression
A more general version of linear regression reads:
y =P+ x4+ xP g,
where we have p explanatory variables. In fact this stands for n separate equations,
one for each observation
_ 1
Vi =Po+PixV 4 e+ ﬁpx,-(p) T &
Once we treat

N1 [ | X1
Loxy oxp, X1p
V) 1 X2
. Xoi Xop v X .
y=|"].x= 21 X222 | = ’
1 Xnl X2 0 Ay X
y}’l | | B }’l_

and the vectors of _coe_fﬁcients and error terms

p= [ﬁo’ﬁl’ ---,ﬂp]Tande = [e1, €2 €]

Then we can write our model as

y=Xp +e. (3.1)
The sum of squared errors can also be written very simply in the matrix notation:
SSEB = |y - Xp| |y - XB] . (3.2)

To summarize SSEB, we need to write the first order conditions, which can also be
written in matrix form. Namely, for each j = 1,---, p we have

ISSE(3 c A A ’ :
aﬂ-(ﬂ) =2 inj{yi = (Bo+ Prxay + Boxip + = + Bpxip) } = 0.
i i=1

If we stack these p + 1 equations together, we obtain the matrix form of these system
of equations

ISSE(f . A
i =-2X"ly—-Xpl=-2X"y +2X"Xp = 0.
op
Or, re-arranging the terms and simplifying

XTxp =xTy.
This system of (p + 1) equations in p + 1 unknowns f; is called the normal equati-

ons. In matrix form, its solution can be written as
Prs = XTX)"1XTy.

3.1 Properties of LS Estimators
Recall that  is a p-vector [ Sy, By, ---,ﬁp]T and f = (X" X)~'XTy. We have
Theorem 5.6: Expectaion and Variance of

The LS estimator of  is unbiased, i.e. [EﬁA = f. Its variance matrix is the

(p + 1) X (p + 1) matrix Varg = 6(X"X)™".
87



Lecture Notes on Statistical Inference Tsinghua University

If, in addition, & ~ N(0,0), then it can be shown that ,BA is the multivariate normal
with mean f and variance >(X? X)L

Now it is clear how to build confidence intervals and test the hypothesis for the
parameters f3;. We simply notice that

Varﬂi = O-zcl'l',
where c;, is the ith element on the main diagonal of the matrix (X7 X )~! given by
¢ =[X"X)7].. (3.3)

So if 6 is known, then the confidence interval for f; is

ﬂi + Za/20-\/zii'
In practice, o~ is not known and have to be estimated from data. We can do it using
SSE, which is defined similarly to the case of the simple linear regression:
SSE := Y (y;— $)*
i
where J; are fitted values for the response variable.

2

Theorem 3.1:
0 SSE . . 5
6° ;= ——— is an unbiased estimator of ¢°.
n—p-—1

Moreover, if ¢; are independent normal random variables and ¢; ~ N (0,62). 1t fol-
lows that

A

Bi— b
8\/21'1‘

has the 7 distribution with n — p — 1 degrees of freedom. Therefore, in this case the
confidence interval is given by

p; =1 =V6, fc. (3.4)

3.2 Confidence Interval
If we have p parameters we might be interested in finding the confidence interval
for the linear combination
apfo+a\pr+ - +a,p,
which can be written as a’ # where a is the column vector. The confidence interval
should be centered at aTﬁA and the main question is about the standard error of this
estimator.

p
Since Var Z a;p; = Z a;a;Cov(f;, p;), we have
i=0 i,j
VaraT,BA = aTVar,BAa =c%a’(X"X) a, (3.5)
where we used the formula for the variance-covariance matrix of the estimator f3.
It follows that the confidence interval for a’ f can be written as

arf* za/za\/ a’X"X) a. (3.6)
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Since o 1s unknown, we susbstitute it with its estimator. In the case of normal errors,
it gives the following confidence interval

aTﬂA + t(i'/lz_p_l)ﬁ\/aT(XTX)_la.

3.3 Prediction
Suppose that we obtained a new observation with predictor variables x.!, xZ, -+, x?

%
and we want to predict the response variables y:.
The natural predicor is given by

9u = Po+ Prxd 4 -+ a0 = x!
where x. 1s the column vector [1,x,,}, e, xP ]T.

This expected value of this predictor equals the regression mean Ey:,
E$. = xIES = xI .
Let us define the prediction error as the difference between the prediction and the
realized response variable, namely,
Ex = Y — 5\7*
Then the expected value of error is zero and it is easy to comput its variance
Vare: = 02 + azx*T(XTX)_lx*.
This allows us to write the prediction interval

)T B £ 107708y [1 4 2T (XTX) e,

4. Some Inference Results
In this section we introduce some inference results, we start with the inference con-
cerning the parameters /..
Test of Hypothesis for j;:
H, : p; = Py
B; > P, upper-tail rejection region

H, : { p; < P lower-tail rejection region .

P: # P;o two-tailed rejection region
Bi = Pio
Sy/Cii

t > t, upper-tail alternative

Test statistic T =

Rejection region: < ¢ < — 1, lower-tail alternative |
|t| > t,, two-tailed alternative
x?

n

1 : :
and c;; = —. Notice that 7, is based on n — 2 degrees of
XX XX

where ¢y =

freedom.
A (1 — a) 100% Confidence Interval for f;:
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~ z_xl.z 1
B £t,,5,/c;;, where cyy = and ¢;; = —.
nSxx XX

As for the inferences concerning the linear functions of the model parameters, i.e.
the simple linear regression, 6 = ayf, + a,f,, we have the following results.
ATest for 0 = ayf, + a,p;:

0 > 0,,
H,: 40 <0,
0 # 6,
. 0 - 6,
Test statistic: T =
Tx2
ag—+ +ai —2apax
S
S.X.X
t>t,
Rejection Region: 4 < — Iy,
[2] > 2,

Here t, and ¢/, are based on n — 2 degrees of freedom.
The corresponding (1 — a) 100% confidence interval for @ = ayf, + a,p; is given
by
A (1 — a) 100% Confidence Interval for 0 = a,f, + a,p;:
Tx?
) ai— + a} — 2a,a,x
0xt,,S \ - , where 7/, is based on n — 2 degrees of

SX X

freedom.

One useful application of the hypothesis-testing and confidence interval techniques
just presented is to the problem of estimating EY, the mean of Y, for a fixed value of
the independent variable x. In particular, if x* denotes a specific value of x that is of
interest, then

EY = B, + px*. 4.1)
Notice that EY is a special case of ayf, + a,f,, with ay, = 1 and a; = x*. Thus, an
inference about EY when x = x* can be made by using the techniques developed
earlier for general linear combinations of the f’s.
A (o — 1) 100% Confidence Interval for EY = 5, + f,x*:

A A 1 (x* - X)z .
Bo+ pix* 1,054 —+————, where 1, is based on n — 2 degrees of
n

XX
freedom.
Assume that a linear model of the form Y = f, + f,x + € is in the interest of our
inference, then:
A (1 — a) 100% Prediction Interval for Y when x = x*:
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(x* — %)’

XX

A A 1
ﬂo +ﬂ1x* i ta/25¢1 + - +
n
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