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    This lecture note is divided into five parts. We start the investigation of point esti-
mation in the first section, the interval estimation in the second section, then the 
hypothesis testing in the third section. The Bayesian approach to statistical inference 
is provided in the fourth section, as a complementary material to the first three. We 
introduce also the linear regression in the last section.
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Abstract:

In this monograph we offer a discription about the point estimators. Starting 

with the evaluation of the point estimations, we introduce some important 
properties one point estimator may be equipped with. We introduce then the 
methods of finding point estimators, where, there are four common ways, the 

MLE, the Bayesian, the method of moments, and the expectation maximization; 
we treat the MLE in the fourth section and we leave the Bayesian approach in a 

separater paper.
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1. Introduction

    In this section we are going to offer a generalization of the discussion of point esti-
mators, seeing the MLE and Bayesian estimators in the previous two sections, let us 
now generalize the methodology in both finding and evaluting point estimators, the 
materials are mainly from [1], some supplementary literature are drawn from [2].

   Recall that the main assumption of the mathematical statistics is that the sequence 
given by

	 	 	 	 	  for ,

has a cumulative distribution function, namely  where  is the unknown para-
meter, which can be any number (resp. vector) in . The main task is to obtain some 
information about this parameter.

    We shall also assume that for each  where  are independent and identic-
ally distributed (i.i.d.), i.e. each  has the same distribution as others and they are 
independent of one another.

Example 1.1: Life Time of Smartphones

	 Look at the sample of  for , where each  is a lifetime of a 


X = X1, ⋯, Xn n ∈ ℕ
F(x, θ ) θ

Θ

Xi 1 ≤ i ≤ n
Xi

Xi i = 1,2,⋯, n Xi
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	 smartphone and model  as an exponential random variable with mean .

	 Potentiall, this  can be any number in . Our task is for a specific

	 realization of random variables  derive a conclusion about the parameter .


	 Our assumption means that the density of  is , the density


	 of  is , so on and so forth.


	 The joint density of independent datapoints is simply product of the individual

	 densities for each datapoint. In our example, we have


	       .	 ||     


    In statistics, if we think about the joint density as a function of the model paramet-
er , we call it the likelihood function and denote it by 


	 	 	 	 	 .


Now we want to get some information about the parameter  from the . For exam-
ple, we could look for a function of  which would be close to . This is called the 
point estimation problem since we try to find a point (an estimator) which would be 
close to . In fact, this example naturally derives the definition of the point estimator.

Notation:

	 If  is a parameter to be estimated, then  denotes its estimator or a value of the

	 estimator for a given sample. More carefully it is a function of the data 

	 .

    Note that  is random since its value changes from sample to sam-
ple.

Definition: Point Estimator

	 A point estimator is any function  of a sample; i.e. any statistic is 

	 a point estimator.

    In this definition we applied the terminology called the statistic which is defined by 
the following convention.

Definition: Statistic

	 Let  be a random sample of size  from a population and let 

	  be a real-valued or vector-valued function whose domain includes

	 the sample space of . Then the random variable or random vector 

	  is called a statistic. The probability distribution of a statistic

	  is called the sampling distribution of .

Remark:

	 A function of the dat sample is 	called a statistic hence an estimator is a 	 	
	 statistic.	 ||

    Most of the terminologies we have encountered so far are statistics, e.g. recall the 
mean  and the variance . We now generalize these concepts to the form, that as a 
function of the random variable (resp. random vector),  and  are themselves ran-
dom variables.


Xi θ
θ Θ = (0,∞)

Xi θ

X1 fX1
(x1) =

1
θ

ex1/θ

X2 fX2

1
θ

ex2/θ

fX1,X2,⋯,Xn
(x1, x2, ⋯, xn) =

1
θ

ex1/θ ⋅
1
θ

ex2/θ ⋅ ⋯ ⋅
1
θ

exn /θ =
1
θn

e(∑n
i=1 xi)/θ

θ

L(θ, x) =
1
θn

e(∑n
i=1 xi)/θ

θ x
x θ

θ

θ ̂θ

̂θ := ̂θ(X1, ⋯, Xn)
̂θ = ̂θ(X1, ⋯, Xn)

̂θ(X1, ⋯, Xn)

X1, ⋯, Xn n
T(x1, ⋯, xn)

(X1, ⋯, Xn)
Y := T(X1, ⋯, Xn)
Y Y

μ σ2

μ σ2
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   There are many different approaches to find the estimators, one of the very many 
we have seen previously are the maximum likelihood function (MLE) and Bayesian 
estimators. In fact we can also use the method of moments, the expectation maximiz-
ation (EM) to find estimators, we shall go through the first one in details later. 

    Now we discuss the evaluation of the estimator. First we shall need to know when 
to call an estimator a good one. Second we need to compare different estimators. 
Note that the comparability is based on the “distance” to the , the less the better. For 
an estimator , however, the distance  is not a metric.

    The distribution of this random variable  depends on the true value of the parame-
ter . One of the things that we can ask from the estimator is that its expected value 
equal to the true value of the parameter. This is called the unbiasedness. In symbols it 
is defined by

Definition: Bias

	 The bias of a point estimator  of a parameter  is the difference between the

	 expected value of  and . That is, .

Definition: Unbiased

	 An estimator whose bias is identically (in ) equal to 0 is called unbiased and

	 satisfies .

    The second useful property is that when we increase the size of the sample, the est-
imator converges to the true value of the parameter in the sense of convergence 
inprobability. This is called consistency.


2. Evaluation of Point Estimators

    In this section we are going to introduce some methods in evaluating the point esti-
mator. We shall discuss the biasedness and variance in 2.1, the consistency in 2.2, and 
then in 2.3 we shall prove that the existence of unbiased estimators are not always 
valid. In 2.4 we are goin to introduce the asymptotc normality, which is mostly done 
by CLT, or sometimes Slutsky’s Theorem. Then in 2.5 we introduce the risk function 
with only introduction, the detailed treatment could be seen in the previous chapter. 
In 2.6 we shall introduce the concept of sufficient statistics and use sufficient statistic 
sto derive the BUE.


2.1 Biasedness and Variance

   The bias can depend on the true value of the parameter. A good estimator should 
have zero or at least small bias for values of the true parameter.

Example 2.1:

	 Consider our previous example about the lifetime of smartphones. What is the

	 bias of the following two estimators:  and ?

	 In fact,  appear to be better than . The reason is that the variance of  

	 decreases as the sample size grows, while the variation of  does not depend 	
	 on the size of the sample.		 	 	 	 	 	 	 	 ||

    This example naturally derives the definition of variance of a given estimator .

Definition: Variance

	 Var .


θ
̂θ d(θ, ̂θ )

̂θ
θ

̂θ θ
̂θ θ Bias ̂θ := 𝔼 ̂θ − θ

θ
𝔼 ̂θ = θ ∀θ ∈ Θ

̂θ = X ̂θ = X1
X X1 X

X1

̂θ

̂θ = 𝔼( ̂θ − 𝔼 ̂θ )2 = 𝔼 ̂θ2 − (𝔼 ̂θ )2
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    We of course want that Var  to be small for all values of the true parameter . Idea-
lly, both the bias and the variance of the estimator should be small. Sometimes we 
value unbiasedness more than anything else. We want to make sure that an estimator 
is unbiased and only after this condition is satisfied we compare the variance with the 
principle being smaller is better.

    However, sometimes we can tolerate that an estimator is a bit biased. In fact, this is 
a trade-off, it depends on the practical terms, whether we value the unbiasedness 
more or we value the variance more. Moreover, in some cases it is very difficult or 
even impossible to find an unbiased estimator. In this case, it is useful to define a 
combined measure of the quality of an estimator.

Definition: Mean Squared Error (MSE)

	 The mean squared error of an estimator  of a parameter  is the function of  

	 defined by .

    This definition is good since it combines the two different perspective in measuring 
the performance of . However, we must point out its advantage before we dive 
deeper.

Disadvantage: MSE

	 It can be argued that the MSE, while being reasonable for location parameter, 

	 is not reasonable to scale parameters since MSE penalizes equally for 

	 overestimation and underestimation, which is fine in the location case; in the 

	 scale case however, 0 is a natural lower bound, so the estimation is not 

	 symmetric.	 	 	 	 	 	 	 	 	 	 	 ||

    We now prove that the definition of MSE is well defined.

Theorem 2.1: MSE Decomposition

	 .

Proof:

	 Since the expectation is a linear operator, it preserves scalar multiplication and

	 vector addition, hence it follows that

	 	 

	 	 	           

	 	 	           .

	 Since  is a scalar hence we can, by liearity of , plug it out

	 	 	           .

	 Then by the fact that , result follows.

	 	 	 	 	 	 	 	 	 	 	 	 	 

    If one finds a biased estimator , one can sometimes easily corrects the bias to get 
an unbiased estimator. However, e.g. if we tried an estimator  and found that it has 

, so we cannot correct the bias by simply taking the square of . The new 
estimator  will not be unbiased for . If we call the formula for the second 
moment of the random variable, then in this particular case we can even compute the 
bias 

	 	 	 	 ,


̂θ θ

̂θ θ θ
MSE( ̂θ ) := 𝔼( ̂θ − θ )2 = Var ̂θ + (Bias ̂θ )2

̂θ

MSE( ̂θ ) := 𝔼( ̂θ − θ )2 = Var ̂θ + (Bias ̂θ )2

𝔼(( ̂θ − θ )2) = 𝔼(( ̂θ − 𝔼 ̂θ + 𝔼 ̂θ − θ )2)
= 𝔼( ̂θ − 𝔼 ̂θ )2 + 2𝔼(( ̂θ − 𝔼 ̂θ )(𝔼 ̂θ − θ )) + (𝔼 ̂θ − θ )2

= Var ̂θ + (Bias ̂θ )2 + 2𝔼(( ̂θ − 𝔼 ̂θ )(𝔼 ̂θ − θ ))
𝔼 ̂θ − θ 𝔼

= Var ̂θ + (Bias ̂θ )2 + 2(𝔼 ̂θ − θ )𝔼( ̂θ − 𝔼 ̂θ ))
𝔼( ̂θ − 𝔼 ̂θ ) = 𝔼 ̂θ − 𝔼 ̂θ = 0

□
̂θ

̂θ
𝔼 ̂θ = θ ̂θ

θ̃ := ̂θ2 θ

𝔼 ̂θ2 = (𝔼 ̂θ )2+Var ̂θ = θ+Var ̂θ
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so the bias of the estimator  equals Var . In general, it is often quite difficult to find 
an unbiased estimator.

    We will offer some other alternatives to the MSE later. Now we shall introduce an-
other perspective in measuring the performance of a given estimator.


2.2 Consistency

    The consistency is actually defined by the convergence, a topological property. Be-
fore introducing this concept we need some important results. Let  be a 
measure space where  is an arbitrary set and  is the -algebra generated by ,  is 
the corresponding measure. Then in saying that, given a sequence of measurable 
functions (random variables)  of almost everywhere finite valued (i.e. there are 
only finitely many points make  infinite),  convergest to a measurable function , if 

, . Since probability is a special case of 

measure, we have the definition of convergence in probability.

Definition: Converge in Probability	 

	 A sequence of random variables  is said to be convergent in probability to 

	 a random varaible  if  one has .


    Note that the sequence  needs not to be countable, but we are dealing in most 
cases a countable sequence of random variables, so it does not lose any generality by 
just denoting . In fact, we shall later on use  to 

denote that  converges to  in probability as  being sufficiently large.

    Moreover,  when we speak about an estimator , in fact the distri-
bution of the estimator depends on , so it would be more correctly speak about a 
sequence of random variables .

    Usually, we expect that when the size of the sample becomse larger, i.e. as , 
the distribution of the estimator  become concentrated more and more around the 
true value of the parameter . This is the minimal requirement that we can impose 
on the family of estimators that depend on the sample size. If this requirement is 
not satisfied, then the estimator is not very useful. Technically this property of an 
estimator is called consistency.


	 	 	        Figure 2.1	 	           Figure 2.2


̂θ2 ̂θ

(X, 𝒮, μ)
X 𝒮 σ X μ

{ fn}
fn fn f

∀ε > 0 lim
n

μ({x | fn(x) − f (x) | ≥ ε}) = 0

{Xn}
X ∀ε > 0 lim

n
ℙ( |Xn − X | ≥ ε) = 0

{ fn}

lim
n→∞

ℙ( |Xn − X | ≥ ε) = 0 Xn
Prob X

Xn X n
̂θ = ̂θ(X1, ⋯, Xn)

n
̂θn

n → ∞
̂θn

θ
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   A very good intrepretation for the consistency is that it combines the WLLN and 
SLLN in a natural way. A sample  from the distribution  was 
generated with  and we compute . Figure 2.1 shows a 
path of . It suggest that if ,  converges to the true value . In fact, this is a 
consequence of the Strong Law of Large Numbers (SLLN), which says that this 
behavior is observed with probability 1. On the other hand, Figure 2 shows that as 

,  converges to the true value  asymptotically. This is the consequence of 
the Weak Law of Large Numbers (WLLN). Since we have used these two results, 
we state, without proof, as facts.

Theorem 2.2: SLLN

	 Let  be i.i.d. random variables with  and , 


	 define . Then , one has that ,


	 i.e.  converges almost surely to .

Theorem 2.3: WLLN

	 Let  be i.i.d. random variables with  and . 


	 Define . Then , ; i.e. 


	 .


Remark:

	 We shall denote that  converges to  almost surely by the notation .


	 Note that 

	 	 	 almost surely convergence  Convergence in Probability

	 	 	 almost surely convergence  Convergence in Probability.	 ||

    Now we offer the formal definition of consistency.

Definition: Consistent

	 An estimator  is said to be a consistent estimator of  if  converges in 

	 probability to , i.e. .


    Consistency describes a property of the estimator in the  limit. Unlike unbi-
asedness, it is NOT meant to describe the property of the estimator for a fixed , it is 
a tendency. Moreover, since the constisency is defined under the convergence in mea-
sure (in fact, convergence in probability measure), hence the consistency is entirely 
determined by the underlying topological structure. Analyzing the consistency theref-
ore falls in to the field of functional analysis. 

   Note that an unbiased estimator can be inconsistent and a biased estimator can be 
consistent. Consistency is more important than unbiasedness since it ensures that if 
the data size is sufficiently large, then we will eventually learn the true value of the 
parameter. 

    We now offer a criterion in determining whether a given MSE is consistent.

Theorem 2.4: MSE Being Consistent


X1, X2, ⋯ n(θ,1/4)
θ = 10 ̂θk = (X1 + ⋯ + Xk)/k

̂θk k → ∞ ̂θk θ

k → ∞ ̂θk θ

X1, X2, ⋯ 𝔼Xi = μ VarXi = σ2 < ∞

Xn :=
1
n

n

∑
i=1

Xi ∀ε > 0 ℙ( lim
n→∞

|Xn − μ | < ε) = 1

Xn μ

X1, X2, ⋯ 𝔼Xi = μ VarXi = σ2 < ∞

Xn :=
1
n

n

∑
i=1

Xi ∀ε > 0 lim
n→∞

ℙ( |Xn − μ | < ε) = 1

Xn
Prob μ

fn f fn
a.s. f

⇒
⇍

̂θn θ ̂θn

θ ̂θn
Prob θ

n → ∞
n
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	 If MSE  as  then the estimator  is consistent.

    Inspired by the asymptotically convergent, we derive a weaker property than unbi-
asedness.

Definition: Asymptotically Unbiased

	 An estimator  is said to be asymptotically unbiased if  as 

	 .

  Therefore another way to interpret Theorem 2.4 is that: Any estimator which is 
asymptotically unbiased and has its variance converging to 0 as  is consistent.

    However, it is sometimes cumbersome to calculate MSE of an estimator. There are 
some other tools to establish consistency of an estimator. We will talk about them 
later.

Unbiasedness vs Consistency:

	 •	 Unbiasedness: 

	 	 	 concerns expectation; 

	 	 	 for fixed .

	 •	 Consistency: 

	 	 	 concerns bias and variance (and whether they vanish for large );

	 	 	 for ;

	 	 	 However, does not necessarily imply unbiasedness for finite .

	 •	 Biased Estimator can be Consistent and  Unbiased estimator can be 	 	
	 	 Inconsistent.

   We shall now introduce some common unbiased estimators. Let us now assume that 

 is a random sample of  i.i.d. observations from a popula-tion with mean  
and variance .

An Estimator for the Population Mean:


	 Estimator:	 .


	 Variance:	 .


	 MSE:		 .


An Estimator for the Variance:


	 Estimator:	 .


    The variance of this estimator is more complicated to derive and we will not perfo-
rm it here. However, it turns out that it goes to 0 as . In particular this 
estimator is consistent.	 

    Since consistency is all about convergence in probability, here are some properties 
of this mode of convergence of random variables.

Theorem 2.5:

	 Suppose that  and . Then


( ̂θn) → 0 n → ∞ ̂θn

̂θn Bias( ̂θn) → 0
n → ∞

n → ∞

n

n
n → ∞

n

Y1, ⋯, Yn n μ
σ2

̂μ = Y =
1
n

n

∑
i=1

Yi

Var( ̂μ) =
σ2

n

MSE ̂μ = Var ̂μ + (Bias ̂μ)2 =
σ2

n

S2 :=
∑n

i=1 (Yi − Y )2

n − 1

n → ∞

̂θn
Prob θ ̂θ′￼n

Prob θ′￼

8



Lecture Notes on Statistical Inference Tsinghua University

	 (i)	 .


	 (ii)	 .


	 (iii)	  provided .


	 (iv)	 For any continuous function , .


	 (v)	 For any continuous bifunction , .


	 (vi)	 For  a collection of numbers such that  implies 

	 	 , where  are viewed as special random variables.


    If an estimator is not consistent, then it will not produce the correct estimation even 
if we are given the unlimited amount of data. Hence consistency is very important in 
evaluating if an estimator is “good”. However, consistency does not necessarily 
guarantee the good performance.


2.3 The Non-Existence of Unbiased Estimators

    We have seen above the several natural parameters have unbiased estimators. So it 
is natural to ask whether it is always possible to find an unbiased estimator for a 
parameter of interest, i.e. can the existence of the unbiased estimator be guaranteed? 
The answer is no and we offer a counterexample in this subsection.

Example 2.2: Counterexample to the Existence of Unbiased Estimator

	 In this example, each observation is taken from Bernoulli distribution with 

	 parameter . That is,  with probability  and  with probability 

	 . Of course, there is an unbiased estimator for , namely . The twist

	 of this example is that we try to estimate . Suppose, 	
	 by seeking contradiction, that  is an unbiased estimator of  and therefore,

	 . Rewrite it by definition


	 	        .


	 For Bernoulli random variable we can write , where

	  can only take two values, 0 or 1. By independence of random variables 

	 , one has

	 	 	 .

	 So, if  is unbiased, then


	 	        ,	 (3.1)


	 and this should be true for every  since the estimator is assumed to be 

	 unbiased for every . However, this means that the logarithmic 

	 function of  equals to a polynomial in . This is impossible, e.g. the limit of 

	 the LHS in (3.1) for  is  while the RHS is finite.


̂θn + ̂θ′￼n
Prob θ + θ′￼

̂θn × ̂θ′￼n
Prob θ × θ′￼

̂θn / ̂θ′￼n
Prob θ /θ′￼ θ′￼≠ 0

g g( ̂θn) Prob g(θ )

g g( ̂θn, ̂θ′￼n) Prob g(θ, θ′￼)

{an}n∈ℕ an → a
an

Prob a an

p Xi = 1 p Xi = 0
1 − p p ̂p = X

θ = − ln p ∈ Θ = (0,∞)
̂θ θ

𝔼 ̂θ = θ = − ln p

𝔼 ̂θ =
1

∑
x1=0

⋅ ⋯ ⋅
1

∑
xn=0

̂θ(x1, ⋯, xn)ℙ(X1 = x1, ⋯, xn = xn)

ℙ(Xi = xi) = pxi(1 − o)1−xi

xi
X1, …, Xn

ℙ(X1 = x1, ⋯, Xn = xn) = p ∑i =1nxi(1 − p)n−∑n
i=1 xi

̂θ

−ln p =
1

∑
x1=0

⋯
1

∑
xn=0

̂θ(x1, ⋯, xn)p ∑n
i=1 xi(1 − p)n−∑n

i=1 xi

p ∈ (0,1)
−ln p ∈ (0,∞)

p p
p → 0 ∞
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	 We got a contradiction, so that means there is no unbised estimator of 

	 .	 	 	 	 	 	 	 	 	 	 	 ||


2.4 Asymptotic Normality

Definition: Asymptotically Normal


	 An estimator  is said to be asymptotically normal if  converges in


	 distribution to the standard normla distribution .

   Typically, , and the constant  is called the asymptotic variance of 
the estimator. Intuitively, as  grows, the error of the estimator becomes more and 
more like a normal random variable with variance .

    In order to prove the asymptotic normality of a given estimator, we usually use the 
Central Limit Theorem (CLT). Recall that

Theorem 2.6: CLT

	 Let  be a sequence of i.i.d. random variables whose mgfs exist in a 

	 neighbourhood of 0. Let  and  be both finite. Define


	  and let  denote the cdf of . Then, 


	 , one has that , i.e.


	  has a limiting standard normal distribution.


   CLT is valid in much more general way than it is stated. The only assumption on 
the parent distribution is that it has finite variance.

   An approximation tool that can be used in conjunction with the CLT is known as 
the Slutsky’s Theorem.

Theorem 2.7: Slutsky’s Theorem

	 If  in distribution and  where  is a constant. Then


	 (i)	  in distribution.

	 (ii)	  in distribution.

	 (iii)	  in distribution providede .


2.5 Risk Functions and Comparison of Point Estimators

  We have seen how to tell an estimator is good by describing its unbiasedness, its 
consistency, and its asymptotic normality. Now we need to know given more than one 
estimators, how do we tell which one is better.

    Recall that the mean squared error of a point estimator  is given by

	 	 	 	      MSE .

We wrote it here as a function of  to emphasize that the MSE depends on the true 
value of .


θ = − ln p

̂θn
( ̂θn − θ )

Var ̂θn
N(0,1)

Var( ̂θn) ∼ σ2 /n σ2

n
σ2 /n

X1, X2, ⋯
𝔼Xi = μ VarXi = σ2 > 0

Xn =
1
n

n

∑
i=1

Xi Gn(x)
n(Xn − μ)

σ

∀ − ∞ < x < ∞ lim
n→∞

Gn(x) = ∫
x

−∞

1

2π
e−y2/2dy

n(Xn − μ)
σ

Xn → X Yn
Prob a a

YnXn → aX
Xn + Yn → X + a
Xn /Yn → X /c c ≠ 0

̂θ
̂θ(θ ) = 𝔼( ̂θ − θ )2

θ
θ
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    This is the special case of the risk function of an estimator. More generally, 

Definition: Risk Function

	 The risk function of an estimator  is given by .

    The function  in the above definition is called the loss function, which is non-neg-
ative and might depend on a particular application. So intuitively the risk function is 
the expected loss from a mistake made while predicting the parameter . In the case 
of MSE, the loss function is simply the quadratic function .

    The discussion of the risk function is detailed in the previous chapter, we shall ign-
ore the detailed treatment here.


2.6 Sufficient Statistics

  Recall that in studying linear algebra, it is sometimes hard to deal with rather big 
vector spaces, even its vector subspaces; to that end, we find it useful to work only 
through a small collection of elements that contain all the information of the vector 
space, hence we introduced the basis, as well as subbasis.

    Same problems may arise when we are dealing with a big set of data. We wish, the-
refore, to use a small collection that contains all the information of the original data. 
However, not every data reduction methods could discard no information, so we wish 
to have one that preserve as much as possible. We shall introduce three data reduction 
methods in this subsection. The sufficiency principle promotes a method that preserve 
the information while achieving summrization of the data. The likelihood principle 
describes a a function of the parameter, determined by the observed sample, that 
contains all the information about  that is available from the sample.

Definition: Sufficient statistic

	 A statistic  is a sufficient statistic for  if the conditional distribution of

	 the sample  given the value of  does not depend on .

Theorem 2.8: Criterion for Sufficient Statistic

	 If  is the joint pdf or pmf of  and  is the pdf or pmf of , 


	 then  is a sufficient statistic for  if ,  is constant as a


	 function of .

Theorem 2.9: Factorization Theorem

	 Let  denote the joint pdf or pmf of a sample . A statistic  is a 

	 sufficient statistic for   there exist functions  and  such that,

	 for all sample points  and all parameter points , .

    It is easy to find a sufficient statistic for an exponential family of distributions usin-
g the factorization theorem. Recall that the exponential family is defined by

Definition: Exponential Family

	 A family of pdfs or pmfs is called an exponential family if it can be expressed 	 

	 as 


	 	 	 	 , 	 


	 where ,  are real-valued functions of the observation  


̂θ R ̂θ(θ ) := 𝔼(u( ̂θ − θ )2)
u

θ
u(x) := x2

θ

T(X ) θ
X T(X ) θ

p(x |θ ) X q(t |θ ) T(X )

T(X ) θ ∀x ∈ X
p(x |θ )

q(T(x) |θ )
θ

f (x |θ ) X T(X )
θ ⇔ g(t |θ ) h(x)

x θ f (x |θ ) = g(T(x) |θ )h(x)

f (x |θ ) = h(x)c(θ )exp{
k

∑
i=1

wi(θ )ti(x)}
h(x) ≥ 0 t1(x), ⋯, tk(x) x
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	 (they cannot depend on ), and ,  are real-valued 

	 functions of the possibly vector-valued parameter  (they cannot depend on ).

Remark:

	 The continuous families — normal, gamma, and beta, the discrete families — 	 

	 binomial, Poisson, and negative binomial, are all exponential families.		 ||

   Because of the numerous sufficient statistics in a problem, we might ask whether 
one sufficient statistic is any better than another. Recall that the purpose of a suffi-
cient statistic is to achieve data reduction without loss of information about the 
parameter ; thus, a statistic that achieves the most data reduction while still 
remaining all the information about  might be considered preferable. The definition 
of such a statistic is the minimal sufficient statistic.

Definition: Minimal Sufficient Statistic

	 A sufficient statistic  is called a minimal sufficient statistic if, for any 

	 other sufficient statistic ,  is a function of .

    That is to say, , or, equivalently, if  are 
the partition sets of  and  are the partition sets for , then every 

 is a subset of . Thus, the partition associated with a minimal sufficient statistic, 
is the coarsest possible partition for a sufficient statistic, and a minimal sufficient 
statistic achieves the greatest possible data reduction for a sufficient statistic.

Theorem 2.10: Criterion for Minimal Sufficient Statistic

	 Let  be the pmf or pdf of a sample . Suppose that there exist a function


	  such that for every two sample points  and , the ratio  is constant


	 as a function of   . Then  is a minimal sufficient statistic 

	 for .

    However, a minimal sufficient statistic is not unique. Any one-to-one function of a 
minimal sufficient statistic is also a minimal sufficient statistic.

Definition: Complete Statistic

	 Let  be a family of pdfs or pmfs for a statistic . The family of 

	 distributions is called complete if  then 

	 . Equivalently,  is called a complete statistic.

Theorem 2.11: Complete Statistic in the Exponential Family

	 Let  be i.i.d. observations from an exponential family with pdf or pmf


	 of the form , where . 


	 Then the statistic  is complete if  


	  contains an open set in .

   The proof of this theorem depends on the uniqueness of a Laplace transform. It sho-
uld be noted that the minimality of the sufficient statistic was not used in the proof of 
Basu’s theorem. Indeed, the theorem is true with this word omitted, since a fundame-

θ c(θ ) ≥ 0 w1(θ ), ⋯, wk(θ )
θ x

θ
θ

T(X )
T′￼(X ) T(x) T′￼(X )

T′￼(x) = T′￼(y) ⇒ T(x) = T(y) {Bt′￼| t′￼∈ 𝒯′￼}
T′￼(X ) {At | t ∈ 𝒯} T(x)

Bt′￼ At

f (x |θ ) X

T(x) x y
f (x |θ )
f (y |θ )

θ ⇔ T(x) = T(y) T(X )
θ

f (t |θ ) T(X )
𝔼θg(T ) = 0∀θ ℙθ(g(T ) = 0) = 1

∀θ T(X )

X1, ⋯, Xn

f (x |θ ) = h(x)c(θ )exp{
k

∑
j=1

wj(θ )tj(x)} θ = (θ1, ⋯, θk)

T(X ) := (
n

∑
i=1

t1(Xi), ⋯,
n

∑
i=1

tk(Xi))

{(w1(θ ), ⋯, wk(θ )) θ ∈ Θ} ℝk
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ntal property of a complete statistic is that it is minimal. However, the condition that 
it contains an open set is necessarily needed.

Theorem 2.12:

	 If a minimal sufficient statistic exists, then any complete statistic is also a 

	 minimal sufficient statistic.

    So even though the word “minimal” is redundant in the statement of Basu’s theore-
m, it was stated in this way as a reminder that the statistic  in the theorem is a 
minimal sufficient statistic.

In many cases, the MSEs of two estimators will cross each other, showing that ea-ch 
estimator is better with respect to the other in only a small portion of the parameter 
space. However, even this partial information can sometimes provide guidelines for 
choosing between given estimators. In some worse cases however, only more inform-
ation is gathered but no absolute answer is obtained.

    One of the reason is that the class of all estimators is too large as a class. So instead 
of stucking in MSE, we have another alternative that is to reduce the size of this 
class. A popular way of restricting the class of estimators is to consier only unbiased 
estimators.

    If  and  are both unbiased estimators of a parameter , i.e.  
then their MSE are equal to their variances, so we should choose the estimator with 
the smaller variance. If we can find an unbiased estimator with uniformly smallest 
variance — a best unbiased estimator — then we are done.

    Suppose that there is an estimator  of  with  and we are inte-
rested in investigating the worth of . Consider the class of estimators given by

	 	 	 	 	 .

For all the choice of , Bias Bias  so one has

	 	 	 

and MSE comparisons, within the class , can be based on variance alone. Thus, 
although we speak in terms of unbiased estimators, we really are comparing 
estimators with the same expected value .

Definition: Best Unbiased Estimator (BUE)	

	 An estimator  is a best unbiased estimator of  if it satisfies 

	 , and for any other estimator  with . 

Definition: Uniform Minimum Variance Unbiased Estimators (UMVUE)

	 A BUE  is said to be a uniform minimum variance unbiased estimator if for

	 any other estimator  with , one always has .

    Suppose that, for estimating a parameter  of a distribution , we can spe-
cify the lower bound, say , on the variance of any unbiased estimator of . If 
we can find an unbiased estimator  such that , then we have found 
the BUE. This is the approach taken with the use of the Cramér-Rao lower bound.

Theorem 2.13: Cramér-Rao Inequality

	 Let  be a sample with pdf , and let  be 

	 any estimator satisfying 


T(X )

W1 W2 θ 𝔼θW1 = 𝔼θW2 = θ

W* θ 𝔼θW* = τ(θ ) ≠ θ
W*

Cτ := {W |𝔼θW = τ(θ )}
W1, W2 ∈ Cτ θ(W1) = θ(W2)

𝔼θ(W1 − θ )2 − 𝔼θ(W2 − θ )2 = Varθ(W1) − Varθ(W2)
Cτ

τ(θ )

W* τ(θ )
𝔼θW* = τ(θ )∀θ W 𝔼θW = τ(θ )

W*
W 𝔼θW = τ(θ ) VarθW* ≤ VarθW ∀θ

τ(θ ) f (x |θ )
B(θ ) τ(θ )

W* VarθW* = B(θ )

X1, ⋯, Xn f (x |θ ) W(X ) = W(X1, ⋯, Xn)
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	 (i)	 


	 (ii)	 .


	 Then .


    If we add the assumption of independent samples, the calculatin of the lower boun-
d could be simplified. The expectation in the denominator becomes a univariate 
calculation, as the following corollary implies.

Corollary 2.13.1: Cramér-Rao Inequality, i.i.d. case

	 Let  be an i.i.d. sample with pdf  and let 

	  be any estimator such that


	 (i)	 


	 (ii)	 .


	 Then .


    Note that the Cramér-Rao lower bound does not only work for the continuous ran-

dom variables but also the discrete ones. The quantity  is 

called the information number, or Fisher information of the sample. This terminology 
reflects the fact that the information number gives a bound on the variance of the 
BUE of . As the information number increases, the bound on the variance of BUE 
gets smaller.

    For any differentiable function , we now have a lower bound on the variance 
of any estimator  such that . The bound depends only on  and 

 and is a uniform lower bound for the variance. Any candidate estimator 
satisfying  and attaining this lower bound is a BUE of .

Remark:

	 Even if the Cramér-Rao is applicable, there is no guarantee that the bound is 

	 sharp. That is to say, the value of the Cramér-Rao lower bound may be strictly

	 smaller than the variance of any unbiased estimator.

    In fact, the most we can say by applying Cramér-Rao is that there exists a parame-
ter  with an unbiased estimator that achieves the Cramér-Rao lower bound; 
however, in other typical situations, for other parameters, the bound may not be 
attainable. Hence we need results dealing with its attainment.

Corollary 2.14: Attainment of Cramér-Rao Lower Bound

	 Let  be i.i.d.  where  satisfies the conditions of Cramér-


	 Rao Theorem. Let  denote the likelihood function. If 


d
dθ

𝔼θW(X ) = ∫ΩX

∂
∂θ

W(x)f (x |θ )d x

VarθW(X ) < ∞

VarθW(X ) ≥
( d

dθ 𝔼θW(X ))2

𝔼θ(( ∂
∂θ log f (X |θ ))2)

X1, ⋯, Xn f (x |θ )
W(X ) := W(X1, ⋯, Xn)

d
dθ

𝔼θW(X ) = ∫ΩX

∂
∂θ

W(x)f (x |θ )d x

VarθW(X ) < ∞

VarθW(X ) ≥
( d

dθ 𝔼θW(X ))2

n𝔼θ(( ∂
∂θ log f (X |θ ))2)

𝔼θ(( ∂
∂θ

log f (X |θ ))2)

θ

τ(θ )
W 𝔼θW = τ(θ ) τ(θ )

f (x |θ )
𝔼θW = τ(θ ) τ(θ )

τ(θ )

X1, ⋯, Xn f (x |θ ) f (x |θ )

L(θ |x) :=
n

∏
i=1

f (xi |θ )
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	  is any unbiased estimator of , then  attains

	 the Cramér-Rao lower bound if and only if


	 	 	 	  


	 for some function .

   The attainment of the Cramér-Rao lower bound still leaves some questions. Firstly, 
what if the  does not satisfy the assumptions of the Cramér-Rao Theorem? 
Secondly, what if the bound is still unattainable for legal estimators?

    One way of answering these questions is to search for methods that are more wide-
ly applicable and yield sharper (i.e. greater) lower bounds. Much research has been 
done on this topic, with perhaps the most famous one is Chapman and Robbins 
(1951). We leave this to interested readers and we now introduce the study of BUE 
from another view, using the concept of sufficiency.

    In the previous discussion, the concept of sufficiency was not used in our search f-
or unbiased estimates. We will now see the consideration of sufficiency is a powerful 
tool indeed. The main result of this method relates the sufficient statistic to unbiased 
estimate. Recall that  and .

Theorem 2.15: Rao-Blackwell

	 Let  be any unbiased estimator of  and let  be a sufficient statistic for .

	 Define . Then 

	 (i)	 .

	 (ii)	  .

	 That is ,  is a uniformly better unbiased estimator of .

   Therefore, conditioning any unbiased estimator on a sufficient statistic will result in 
a uniform improvement, so we need consider only statistics that are functions of a 
sufficient statistic in our search for best unbiased estimator.

    In fact, conditioning on anything will result in an improvement, but the problem is 
that the resulting quantity will probably depend on  and therefore not be an estima-
tor.

    We now state and prove a powerful result stating that a best unbiased estimator is 
unique.

Theorem 2.16:

	 If  is a best unbiased estimator of  then  is unique.

Proof:

	 Suppose that  is another best unbiased estimator, and consider the estimator


	 . Note that  and


	 


	 	   	 (Cauchy-Schwartz)


	 	   . 		 (  by assumption)

	 But if the above inequality is strict, then the best unbiasedness of  is 

	 contradicted, so we must have equality for all . Since the inequality is an 


W(X ) = W(X1, ⋯, Xn) τ(θ ) W(X )

a(θ )(W(x) − τ(θ )) =
∂
∂θ

log L(θ |x)

a(θ )

f (x |θ )

𝔼X = 𝔼(𝔼(X |Y )) VarX = Var(𝔼(X |Y )) + 𝔼(Var(X |Y ))
W τ(θ ) T θ

φ(T ) := 𝔼(W |T )
𝔼θφ(T ) = τ(θ )
Varθφ(T ) ≤ VarθW ∀θ

φ(T ) τ(θ )

θ

W τ(θ ) W

W′￼

W* =
1
2

(W + W′￼) 𝔼θW* = τ(θ )

VarθW* = Varθ(
1
2

W +
1
2

W′￼) =
1
4

VarθW +
1
4

VarθW′￼+
1
2

Covθ(W, W′￼)

≤
1
4

VarθW +
1
4

VarθW′￼+
1
2 (VarθW ⋅ VarθW′￼)

1
2

= VarθW VarθW = VarθW′￼
W

θ
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	 application of Cauchy-Schwartz we can have equality only if 

	 . Now applying properties of covariance, we have

	 	 	 Cov 

    	 	 	 	 	 ,

	 but Cov  hence . Since  we must have

	  therefore , uniqueness follows.

	 	 	 	 	 	 	 	 	 	 	 	 	 

   To see when an unbiased estimator is best unbiased, we might ask how could we 
improve upon a given unbiased estimator? The relationship of an unbiased estimator 

 with unbiased estimators of 0 (i.e. ) is crucial in evaluating whether  
is best unbiased. This relationship, in fact, characterizes the best unbiasedness.

Theorem 2.17:

	 If ,  is the best unbiased estimator of    is uncorrelated 

	 with all unbiased estimators of .

Remark: Random Noise

	 Note that an unbiased estimator of 0 is nothing more than random noise; i.e.

	 there is no information in an estimator of 0. Therefore, if an estimator could be

	 improved by adding random noise to it, the estimator probably is defective.	 ||

    Although we now have an interesting characterization of BUEs, its usefulness is li-
mited in application. It is often a difficult task to verify that an estimator is uncorrela-
ted with all unbiased estimators of 0 since it is usually difficult to describe all 
unbiased estimators of 0. 

    It is worthwhile to note once again that what is important is the completeness of th-
e family of distributions of the sufficient statistic. Completeness of the original family 
is of no consequence. This follows from the Rao-Blackwell Theorem, which says that 
we can restrict attention to functions of a sufficient statistic, so all expectations will 
be taken with respect to its distribution.

    We sum up the relationship between completeness and best unbiasedness in the fol-
lowing theorem.

Theorem 2.18:

	 Let  be a complete sufficient statistic for a parameter  and let  be any 

	 estimator based only on . Then  is the unique BUE of its expected value.

    In many situations, there will be no obvious candidate for an unbiased estimator of 
a function , much less a candidate for BUE. However, in the presence of comple-
teness, Theorem 2.18 tells us that if we can find any unbiased estimator, then we can 
find the best unbiased estimator.

Theorem 2.19: Lehmann-Scheffé

	 Unbiased estimators based on complete sufficient statistics are unique.


3. Methods in Finding Point Estimators

   We have offered two methods in finding point estimators in the first two chapters. 
In the first chapter we see how can we find the MLE and in the second chapter we see 
a way to draw the Bayesian estimators. In this section we are going to introduce the 
methods of moments and the Expectation Maximization method.


W′￼= a(θ )W + b(θ )
θ(W, W′￼) = Covθ(W, a(θ )W + b(θ ))

= Varθ(W, a(θ )W ) = a(θ )VarθW
θ(W, W′￼) = VarθW a(θ ) = 1 𝔼θW′￼= τ(θ )

b(θ ) = 0 W = W′￼
□

W 𝔼θU = 0∀θ W

𝔼θW = τ(θ ) W τ(θ ) ⇔ W
0

T θ φ(T )
T φ(T )

τ(θ )
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3.1 Methods of Moments

    The method of moments is, perhaps, the oldest method of finding point estimators, 
it has the virtue of being quite simple to use and almost always yields some sort of 
estimate. In many cases, unfortunately, this method yields estimators that may be 
improved upon. However, it is a good place to start when old methods prove 
intractable.

Algorithm 3.1: Methods of Moments

	 Let  be a sample from population with pdf or pmf . 

	 Methods of moments estimators are found by equating the first  sample 

	 moments to the corresponding  population moments, and solving the resulting 

	 system of simultaneously equations. More precisely, define


, ,


,





.


	 The population moments  will typically be function of , namely

	 . The method of moments estimators  of 

	 is obtained by solving the following system of equations for  in 

	 terms of .


	 ,

	 ,


	 

	 .


    The method of moments can be very useful in obtaining approximations to the dist-
ribution of statistics. This technique, is sometimes called the moment matching, gives 
us an approximation that is based on matching moments of distributions. In theory, 
the moments of distribution of any statistics could be matched, however, in practical 
terms, it is best to have distributions that are similar.

    We now illustrate some examples in using moments to find point estimators. 

Example 3.1: Normal Method of Moments

	 Suppose that  are iid . In the preceding notation,  and


	 . We have  and , and


	 , .

	 Solving for  and  yields the Method of Moments estimator:


	  and .	 	 ||


X1, ⋯, Xn f (x |θ1, ⋯, θk)
k

k

m1 :=
1
n

n

∑
i=1

X′￼i μ′￼1 = 𝔼X

m2 :=
1
n

n

∑
i=1

X2
i , μ′￼2 := 𝔼X2

⋯⋯

mk :=
1
n

n

∑
i=1

Xk
i , μ′￼k := 𝔼Xk

μ′￼j θ1, ⋯, θk
μ′￼j(θ1, ⋯, θk) (θ̃1, ⋯, θ̃k) (θ1, ⋯, θk)

(θ1, ⋯, θk)
(m1, ⋯, mk)

m1 = μ′￼1(θ1, ⋯, θk)
m2 = μ′￼2(θ1, ⋯, θk)

⋯⋯
mk = μ′￼k(θ1, ⋯, θk)

X1, . . . , Xn N(θ, σ2) θ1 = θ

θ2 = σ2 m1 =
1
n ∑ Xi = X m2 =

1
n ∑ X2

i

μ′￼1 = θ μ′￼2 = θ2 + σ2

θ σ2

θ̃ = m1 = X σ̃2 = m2 − m2
1 =

1
n ∑ X2

i − X 2 =
1
n ∑ (Xi − X )2
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    In this simple example, the Method of Moments solution coincides with our intuiti-
on and perhaps gives some credence to both. The method is somewhat more helpful, 
however, when no obvious estimator suggests itself.

Example 3.2: Binomial Method of Moments

	 Let  be i.i.d. Binomial , i.e.,


	 .


	 Here we assume that both  and  are unknown and we desire point estimators 	
	 for both parameters.

	 Equating the first two sample moments to those of the population yields the 	 	
	 system of equations:


	 , , which must now be solved for  and .


	 After a little algebra, we obtain the Method of Moments estimators:


	 .


	 Therefore, , and .


	 Admittedly, these are not the best estimators for the population parameters.

	 In particular, it is possible to get negative estimates of  and , which, of 

	 course, must be positive numbers(This is the case where the range of the 	 	
	 estimators does not coincide with the range of the parameter it is estimating.)

	 However, in fairness to the Method of Moments, note that negative estimates

	 will occur only when the sample mean is smaller than the sample variance, 	 	
	 indicating a large degree of variability in the data.

	 The Method of Moments has, in this case, at least given us a set of candidates

	 for point estimators of  and .

	 Although our intuition may have given us a candidate for an estimator of ,	 

	 coming up with an estimator of  is much more difficult.	 	 	 	 ||

    The method of moments can be very useful in obtaining approximations to the dist-
ributions of statistics. This technique, is sometimes called “moment matching”, gives 
us an approximation that is based on matching moments of distributions. In theory, 
the moments of the distribution of any statistic can be matched to those of any distri-
bution but, in practice, it is best to use distributions that are similar.


3.2 Expectation Maximization

    The last method that we will look at for finding estimators is inherently different in 
its approach and specifically designed to find MLEs. Rather than detailing a proce-
dure for solving for the MLE, we specify an algorithm that is guaranteed to converge 
to the MLE. This algorithm is called Expectation Maximization (EM) algorithm. It is 
based on the idea of replacing one difficult likelihood maximization with a sequence 
of easier maximizations whose limit is the answer to the original problem. It is 
particularly suited to “missing data” problems, as the very fact that there are missing 

X1, . . . , Xn (k, p)

ℙ(Xi = x |k, p) = (k
x)px(1 − p)k−x, x = 0,1,...,k

k p

X = kp
1
n ∑ X2

i = kp(1 − p) + k2p2 k p

X 2 = k2p2 ⟹
1
n ∑ X2

i − X 2 = kp(1 − p) = kp − kp2 = X −
X 2

k

k̃ =
X 2

X − 1
n ∑ (Xi − X )2

p̃ =
X
k̃

k p

k p
p

k
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data can sometimes make calculations cumbersome. However, filling in the “missing 
data” will often make the calculation go more smoothly.

    In using the EM algorithm we consider two different likelihood problems. The first 
problem that we are interested in solving is the “incomplete data” problem and the 
problem that we actually solve is the “complete-data”problem. Depending on the 
situation, we can start with either problem.

   Expectation Maximization(EM) Algorithm is that conditions for convergence to the 
incomplete-data MLEs are known, although this topic has obtained an additional bit 
of folklore. We shall not dive in to deep to this algorithm and we offer some readings 
for those has interests, [4], [5], and [6], also some lecture notes [7], and a well-
organized one [8].


4. Maximum Likelihood Estimation

    Serving as a method in searching for estimators, the method of maximum likeliho-
od is, perhaps, by far the most popular technique for deriving estimators. Recall that 
if  are an i.i.d. sample from a pupulation with pdf or pmf , the 
likelihood function is defined by


	 	 .


Definition: Maximum Likelihood Estimator (MLE)

	 For each sample point , let  be a paramater value at which  attains

	 its maximum as a function of , with  fixed. A maximum likelihood estimator 

	 (MLE) of the parameter  based on a sample  is . In short, it is the value 

	 of  that maximizes the likelihood function.

    Notice that, by this construction, the range of the MLE coincides with the range of 
the parameter. We also use the abbreviation MLE to stand for Maximum Likelihood 
Estimate when we are talking about the realized value of the estimator. Intuitively, the 
MLE is a reasonable choice for an estimator. The MLE is the parameter point for 
which the observed sample is most likely. In general, the MLE is a good point 
estimator, processing some of the optimality properties.

   One good interpretation for the fact that maximizing over the likelihood function 
gives as a more accurate estimate is coming from [10]. Recall that the likelihood 
function is defined as

Definition: Likelihood Function

	 Let  denote the joint pdf or pmf of the sample . Then, 

	 given that  is observed, the function of  defined by  is 

	 called the likelihood function.

     Clearly  depends on the data , but they’re treated as functi-
ons of  only. The likelihood function is not the pdf or pmf of  so it does not make 
any sense to integrate over  values. What we are really interested in is the shape of 
the likelihood curve or, equivalently, the relative comparisons of the  for 
different ’s. That is to say:

Remark: Interpratation for Likelihood Functions

	 If  (resp. ), then  is more likely


X1, ⋯, Xn f (x |θ1, ⋯, θk)

L(θ |x) := L(θ1, ⋯, θk |x1, ⋯, xn) =
n

∏
i=1

f (xi |θ1, ⋯, θk)

x ̂θ(x) L(θ |x)
θ x

θ X ̂θ(X )
θ

f (x |θ ) X = (X1, ⋯, Xn)
X = x θ L(θ |x) = f (x |θ )

L(θ |x) X = (X1, ⋯, Xn)
θ θ

θ
L(θ |x)

θ

L(θ1 |x) > L(θ2 |x) log L(θ1 |x) > log L(θ2 |x) θ1
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	 to have been responsible for producing the observed .	 	 ||

    In statistical theory, one of the most important concern to the MLE, as it stated in 
this way, is the optimization. The most natural treatment on this topic is by differenti-
ation; we know that if the first derivative of a function  vanishes at a point , then 
the function has much more probability in gaining a local extrema at . Unfortuna-
tely, what really interest us is the global extrema, this sometimes could be troubles-
ome since in guaranteeing the global behavior we need to check all the possible 
points, this is a tedius work. To that end, the convex optimization offers some insights  
in determining the global extema, for example, in [9], if we konw that a point  is 
where  has finite local minimum and , then  has its global minimum at .

Properties of MLE:

	 (i)	 Translation Invariant

	 (ii)	 Consistent

	 (iii)	 Asymptotic Normal

    We have proved the translation invariant property, so we just restate it here. The 
consistency and asymptotic normality are from both [10] and [11].

Theorem 4.1: Translation Invariant

	 If  is the MLE of , then for any function , the MLE of  is .

Proof:

	 Let  be the value that maximizes the induced likelihood function .

	 WTS I: .

	 By definition, the maximum of  and  coincide, therefore, it follows that


,


	 where the last equality is by the definition of . On the other hand, we have

	 	 	 	 (  is the MLE)


	 	 	 	  .	 	 (Definition of )

	 

	 Hence,  is the MLE of  and the invariance follows.

	 	 	 	 	 	 	 	 	 	 	 	 	 

Remark:

	 The invariance property for MLE is still valid for the multivariate case.	 ||

    In stating the consistency, we need first to clarify what do we mean in saying that 
an MLE is consistent. Before that recall two important results in probability theory, 
the Law of Large Numbers (LLN) and the Central Limit Theorem (CLT), we 
assume the readers are already familiar with these two facts so we state them without 
proof.

Fact 4.2: LLN

	 If the distribution of i.i.d. sample  is such that , then


	 , i.e.  as .


Fact 4.3: CLT

	 If the distribution of i.i.d. sample  is such that  and 


X = (X1, ⋯, Xn)

f x0
x0

x
f 0 ∈ ∂f (x) f x

̂θ θ τ(θ ) τ(θ ) τ( ̂θ )

̂η L*(η |x)
L*( ̂η |x) = L*(τ( ̂θ ) |x)

L L*
L*( ̂η |x) = sup

η
sup

{θ|τ(θ)=η}
L(θ |x) = sup

θ
L(θ |x) = L( ̂θ |x)

̂θ
L( ̂θ |x) = sup

{θ|τ(θ)=τ( ̂θ)}
L(θ |x) ̂θ

= L*(τ( ̂θ ) |x) L*

τ( ̂θ ) τ(θ )
□

X1, ⋯, Xn |𝔼X1 | < ∞

Xn :=
X1 + ⋯ + Xn

n
Prob 𝔼X1 ℙ( |Xn − 𝔼X1 | > ε) > 0 n → ∞

X1, ⋯, Xn |𝔼X1 | < ∞
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	  then , that is to say


	  . That is to say,


	  behaves as normal random variable as  being sufficiently 

	 large.

    The terminology “consistency” follows directly from these two facts.

Definition: Consistent

	 We say that an estimate  is consistent if  as  where  is the 


	 sample size and  is the “true” but unknown value. That is,

	 .


Rule 1: Identifiability

	 If  then  and  share different distributions.

Rule 2: 

	 The support of , i.e.  is the same .

Rule 3:

	  is an interior point of .

Theorem 4.4: Consistent

	 Under Rule 1, Rule 2, and Rule 3, the MLE  is consistent, i.e.  as 

	 .

Corollary 4.4.1:

	 If Rule 1 and Rule 2 hold, then for any , 

	 .


   The consequence of Corollary 4.4.1 is that, the likelihood function at the true  
tends to be larger than any other likelihood value. So if we estimate  by maximizing 
the likelihood, that maximizer ought to be close to .

    We close our first section by introducing the asymptotic normality of the MLE. We 
want to show that  and then compute . 

This asymptotic variance in some sense measures the quality of MLE. First we 
introduce the notion called Fisher Information.

Definition: Fisher Information

	 Denote  and by saying  we mean the first 

	 derivative with respect to . The Fisher information of a random variable  

	 with distribution  form the family  is defined by


	 	 .


Remark: 

	 Let us give a very informal interpretation of the Fisher Information. The 


	 derivative  can be interpreted as a 


σ2 = VarX < ∞ n(Xn − 𝔼X1)
distribution N(0,σ2)

ℙ( n(Xn − 𝔼X1) ∈ [a, b]) → ∫
a

a

1

2πσ
e

−x2
2σ2 d x ∀a, b ∈ ℝ

n(Xn − 𝔼X1) n

̂θn
̂θ Prob θ* n → ∞ n

θ*
lim
n→∞

ℙ( | ̂θn − θ* | > ε) = 0∀ε > 0

θ ≠ θ′￼ fθ fθ′￼

fθ suppfθ := {x | fθ(x) > 0} ∀θ ∈ Θ

θ* Θ

̂θ ̂θ → θ*
n → ∞

θ ≠ θ*
lim
n→∞

ℙ(L(θ* |x) > L(θ |x)) = 1

θ*
θ

θ*

n( ̂θ − θn) distribution N(0,σ2
MLE) σ2

MLE

ℓ(X |θ ) := log f (X |θ ) ℓ′￼(X |θ )
θ X

ℙθn
{ℙθ |θ ∈ Θ}

I(θn) := 𝔼θn(ℓ′￼(X |θn))2 = 𝔼θn( ∂
∂θ

log f (X |θ )
θ=θn

)
2

ℓ′￼(X |θn) = (log f (X |θn))′￼=
f′￼(X |θn)
f (X |θn)
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	 measure of how quickly the distribution density will change when we slightly

	 change the parameter  near . When we square this and take expectation (so 

	 we get the form in the definition) we get an averaged version of this measure.

	 (i)	 When Fisher Information is large, this means that the distribution will 		
	 	 change quickly when we move the parameter, i.e. a small change with 		
	 	 respect to the parameter leads to a huge perturbation.

	 (ii)	 When the Fisher Information is small, on the other hand, the distribution 	
	 	 is very similar for either at  or the points near .		 	 	 ||

    We now state a result without proof for which could relax our computation on  the 
Fisher Information. 
Lemma 4.5:


	 .


    We now state but without proof of the asymptotic normality of the MLE. For those 
readers who are interested in this topic one may consult [11].

Theorem 4.6: Asymptotic Normal


	 We have, for the MLE , that  as .	 


    It should be pointed out that the MLE does not always exists. For the conditions 
the MLE exists, we found the article [12] very useful, we state it here and one could 
consult [13] for detailed treatment.	 

Condition for the Existence of MLE:

	 The MLE exists if the parameter space  is compact and the likelihood 

	 function  is continuous .

Condition for the Uniqueness of MLE:

	 The MLE is unique if the parameter space  is convex and the likelihood 

	 function  is concave.


θ θn

θn θn

𝔼θn
ℓ′￼′￼(X |θn) = 𝔼θn

∂2

∂θ2
log f (X |θn) = − I(θn)

̂θ n( ̂θ − θn) → N(0,
1

I(θn) ) n → ∞

Θ
L(θ |x) ∀θ ∈ Θ

Θ
L(θ |x)
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Review on Interval Estimation

Tianyu Zhang 
2

Abstract:

Serving different approach as the point estimation, the interval estimation 
provides us a way to describe the error size and a confidence level for the 

estimation to coincide with the realized values. In this short survey we introduce 
the methods in finding, and in evaluating the interval estimations. Since we have 

treated the Bayesian Interval Estimation independently, we shall not offer the 
Bayesian Approach to the interval estimation, hence the optimization in the 

decision theory (a way to evaluation). 
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1. Introduction

    While point estimation gives a single value as the best estimate for a parameter, in-
terval estimation provides a range of values to account for the uncertainty associated 
with the estimation process. Interval estimation is valuable for capturing the potential 
variability in the estimate and conveying the level of confidence in the result.

Definition: Interval Estimator/Estimate

	 An interval estimate of a real-valued parameter  is any pair of functions, 

	  and , of a sample that satisfy . If

	  is observed, the inference  is made. The random 

	 variable  is called an interval estimator.

   The purpose of using an interval estimator rather than a point estimator is to have 
some guarantee of capturing the parameter of interest. The centainty of this guarantee 
is quantified by the following definitions.

Definition: Coverage Probability

	 For an interval estimator  of a parameter , the coverage 

	 probability of  is given by  or 

	 .


θ
L(x1, ⋯, xn) U(x1, ⋯, xn) L(x) ≤ U(x)∀x ∈ 𝒳
X = x L(x) ≤ θ ≤ U(x)

[L(X ), U(X )]

[L(X ), U(X )] θ
[L(X ), U(X )] ℙθ(θ ∈ [L(X ), U(X )])

ℙ(θ ∈ [L(X ), U(X )] θ)

 BIMSA, bidenbaka@gmail.com, obamalgb@cantab.net2
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Definition: Confidence Coefficient

	 For an interval estimator  of a parameter , the confidence 

	 coefficient of  is .


  We may also use the value  to denote the  
100% confidence interval , where  is called the degree of confide-
nce while  and  are called the lower and upper confidence limits, respecti-
vely. For instance, if  then the degree of confidence is %.

   In the next section we shall discuss the estimation of means and variances. Then we 
proceed to discuss the method in finding the general interval estimation, where we 
are going to talk about (i) Inverting a test statistic, (ii) Pivotal Quantities, and (iii) 
Bayesian intervals. Lastly we talk about some evaluation methods, which are (1) Size 
and coverage probability, (2) Test-related optimization, (3) Bayesian optimization, 
and (4) Loss function optimization.


2. Pivot Method

   In this section we are going to introduce some special estimation results. In 2.1 we 
will introduce the interval estimation for normal means, with either known or unkn-
own variance; both the univariate and the bivariate (hence multivariate) cases are 
discussed in this section. In 2.2 we shall proceed to the talk about the interval 
estimation for the variance of the normal populations; both the univariate and the 
bivariate (hence multivariate) cases are discussed in this section. In 2.3 we will offer 
the treatment for the interval estimation in binomial case, still, botht the univariate 
and the bivariate (hence multivariate) cases are performed. Serving as specific 
examples for the first three subsections, in 2.4 we introduce the pivot method in 
finding the interval estimation, which generalizes the first three parts.

    Recall the -values we introduced before. For a non-standard normal random varia-

ble , the standardizing involves the change-of-variable , 

where the denominator is  since otherwise it would not scale the deviation correctly, 
and the resulting standardized variable would not have the desired properties.

    The  is often valuable in finding the interval estimators. The reason is that, sup-
pose we are going to find an interval estimator  of a parameter  with 
confidence coefficient 0.95, then what we really do is to calculate 

	 	 	 	 ,

where .

    Recall also the -distribution. The -distribution arises in statistical inference when 
dealing with small sample sizes or when the population standard deviation is unkn-
own. It is commonly used in hypothesis testing and constructing confidence intervals 
for the mean.

Remark:

	 The -distribution is symmetric and bell-shaped, similar to the normal 

	 distribution. 	The shape is determined by the degrees of freedom. As the 

	 degrees of freedom increases, the -distribution approaches the standard normal 


[L(X ), U(X )] θ
[L(X ), U(X )] inf

θ
ℙθ(θ ∈ [L(X ), U(X )])

1 − α = ℙθ(θ ∈ [L(X ), U(X )]) (1 − α)
[L(X ), U(X )] 1 − α

L(X ) U(X )
α = 0.05 95

z

X ∼ N(μ, σ2) Z :=
X − μ

σ
σ

zα/2
[L(X ), U(X )] θ

ℙθ(θ < L(X )) = ℙθ(θ > U(X )) = 0.025
ℙθ(θ ∈ [L(X ), U(X )]) = 0.95

t t

t

t
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	 distribution.		 	 	 	 	 	 	 	 	 	 ||

    Lastly we refer to the -distribution. The -distribution is used in statistical hypot-
hesis testing, specifically in the context of comparing variances. It arises when comp-
aring the variability of two independent samples.

Fact 1: -Distribution

	 If  and  are the variances of independent random samples of sizes  and 

	  from normal populations with the variances  and , then


	 	 	 	 	 


	 is a random variable having an  distribution with  and  degrees

	 of freedom.


2.1 Estimation of Normal Means

   To illustrate how the possible size of errors can be appraised in point estimation, 
suppose that the mean of a random sample is to be used to estimate the mean of a 
normal population with the unknown mean  and known variance . Then the 

sampling distribution of  is . One has


	 	 	 	 	 ,


where  and  is such that the integral of the standard normal density 

from  to  equals to . It follows that

	 	 	 	 .	 	 	 (2.1)


This is summarized in the following theorem:

Theorem 2.1: Coverage Probability

	 If , the mean of a random sample of size  from a normal population with the

	 known variance , is to be used as an esimator of the mean of the population,

	 then the probability is  that the error will be less thatn .	


    To construct a confidence interval for estimating the mean of a normal population 
with the known variance , one can rewrite (2.1) as

 	 	         .	 	 (2.2)


We generalize this into the following result, which offers a way in finding the interval 
estimator with the desired coverage probability.

Theorem 2.2: Estimation for Mean, Known Variance

	 If  is the value of the mean of a random sample of size  from a normal 

	 population with the known variance , then

	 	 	 


	 is a  100% confidence interval for the mean of the population.


F F

F
S2

1 S2
2 n1

n2 σ2
1 σ2

2

F =
S2

1 /σ2
1

S2
2 /σ2

2
=

σ2
2 S2

1

σ2
1 S2

2
F n1 − 1 n2 − 1

μ σ2

X N(μ,
σ2

n
)

ℙ( |Z | < zα/2) = 1 − α

Z =
X − μ

σ / n
zα/2

zα/2 ∞ α /2
ℙ( X − μ < zα/2 ⋅

σ

n ) = 1 − α

X n
σ2

1 − α zα/2 ⋅
σ

n

σ2

ℙ(X − zα/2 ⋅
σ

n
< μ < X + zα/2 ⋅

σ

n ) = 1 − α

x n
σ2

x − zα/2 ⋅
σ

n
< μ < x + zα/2 ⋅

σ

n
(1 − α)
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    When we are dealing with a random sample from a normal population, e.g. , 
and  is unknown. Then Theorem 2.1 and Theorem 2.2 cannot be used. Instead, we 
make use of the fact that


	 	 	 	 	    ,


is a random variable having the -distribution with  degrees of freedom. Substi-

tuting  for  in


	 	 	 	 ,

summarizing, we have the following result.

Theorem 2.3: Estimation for Mean, Unkown Variance

	 If  and  are the values of the mean and the standard deviation of a random 		
	 sample of size  from a normal population, then

	 	 	 


	 is a  100% confidence interval for the mean of the population.

    The method by which we constructed confidence intervals in this subsection consi-
sted essentially of finding a suitable random variable whose values are determined by 
the sample data as well as the population parameters, yet whose distribution does not 
involve the parameter we are trying to estimate. This method of confidence interval 
construction is called the pivotal method and it is widely used in finding interval 
estimators.

    Now we introduce some results in finding the interval estimation for the difference 

between means, i.e. rather than estimating only , we shall proceed to the


	 	  	 	    ,


which has the standard normal distribution. If we substitute this expression for  into 
the pivotal method yields the following result.

Theorem 2.4: Estimation for Difference between Means, Known Variance

	 If  and  are the values of the means of independent random samples of 

	 sizes  and  from normal populations with the known variances  and

	 , then


	 


	 is a  100% confidence interval for the difference between the two 

	 population means.


n < 30
σ

T =
X − μ

S / n
t n − 1

X − μ

S / n
T

ℙ( − tα/2,n−1 < T < tα/2,n−1) = 1 − α

x s
n

x − tα/2,n−1 ⋅
s

n
< μ < x + tα/2,n−1 ⋅

s

n
(1 − α)

Z =
X − μ

σ / n

Z =
(X1 − X2) − (μ1 − μ2)

σ2
1

n1
+

σ2
2

n2

Z

x1 x2
n1 n2 σ2

1
σ2

2

(x1 − x2) − zα/2 ⋅
σ2

1

n1
+

σ2
2

n2
< μ1 − μ2 < (x1 − x2) + zα/2 ⋅

σ2
1

n1
+

σ2
2

n2

(1 − α)
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    By virtue of the Central Limit Theorem, this confidence interval formula can also 
be used for independent random samples from non-normal populations with known 
variances when  and  are large.

    For the unknown variance case, we have the following result:

Theorem 2.5: Estimation for Difference between Means, Unknown Variance

	 If and  are the values of the means and the standard deviations of

	 independent random samples of sizes  and  from normal populations with 

	 equal variances , then


	 


	 	 	 	 	 	 


	 is a  100% confidence interval for the difference between the two 

	 population means.

    Since this confidence interval formula is used mainly when  and/or  are small, 
e.g. less than 30, we refer to it as a small sample confidence interval for .


2.2 Estimation for Normal Variances

  Given a random sample of size  from a normal distribution, we can obtain a 

 100% confidence interval for  by making use of the fact that  is a 

random variable having a chi-square distribution with  degrees of freedom. 
Thus,


	 	 	 ,


by simple calculation we have


	 	 	     .


Summarizing, we have the following result.

Theorem 2.6: Estimation for Variance

	 If  is the value of the variance of a random sample of size  from a normal 

	 population. Then


	 	 	 	 	 


	 is a  100% confidence interval for .

   Corresponding  100% confidence limits for  can be obtained by taking the 
square roots of the confidence limits for .

   If  and  are the variances of independent random samples of sizes  and  
from normal populations, then, according to Fact 1 and 


n1 n2

x1, x2, s1, s2
n1 n2

sp

(x1 − x2) − tα/2,n1+n2−2 ⋅ sp
1
n1

+
1
n2

< μ1 − μ2

< (x1 − x2) + tα/2,n1+n2−2 ⋅ sp
1
n1

+
1
n2

(1 − α)

n1 n2
μ1 − μ2

n

(1 − α) σ2 (n − 1)S2

σ2

n − 1

ℙ(χ2
1−α/2,n−1 <

(n − 1)S2

σ2
< χ2

α/2,n−1) = 1 − α

ℙ( (n − 1)S2

χ2
α/2,n−1

< σ2 <
(n − 1)S2

χ2
1−α/2,n−1

) = 1 − α

s2 n

(n − 1)s2

χ2
α/2,n−1

< σ2 <
(n − 1)s2

χ2
1−α/2,n−1

(1 − α) σ2

(1 − α) σ
σ2

S2
1 S2

2 n1 n2
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	 	 	 	 ,


we have the following result.

Theorem 2.7: Estimation for Ratio of Variances

	 If  and  are the values of the variances of independent random samples of

	 sizes  and  from normal populations, then


	 	 	 	 


	 is a  100% confidence interval for .


   Corresponding  100% confidence limits for   can be obtained by taking 

the square roots of the confidence limits for .


2.3 The Estimation of Proportions (Binomials)

   In many problems we must estimate proportions, probabilities, percentages, or  the 
rates. In many of these it is reasonable to assume that we are sampling a binomial 
population and, hence, that our problem is to estimate the binomial parameter . 
Thus, we can make use of the fact that for large  the binomial distribution can be 
approximated with a normal distribution, i.e.


	 	 	 	 	 


can be treated as a random sample having approximately the standard normal 
distribution. Substituting the expression for  into

	 	 	 	 ,

one has


	 	 	 .


Summarizing, we have the following result.

Theorem 2.8: Interval Estimation.

	 If . If  is large and , then


	 	 


	 is an approximate  100% confidence interval for . Moreover, the


	 error, with  100%, is less than .


f1−α/2,n1−1,n2−1 =
1

fα/2,n2−1,n1−1

s2
1 s2

2
n1 n2

s2
1

s2
2

⋅
1

fα/2,n1−1,n2−1
<

σ2
1

σ2
2

<
s2
1

s2
2

⋅ fα/2,n2−1,n1−1

(1 − α)
σ2

1

σ2
2

(1 − α)
σ1

σ2
σ2

1

σ2
2

θ
n

Z =
X − nθ
nθ(1 − θ )

Z
ℙ(−zα/2 < Z < zα/2) = 1 − α

ℙ( − zα/2 <
X − nθ
nθ(1 − θ )

< zα/2) = 1 − α

X ∼ Binomial(n, θ ) n ̂θ =
x
n

̂θ − zα/2 ⋅
̂θ(1 − ̂θ )

n
< θ < ̂θ + zα/2 ⋅

̂θ(1 − ̂θ )
n

(1 − α) θ

(1 − α) zα/2 ⋅
̂θ(1 − ̂θ )

n
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    In many problems we must estimate the difference between the binomial paramete-
rs  and  on the basis of independent random samples of sizes  and  from two 
binomial populations.

Theorem 2.9: Estimation for Differences between Proportions

	 If  is a binomial random variable with the parameters  and ,  is a 	 

	 binomial random variable with the parameters  and . If  and  are large


	 and  and , then


	 	 


	 	 	 


	 is an approximate  100% confidence interval for .


2.4 The Pivotal Method

    The use of pivotal quantities for confidence set construction, resulting in what has 
been called pivotal inference, is mainly due to Barnard (1949, 1980) but can be traced 
as far back as Fisher (1930), whose used the term inverse probability. Closely related 
is D.A.S. Fraser’s theory of structural inference (Fraser 1968, 1979). An interesting 
discussion of the strengths and weakness of these methods is given in Berger and 
Wolpert (1984).

Definition: Pivotal Quantity (Pivot)

	 A random variable  is a pivotal quantity (or pivot) if

	 the distribution of  is independent of all parameters. That is, if 

	 , then  has the same distribution for all values of .

   The function  will usually explicitly contain both parameters and statistics, 
but for any set ,  cannot depend on . The technique of constru-
cting confidence set from pivots relies on being able to find a pivot and a set  so that 
the set  is a set estimate of .

    We have seen in the previous subsections methods in finding pivots, for estimating 
means (resp. difference between means) for known/unknown variances, for estima-
ting variances (resp. ratio between variances), and estimation for binomials (resp. 
difference between binomials). The techniques we used is mainly by the 
rewriting the pdf, or, rooting by the location-scale property. We summarize this 
method in the following table.


θ1 θ2 n1 n2

X1 n1 θ1 X2
n2 θ2 n1 n2

̂θ1 :=
X1

n1

̂θ2 :=
X2

n2

( ̂θ1 − ̂θ2) − zα/2 ⋅
̂θ1(1 − ̂θ1)

n1
+

̂θ2(1 − ̂θ2)
n2

< θ1 − θ2

< ( ̂θ1 − ̂θ2) + zα/2 ⋅
̂θ1(1 − ̂θ1)

n1
+

̂θ2(1 − ̂θ2)
n2

(1 − α) θ1 − θ2

Q(X, θ ) = Q(X1, ⋯, Xn, θ )
Q(X, θ )

X ∼ F(x |θ ) Q(X, θ ) θ
Q(x, θ )
A ℙθ(Q(X, θ ) ∈ A) θ

A
{θ |Q(x, θ ) ∈ A} θ

Form of PDF Type of PDF Pivotal Quantity

Location

Scale

Location-Scale1
σ

f (
x − μ

σ
)

X
σ

1
σ

f (
x
σ

)

X − μ
S

f (x − μ) X − μ

30

f (x − μ)
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(Table 2.1)

    Alternatively, if we base our confidence interval construction for a parameter  on 
a real-valued statistic  with cdf . We will first assume that  is a continuous 
random variable. The situation where  is discrete is similar but has a few additional 
technical details to consider. We therefore state the discrete case in a separate 
theorem. To do so we need a new definition.

Definition: Stocahstically Increasing (Decreasing)

	 A family of cdfs  is stochastically increasing (resp. decreasing) in  if 

	 for each , the sample space of ,  is a decreasing (resp. 

	 decreasing) function of .

    In what follows, we need only the fact that  is monotone, either increasing or dec-
reasing. The more statistical concepts of stochastic increasing or decreasing merely 
serve as interpretations.

Theorem 2.10: Pivoting a Continuous CDF

	 Let  be a statistic with continuous cdf . Let  with 

	  be fixed values. Suppose that for each , the functions  

	 and  can be defined as follows:

	 (i)	 If  is a decreasing function of  for each , define  and 

	 	 by  and .

	 (ii)	 If  is an increasing function of  for each , define  and 

	 	  by  and .

	 Then the random inverval  is a  confidence interval for .

    As for the discrete case.

Theorem 2.11: Pivoting a Discrete CDF

	 Let  be a discrete statistic with cdf . Let  

	 with  be fixed values. Suppose that for each , the functions 

	  and  can be defined as follows:

	 (i)	 If  is a decreasing function of  for each , define  and 

	 	 by  and .

	 (ii)	 If  is an increasing function of  for each , define  and 

	 	  by  and .

	 Then the random inverval  is a  confidence interval for .


3. Inverting a Test Statistic

    There is a very strong correspondence between hypothesis testing and interval esti-
mation. In fact, we can say in general that every confidence set corresponds to a test 
statistic and vice versa.

    The acceptance region of the hypothesis test, the set in the sample space for which 

 is accepted, is given by

	 	 ,


θ
T FT(t |θ ) T

T

F(t |θ ) θ
t ∈ 𝒯 T F(t |θ )

θ
F

T FT(t |θ ) α1 + α2 =: α
0 < α < 1 t ∈ 𝒯 θL(t)

θU(t)
FT(t |θ ) θ t θL(t) θU(t)
FT(t |θU(t)) = α1 FT(t |θL(t)) = 1 − α2

FT(t |θ ) θ t θL(t)
θU(t) FT(t |θU(t)) = 1 − α2 FT(t |θL(t)) = α1

(θL(T ), θU(T )) 1 − α θ

T FT(t |θ ) = ℙ(T ≤ t |θ ) α1 + α2 =: α
0 < α < 1 t ∈ 𝒯

θL(t) θU(t)
FT(t |θ ) θ t θL(t) θU(t)
ℙ(T ≤ t |θU(t)) = α1 ℙ(T ≥ t |θL(t)) = α2

FT(t |θ ) θ t θL(t)
θU(t) ℙ(T ≥ t |θU(t)) = α1 ℙ(T ≤ t |θL(t)) = α2

(θL(T ), θU(T )) 1 − α θ

H0 : μ = μ0

A(μ0) := {(x1, ⋯, xn) μ0 − zα/2
σ

n
≤ x ≤ μ0 + zα/2

σ

n
}
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and the confidence interval, the set in the parameter space with plausible values of , 
is given by

	 	      .


These sets are connected to each other by the relation

	 	 	      .	 	 (3.1)

We now summarize this correspondence in the following theorem.

Theorem 2.12:

	 , let  be the acceptance region of a level  test of .

	 , define . Then the random set  is a  

	 confidence set. Conversely, let  be a  confidence set. , 

	 define . Then  is the acceptance region of a level 

	  test of .	 

Proof:

	 Since  is assumed to be the acceptance region of a level  test, therefore,

	 one has . Since  is 	

	 arbitrary, w.l.o.g., we may use  to replace , then one has, by the definition of 

	 ,    is a  confidence 

	 set.

	 Conversely, the Type I Error probability for the test of  with 

	 acceptance region  is:

	 	 	 	 , 

	 result follows.

	 	 	 	 	 	 	 	 	 	 	 	 	 

  This makes it clear why we really have a family of tests, one for each value of 

, that we invert to obtain one confidence set. 

    The fact that tests can be inverted to obtain a confidence set and vice verse is an in-
teresting theoretical task, but in fact only the first part of the theorem is at the most 
usefulness. Constructing a level  acceptance region could be an easy task, but cons-
tructing a confidence set is sometimes, in fact, most of the times, a more difficult 
task. Therefore, the method of finding(obtaining) such a set by inverting an accept-
ance region is useful; all the techniques we used to find tests could offer help in 
finding(constructing) confidence sets.

    One practice, when constructing a confidence set by test inversion, we will have in 
mind an alternative hypothesis such as  or . The alternative 
will dictate the form of  that is reasonable, and the form of  will determine 
the shape of .

    In fact, this inverting process could be affected by the property. For example, unb-
iased tests, when inverted, will produce unbiased confidence sets. As it menti-oned, 
we can use sufficient statistics to find good confidence sets.

Example 3.1: Inverting a Normal Set

	 Let  be iid  and considering testing  versus

	 . For a fixed  level, a reasonable test(in fact the most powerful 


μ

C(x1, ⋯, xn) = {μ : x − zα2

σ

n
≤ μ ≤ x + zα/2

σ

n
}

(x1, ⋯, xn) ∈ A(μ0) ⇔ μ0 ∈ C(x1, ⋯, xn)

∀θ0 ∈ Θ A(θ0) α H0 : θ = θ0
∀x ∈ 𝒳 C(x) := {θ0 |θ0 ∈ A(x)} C(x) 1 − α

C(X ) 1 − α ∀θ0 ∈ Θ
A(θ0) := {x |θ0 ∈ C(x)} A(θ0)

α H0 : θ = θ0

A(θ0) α
ℙθ(X ∈ [A(θ0)]c) ≤ α ⇔ ℙθ(X ∈ A(θ0)) ≥ 1 − α θ0

θ θ0
C(x) ℙθ(θ ∈ C(X )) = ℙθ(X ∈ A(θ )) ≥ 1 − α ⇒ C(X ) 1 − α

H0 : θ = θ0
A(θ0)
ℙθ(X ∈ [A(θ0)]c) = ℙθ(θ ∈ [C(X )]c) ≤ α

□

θ0 ∈ Θ

α

H1 : θ ≠ θ0 H1 : θ > θ0
A(θ0) A(θ0)

C(x)

X1, . . . , Xn N(μ, σ2) H0 : μ = μ0
H1 : μ ≠ μ0 α
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	 unbiased test) has rejection region .


	 Note that  is accepted for sample points with , or, 


	 equivalently, 

	 	 	 	 	 .


	 Since the test has size , this means that , or, 

	 stated in another way, 

	 	 	 	 	 . 

	 Combining this with the above characterization of the acceptance region, one 

	 has that:


	 	 	 .


	 But this probability statement is valid , hence one has

	 	 	 	 


	 is true. The interval 

	 	 	 	 	  


	 is obtained by inverting the acceptance region of the level  test, is a  

	 confidence interval.	 	 	 	 	 	 	 	 	 ||

    We close this section by introducing finding the interval estimator by inverting an 
LRT (likelihood Ratio Test).

Example 3.2:

	 Suppose that we want a confidence interval for the mean  of an 

	 Exponential( ) population. We can obtain such an interval by inverting a level

	  test of 

	 	 	 	 	  versus .

	 If we take a random sample , the LRT statistic is 


	           .


	 For feed , the acceptance region is given by 


	 	 	 	 	 , 


	 where  is a constant chosen such that . Inverting this 

	 acceptance region gives the  confidence set:


	 	 	 	     	 	 	 (3.2)


{x |x − μ0 | > zα/2σ / n}
H0 |x − μ | ≤ zα/2

σ

n

x − zα/2
σ

n
≤ μ0 ≤ x + zα/2

σ

n
α ℙ(H0 rejected |μ = μ0) = α

ℙ(H0 accepted |μ = μ0) = 1 − α

ℙ(X − Zα/2
σ

n
≤ μ0 ≤ X − Zα/2

σ

n
μ = μ0) = 1 − α

∀μ0

ℙ(X − Zα/2
σ

n
≤ μ ≤ X − Zα/2

σ

n ) = 1 − α

[x − zα/2
σ

n
, x + zα/2

σ

n ]
α 1 − α

λ1
λ

α
H0 : λ = λ0 H1 : λ ≠ λ0

X1, . . . , Xn
1
λn

0
exp{ − ∑ xi /λ0}

supλ
1
λn exp{ − ∑ xi /λ}

=
λ−n

0 exp{ − ∑ xi /λ0}
1

(∑ xi /n)n e−n
= (

∑ xi

nλ0
)nene−∑ xi /λ0

λ0

A(λ0) = {x (
∑ xi

nλ0
)ne−∑ xi /λ0 ≥ k*}

k* ℙλ0
(X ∈ A(λ0)) = 1 − α

1 − α

C(x) = {λ (
∑ xi

λ
)ne−∑ xi /n ≥ k*}
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	 The expression defines  depends on  only through , so the confidence 

	 interval can be expressed in the form:


	 	 	 	 ,


	 where  and  are functions determined by the constraints in (3.2) with 

	 probability  and


	 	 	 .


	 Without loss of generality, we may set	


	 	 	 	  and  


	 such that  are constants. Then one has  which yields easily 

	 to numerical solution.

	 To work with details, let  and note that Gamma  and

	 Gamma . Hence the confidence interval becomes


	 	 	 	 	 , 


	 where  and  satisfy


	 	 	  


	 and , thus, 


	 	 	 .


	 To get, e.g., a  confidence interval, we must simultaneously satisfy the

	 probability condition and constraints, to the third decimal, say  and 

	 , with confidence coefficient . Thus


	 	 	 .	 	 	 ||


4. Methods in Evaluating Interval Estimators

    We now have seen many methods for deriving confidence sets and, in fact, we can 
derive different confidence sets for the same problem. In such situations we would, of 
course, want to choose a best one. Therefore, we now examine some methods and 
criteria for evaluating set estimators.

   One of the most straightforward one may be to increase the coverage probability 
and reduce the size of interval estimator. We will also talk about some optimization 
results, either optimization with respect to the loss or with respect to the correspo-
nding test statistics. We start with the coverage probability and size and then we 
discuss the optimization with respect to the corresponding test statistics. The 
optimization with respect to the loss function, together with the Bayesian interval 
estimation, is discussed in our second lecture notes, hence omitted here.


C x ∑ xi

C(∑ xi) = {λ L(∑ xi) ≤ λ ≤ U(∑ xi)}

L U
1 − α

( ∑ xi

L(∑ xi) )
n

e−∑ xi /L(∑ xi) = ( ∑ xi

U(∑ xi) )
n

e−∑ xi /U(∑ xi)

∑ xi

L(∑ xi)
=: a

∑ xi

U(∑ xi)
=: b

a > b ane−a = bne−b

n = 2 ∑ Xi ∼ (2,λ)

∑ Xi /λ ∼ (2,1)

{λ |
1
a ∑ xi < λ <

1
b ∑ xi}

a b

ℙλ(
1
a ∑ Xi ≤ λ ≤

1
b ∑ Xi) = ℙ(b ≤

∑ Xi

λ
≤ a) = 1 − α

a2e−a = b2e−b

ℙ(b ≤
∑ Xi

λ
≤ a) = ∫

b

a
te−tdt = e−b(b + 1) − e−a(a + 1)

90 %
a = 5.480

b = 0.441 0.90006

ℙλ(
1

5.480 ∑ Xi ≤ λ ≤
1

0.441 ∑ Xi) = 0,90006

34



Lecture Notes on Statistical Inference Tsinghua University

4.1 Size and Coverage Probability

    We consider what appears to be a simple, constrained minimization problem. For a 
given, specified coverage probability find the confidence interval with the shortest 
length. We first consider an example.

Example 4.1: Optimizing Length

	 Let  be iid , where  is known. From the fact that 


	  is a pivot with a standard normal distribution, any  and  such 


	 that  will give a  confidence interval 	 	 	 

	 	 	 	     .


	 It is natural to ask which choice of  and  is the best? More formally, which 

	 choice of  and  will minimize the length of the confidence interval while

	 preserving the  coverage? Notice that the length of the confidence 

	 interval is equal to , since the factor  is part of each interval

	 length, it can be ignored and therefore the length turns out to be . Thus, 

	 we want to find a pair of numbers of  and  such that  

	 and minimizes .

	 Take  and , but no mention of optimality. If we take 

	 . Then

	 	 	 	 Probability	 	 	 	 	 	 

	 -1.34	 	 2.33	 	 	 3.67

	 -1.44	 	 1.96	 		 3.40

	 -1.65	 	 1.65	 	 	 3.30

	 This numerical study suggest that the choice of  gives 

	 the best interval, and, in fact, it does. In this case splitting  equally is the best 

	 strategy.	 	 	 	 	 	 	 	 	 	 	 ||

    The strategy of splitting  equally, which is optimal in the above case, is not alwa-
ys optimal. What makes the equal  split optimal in the above case is the fact that the 
height of the pdf is the same at  and . We now prove a theorem that will 
demonstrate this fact, a theorem that is applicable in some generality, needing only 
the assumption that the pdf is unimodal.

Definition: unimodal

	 A pdf  is said to be unimodal if there exists  such that


	 	 	 .


Theorem 4.1:

	 Let  be a unimodal PDF. If the interval  satisfies that


	 (i)	 


	 (ii)	 


X1, . . . , Xn N(μ, σ2) σ

Z =
X − μ

σ / n
a b

ℙ(a ≤ Z ≤ b) = 1 − α 1 − α

{μ |x − b
σ

n
≤ μ ≤ x − a

σ

n }
a b

a b
1 − α

(b − a)σ / n σ / n
(b − a)

a b ℙ(a ≤ Z ≤ b) = 1 − α
b − a

a = − zα/2 b = zα/2
1 − α = 0.9
a b b − a

ℙ(Z < a) = 0.09,ℙ(Z > b) = 0.01
ℙ(Z < a) = 0.075,ℙ(Z > b) = 0.025
ℙ(Z < a) = 0.05,ℙ(Z > b) = 0.05

(a, b) = (−1.65,1.65)
α

α
α

−zα/2 zα/2

f (x) x*

f (x) is { non-decreasing,  if x ≤ x*
 non-increasing,  if x ≥ x*

f (x) [a, b]

∫
b

a
f (x)d x = 1 − α

f (a) = f (b) > 0
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	 (iii)	 , where  is a mode of .

	 Then  is the shortest among all intervals satisfying (i).

Proof:

	 Without loss of generality, we may assume that  is any other interval

	 such that .


	 WTS:	 .


	 	 The result will be proved only for , the proof being similar if 

	 	 . Also, two cases need to be considered,  and .

	 	 (i)	 If   and


	 	 	 	 ( )


	 	 	 	 	 	 ( )

	 	 	 	 	 	 (  and )


	 	 	 	 	 ((ii), (iii), unimodality  )


	 	 	 .

	 	 (ii)	 If  for, if  then .

	 	 	 In this case, one writes


	 	 	 


	 	 	 	         .


	 	 	 [Claim]: .


	 	 	 	 Using the unimodality of , the ordering  		
	 	 	 	 and by assumption (ii), one has


	 	 	 	  and .


	 	 	 	 Thus, one has,	 


	 	 	 	 


	 	 	 	 	 	 	         

	 	 	 	 	 	 	         

	 	 	 	 where the first equality holds since  by 

	 	 	 	 assumption, and the last expression is negative if

	 	 	 	  and .

	 	 	 	 	 	 	 	 	 	 	 	 	 

   If more assumptions are applied to the theorem, e.g., continuity of , will simplify 
the proof. Moreover, the equal  split will be optimal for any symmetric unimodal 

a ≤ x* ≤ b x* f (x)
[a, b]

[a′￼, b′￼]
b′￼− a′￼< b − a

∫
b′￼

a′￼
f (x)d x < 1 − α

a′￼≤ a
a < a′￼ b′￼≤ a b′￼> a

b′￼≤ a ⇒ a′￼≤ b′￼≤ a ≤ x*

∫
b′￼

a′￼
f (x)d x ≤ f (b′￼)(b′￼− a′￼) x ≤ b′￼≤ x* ⇒ f (x) ≤ f (b′￼)

≤ f (a)(b′￼− a′￼) b′￼≤ a ≤ x* ⇒ f (b′￼) ≤ f (a)
≤ f (a)(b − a) b′￼− a′￼< b − a f (a) > 0

≤ ∫
b

a
f (x)d x ⇒ f (x) ≥ f (b)

= 1 − α
b′￼> a ⇒ a′￼≤ a < b′￼< b b′￼≥ b b′￼− a′￼≥ b − a

∫
b′￼

a′￼
f (x)d x = ∫

b

a
f (x)d x + [∫

a

a′￼
f (x)d x − ∫

b

b′￼
f (x)d x]

= (1 − α) + [∫
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a′￼
f (x)d x − ∫

b

b′￼
f (x)d x]

∫
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a′￼
f (x) < ∫

b

b′￼
f (x)d x

f a′￼≤ a < b′￼< b

∫
a

a′￼
f (x)d x ≤ f (a)(a′￼− a) ∫

b

b′￼
f (x)d x ≥ f (b)(b′￼− b)

∫
a

a′￼
f (x)d x − ∫

b

b′￼
f (x)d x ≤ f (a)(a′￼− a) − f (b)(b′￼− b)

= f (a)[(a − a′￼) − (b − b′￼)]
= f (a)[(b − a′￼) − (b − a)]

f (a) = f (b)

(b′￼− a′￼) < (b − a) f (a) > 0
□

f
α
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pdf. Furthermore, this theorem may even apply when the optimality criterion is 
somewhat different from the minimum length.


4.2 Test-Related Optimization

   Since there is a one-to-one correspondence between confidence sets and the tests of 
hypotheses, there is some correspondence between optimality on them. The proba-
bility of covering the false values, of the probability of false coverage, indirectly me-
asures the size of a confidence set.

Definition: Uniformly Most Accurate(UMA) confidence set

	 A  confidence set that minimizes the value of false coverage over a class

	 of  confidence sets is called a uniformly most accurate (UMA) 

	 confidence set.

Remark:

	 UMA confident sets are constructed by inverting the acceptance regions of 

	 UMP tests. UMA confidence sets, unfortunately, exists only in a small range of 

	 circumstances. UMP is usually one-sided  so are UMA intervals.	 	 ||

Theorem 4.2: UMA Lower Confidence Bound

	 Let , where  is a real-valued parameter. For each , let 	 	 

	  be the UMP level  acceptance region of a test of  versus

	 . Let  be the  confidence set formed by inverting the 

	 UMP acceptance regions. Then, for any other  confidence set ,

	 .

Proof:

	 Let  be any value smaller than . Let  be the acceptance region of the

	 level  test of  obtained by inverting . Since  is the UMP

	 acceptance region for testing  versus  by assumption 

	 and  since , one has:

	 	 (Invert the confidence set)

	 	                 	 (Since  is UMP and true for any )

	 	 	       	 (Invert  to obtain )

	 Notice that the above inequality is “ ” because we are working with 

	 probabilities of acceptance regions. This is power, so UMP tests will 

	 minimize these acceptance region probabilities. Therefore, we have established 

	 that for , the probability of false coverage is minimized by the interval 

	 obtained from inverting the UMP test.

	 	 	 	 	 	 	 	 	 	 	 	 	 

    The UMA confidence set in the above theorem is constructed by inverting the fam-
ily of tests for the hypotheses

	 	 	 	 	  versus ,

where the form of confidence set is governed by the alternative hypothesis. The 
above alternative hypothesis, which specify that  is less than a particular value, they 
are of the form .

Example 4.2: UMA Confidence Bound


1 − α
1 − α

⇒

X ∼ f (x |θ ) θ θ0 ∈ Θ
A*(θ0) α H0 : θ = θ0
H1 : θ > θ0 C*(x) 1 − α

1 − α C
ℙθ(θ′￼∈ C*(X )) ≤ ℙθ(θ′￼∈ C(X ))∀θ′￼< θ

θ′￼ θ A(θ′￼)
α H0 : θ = θ′￼ C A*(θ′￼)

H0 : θ = θ0 H1 : θ > θ0
θ > θ′￼

ℙθ(θ′￼∈ C*(X )) = ℙθ(X ∈ A*(θ′￼))
≤ ℙθ(X ∈ A(θ′￼)) A* A
= ℙθ(θ′￼∈ C(X )) A C

≤
1−

θ′￼< θ

□

H0 : θ = θ0 H1 : θ > θ0

θ0
[L(X ), ∞)
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	 Let  be iid , where  is known. The interval

	  is a  UMA lower confidence bound 

	 since it can be obtained by inverting the UMP test of  versus 

	 . The more common two-sided interval, 

	  is not UMA, since it is 

	 obtained by inverting the two-sided acceptance region from the test 

	  versus , hypothesis for which no UMP test exists.	 ||

    In the testing problem, when considering two-sided tests, we found the property of 
unbiasedness to be both compelling and useful. In the confidence interval problem, 
similar ideas apply. When we deal with two-sided confidence intervals, it is 
reasonable to restrict considerations to unbiased confidence sets. Remember that an 
unbiased test is one in which the power in the alternative is always greater than the 
power of the null.

Definition: Unbiased  Confidence Set

	 We say a  confidence set  is unbiased if  

	 .

    Thus, for an unbiased confidence set, the probability of the false coverage is never 
more than the minimum probability of true coverage. Unbiased confidence sets can 
be obtained by inverting the unbiased sets. That is, if  is an unbiased level  
acceptance region of a test of  versus  and  is the  
confidence set formed by inverting the acceptance regions, then  is an unbiased 

 confidence set.

    Sets that minimize the probability of false coverage are also called Neymann short-
est. The fact that there is a length connotation to this name is somewhat satisfied by 
the following theorem:

Theorem 4.3: Pratt

	 Let  be a real-valued random variable with , where  is a real-

	 valued parameter. Let  be a confidence interval for . If 

	  and  are both increasing functions of . Then, for any values of , 

	 one has


	 	 	 .


Pf:

	 From the definition of the expected values, one has


	 


	 	 	 	  	 (def of Length)


	 	 	 	   	 (test  as dummy variable)


X1, . . . , Xn N(μ, σ2) σ2

C(x ) := {μ |μ ≥ x − zα/2σ / n} 1 − α
H0 : μ = μ0

H1 : μ > μ0
C(x ) := {μ |x − zα/2σ / n ≤ μ ≤ x + zα/2σ / n}

H0 : μ = μ0 H1 : μ ≠ μ0

1 − α
1 − α C(x) ℙθ(θ′￼∈ C(X )) ≤ 1 − α

∀θ ≠ θ′￼

A(θ0) α
H0 : θ = θ0 H1 : θ ≠ θ0 C(x) 1 − α

C(x)
1 − α

X X ∼ f (x |θ ) θ
C(x) := [L(x), U(x)] θ

L(x) U(x) x θ*

𝔼θ*[Length(C(X ))] = ∫θ≠θ*
ℙθ*(θ ∈ C(X ))dθ

𝔼θ*[Length(C(X ))] = ∫𝒳
Length(C(X)) ⋅ f (x |θ*)d x

= ∫𝒳
[U(X ) − L(X )] ⋅ f (x |θ*)d x

= ∫𝒳 (∫
U(x)

L(x) )f (x |θ*)d x θ
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	 	 	 	  		 	 (4.1)


	 	 	 	 	 	 	 	 (invert the order of integration)


	 	 	 	  


	 	 	 	 	 	 	 	 (by definition)


	 	 	 	  


	 The last equality holds by the fact that removing the point  does not 

	 change the value of the integration(a measure 0 set removed). In step (4.1), the 

	 interchange of integrals is formally justified by Fubini’s Theorem but is easily 

	 seen to be justified as long as all of the integrands are finite.

	 Moreover, the inversion of the confidence interval is standard, where we use 	

	 the relationship 

	 	 ,

	 which is valid because of the assumption that  and  are both increasing 

	 functions . Furthermore, the theorem could be modified to apply to an 

	 integral with decreasing endpoints.

	 	 	 	 	 	 	 	 	 	 	 	 	 

    This theorem says that the expected length of  is equal to the sum(integral) of 
the probability of false coverage, where the sum(integral) is taking over all false 
values of the parameter.
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= ∫Θ (∫
L−1(x)

U−1(x)
f (x |θ*)d x)dθ

= ∫Θ [ℙθ*(U−1(θ ) ≤ X ≤ L−1(θ ))]dθ

= ∫θ≠θ*
ℙθ*(θ ∈ C(X ))dθ

θ = θ*

θ ∈ {θ |L(x) ≤ θ ≤ U(x)} ⇔ x ∈ {x |U−1(θ ) ≤ x ≤ L−1(θ )}
L U

∀x ∈ 𝒳

□
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Review on Hypothesis Testing

Tianyu Zhang 
3

Abstract:

In this short monograph we offer a review on hypothesis testing. Serving as a 

complementary estimation other than point estimators, the interval estimations 
could offer us a way in describing the error and the chance of success. We 

introduce the methods of evaluating the tests and then proceed to talk about the 
methods in finding them. 
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1. Introduction

    Once we have an estimator for a parameter , it is vital to know how good (or bad) 
this estimator perform. The performance is evaluated by either the biasedness and 
variance, the consistency, the translation invariance property, or sometimes the 
asymptotic normality. Since the existence of the UMVE does not always exist, nor 
even the unbiased estimators, then given a collection of estimators we should be able 
to have them comparable one with another, this is done by the loss function with the 
corresponding risk. Comparing the loss function leads to a “wise” choice, or at least 
offers us a way to optimize the estimators. 

   This methodology does not only suit for the point estimators, serving as a special 
type of point estimation, the interval estimators find themselves fitted too. We also 
know that one of a way to find the interval estimation is by inverting the test statistic. 
This natural correspondence leads to the investigation of hypothesis testing. In fact, 
after making a prediction, we need to know if our prediction is reasonable, hence we 
use a test statistic to describe its behavior, serving this purpose, a good test statistic 
also has the important information about the parameter. 

    Our investigation of the test statistic follows the same structure as we introduced 
the others. We start with the method of evaluating test statistics, then we introduce the 
methods in finding them. We do not discuss the Bayesin hypothesis testing and for 
interested readers may consult [1].


θ
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2. Methods in Evaluating Tests

Definition: Hypothesis

	 A hypothesis is a statement about a population parameter.

    The definition of a hypothesis is rather general, but the improvement point is that a 
hypothesis makes a statement about the population. The goal of a hypothesis test is to 
decide, based on a sample from the population, which of two complementary hypot-
heses is true.

Definition: Null and Alternative Hypothesis

	 The two complementary hypotheses in a hypothesis testing problem are called 

	 the null hypothesis and the alternative hypothesis. They are denoted by  and 

	 , respectively.

    In a hypothesis testing problem, after observing the sample the experimenter must 
decide either to accept  as true or to reject  as false and decide  is true.

Definition: Hypothesis Testing Procedure/ Hypothesis Test

	 A hypothesis testing procedure or hypothesis test is a rule that specifies 

	 (i)	 For which sample values the decision is made to accept  as true.

	 (ii)	 For which sample values  is rejected and  is accepted as true.

   The subset of the sample space for which  will be rejected is called the rejection 
region or critical region. The complement of the rejection region is called the accepta-
nce region.

    In deciding to accept or reject the null hypothesis , an experimenter might be m-
aking a mistake. Usually, hypothesis tests are evaluated and compared through their 
probabilities of making mistakes. In this subsection we discuss how these error 
probabilities can be controlled. In some cases, it can even be determined which tests 
have the smallest possible error probabilities.

   We will go through five methods in this subsection, in 2.1 we introduce the (1) 
Error Probabilities and Power Function, then in 2.2 we treat the (2) Most Powerful 
Tests, next in 2.3 we discuss the (3) -Values to close this section.


2.1 Error Probabilities and Power Function

    Suppose that  denotes the rejection region for a test. Then for , the test wi-
ll make a mistake if , so the probability of a Type I Error is . For 

, the probability of a Type II Error is . This switching from  to  
is a bit confusing but if we realize that . This consider-
ation leads to the following definition of the power function.

Definition: Power Function	 

	 The power function of a hypothesis test with rejection region  is the function 

	 of  defined by 


	 .


Remark:

	 The ideal power function is 0  and 1 . Except in trivial 


H0
H1

H0 H0 H1

H0
H0 H1

H0

H0

p

R θ ∈ Θ0
x ∈ R ℙθ(X ∈ R)

θ ∈ Θc
0 ℙθ(X ∈ Rc) R Rc

ℙθ(X ∈ Rc) = 1 − ℙθ(X ∈ R)

R
θ

β(θ ) := ℙθ(X ∈ R) = {probability of a Type I Error, θ ∈ Θ0

one minus the probability of a Type II Error, θ ∈ Θc
0

∀θ ∈ Θ0 ∀θ ∈ Θc
0

41



Lecture Notes on Statistical Inference Tsinghua University

	 situations, this ideal cannot be attained. Qualitively, a good test has power 

	 function near 1 for most  and near 0 for most .	 	 	 ||

Example 2.1: Binomial Power Function


	 Let Binomial . Consider testing  versus . 


	 Consider first the test that rejects  all “success” are observed. The power 

	 function for this test is: 

	 	 	 	  .

	 Although the probability of a Type I Error is reasonable low, i.e., 


	 	 	 	        , 


	 the probability of a Type II Error is too high, i.e.,  is too small for most 


	 . The probability of Type II Error is less than  only if 


	 	 	 	 	 	 .


	 To achieve smaller Type II Error probabilities, we might consider using the test

	 that rejects  if  or . The power function then will be:


	     .


	 The second test achieves a smaller Type II Error than the first test, but as a 

	 consequence, it has bigger Type I Error than the first test. 	 	 	 ||

  Therefore, when choosing the test, sometimes we are facing a trade-off problem, 
whether deciding which side the optimization occurs, the de-optimization inevitably 
occurs on the other side, so the researchers should be careful in 	choosing the test in 
achieving their goals.

    Typically, the power function of a test will depend on the sample size . If  can be 
chosen by the experimenter, consideration of the power function might be helpful in 
determining what sample size is appropriate for an experiment.

    For a fixed sample size, it is usually impossible to make both types of error proba-
bilities arbitrarily small. In searching for a good test, it is common to restrict conside-
ration to tests that control the Type I Error probability at a specified level. Within this 
class of tests we then search for tests that have Type II Error probability that is as 
small as possible. The following two terms are useful when discussing tests that 
control Type I Error probabilities.

Definition: Size  Test

	 For , a test with power function  is a size  test if 

	 .


Definition: Level  Test

	 For , a test with power function  is a size  test if 

	 .


θ ∈ Θc
0 θ ∈ Θ0

X ∼ (5,θ ) H0 : θ ≤
1
2

H1 : θ >
1
2

H0 ⇔

β1(θ ) = ℙθ(X ∈ R) = ℙθ(X = 5) = θ5

β1(θ ) ≤ (
1
2

)5 = 0.312 ∀θ ≤
1
2

β1(θ )

θ >
1
2

1
2

θ > (
1
2

)
1
5 = 0.87

H0 X = 3,4, 5

β2(θ ) = ℙθ(X ∈ {3,4,5}) = (5
3)θ3(1 − θ )2 + (5

4)θ4(1 − θ ) + (5
5)θ5

n n

α
0 ≤ α ≤ 1 β(θ ) α

sup
θ∈Θ0

β(θ ) = α

α
0 ≤ α ≤ 1 β(θ ) α

sup
θ∈Θ0

β(θ ) ≤ α
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    Some authors do not make distinction between these two definitions. We made the 
distinction here to stress out the fact that sometimes having a size  test is difficult, so 
in practical terms, one should make compromises with the alternative level  test.

Remark:

	 Typical  level tests use , 0.05, and 0.10, but be aware that in fixing 

	 the level  test, the experimenter is controlling only the Type I Error. An 	
	 LRT is one rejects  if , for example.	 	 	 	 	 ||

    Other than  levels, there are other features of a test that might also be of concern. 
For example, we would like a test to be more likely to reject  if  than if 

. This property is called unbiased.

Definition: Unbiased Power Function	

	 A test with power function  is unbiased if  and 

	 .

  In most problems there are many unbiased tests. Likewise, there are many size  
tests, LRTs, etc. In some cases we have imposed enough restrictions to narrow the 
consideration to one test. In other cases there remain many tests from which to 
choose. We discussed only the one that rejects  for large values of . In the 
following discussion we will discuss other criteria for selecting one out of a class of 
tests, criteria that are all related to the power functions of the tests.


2.2 The Uniform Most Powerful Tests

    We have seen that the  tests could control the probability of a Type I Error, i.e. le-
vel  tests have Type I Error probabilities at most  for all . A good test in 
such a class would also have a small Type II Error probability, i.e. a large power 
function for . If one test has a smaller Type II Error probability than all other 
tests in the class, it would certainly be a strong contender for the best test in the class, 
a notion that is formalized in the next definition.

Definition: Uniformly Most Powerful (UMP) Test

	 Let  be a class of tests for testing  versus . A test in

	 class , with power function , is a uniformly most powerful class  test

	 if  and .

    In this subsection, the class  will be the class of all level  tests. The test describ-
ed in the above definition is then called a UMP level  test. For this test to be 
interesting, restriction to the class  must involve some restriction on the Type I 
Error probability. A minimization of the Type II Error probability without some 
control of the Type I Error is not very interesting.

    The requirements in this definition are so strong that UMP does not exist in many 
realistic problems. But in problems that have UMP tests, a UMP test might well be 
considered the best test in the class. Thus, we would like to be able to identify UMP 
tests if they exist. The following famous theorem clearly describes which tests are 
UMP level  tests in the situation where the null and alternative hypotheses both 
consist of only one probability distribution for the sample.

Theorem 2.1: Neymann-Pearson Lemma


α
α

α α = 0.01
α

H0 λ(X ) ≤ c
α

H0 θ ∈ Θc
0

θ ∈ Θ0

β(θ ) β(θ′￼) ≥ β(θ′￼′￼)∀θ′￼∈ Θc
0
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0
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	 Consider testing  versus , where the pdf or pmf 

	 corresponding to  is , , using a test with rejection region  such 
	 that

	 (i)	 ,	 if ,

	 (ii)	 ,  	 if ,

	 for some  and . Then

	 (a)	 Any test that satisfies (i) and (ii) is a UMP level  test.	 (Sufficiency)

	 (b)	 If there exists a test satisfies (i) and (ii) with , then every UMP 	 	
	 	 level  test is a size  test and every UMP level  test satisfies the first

	 	 condition except perhaps on a set with probability measure 0, i.e. on a 

	 	 set  such that .	 	 (Necessity)

Proof:

	 We will prove the theorem for the case that  and  are PDFs

	 of continuous random variables. The proof of discrete random variables can

	 be accomplished by replacing integrals with sums.

	 Note first that any test satisfies  is a size  and, hence, a level

	  test because , since  has only one point.


	 WTS I: (a) is true.

	 	 To ease notion, we define a test function, a function such  defined by 	

	 	 , i.e., it is the indicator function of the rejection 


	 	 region. 

	 	 Let  be the test function of any other level  test and let , 

	 	 be the corresponding power function of  and , respectively.

	 	 Since , by the first assumption, 

	 	 , as well as , hence 

	 	  .

	 	 Then we apply the integration and obtain:


	 	 


	 	   .

	 	 Since  is a level  test and  is a size  test, then one has

	 	 ; moreover,  by assumption, hence

	 	 

	 	   has greater power than .

	 	 Since  is an arbitrary level  test and  is the only point in , then 

	 	 is a UMP level  test.

	 WTS II: (b) is true.

	 	 Let  now be the test function for any UMP level  test. By part (a), the

	 	 test satisfies the assumptions is also a UMP level  test, thus 

	 	 .	 


H0 : θ = θ0 H1 : θ = θ1
θi f (x |θi) i = 0,1 R

x ∈ R f (x |θ1) > k f (x |θ0)
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k ≥ 0 α = ℙθ0
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k > 0

α α α
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α sup
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	 	 Since  and  by assumption,

	 	 then one has  

	 	   since .

	 	 Moreover,  is a level  test, then . Thus  since 

	 	  by the above inequality, thus,  is a size  test, and this 

	 	 further implies that  

	 	 .


	 	 But the nonnegative integrand 


	 	 will have a zero integral only if  satisfies the first assumption except


	 	 on a set  with .


	 	 	 	 	 	 	 	 	 	 	 	 	 

    The following corollary connects the Neyman-Pearson Lemma to sufficiency.

Corollary 2.1.1:

	 Under the same settings as in Theorem 2.1. Suppose that  is a sufficient

	 statistic for  and  is the pdf or pmf of  corresponding to  for .

	 Then any test based on  with rejection region  is a UMP level  test if it 

	 satisfies

	 (1)	 ,	  if ,

	 (2)	 , if ,

	 for some , where .

Proof:

	 In terms of the original sample  the test bound on  has the rejection region

	 . By the Factorization Theorem, the PDF or PMF of  can 

	 be written as 

	 	 	 	 , , 

	 for some nonnegative function . Multiply with the assumptions, one has:


	 


	 By the second assumption that , one has

	 	 	 	 .

	 Now all the conditions of the first part of Neyman-Pearson Lemma are met,

	 it follows that the test based on  is a UMP level  test.

	 	 	 	 	 	 	 	 	 	 	 	 	 

    Hypotheses, such as  and  in the Neyman-Pearson Lemma, that specify only 
one possible distribution for the sample  are called simple hypotheses. In most 
realistic problems however, the hypotheses of interest specify more than one possible 
distribution for the sample. Such hypotheses are called composite hypotheses. Since 
the definition of UMP requires the test to be most powerful against each individual 

0 ≤ β(θ1) − β′￼(θ1) − k[β(θ0) − β′￼(θ0)] k > 0
0 ≤ β(θ1) − β′￼(θ1) − k[α − β′￼(θ0)]
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ϕ′￼ α β′￼(θ0) ≤ α β′￼(θ0) = α

β′￼(θ0) ≥ α ϕ′￼ α
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, the Neyman-Pearson Lemma can be used to find UMP tests in problems 
involving composite hypotheses.

    In particular, hypotheses that assert that a univariate parameter is large, for exampl-
e, , or small, e.g. , are called one-sided hypotheses. Hypotheses 
that assert that a parameter is either large or small, e.g. , are called two-
sided hypotheses. A large class of problems that admit UMP level  test involve one-
sided hypotheses and pdfs or pmfs with the monotone likelihood raito property, 
which is given below.

Definition: Monotone Ratio Likelihood Ratio (MLR)

	 A family of pdfs or pmfs  for a univariate random variable 

	 with real-valued parameter  has a monotone likelihood ratio (MLR) if, for 

	 every ,  is monotone (nonincreasing or nondecreasing) 

	 function of  on . Note that  is defined as 

	 if .

    Many common families of distributions have an MLR. For example, the normal (k-
nown variance, unknown mean), the Poisson, and binomial all have an MLR. Indeed, 
any regular exponential family with  has an MLR if  is a 
nondecreasing function.

Theorem 2.2: Karlin-Rubin

	 Consider testing  versus . Suppose that  is a sufficient 

	 statistic for  and the family of pdfs or pmfs of  has an MLR

	 then for any , the test that rejects    is a UMP level  test where 

	 .

  By an analogous argument, it can be shown that under the conditons of Karlin-
Rubin, the test that rejects  in favor of    is a UMP 
level  test with .

    However, the UMP does not always exist.

Example 2.2: Nonexistence of UMP test

	 Let  be iid  with  known. Consider the test  	 

	 versus . For a simplified value of , a level  test in this problem

	 is any test such that .

	 Consider an alternative parameter point . Among all tests that satisfy 

	 , the test that rejects  if  has the 

	 highest possible power at . Call this Test I.

	 Furthermore, by part (b) of Neyman-Pearson Lemma, any other level  test

	 that has as high a power as Test I at , must have the same rejection region as 

	 Test I except perhaps for a set  such that 


	 	 	 	 	 	 .


	 Thus, if a UMP level  test exists for this problem, it must be Test I because no

	 other test has as high a power as Test I at .

	 Alternatively, we may consider a Test II, which rejects  if 
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	 The Test II is also a level  test. Let  denote the power function of Test I.

	 For any , one has


	 	 


	          	           Since , 	 (“ ” since )


	 	            


	 	           .


	 Thus Test I is not a UMP level  test because Test II has a bigger power than 

	 Test I at . Earlier we showed that if there were a UMP level  test, it would 

	 have to be Test I. Therefore, UMP level  test does not exist in this problem.	||


2.3 The -Values

    After a hypothesis test is done, the conclusions must be reported in some statistic-
ally meaningful way. One method of reporting the results of a hypothesis test is to 
report the size, , of the test used and the decision to reject  or accept . The size 
of the test carrise important information. If  is small, the decision to reject  is 
fairly convincing, but if  is large, the decision to reject  is not very convincing 
since the test has a large probability of incorrectly making that decision. Another way 
of reporting the results of a hypothesis test is to report the value of a certain kind of 
test statistic called a -value.

Definition: -Value

	 A -value  is a test statistic satisfying  for every sample 

	 point . Small values of  give evidence that  is true. A -value is valid

	 if  and every , .

    If  is valid it is then easy to construct a level  test based on . The test 
that rejects  if and only if  is a level  test. An advantage to reporting a 
test result via a -value is that each reader can choose the  and then can compare the 
reported  to  and know whether these data lead to acceptance or rejection of . 
Morover, the smaller the -value, the stronger the evidence for rejecting . Hence, a 

-value reports the results of a test on a more continuous scale, rather than just 
accepting  or Rejecting .

    The most common way to define a valid -value is given by the following result.

Theorem 4.5: Valid -Value

	 Let  be a test statistic such that large values of  give evidence that  is 

	 true. For each sample point , define . Then, 


	  is valid.

Proof:

	 Fix , let  be the CDF of . Define 
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	 	 .

	 Hence, by the Probability Integral Transformation, the distribution of   

	 is stochastically greater or equal to Uniform  distribution. That is, 

	 	 	 	  , , 

	 because 

	 	 	 	       , 


	 hence 

	 	 	 	 .

	 This is true  and , then by the definition of p-value, 

	  is a valid p-value.

	 	 	 	 	 	 	 	 	 	 	 	 	 


3. Methods in Finding Tests

   In this section we are going to introduce some methods in finding the hypothesis 
testing. In 3.1 we shall treat the Likelihood Ratio Test, then in 3.2 we treat the UIT 
and IUT, i.e. the Union-Intersection Tests and the Intersection-Union Tests. Instead of 
talking the evaluation of IUT and UIT in 2, we introduce the evaluation of these tests 
in 3.3.


3.1 The Likelihood Ratio Tests

    The likelihood ratio method of hypothesis testing is related to the maximum likeli-
hood estimators and likelihood ratio tests are as widely applicable as maximum 
likelihood estimation. Recall that if  is a random sample from a population 
with pdf or pmf  (  may be a vector), the likelihood function is defined as 


.


Let  denote the entire parameter space. Likelihood ratio tests are defined as follows.

Definition: Likelihood Ratio Test Statistic

	 The likelihood ratio test statistic for testing  versus  is


	 .


Definition: Likelihood Ratio Test (LRT)

	 A likelihood ratio test (LRT) is any test that has a rejection region of the form

	  where  is any constant such that .

  Recall that in the MLE, the maximization of the likelihood function is, not about 
making the data itself more probable but rather about finding the parameter values 
that make the observed data most consistent with the assumed model. The motivation 
for the LRT is quite the same. 

Example 3.1: Normal LRT

	 Let  be a random sample from a  population. Consider testing

	  versus . Here  is a number fixed by the experimenter

	 prior to the experiment. Since there is only one value of  specified by , the
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	 numerator of  is . We know that the unrestricted MLE of  was 	 	 

	 found to be , the sample mean. Thus, the denominator of  is . So

	 the LRT statistic is:


	 	 	   


	        	 	        .


	 The expression could be simplified by noting that 


	 	 	 	 . 


	 Thus the LRT statistic is


	 	 	 	 	 . 


	 An LRT is a test that rejects  for small values of , then the rejection 

	 region  can be written as 


	 	 	 	 	 . 


	 As  ranges between  and ,  ranges between  and .


	 Thus, the LRTs are just those tests that reject  if the sample mean

	 differ from the hypothesized value  by more than a specified amount.	 ||

   It coule be best interpreted in the situation in which  is a pmf of a discrete r-
andom variable. In this case, the numeraotr is maximized over the whole parameter 
space  while the denominator is maximized over the . The less the ratio is shows 
that more consistent our model is.

Connection with MLEs:

	 If we think of maximizing over both the entire parameter space and a subset of 	
	 the parameter space, then the correspondence between the LRTs and MLEs 

	 become very clear. Suppose that , an MLE of , exists;  is obtained by doing 

	 an unrestricted maximization of . We can also consider the MLE of  	
	 call it , obtained by doing the restriced maximization, assuming that  is the 

	 parameter space. That is,  is the value of  that maximizes 


	 . Then, the LRT statistics is given by .


    For a sufficient statistic of a random sample , namely , we know that all the 
information about  could be found in , the test based on  should be as good as 
the test based on the complete sample . In fact, the tests are equivalent.

Theorem 3.1:

	 If  is a sufficient statistic for  and  and  are the LRT statistics 


λ(x) L(θ0 |x) θ
X λ(x) L(x |x)

λ(x) =
(2π)−n/2exp{ − ∑n

i=1 (xi − θ0)2 /2}
(2π)−n/2exp{ − ∑n

i=1 (xi − x )2 /2}

= exp{ −
(∑n

i=1 (xi − θ0)2 + ∑n
i=1 (xi − x )2)

2 }
n

∑
i=1

(xi − θ0)2 =
n

∑
i=1

(xi − x )2 + n(x − θ0)2

λ(x) = exp[ −
n(x − θ0)2

2 ]
H0 λ(x)

{x |λ(x) ≤ c}

{x |x − θ0 | ≥ −
2(log c)

n }
c 0 1

−2 log c
n

0 ∞

H0 : θ = θ0
θ0

f (x |θ )

Θ Θ0

̂θ θ ̂θ
L(θ |x) θ,

̂θ0 Θ0
̂θ0 = ̂θ0(x) θ ∈ Θ0

L(θ |x) λ(x) =
L( ̂θ0 |x)
L( ̂θ |x)

X T(X )
θ T(X ) T

X

T(X ) θ λ*(t) λ(x)
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	 based on  and , respectively. Then  .

Proof:

	 According to the Factorization Theorem, the pdf or pmf of  can be written

	 as , where  is the pdf or pmf of  and  does

 	 not depend on . Thus,


	 	 


	 	         	 	 (  is sufficient)


	 	         	 	 (  does not depend on )


	 	         	 	 (  is the pdf or pmf of )


	 	         .

	 	 	 	 	 	 	 	 	 	 	 	 	 

    LRTs are also useful in situations where there are nuisance parameters, i.e.,  param-
eters that are present in a model but are not of direct inferential interest. The presence 
of such nuisance parameters does not affect the construction of the LRT but, as might 
expected, the presence of nuisance parameters might lead to a different test.


3.2 The UIT and the IUT 

    In some situations, tests for complicated null hypothesis can be developed from te-
sts for simpler null hypothesis. There are two corresponding methods, the UIT and 
the IUT, standing for the Union-Intersection test and the Intersection-Union test, 
respectively. The motivation for these two methods is very straightforward, in 
practical problems we often see the null hypothesis is expressed under the set oper-
ations.

Algorithm 3.2: Union-Intersection Method

	 The Union-Intersection method of test construction might be useful when the

	 null hypothesis is conveniently expressed as an intersection, namely 

	 	 	 	 	 	 , 


	 where  is an arbitrary index set. 

	 Suppose that tests are available for each of the problems of testing 

	 	 	 	 	  versus .

	 Say the rejection region for the test of  is . Then the 	 	
	 rejection region for the Union-Intersection test is 

	 	 	 	 	 	 .


	 The rationale is simple. If any one of the hypothesis  is rejected then  

	 should be rejected. On the other hand,  is true one if each of the hypothesis


T X λ*(T(x)) = λ(x) ∀x ∈ ΩX

X
f (x |θ ) = g(T(x) |θ )h(x) g(t |θ ) T h(x)

θ

λ(x) :=
supΘ0

L(θ |x)
supΘ L(θ |x)

=
supΘ0

f (x |θ )
supΘ f (x |θ )

=
supΘ0

g(T(x) |θ )h(x)
supΘ g(T(x) |θ )h(x)

T

=
supΘ0

g(T(x) |θ )
supΘ g(T(x) |θ )

h θ

=
supΘ0

L*(θ |T(x))
supΘ L*(θ |T(x))

g T

=: λ*(T(x))
□

H0 : θ ∈ ⋂
γ∈Γ

Θγ

Γ

H0γ : θ ∈ Θγ H1γ : θ ∈ Θc
γ

H0γ {x |Tγ(x) ∈ Rγ}

⋃
γ∈Γ

{x |Tγ(x) ∈ Rγ}

H0γ H0
H0
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	  is accepted as true.	 	 	 	 	 	 	 	 	 ||

    When  is defined to be the intersection of some subsets of the parameter space, 
instead of checking each  to be true which is the only way for  to be true, we 
take the union of each rejection region and proceed with rejecting  as long as  is 
false for some , with accepting otherwise. In some situations a simple expression for 
the rejection region of a Union-Intersection test has a rejection region of the form 

, where  does not depend on . The rejection region for the Union-
Intersection test could be expressed as 

	 	 	 	 . 


Thus the test statistic for testing  is .


Example 3.2: Normal Union-Intersection Test

	 Let  be a random sample from  population. Consider testing

	  versus , where  is a specified number. We can write

	  as the intersection of two sets: .

	 The LRT of  versus  is rejecting  in


	 favor of  if . Similarly, the LRT of  


	 versus  is rejecting  in favor of  if


	 . Thus, the Union-Intersection test of  versus 


	  formed from these two LRTs is


	 	 	 	 Reject  if  or . 


	 If , the Union-Intersection test can be more simply expressed as 

	 the form:


	 	 	 	 	 Reject  if . 


	 It turns out that this Union-Intersection test is also the LRT for this problem 

	 and is called the two-sided  test.	 	 	 	 	 	 	 ||

    The analogous Intersection-Union method is formulated in a similar way.

Algorithm 3.3: Intersection-Union Method

	 Suppose we wish to test the null hypothesis . Suppose that 


	 	 	 	 	 ,  	 

	 is the rejection region for a test of 

	 	 	 	     versus . 


H0γ
θ0

θ0λ θ0
θ0 θ0λ

λ

{x |Tγ(x) > c} c γ

⋃
γ∈Γ

{x |Tγ(x) > c} = {x | sup
γ∈Γ

Tγ(x) > c}
H0 T(x) = sup

γ∈Γ
Tγ(x)

X1, . . . , Xn N(μ, σ2)
H0 : μ = μ0 H1 : μ ≠ μ0 μ0
H0 H0 : {μ |μ ≤ μ0} ∩ {μ |μ ≥ μ0}

H0L : μ ≤ μ0 H1L : μ > μ0 H0L : μ ≤ μ0

H1L : μ > μ0
X − μ0

S / n
≥ tL H0L : μ ≥ μ0

H1μ : μ < μ0 H0U : μ ≥ μ0 H1U : μ < μ0
X − μ0

S / n
≤ tU H0 : μ = μ0

H1 : μ ≠ μ0

H0
X − μ0

S / n
≥ tL

X − μ0

S / n
≤ tU

tL = − tU ≥ 0

H0
|X − μ0 |

S / n
≥ tL

t

H0 : θ ∈ ⋃
γ∈Γ

Θγ

∀γ ∈ Γ {x |Tγ(x) ∈ Rγ}

H0γ : θ ∈ Θγ H1γ : θ ∈ Θc
γ
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	 Then the rejection region for the Intersection-Union test of  versus  is 	 	
	 	 	 	 	     .


	  is false  all of the  is false, so  can be rejected  each of the 

	 individual hypothesis  can be rejected.	 	 	 	 	 	 ||

   Again, the test can be greatly simplified if the rejection region for the individual 
hypothesis are all of the form , where  is independent of . In such 
cases, the rejection region of  is 

	 	 	 	 . 


Here, the Intersection-Union test statistic is , and the test rejects  for large 

values of this statistic.


3.3 Evaluation on UIT and IUT

   Because of the simple way in which they are constructed, the sizes of the UIT and 
the IUT can often bebounded above by the sizes of some other tests. Such bounds are 
useful if a level  test is wanted, but the size of the UIT or IUT is too difficult to 
evaluate. In this subsection we discuss the bounds and give examples in which the 
bounds are sharp, i.e. the size of the test is equal to the bound.

    First consider UITs. Recall that, in this situation, we are testing a null hypothesis of 
the form  where . To be specific, let  be the LRT 

statistic for testing  versus , and let  be the LRT statistic 
for testing  versus . Then we have the following relationships 
between the overall LRT and the UIT based on .

Theorem 3.4:

	 Consider testing  versus  where  and 


	 is defined as above. Define , and form the UIT with rejection 


	 region . Also consider the usual

	 LRT with rejection region . Then

	 (a)	  for all .

	 (b)	 If  and  are the power functions for the tests based on  and ,

	 	 respectively, then  for every .

	 (c)	 If the LRT is a level  test, then the UIT is a level  test.

Proof:

	 Since , then by the definition of LRT, one has 


	 .

	 Because the region of maximization is bigger for the individual , then 


H0 H1

⋂
γ∈Γ

{x |Tγ(x) ∈ Rγ}

H0 ⇔ H0γ H0 ⇔
H0γ

{x |Tγ(x) ≥ c} c γ
H0

⋂
γ∈Γ

{x |Tγ(x) ≥ c} = {x | inf
γ∈Γ

Tγ(x) ≥ c}

inf
γ∈Γ

Tγ(x) H0

α

H0 : θ ∈ Θ0 Θ0 = ⋂
γ∈Γ

ΘΓ λγ(x)

H0γ : θ ∈ Θγ H1γ : θ ∈ Θc
γ λ(x)

H0 : θ ∈ Θ0 H1 : θ ∈ Θc
0

λγ(x)

H0 : θ ∈ Θ0 H1 : θ ∈ Θc
0 Θ0 := ⋂

γ∈Γ

Θγ λγ(x)

T(x) := inf
γ∈Γ

λγ(x)

{x |λγ(x) < c for some γ ∈ Γ} = {x |T(x) < c}
{x |λ(x) < c}

T(x) ≥ λ(x) x
βT(x) βλ(x) T λ

βT(θ ) ≤ βλ(θ ) θ ∈ Θ
α α

Θ0 = ⋂
γ∈Γ

Θγ ⊆ Θγ λγ(x) ≥ λ(x)

∀x ∀γ ∈ Γ
λ

52



Lecture Notes on Statistical Inference Tsinghua University

	 , then (a) follows.


	 By (a), , therefore one has 

	   then (b) follows.

	 Since (b) holds , therefore,  by assumption,


	 therefore (c) holds.

	 	 	 	 	 	 	 	 	 	 	 	 	 

    Since the LRT is uniformly more powerful in the above theorem than UIT, we mig-
ht ask why we should use the UIT. One reason is that UIT has a smaller Type I Error 
probability for every . Moreover, if  is rejected, we may wish to look at the 
individual tests of  to see why, for which UIT provides us an access.

    We now investigate the sizes of IUTs. A simple bound for the size of an IUT is rel-
ated to the sizes of the individual tests that are used to define the IUT. Recall that in 
this situation the null hypothesis is expressible as a union, i.e. we are testing

	 	  versus , where .


An IUT has a rejection region of the form  where  is the rejection region 

for a test of .

Theorem 3.5:

	 Let  be the size of the test of  with rejection region . Then the IUT with

	 rejection region  is a level  test.


Proof:

	 Let . Then  for some  and one has 

	 . Since . Since  was


	 chosen arbitrarily, then the IUT is a level  test.

	 	 	 	 	 	 	 	 	 	 	 	 	 

    Typically, the individual rejection regions  are chosen so that . In such 
a case, Theorem 3.5 states that the resulting IUT is a level  test. Moreover, this 
theorem provides an upper bound for the size of an IUT, is somewhat more useful 
than Theorem 3.4, which provides an upper bound for the size of a UIT.

Remark:

	 Theorem 3.4 applied only to UITs constructed from LRTs while Theorem 3.5

	 applies to any IUT.		 	 	 	 	 	 	 	 	 ||

   The bound in Theorem 3.4 is the size of the LRT, which, in a complicated proble-
m, may be difficult to compute. In Theorem 3.5 however, the LRT need not be used 
to obtain the upper bound. Any test  with unknown size  can be used, and then 
the upper bound on the size of the IUT is given in terms of the known sizes .

    The IUT in Theorem 3.5 is a level  test. But the size of the IUT may be much less 
than ; the IUT may be very conservative. The following theorem gives conditions 

T(x) := inf
γ∈Γ

λγ(x) ≥ λ(x)

{x |T(x) < c} ⊆ {x |λ(x) < c}
βT(θ ) := ℙθ(T(X ) < c) ≤ ℙθ(λ(X ) < c) =: βλ(θ ) ∀θ ∈ Θ

∀θ ∈ Θ sup
θ∈Θ

βT(θ ) ≤ sup
θ∈Θ

βλ(θ ) ≤ α

□

θ ∈ Θ0 H0
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under which the size of the IUT is exactly  and the IUT is not conservative in this 
case.

Theorem 3.6:


	 Consider testing , where  is a finite possible integer. For each


	 , let  be the corresponding rejection region of a level  test of .

	 Suppose that for some , there exists a sequence of parameter points, 

	 , for  such that:

	 (i)	 .


	 (ii)	 , .


	 Then, the IUT with rejection region  is a size  test.


Proof:


	 To show that the IUT with rejection region  is a size  test is to show


	 that .


	 “ ”:

	 	 By Theorem 3.5 and Bonferroni’s Inequality,  is a level  test, i.e., 

	 	 .


	 “ ”:

	 	 Because all the parameter points  satisfy , therefore, one 

	 	 has 

	 	 


	 	 	 	      


	 	 	 	      


	 	 	 	       by (i) and (ii)

	 	 	 	      .
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R α

sup
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≥
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⋂
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k

∑
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□
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Appendix:

Theorem A: Probability Integral Transformation

	 Let  follow a uniform distribution and if  is the quantil function of  then 

	  and  has the same distribution.

Theorem B: Factorization Theorem

	 Let  denote the joint pdf or pmf of a sample . A statistic  is a 

	 sufficient statistic for   there exist functions  and  such that,

	 for all sample points  and all parameter points , .

Appendix C: Bonferroni’s Inequalities


	 Let  be events in a probability space  and let . 


	 Then one has .


Proof:

	 For ,  always holds. Without loss of generality, 

	 we may assume that  and the inequality holds for , i.e., 


	 	 	 	 .


	 WTS: 


	 	 


	 	         


	 	          	 	 	

	 	 	 	 	 	 	 	 	 	 (By assumption)


	 	         .	 	 


	 	 By definition, , therefore,


	 	          .


	 	 Result follows by induction.	 
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On The Bayesian Statistical Approach

Tianyu Zhang 
4

Abstract:

We introduced the Bayesian statistical appraoch as a complementary to the 

long-frequentist approach. The three major ingredients of Bayesian analysis, the 
data, the prior, and the loss functions, except the first one which is assumed to be 

well-behaved, are discussed in this review. Before having the data the 
experimenters based on their beliefs offer a prior distribution, the good priors 
should meet some standards we discuss in the second section. After having the 

prior, we need to know how much the deviation between esimation and realized 
values is, the derived loss function, along with some often-used forms are 
disucssed in the third section. The evaluation, hypothesis testing, and the 

interval estimation are treated in the fourth section. We discuss also the validity 
of Bayesian and we introduce the Bayes convolution to close this review.


Table of Contents:

	 1. Introduction to Bayesian

	 	 1.1 Long-Run Frequentist

	 	 1.2 Bayesian Approach

	 	 1.3 Prior and Posterior

	 	 1.4 Loss Function

	 2. Choice of a Prior Distribution

	 	 2.1 Subjective Choice of a Prior Distribution	

	 	 2.2 Empirical Bayes Solutions

	 	 2.3 Conjugate Priors

	 	 2.4 Non-Informative Prior Distributions and Generalized Bayes Rules

	 3. Standard Loss Functions and Corresponding Bayes Decision Rules

	 	 3.1 Squared-Error Loss

	 	 3.2 Absolute-Error Loss

	 	 3.3 Zero-One Loss

	 4. Bayesian Inference: Estimation, Hypothesis Testing, and Prediction

	 	 4.1 Bayesian Estimation and Precision Evaluation

	 	 4.2 Bayesian Credible Sets

	 	 4.3 Bayesian Hypothesis Teting

	 	 4.4 Prediction

	 5. Validity for Bayesian Approach — A Short Discussion

	 6. Bayesian Convolution

	 Reference




1. Introduction to Bayesian

   We start with a short review of the long-run frequentists in 1.1, then we introduce 
the Bayesian approach in 1.2. Regarding the data collection is well performed, three 
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ingredients of the Bayesian statistics: data, prior, and loss function are introduced in 
this section. In 1.3 we introduce the prior and posterior, and we close this section with 
the loss function introduced in 1.4.


1.1 Long-Run Frequensits

    Practically, in all statistics courses, we learn how to make decisions under uncertai-
ty. Formally, we are looking for a decision  that belongs to an action space  — a 
set of all possible decisions that we are allowed to take. 

    We also know that statisticians collect random samples of data and do their statisti-
cs based on them. So, their decisions are functions of data, namely,

	 	 	 	   .	 	 	 	 (1.1)

     This is the frequentist approach. According to it, uncertainty comes from a random 
sample and its distribution. The only considered distributions, expectations, and vari-
ances are distributions, expectations, and variances of data and various statistics com-
puted from data. Population parameters are considered fixed. Statistical procedures 
are based on the distribution of data given these parameters,

	 	 	 	     .	 	 	 	 (1.2)

Properties of these procedures can be stated in terms of long-run frenquencies. For 
example:

Example 1.1: Long-Run Frenquencies

	 (i)	 An estimator  is unbiased if in a long run of random samples, it 

	 	 averages to the parameter .

	 (ii)	 A test has significance level  if in a long run of random samples,  
	 	 of times the true hypothesis is rejected.

	 (iii)	 An interval has confidence level  if in a long run of random 

	 	 samples,  100% of obtained confidence intervals contain the 	 	
	 	 parameter.	 	 	 	 	 	 	 	 	 	 ||

    However, there are many situations when using only the data is not sufficient for 
reasonable decisions. Also, the frequentist concept of a long run may inadequately 
reflect performance of statistical procedures.

Summary:

	 Frequentist statistical decision making takes into account only the uncertainty

	 of the data. Statistical decisions are based on the data only, and their 

	 performance is evaluated in terms of a “long-run”. However, there are 

	 situations where such an approach is deficient, unnatural, or even misleading in 

	 various ways.


1.2 Bayesian Approach

    Different from the long-frequentist approach, there is another method, the famous 
Bayesian approach. According to this perspective of view, uncertainty is attributed 
not only to the data but also to the unknown parameter . Some values of  are more 
likely than others. Then, as long as we talk about the likelihood, we can define a 
whole distribution of values of . We call it the prior distribuion, and it reflects our 

δ 𝒜

δ = δ(data) = δ(X1, ⋯, Xn)

f (x |θ ) = f (X1, ⋯, Xn |θ )

̂θ
θ

α 100 %

(1 − α)
(1 − α)

θ θ

θ
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ideas, beliefs, and past experiences about the parameter before we collect and use the 
data.

    One benefit of this approach is that we no longer have to explain our results in ter-
ms of a “long-run”. Often we collect just one sample for our analysis and don’t 
experience any long run of samples. Instead, with the Bayesian approach, we can 
state the result in terms of the distribution of parameter . For example, we can 
clearly state the probability for a parameter to belong to a certain interval, or the 
probability that the hypothesis is true. This would have been impossible under the 
frequentist approach.

    Another benefit is that we can use both pieces of information, the data and the pri-
or, to make better decisions. In Bayesian statistics, decisions are

	 	 	 	 	 .		 	 	 (1.3)


1.3 Prior and Posterior

    Now we have two sources of information to use in our Bayesian inference:

	 (i)	 collected and observed data;

	 (ii)	 prior distribution of the parameter.

These two pieces are combined via the Bayes formula


	 	 	 	 	 .	 	 	 (1.4)


Prior to the experiment, our knowledge about the parameter  is expressed in terms of 
the prior distribution (prior pdf or pmf) . The observed sample of data 

 has distribution (pmf or pdf)

	 	 	 	 	 .		 	 	 (1.5)

This distribution is conditional on . That is, different values of the parameter  gen-
erate different distributions of data, and thus, conditional probabilities about  
generally depend on the condition .

    Observed data add information about the parameter. The updated knowledge about 

 can be expressed as the posterior disribution, namely,


	 	 	 ,	 	 	 (1.6)


where  represents the unconditional distribution of data . This is the marginal 
distribution (pdf or pmf) of the sample . Being unconditional means that it is 
constant for different values of the parameter . It can be computed by


	 	 .


    Note that the posterior distribution of the parameter  is now conditioned on data 
. Naturally, conditional distributions  and  are related via the 

Bayes rule (1.4).

Notation:

	 	 	 	 prior distribution

	 	 	 posterior distribution

	 	 	 distribution of data (model)


θ

δ = δ(data, distribution)

ℙ(B |A) =
ℙ(A |B)ℙ(B)

ℙ(A)
θ

π(θ )
X = (X1, ⋯, Xn)

f (x |θ ) = f (x1, ⋯, xn |θ )
θ θ

X
θ

θ

π(θ |x) = π(θ |X = x) =
f (x |θ )π(θ )

m(x)
m(x) X

X
θ

m(x) = {
∑θ f (x |θ )π(θ ),  for discrete piror distirbutions π

∫
θ

f (x |θ )π(θ )dθ,  for continuous prior distributions π
θ

X = x f (x |θ ) π(θ |x)

π(θ ) =
π(θ |x) =
f (x |θ ) =
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	 	 	 	 marginal distribution of the data

	 	 	 	 , sample of data

	 	 	 	 , observed values of .

Summary:

	 Bayesian approach presumes a prior distribution of the unknown parameter. 

	 Adding the observed data, the Bayes Theorem converts the prior distirbution 

	 into the posterior which summarizes all we know about the parameter after 

	 seeing the data. Bayesian decisions are based on this posterior, and thus, they

	 utilize both the data and the prior.


1.4 Loss Function

   Besides the data and the prior distribution, is there any other information that can 
appear useful in our decision making?

    How about anticipating possible consequences of making an error? We know that 
under uncertainty, there is always a chance of making inaccurate decisions. The third 
component of the Bayesian Decision Theory is the loss function, defined as below.

Definition: Loss Function

	 The loss function , or sometimes  which 

	 is a map  (resp. . 

  This penalty may be 0 if the decision is perfect, for example, if we accept the true 
null hypothesis or estimate a parameter  with no error.

  Equipped with the loss function, we are looking for optimal statistical decisions. 
Those that minimize the loss. But minimize with respect to what? The loss function 

 has uncertainty — unknown parameter  and .

Definition: Risk

	 The risk, or frequentist risk is the expected loss over all possible samples, 

	 given a parameter . It is defined by , there  means

	 the expectation depends both on  and . Note that 


	  or .


  With respect to the risk, the optimal decisions are still not clear since  
depends on the unknown parameter . However, it is clear which rules we should not 
use. Moreover, by this convention, we can tell which action is better than another by 
just comparing the corresponding risks, this leads to a natural comparability.

Definition: -better

	 We say decision  is -better than decision  if either

	 (i)	 , or

	 (ii)	  for some .

   With this partial odering, we can further deduce for what decisions are acceptable 
and for what decisions are not. 
Definition: Inadmissible, Admissible

	 Decision  is inadmissible if there exists a decision -bettern than . 

	 Alternatively, decision  is admissible if it is not inadmissible.


m(x) =
X = (X1, ⋯, Xn)
x = (x1, ⋯, xn) X1, ⋯, Xn

L : Θ × 𝒜 → ℝ L : Θ × 𝒜 → [0,∞)
(θ, δ ) ↦ c ∈ ℝ c ∈ [0,∞)

θ

L(θ, δ ) = L(θ, δ(X )) θ X = (X1, ⋯, Xn)

θ R(θ, δ ) := 𝔼X
θ L(θ, δ(X )) 𝔼X

θ
X θ

𝔼X
θ L(θ, δ(X )) = ∑

X

L(θ, δ(x))ℙ(x) ∫
∞

−∞
L(θ, δ(x))f (x)d x

R(θ, δ(X ))
θ

R
δ1 R δ2

R(θ, δ1) ≤ R(θ, δ2)∀θ
R(θ, δ1) < R(θ, δ2) θ

δ R δ
δ
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   It turns our that we can minimize the bad influence brought up by the worst case, 
i.e. we minimize the maximum of the risk, this leads to a natural application of the 
minimax theory.

Definition: Minimax Decision

	 Decision  is said to be minimax if it minimizes , the worst possible


	 risk over all . That is, .


    Note that minimax decisions are conservative because they protect against the wo-
rst situation where the risk is maximized. They are the best decisions in a game 
against an intelligent opponent who will always like to give you the worst case. In 
statistical games, the players know that they are acting against intelligent opponents, 
and therefore, they devise minimax strategies. This is one of the interest in game 
theory.

   So far we have introduced the loss and risk without letting the prior distribution 
being involved. Now let us define when the case it is not excluded.

Definition: Bayes Risk

	 The Bayes risk is the expected frequentist risk 

	 	 	 	 ,

	 where the expectation is taken over the prior distribution . So it is the loss

	 function averaged over all possible samples of data and all possible parameters.

    As we have already seen, the Bayes decisions are based on the posterior distributi-
on, that is, conditioned on the known data . 

Definition: Posterior Risk

	 The posterior risl is the expected loss, where the expectation is taken over the 

	 posterior distribution of parameter ,

	 	 	 .

	 So, the posterior risk is the loss function averaged over parameters , given 

	 known data .

Definition: Bayes Decision Rules

	 The Bayes decision rules minimize the Bayes risk and, as we’ll see pretty soon, 

	 they also minimize the posterior risk. That is,

	 	 	 	 	 


	 for every sample  and .


Summary:

	 Simple frequentist statistics are based on just the observed data. Decision 

	 theory takes into account the data and the loss function. Bayesian statistics

	 is based on the data and the prior distribution. Thus, the Bayes decision rules

	 are based on three components:

	 (i)	 The data,

	 (ii)	 The Prior disribution,

	 (iii)	 The Loss.

	 Bayes rules minimze the posterior risk, given the observed data. Minimax rules

	 minimize the largest or the worst possible risk.


δ inf
θ

R(θ, δ )

θ ∈ Θ sup
θ

R(θ, δminimax) = inf
δ∈𝒜

sup
θ

R(θ, δ )

r(π, θ ) = 𝔼π(θ)R(θ, δ ) = 𝔼X
θ L(θ, δ )

π(θ )

X

θ
ρ(π, δ |X ) = 𝔼π(θ|X )

X L(θ, δ ) = 𝔼(L(θ, δ ) |X)
θ

X

ρ(π, δBayes |X ) = inf
δ∈𝒜

ρ(π, δ |X )

X r(π, θ ) = inf
δ∈𝒜

r(π, δ )
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2. Choice of a Prior Distribution

    Recall that Bayes decision rules are based on three components, the data, the prior 
distrubtions, and the loss. That is, . So, for Bayesian decision 
making, we need

	 (i)	 To collect data 

	 (ii)	 To choose a prior distribution of unknown parameters .

	 (iii)	 To choose a loss function .

   We mainly focus on the introduction to (ii). There are perhaps four general ways to 
choose a prior distribution:

	 (1)	 Quantify your personal beliefs, express your uncertainty about the 	 	
	 	 parameter  in a form of a distribution.	 	 (Subjectively)

	 (2)	 Let the data suggest the prior distribution. People often use historical

	 	 data or data on similar cases.	 	 	 	 (Empirically)

	 (3)	 Take a convenient form of the prior  in order to get a 

	 	 mathematically tractable posterior distribution .

	 	 	 	 	 	 	 	 	 	 (Conveniently)

	 (4)	 In the absence of any information about the parameter prior to the 	 	
	 	 experiment, which prior distribution would most fairly reflect this 

	 	 situation?	 	 	 	 	 	 	 (Non-Informatively)

    We offer a short treatment of (1) in 2.1, then we move to the discussion of the emp-
irical Bayes solutions in 2.2, where the parametric, non-parametric, and the hierarchy 
(i.e. we use Bayesian statistical approach to the prior) Bayesian are discussed. We 
introduce the important terminology “conjugate family” in 2.3, where we offer some 
conjugate relationships between familiar distribution families. We give a brief introd-
uction to the non-informative Bayes in 2.4, we also generalize the Bayes rules in this 
subsection.


2.1 Subjective Choice of a Prior Distribution

    Subjectively determined prior does not have a direct mathematical formula. It is ju-
st an attemp to express one’s original beliefs about the unknown parameter and one’s 
uncertainty about it in a usable mathematical form.

   Often we can determine a few related probabilities and fit a distribution of them. 
Sometimes we can compare probabilities of different values of  or probabilities of 
intervals. Usually, it is easy to compare the chances of events and their complements 
like  and  — which one is more likely? Sometimes one 
can determine some percentiles, say, with probability 25%, parameter  does not 
exceed what…


2.2 Empirical Bayes Solutions

   The general idea of empirical Bayes analysis is to estimate the prior distribution 
from the data. This can be done in several ways.

	 •	 Parametric Empirical Bayes. A family of prior distributions  is 	
	 	 chosen, but its parameter(s)  is unknown. This  will then be estimated


δBayes = δ(X, π, L)

X = (X1, ⋯, Xn)
π(θ )

L(θ, δ )

θ

π(θ )
π(θ |X )

θ

ℙ(θ ∈ [a, b]) ℙ(θ ∉ [a, b])
θ

π(θ |λ)
λ λ
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	 	 from the marginal distribution .

	 •	 Nonparametric Empirical Bayes. No family of prior distribution is 	 	
	 	 assumed. Thus, there is no form of the posterior as well. Instead, the 

	 	 form of a Bayes decision rule is obtained directly, bypassing the 	 	
	 	 posterior.

	 •	 Hierarchical Bayes. We can also take a “completely Bayes” approach,

	 	 assume a family of prior distributions  and estimate unknown 

	 	 in the Bayesian way. That is, we put a prior distribution  on  and 		
	 	 estimate it, before estimating the parameter of interest . This second-		
	 	 level prior is called a hyperprior, and parameter  is a hyperparameter.

	 	 Sometimes this hierarchy of priors and their parameters has more than 	
	 	 two levels (but countably many…)


2.3 Conjugate Priors

    Let us focus on the mathematically convenient families of prior distribution. A suit-
ably chosen prior distribution of  may lead to a very tractable form of the posterior.

Definition: Conjugate

	 A family of prior distributions  is conjugate to the model  if the 	 	
	 posterior distribution belongs to the same family.

    Recall in our lecture notes on statistical inference, we have the concept that

Definition: Conjugate Family

	 Let  denote the class of pdfs or pmfs  indexed by . A class  of prior

	 distributions is a conjugate family for  if the posterior distribution is in the 

	 class  , all priors in , and all .

    We state some conjugate relationships without proving.

	 •	 Gamma family is conjugate to the Poisson model.

	 	 Having observed a Poisson sample , we update the Gamma 

	 	 prior distribution of  to the Gamma  posterior.

	 •	 Beta family is conjugate to the Binomial model.

	 	 Posterior parameters are  and .

	 •	 Normal family is conjugate to the Normal model.


	 	 Posterior parameters are  and .


2.4 Non-Informative Prior Distributions and Generalized Bayes Rules

    One of the main arguments of the non-Bayesians against Bayesians was the subjec-
tive choice of the prior distribution. Indeed, it is not always trivial to come up with a 
realistic distribution that truly reflects our prior knowledge and uncertainty about the 
unknown parameter.

   An extreme case, what can we do if we have no prior knowledge whatsover? No 
information about the parameters until we see the actual data… However, we still 
would like to use Bayesian methods because of its nice properties. It is natural to ask 
the question that is there a “fair” prior distribution that reflects our absence of the 
knowledge. Such a distribution would be called a non-informative prior distribution.


m(x) = m(x |λ)

π(θ |λ) λ
ρ(λ) λ

θ
λ

θ

π f (x |θ )

ℱ f (x |θ ) θ Π
ℱ

Π ∀f ∈ ℱ Π x ∈ X

X = x (α, λ)
θ (α + Σxi, λ + n)

αx = α + Σxi βx = β + nk − Σxi

μx =
nX /σ2 + μ /τ2

n /σ2 + 1/τ2
τ2

x =
1

n /σ2 + 1/τ2
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    However, this approach has two possible problems, the first is that there are trans-
formations not “preserving” the distributions. That is,

Example 2.1: Bad Tranformations

	 Consider estimation of parameter  of Binomial  distribution. We know 

	 that , and suppose that nothing els is known about . Then, we should

	 choose a prior distribution that gives equal weights to all values of , making 

	 them all “equally likely”. So let ?

	 Indeed this seems to be the most natural non-informative choice. However,

	 any non-linear transformation of , its reparametrization, appears non-

	 Uniform.	 	 	 	 	 	 	 	 	 	 	 ||

    Another problem is that, since high prior variance means a lot of uncertainty about 
the unknown parameter; if we consider the extreme case under normal distribution, 
when , we are infinitely uncertain about . Moreover, as , 
the Normal  prior density becomes more and more flat, converging to a constant.       

    This leads to a serious problem! There is no constant density on . There is a cons-
tant measure, the Lebesgue measure, with  but


	 	 	 	 	 ,


hence it is not a probability measure.

    Nevertheless, Lebesgue measure gives us a fine posterior distribution


.


   Therefore, without any prior information, after seeing the data, we have exactly as 
much as uncertainty about  as the data contain. This is quite reasonable. So, such a 
prior worth consideration, even though it is not, strictly speaking, a distribution.

Definition: Improper Prior Distribution

	 An imporper prior distribution is an infinite measure on the parameter space


	  (i.e. ) which produces a proper posterior distribution.


Definition: Generalized Bayes Rule

	 Decision that minimizes the posterior risk under an improper prior is called a 

	 generalized Bayes rule. Generalized Bayes rules are limits of proper Bayes 	 	
	 rules.


3. Standard Loss Functions and Corresponding Bayes Decision Rules

   In this section we shall introduce some common loss functions, they are squared-
error loss in 3.1, absolute-error loss in 3.2, and the zero-one loss in 3.3. Note that one 
deci-sion remains better than another in Bayes or minimax sense if the entire loss 
function is increased by a constant or multiplied by a positive coefficient. Therefore,

	 •	 We can drop constant coefficients and shifts.

	 •	 We can only consider the non-negative losses.     

    One interesting finding is that, the posterior mean is the Bayes decision with respe-
ct to the squared-error loss, the posterior median is the Bayes decision with respect to 

θ (k, θ )
θ ∈ [0,1] θ

θ
π(θ ) ∼ Uniform(0,1)

θ

Varθ =: τ2 → ∞ θ τ2 → ∞
(μ, τ)

ℝ
π(θ ) ≡ 1∀θ ∈ ℝ

∫
∞

−∞
π(θ )dθ = ∫

∞

−∞
dθ = ∞

π(θ |x) ∼ f (x |θ )π(θ ) ∼ exp{(θX −
θ2

2 ) n
σ2 } ∼ exp{ −

(θ − X )2

2σ2 /n } ∼ N(X, σ2 /n)

θ

Θ ∫Θ
dπ(θ ) = ∞
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the absolute-error loss, and the posterior mode is the Bayes decision with respect to 
the zero-one loss. We start with the first one.


3.1 Squared-Error Loss

Definition: Squared-Error Loss Function 

	 The squared-error loss function is defined to be , where  is

	 the parameter and  is its estimator.

    The corresponding squared-error posterior risk is given by

	 ,

which can be interpreted as the posterior variance of  plus posterior bias squared. 
Here  is the posterior mean of .7

    The Bayes decision with respect to the squared-error loss is the one that minimizes 
the posterior risk which we shall write as

	 	 .

Therefore, the minimum of the Bayes risk is attained at


	 	 	 	 .


Summary:

	 The posterior mean of  is the Bayes decision with respect to the squared-error

	 loss.


3.2 Absolute-Error Loss

Definition: Absolute-Error Loss Function

	 The absolute-error loss function is defined to be , where  

	 is the parameter and  is its estimator.

    Unlike the squared-error loss function, the absolute-error loss function does not pe-
nalize as much for large deviations of the estimator  from the parameter . We now 
state and prove our main result in this subsection.

Theorem 3.1:

	 The posterior median is the Bayes decision with respect to the absolute-error 

	 loss.

Proof:

	 Consider , the median of , and , some decision, and compare their 

	 losses.

	 Case I: .

	 In this case, the difference of losses is given by

	 	 


	    .


	 Taking expected values with respect to the posterior distribution , we 	
	 obtain the difference of the posterior risks,


L(θ, δ ) := (θ − δ )2 θ
δ

ρ(π, δ |X ) = 𝔼θ((θ − δ )2 X) = 𝔼θ((θ − μX)2 X) + (μX − δ(X ))2

θ
μX := 𝔼(θ |X ) θ

ρ(π, δ |X ) = 𝔼θ((θ − δ )2 X) = δ2 − 2δ𝔼(θ |X ) + 𝔼(θ2 |X )

δBayes =
−2𝔼(θ |X )

2
= 𝔼(θ |X ) = μX

θ

L(θ, δ ) := |θ − δ | θ
δ

δ θ

M π(θ |X ) δ

δ < M

L(θ, δ ) − L(θ, M ) = |θ − δ | − |θ − M |

=
M − δ,  if θ ≥ M
a linear continuous function,  if δ ≤ θ ≤ M
−(M − δ ),  if θ ≤ δ

π(θ |X )
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	 	 	 	         .

	 Since  is defined to be the median of , one has

	 	 	 	 	 .

	 It follows that

	 	 	 	 	 .

	 Case II: 

	 Analogous to Case I.

	 	 	 	 	 	 	 	 	 	 	 	 	 

Summary:

	 The posterior median is the Bayes decision with respect to the absolute-error 

	 loss.


3.3 Zero-One Loss

  Generally, the zero-one loss function gives a penalty of 1 for any wrong decision 
and no penalty for the correct decision. This makes sense in hypothesis testing — 
Type I and Type II errors are penalized while correct acceptance and correct reject-
ions are not.

    In estimation, a zero-one loss can be defined as,

Definition: Zero-One Loss Function

	 The zero-one loss function is defined to be


	 	 	 	  .


    However, this only makes sense in discrete cases, when  with a non-zero pro-
bability. Then, in considering the Bayes decision under this loss function, we comp-
ute the posterior risk,


    .	 

Now, the Bayes rule should minimize this posterior risk. To that end, it maximizes 

. The Bayes rule is the point of maximum of the posterior distribution (pmf) 

. In fact, this is the posterior mode.

Summary:

	 Posterior mode is the Bayes decision with respect to the zero-one loss.

    In the continuous case, on the other hand, the probability of  is 0, so there is 
noting to maximize. For this reason, the 0-1 loss function is often defined as


	 	 ,


allowing the estimator  to differ from the paramter  by at most a small . The Bayes 
decision  in this case maximizes the probability , and it 
converges to the posterior mode as we send  to 0 (since  is chosen arbitrarily). This 
lead to a natural refinement, or we should call the generalized maximum likelihood 
estimator.

Definition: Generalized Maximum Likelihood Estimator

	 The generalized MLE of the parameter  is the posterior mode, the value of 


ρ(π, δ |X ) − ρ(π, M |X ) ≥ − (M − δ )ℙ(θ < M |X ) + (M − δ )ℙ(θ ≥ M |X )
= (M − δ )(ℙ(θ ≥ M |X ) − ℙ(θ < M |X ))

M π(θ |X )
ℙ(θ ≥ M |X ) ≥ ℙ(θ < M )

ρ(π, δ |X ) − ρ(π, M |X ) ≥ 0
δ ≥ M

□

L(θ, δ ) = I(θ ≠ δ ) = {1, if θ ≠ δ
0, if θ = δ

θ = δ

ρ(π, δ |X ) = 𝔼θ(I(θ ≠ δ ) X) = ℙ(θ ≠ δ |X ) = 1 − π(δ |X )

π(δ |X )
π(θ |X )

θ = δ

L(θ, δ ) = I( |θ − δ | > ε) = {1, if |θ − δ | > ε
0, if |θ − δ | ≤ ε

δ θ ε
δ ℙ(δ − ε ≤ θ ≤ δ + ε |X )

ε ε

θ θ
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	 that maximizes the pdf or pmf.


4. Bayesian Inference: Estimation, Hypothesis Testing, and Prediction

     By now we have obtained all the three components needed for the Bayesian decis-
ion making. We collected data, and we determine the prior distribution and the loss 
function. Then, combining the data and the prior, we obtained the posterior distrib-
ution. All the knowledge about the unknown parameter is now included in the 
posterior, and that is what we shall see in this section.

    In 4.1 we introduce the unbiasedness and the variance of the Bayesian estimation, 
then in 4.2 we discuss the Bayesian interval estimation, where we talk about the HPD 
region in 4.3 we offer a treatment on the Bayesian hypothesis testing, we introduce 
the Bayesian prediction problem in 4.4 to close this section.


4.1 Bayesian Estimation and Precision Evaluation

   As we have seen in the last section, the Bayesian estimator may take in different 
forms. The most common one among them is of course the posterior mean, which is 
given by


	 


Posterior mean is the conditional expectation of  given data . In abstract terms, the 
Bayes estimator  is what we expect  to be, after we observed a sample.

   A natural question to ask is that “how accurate is such an estimator?” Among all 
estimators,  has the lowest squared-error posterior risk


	 	 	 	 	 	 


and also the lowest Bayes risk , where this double expectation is taken 
over the joint distribution of  and .

    For the Bayes estimator , posterior risk equals posterior variance, which sh-
ows variability of  around .

    A parameter  is estimated by an estimator . How accurate is this decision? A 
frequentist measure of precision is the mean-squared error (MSE) given by

       .

Here all the expectations are taken in the frenquentist way, i.e. they integrate over all 
samples of , given a fixed parameter .

    Following from the Bayesian appraoch, the same expectations are taken with resp-
ect to the posterior distribution of , given a fixed, already observed sample . This is 
called posterior variance of estimator ,

	 	 	 	 	


	 	 	 	 	 

	 	 	 	 	 ,


̂θBayes := 𝔼(θ |X ) =
∑θ θπ(θ |X ) =

∑ θf (X |θ)π(θ)

∑ f (X |θ)π(θ)
,  if θ is discrete

∫
θ

θπ(θ |X )dθ = ∫ θf (X |θ)π(θ)dθ
∫ f (X |θ)π(θ)dθ

,  if θ is continuous

θ X
̂θBayes θ

̂θBayes = 𝔼(θ |X )

𝔼(( ̂θ − θ )2 X)
𝔼𝔼( ̂θ − θ )2

X θ
̂θBayes

θ ̂θBayes
θ δ = ̂θ

MSE(δ ) := 𝔼X
θ (δ − θ )2 = 𝔼θ(δ − 𝔼θδ )2 + (𝔼θδ − θ )2 = Var(δ ) + (Bias(δ ))2

X θ

θ X
δ

VX(δ ) := 𝔼π(θ|X )
X (δ − θ )2

= 𝔼((θ − μX)2 X) + (δ − μX)2

= τ2
X + (δ − μX)2
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where  is the mean and  is the variance of the posterior 
distribution .

    There are two variance components in the posterior variance of . One is the poste-
rior variance of the parameter , and the other is the squared deviation of estimator  
from the posterior mean . So, the total variability of our estimation consists of the 
variability of  around its mean and the distance between that posterior mean and our 
estimator, this is very reasonable.

Definition: Posterior Variance

	  or , the posterior variance of the parameter ,

	 variance of the posterior distribution .

	 , posterior variance of the estimator .


4.2 Bayesian Credible Sets

    Bayesian and frequentist approaches to the confidence estimation are quite differe-
nt. In Bayesian analysis, having a posterior distribution of , we no longer have to 
explain the confidence level  in terms of a long run of samples. Instead, we 
can give an interval  or a set  that has a posterior probability  and state 
that the parameter  belongs to this set with probability . Such a statement was 
impossible before we considered prior and posterior distributions. This set is somet-
imes called a  100% credible set.

Definition:  100% Credible Set

	 A set  is said to be a  100% credible set for the parameter  if the 

	 posterior probability for  to belong to  is . That is,


	 . Note that such a set may not be 


	 unique. 

   Hyndman mentioned in [8] a region possessing the minimized size but with highest 
probability. This is the notion of Highest Density Regions (HDR), and in Bayesian 
approach we call it the highest posterior density regions (HPD), or sometimes HPD 
sets.

Definition: Highest Density Regions (HDR)

	 •	 The region covering the sample space for a given probability , 

	 	 should have the smallest possible volume.

	 •	 Every point inside the region should have probability density at least as 	
	 	 large as every point outside the region.

	 Then such a region is called the highest density region (HDR).

    One of the most distinctive property of HDR’s is that of all possible regions of pro-
bability coverage, the HDR has the smallest region possible in the sample space. 
“Smallest” mean with respect to some simple measure such as the usual Lebesgue 
measure; in the one-dimensional continuous case that would be the shortest interval, 
and in the two-dimensional case that would be the smallest area of the surface.


μX := 𝔼(θ |X ) τ2
X := Var(θ |X )

π(θ |X )
δ

θ δ
μX

θ

Var(θ |X ) τ2
X := 𝔼((θ − μX) X) θ

θ
VX(δ ) := τ2

X + (δ − τX)2 δ

θ
(1 − α)

[a, b] C (1 − α)
θ (1 − α)

(1 − α)
(1 − α)
C (1 − α) θ

θ C (1 − α)

ℙ(θ ∈ C |X ) = ∫C
π(θ |X )dθ = 1 − α

1 − α
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   Similar to this idea, minimizing the length (resp. area) of the set  among all the
 100% credible sets, we just have to include all the points  with a high 

posterior density , namely, 

Definition: Highest Posterior Density (HPD)

	 The HPD is the set of the form  for some constants .

  One very useful example is the N  posterior distribution of , the  
100% HPD set is given by

	 	 	           .	 	 (4.1)

    In fact, all the HPD are Bayesian decitions under the loss function given by	 

	 	 	 	 	 ,	 	 	 	 (4.2)

where  is the size, usually the length of , and  is a coefficient.


4.3 Bayesian Hypothesis Testing

    Bayesian hypothesis testing is very easy to interpret. We can compute the prior and 
the posterior probabilities for the hypothesis  and alternative  to be true and 
decide from there which on to accpet or to reject.

    Computing such probabilities was not possible without prior and posterior distribu-
tions of the parameter . In non-Bayesian statistics,  is not random, thus  and  
were either true (with probability 1) or false (with probability 1).

    For the Bayesian tests, on the other hand, in order for  and  to have meaning-
ful, non-zero probabilities, they often represent disjoint sets of parameter values, 
namely,

	 	 	 	  versus .	 	 	 (4.3)

(Which makes sense because exact equality  is unlikely to hold anyway, and in 
practice it is understood as ).

   Comparing poseterior probabilities of  and  yields  and , 
we decide whether  is large enough to present significant evidence and to 
reject the null hypothesis. One can again compare it with the  such as 0.90, 
0.95, and 0.99, or state the result in terms of likelihoods, “the null hypothesis is this 
much likely to be true”.

    Often one can anticipate the consequences of Type I and Type II errors in hypothe-
sis testing and assign a loss  associated with each possible error. Here  is the 
parameter, and  is our action, the decision on whether we accept or reject the null 
hypothesis.

    Each decision then has its posterior risk , defined as the expected loss comput-
ed under the posterior distribution. The action with the lower posterior risk is our 
Bayes decision.

    Suppose that the Type I error causes the loss given by

	 	 ,

and the Type II error causes the loss given by

	 	 .

That is the zero-  loss function (for ), and it generalizes the zero-one loss.

    Posterior risks of each possible action are then computed as


C
(1 − α) θ

π(θ |X )

C := {θ |π(θ |X ) ≥ c} c
(μX, τX) θ (1 − α)

μx ± zα/2τx = [μx − zα/2τx, μx + zα/2τx]

L(θ, C ) = λ |C | + Iθ∉C
|C | C λ

H0 HA

θ θ H0 HA

H0 HA

H0 : θ ∈ Θ0 HA : θ ∈ Θ1
θ = θ0

θ ≈ θ0
H0 HA ℙ(Θ0 |X ) ℙ(Θ1 |X )

ℙ(Θ1 |X )
(1 − α)

L(θ, a) θ
a

ρ(a)

w0 = Loss(Type I error) = L(θ,  reject H0),  for θ ∈ Θ0

w1 = Loss(Type II error) = L(θ,  accept H0),  for θ ∈ Θ1
wi i = 1, or 2
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	 	 	 	 ,

	 	 	 	 .

Now we can determine the Bayesian decision. If , the 
Bayesian action is to accept , if , the Bayesian action is 
to reject .

    Following this algorithm, the Bayesian approach to hypothesis testing naturally ge-
neralizes to the case of more than two hypotheses. Instead of classifying the unknown 
parameters into eitehr  (accept ) or  (reject ), it can be classified into one of 
disjoint subsets of , i.e. for a partition  of , 	 	 	 

	 	 	 	 .	 	 	 	 (4.4)

A loss function will then include , a penalty for accepting hypothesis  
whereas hypothesis  is true.

    Similarly, we can include an action of making no decision and concluding that the-
re is not enough information for or against either hypothesis. This also carries a pre-
determined penalty , and sometimes “no action” may be the optimal comparing 
with the penalty of accepting a wrong hypothesis; note this happens mostly when we 
have no access in gaining further information, sometimes it may happen that even 
with enough details, we arrive at doing nothing all the same.

    A popular tool for the Bayesian hypothesis testing is Bayes factors.

Definition: Bayesian Factor


	 The Bayes factor is defined to be , the posterior odds


	 ratio divided by the prior odds ratio.

    Often the Bayes factors are quite stable or insensitive to the choice of prior probab-
ilities  and .

    How do we use the Bayes factors for hypothesis testing? Given the Bayes factor , 
anyone multiplies it by the prior odds ratio  and obtains the posterior 

odds ratio  and use it decide  or .


4.4 Prediction

    We are going to predict a random variable  that is somehow related to the unkno-
wn parameter  to close this section. We first formulate the problem.

Bayesian Prediction Problem:

	 A sample  is observed from . Unknown parameter 

	 has a prior distribution . Random variable  has distribution given by

	 . We wish to find the predictive density of , which is , the 

	 distribution of  given the observed .

    As always in the Bayesian analysis, the solution to the Bayesian prediction proble-
m is based on the posterior distirbution of .

    First, combine the posterior of  with the distribution of  given  to obtain the joi-
nt distribution of  and ,


ρ(π,  reject H0 |X ) = w0π(Θ0 |X )
ρ(π,  accept H0 |X ) = w1(π(Θ1 |X )

w0π(Θ1 |X ) ≤ w1π(Θ0 |X )
H0 w1π(Θ1 |X ) ≤ w0π(Θ0 |X )

H0

Θ0 H0 Θ1 H0
Θ {Θ1, ⋯, Θn} Θ

H1 : θ ∈ Θ1, ⋯, Hn : θ ∈ Θn
L(θ, δ ) = wij Hj

Hi

w0j

B :=
π(Θ0 |X )/π(Θ1 |X )

π(Θ0)/π(Θ1)

π(Θ0) π(Θ1)
B

π(Θ0)/π(Θ1)

π(Θ0 |X )/π(Θ1 |X ) = B( π(Θ0)
π(Θ1)

) H0 H1

Z
θ

X = (X1, ⋯, Xn) f (X |θ ) θ
π(θ ) Z

g(z |θ ) Z p(z |X )
Z X

θ
θ Z θ

Z θ
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	 	 	 	 .

Then integrate the joint density over  to obtain the marginal distribution of ,


	 	 	 .	 	 (4.5)


This is the prediction density of . This integral also represents the expectation 
, taken with respect to the posterior distribution of , i.e.


	 	 	 	 	 (4.5).

If  and  are, unfortunately, not independent, given , then the density of  is given 
by .

    


5. Validity for Bayesian Approach — A Short Discussion

    A probability formula was used by Bayes ([10]) to combine a mathematical prior 
with a model plus data; it gave just a mathematical posterior, with no consequent 
objective properties. An analogy provided by Bayes did have a real and descriptive 
prior, but it was not part of the problem actually being examined.

   A familiar Bayes example uses a special model, a location model; and the resulting 
intervals have attractive properties, as viewed by many in statistics.

   Fisher ([11]) and Neyman ([12]) defined confidence. And the Bayes intervals in the 
location model case are seen to satisfy the confidence derivation, thus providing an 
explanation for the attractive properties.

    In [9], D.A.S. Fraser showed that the proportion of true statements in the Bayes ca-
se depends critically on the presence of linearity in the model; and with departure 
from this linearity the Bayes approach can be a poor approximation and be seriously 
misleading. Beyesian integration of weighted likelihood thus provides a first-order 
linear approximation to confidence, but without linearity can give substantially 
incorrect results.

   The only source of variation available to support a Bayes posterior probability cal-
culation is that provided by the model, which is what confidence uses.

    Lindely ([13]) examined the probability formula argument and the confidence arg-
ument and found that they generated the same result only in the Bayes location model 
case; he then judged the confidence argument to be wrong.

    If the model, however, is not location and, thus, the variable is not linear with resp-
ect to the parameter, then a Bayes interval can produce correct answers at a rate quite 
different from that claimed by the Bayes probability calculation; thus, the Bayes 
posterior may be an unreliable presentation, an unreliable approximation to confiden-
ce, and can thus be judged to be wrong.

   The failure to make true assertions with a promised reliability can be extreme with 
the Bayes use of mathematical priors (Stainforth et al., [14]; Heinrich, [15]).

    The claim of a probability status for a statement that can fail to be approximate co-
nfidence is mis-representation. In other areas of science much false claims would be 
treated seriously.


g(z, θ |X ) = g(z |θ )π(θ |X )
θ Z

p(z |X ) = ∫ g(z, θ |X )dθ = ∫ g(z |θ )π(θ |X )dθ

Z
𝔼(g(z |θ ) X) θ

𝔼(g(z |θ ) X) =
X Z θ Z
g(z |θ, X )
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    Using weighted likelihood, however, can be a fruitful way to explore the informat-
ion available from just a likelihood function. But the failure to have even a confiden-
ce interpretation deserves more than just gentle caution.

     A personal or a subjective or an elicited prior may record useful background to re-
corded in parallel with a confidence assessment. But to use them to do the analysis 
and just get approximate or biased confidence seem to overextend the excitement of 
exploratory procedures.


6. Bayesian Convolution

   A general convolution theorem within a Bayesian framework is presented in this 
section as a result of [16]. Consider estimation of the Euclidean parameter  by an 
estimator  within a parametric model. Let  be a prior distribution for  and define 

 as the -average of the distribution  under the parameter . In some cases, 
for any estimator  the distribution  can be written as a convolution  
with  a distribution depending only on the model, i.e. on  and the distribution 
under  of the observations. In such a Bayesian convolution result optimal estimators 
exist, satisfying .   

    Before we proceed, we introduce some basic results from Fourier analysis. We ass-
ume the readers are already familiar with the concepts, so we shall not perform the 
proofs of these results, for those readers who are not familiar with this topic may 
concult [17].

   If  is an integrable function given on an interval  such that , 
then the th Fourier coefficient of  is defined by


	 	 	 	 , .		 	 (6.1)


The Fourier series of  is given formally by


	 	 	 	 	     .	 	 	 	 (6.2)


Whenever we use  we refer to the th Fourier coefficients of , denoted by


	 	 	 	 	 .	 	 	 	 (6.3)


to indicate that the series on the RHS is the Fourier series of .

    Given two -periodic integrable functions  and  on , we define their convolut-
ion, denoted by , on , by


	 	 	         .	 	 	 (6.4)


Also, since the functions are assumed to be periodic, we can rewrite it as


	 	 	         .	 	 	 (6.5)


Theorem 6.1: Properties of Convolution

	 Suppose that , , and  are 2 -periodic integrable functions. Then

	 (i)	 .


θ
T W θ

G W T − θ θ
T G G = K ⋆ L

K W
θ

G = K

f [a, b] ⊆ ℝ b − a = L
n f

̂f (n) :=
1
L ∫

b

a
f (x)e−2πinx/Ld x n ∈ ℕ

f
+∞

∑
n=−∞

̂f (n)e2πinx/L

an n f

f (x) ∼
+∞

∑
n=−∞

ane2πinx/L

f
2π f g ℝ

f ⋆ g [−π, π]

( f ⋆ g)(x) =
1

2π ∫
π

−π
f (y)g(x − y)dy

( f ⋆ g)(x) =
1

2π ∫
π

−π
f (x − y)g(y)dy

f g h π
f ⋆ (g + h) = ( f ⋆ g) + ( f ⋆ h)
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	 (ii)	  .

	 (iii)	 .

	 (iv)	 .

	 (v)	  is continuous.

	 (vi)	 .

    Suppose that we have a random element , on a meas-
urable space , where  is the -algebra generated by the subsets of . On the 
basis of this sample we want to estimate the parameter . In a Bayesian set-up we 
choose a weight function or prior  on , putting its mass in , and we consider the 
average distribution function


	 	 	 , ,	 	 	 (6.6)


where	  is an estimator of .

   The following observation tells us that for general dimension  the average distrib-
ution  is the convolution of a distribution, which depends on  and , but which 
does not depend on the estimator , and any other distributions.

    Let  be a measurable function such that  and  are independ-
ent, where . Then  and  are also independent. Since 

 could be rewritten as

	 	 	 ,

we may conclude that  is a convolution of the distribution of 

, i.e. , which indeed does not depend on . 
Consequently, there exists a distribution  such that . We will call this 
identity the Bayes Convolution Theorem. Furthermore, we will call  the 
best estimator in the sense , since this choice makes  degenerate at 0. We 
summarize these into the following result.

Theorem 6.2: Bayes Convolution Theorem

	 Let  be a random variable taking values in  and let the conditional 

	 distribution of  given  be  on . If the measurable function

	  is such that  and  are independent, then the distribution

	  of  is the convolution of the distribution 

	  and some other distribution , i.e. .

    If such a  exists, the best estimator with respect to the Bayes risk is , for 

 may depend on the loss function. Indeed,

	 	 	 	 	 	 (6.7)


holds for all convex loss functions  in view of the Conditional Jensen inequality.

    If for  the distribution of  is strongly unimodal, then (6.7) holds for 
all loss functions which are decreasing-increasing, and again the best estimator is 
determined by  and does not depend on the loss function apart from a shift by .  
This may be seen as follows. First, note that the convolution with  strongly 
unimodal implies that  is at least as spread out as , i.e. that the quantiles of  are 

(cf ) ⋆ g = c( f ⋆ g) = f ⋆ (cg) ∀c ∈ ℂ
f ⋆ g = g ⋆ f
( f ⋆ g) ⋆ h = f ⋆ (g ⋆ h)
f ⋆ g

̂f ⋆ g (n) = ̂f (n) ̂g(n)
X ∼ 𝒫 := {ℙθ |θ ∈ Θ ⊆ ℝk}

(X, 𝒜) 𝒜 σ X
θ

W ℝk Θ

G(y) = ∫ℝk
ℙθ(T − θ ≤ y)dW(θ ) y ∈ ℝk

T := t(X ) θ
k

G 𝒫 W
T

ψ : X → ℝk ψ (X ) − ϑ X
ϑ ∼ W ψ (X ) − ϑ t(X ) − ψ (X )

T − ϑ
T − ϑ = t(X ) − ϑ = {ψ (X ) − ϑ} + {t(X ) − ψ (X )}

G( ⋅ ) = ℙ(T − ϑ ≤ ⋅ )
ϑ(X ) − ϑ K( ⋅ ) = ℙ(ϑ(X ) − ϑ ≤ ⋅ ) T

L G = K ⋆ L
T = ψ (X )

G = K ⋆ L L

ϑ Θ ⊆ ℝk

X ϑ = θ ℙθ (X, 𝒜)
ψ : X → ℝk ψ (X ) − ϑ X
G( ⋅ ) = ℙ(T − ϑ ≤ ⋅ ) T − ϑ
K( ⋅ ) = ℙ(ψ (X ) − ϑ ≤ ⋅ ) L G = K ⋆ L

ψ ψ (X ) + c
c ∈ ℝk

inf
T

𝔼L(T − ϑ) = inf
c

𝔼L(ψ (X ) − ϑ + c)

L
k = 1 ψ (X ) − ϑ

ψ c
K

G K G
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at least as far apart as those of . Subsequently, if there exists a  with 
 then this spread property


	 	 


	 	 	        


	 	 	        .	 	 	 	 (6.8)

Finally, note that (6.8) may be adapted to the case where  is not a quantile of .


K u0 ∈ [0,1]
G−1(u0) = 0

𝔼L(T − ϑ) = ∫
1

0
L(G−1(u) − G−1(u0))du

≥ ∫
1

0
L(K−1(u) − K−1(u0))du

= 𝔼L(ψ (X ) − ϑ − K−1(u0))
0 G
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Review on Elmentary Linear Regression

Tianyu Zhang 
5

Abstract:

In this short review article we present both the univariate linear regression and 
bivariate linear regression, along with the properties and methods in evaluation. 

Special cases of inferences are also provided in the fourth section.


1. Introduction

   If we are given the joint distribution of two random variables  and , and  is 
known to take on the value , the basic problem of bivariate regression is that of 
determining the conditional mean , i.e. the “average” value of  for the given 
value of . The term “regression”, as it is used here, dates back to Francis Galton, 
who used it to indicate certain relationships in the theory of heredity. In problems 
involving more than two random variables, i.e. the multiple regression, we are conce-
rned with quantities cuh as , the mean of  for given values of  and .

Definition: Bivariate Regression

	 If  is the value of the joint density of two random variables  and , the 	
	 bivariate regression consisits of determining the conditional density of , given

	 , and then evaluating the integral


	 	 	 	 ,


	 where  is the conditional distribution. The resulting equation is called 

	 the regression equation of  on . Alternatively, the regression equation of  

	 on  is given by


	 	 	 	 .


Example 1.1:

	 If  and  have the multinomial distribution


	 	 	 	 


	 for  and  with . Find the regression 

	 equation for  on .

Solution:

	 The marginal distribution of  is given by


	 	 	 


	 	 	        


	 for , which we recognize as a bimomial distribution with the 


X Y X
x

μY|x Y
X

μZ|x,y Z X Y

f (x, y) X Y
Y

X = x

μY|x = 𝔼(Y |x) = ∫
∞

−∞
y ⋅ w(y |x)dy

w(y |x)
Y X X

Y

μX|y = 𝔼(X |y) = ∫
∞

−∞
x ⋅ f (x |y)dy

X Y

f (x, y) = ( n
x, y, n − x − y) ⋅ θx

1θy
2(1 − θ1 − θ2)n−x−y

x = 0,1,⋯, n y = 0,1,⋯, n x + y ≤ n
Y X

X

g(x) =
n−x

∑
y=0

( n
x, y, n − x − y) ⋅ θx

1θy
2(1 − θ1 − θ2)n−x−y

= (n
x)θx

1(1 − θ1)n−x

x = 0,1,⋯, n
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	 parameters  and . Therefore, one has


	 	 	 


	 for , rewriting the formula yields


	 	 	 .


	 We find by inspection that the conditional distribution of  given  is a


	 binomial distribution with parameters  and , so the regression


	 equation of  on  is .	 	 	 	 	 	 ||


    An important feature of Example 1.1 is that the regression equation is linear; i.e. it 
is of the form

	 	 	 	 	 	 ,

where  and  are constants, called the regression coefficients.

   We now introduce a model in which one variable  affect another one  and the 
relation is assumed to be linear up to a random vector. That is to say, we have  
observations of variables  and :  and we assume that 
they satisfy the folloing model:

	 	 	 	 	      .	 	 	 	 (1.1)

Here  and  are unknown parameters that we want to estimate. The quantities 
for  are known as parameters, which are called explanatory variables, or 
independent random variables as we do in high school algebra. The variables  are 
error terms. They are responsible for the randomness of the model. They are always 
assumed to have zero mean: . They are also often but not always assumed to 
have unknown variance  that does not depend on the index , i.e. . Even 
more restrictively, they are often assumed to be normally distributed .

    The values  are random since they are functions of  (We could write them  fol-
lowing our usual convention about the random variables.) They are usually called the 
response variables or dependent random variabels as we did in high school algebra. 
Therefore,  are  independent observations of the response variable .

   In fact, (1.1) is called the regression model. It is often written in a short form that 
omits the subscript index .

	 	 	 	 	 .	 	 	 	 	 (1.2)

    A general linear regression model includes more than one explanatory variable:

	 	 	         .	 	 (1.3)

Or in short the notation:

	 	 	 	    .	 	 	 (1.4)

   This model is very flexible and can be used to model non-linear dependencies as 
well. For example, if we believe  depends on  as a polynomial of degree 3, we can 

n θ1

w(y |x) =
f (x, y)
g(x)

=
(n − x

y )θy
2(1 − θ1 − θ2)n−x−y

(1 − θ1)n−x

y = 0,1,⋯, n − x

w(y |x) = (n − x
y )( θ2

1 − θ1
)

y

( 1 − θ1 − θ2

1 − θ1
)

n−x−y

Y X = x

n − x
θ1

1 − θ1

Y X μY|x =
(n − x)θ2

1 − θ1

μY|x = α + βx
α β

X Y
n

X Y (x1, y1), (x2, y2), ⋯, (xn, yn)

yi = β0 + βixi + εi
β0 β1 xi,

i = 1,⋯, n
εi

𝔼εi = 0
σ2 i 𝔼ϵi = σ2

εi ∼ N(0,σ2)
yi εi Yi

y1, ⋯, yn n Y

i
y = β0 + β1x + ε

yi = β0 + β1x1
i + β2x2

i + ⋯ + βnxb
i + εi

Y = β0 + β1x1 + ⋯ + βnxn + ε

Y X
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add explanatory variables that corresponds to squares and cubes of . Then we only 
need to estimate the regression model given by

	 	 	 	 .	 	 	 (1.5)

In some other cases we can only consider a transformation of random variable  so as 
to get a more suitable distribution for random error terms .

    As usual, we aim to estimate the estimators  and test some hypothesis cor-
repsonding to their values. There is another goal which we have not seen before. We 
might be interested in predicting the response  for some other values of . In 
addition we might be intereseted in having some kinds of confidence interval for our 
prediction.


2. Simple Linear Regression

    In this subsection we shall introduce the linera regression model for one variable, 
namely , which is a polynomial of degree .


2.1 Least Squares Estimator

   Here we look at the simple linear regression given by , although 
the methods are also applicable to the general linear regression models.

    In order to estimate the parameters  and  we could use the MLE by writing the 
likelihood function of the random quantities  and maximizing it with respect to both 

 and . It turns out that for normally distributed  this method gives the 
same estimates as a simple method describes below.

   This simple method aims to minimize the deviation of the fitted values given by

, from the observed values of , by a choice of the estimates  and . 
Specifically, the method of least squres aims to minimize the sum of squared Errors 
(SSE), which is defined by

Definition: Sum of Squared Errors (SSE)


	 SSE , which is minimized by a choice 


	 of  and .

    As usual, this minimization can be done by using the First Order Conditions. The 
first-order condition is obtained by setting the derivative (or gradient) of the log-
likelihood function equal to zero.

Definition: Ordinary Least Squared Estimators

	 The values of  and  which solve the SSE are called the ordinary Least 

	 Square estimators of the linear regression model.

   The estimators are called ordinary LS estimators, because sometimes in the definit-
ion of SSE the terms have different weights. In this case the solution is called the 
weighted least squared estimators.

    It is a bit simpler to do it for a modified model, in which the explanatory variables 
are centered by subtractiing their mean:

	 	 	 	 	 .	 	 	 	 (2.1)


X

Y = β0 + β1x1 + β2x2 + β3x3 + ε
Y

ε
β0, ⋯, βn

Y x

Y = β0 + β1x1 + ⋯ + βnxn n

y = β0 + β1x + ε

β0 β1
yi

β0 β1 ε ∼ N(0,σ2)

̂yi = ̂β0 + ̂β1xi yi
̂β0

̂β1

:=
n

∑
i=1

(yi − ̂yi)2 =
n

∑
i=1

(yi − ̂β0 − ̂β1xi)2

̂β0
̂β1

̂β0
̂β1

yi = α0 + (xi − x ) + εi
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Clearly, this model is equivalent to the original simple regression with . 
It is also clear that the LS estimators in these regression problems are related by the 
similar equations .

Theorem 2.1:

	 The least squares estimators are given by the following formulas:


	 , , where  and .


	 This implies that for our original problem, we have also the following least

	 squares estimator for the parameter :

	 	 	 	 	 .

Proof:

	 Step I: .

	 Taking the partial derivative on SSE with respect to  yields


	 	 


	 	 	 .


	 Setting this to 0 gives us


	 	 .


	 Since by (5.6) we have centered it hence the red part vanishes and this gives us


	 	 	 	 	 .


	 Step II: .


	 Similarly, taking the partial derivative on SSE with respect to  yields the 

	 result, we leave the proof as an exercise.	 

	 	 	 	 	 	 	 	 	 	 	 	 	 


2.2 Properties of LS Estimators

  We aim to calculate the expectation and the variance of LS estimators  and . 
This information is important for calculation of the bias of the estimators and for 
construction of confidence interval.

   We start with , which is typically more useful in practice since  measures the 
effect of  on .

Theorem 2.2:

	 Assume that the error terms in the simple linear regression model 

	  have the properties  and Var . Then

	 (i)	 .

	 (ii)	 Var .


β0 = α0 − β1x

̂β0 = α̂0 − ̂β1x

α̂0 = y ̂β1 =
Sxy

Sxx
Sxy =

n

∑
i=1

(xi − x )(yi − y) Sxx =
n

∑
i=1

(xi − x )2

β0
̂β0 = α̂0 − ̂β1x = y − ̂β1x

α̂0 = y
α0

∂SSE
∂α̂0

=
∂{∑n

i=1 [yi − (α̂0 + ̂β1(xi − x ))]2}
∂α̂0

= 2
n

∑
i=1

[yi − (α̂0 + ̂β1(xi − x ))] ⋅ (−1)

0 =
n

∑
i=1

[yi − (α̂0 + ̂β1(xi − x ))] =
n

∑
i=1

yi − nα̂0 + ̂β1

n

∑
i=1

(xi − x )

0 =
n

∑
i=1

yi − nα̂0 ⇒ α̂0 = y

̂β1 =
Sxy

Sxx
̂β1

□

̂β0
̂β1

̂β1 β1
X Y

yi = β0 + β1xi + εi 𝔼εi = 0 εi = σ2

𝔼 ̂β1 = β1
̂β1 = σ2 /Sxx
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	 If, in addition,  are normal, then  is also normal.

    Before proving this theorem, let us derive some consequences. First, we see that  

is an unbiased estimator of . Second, if  as , then 

 is a consistent estimator of . The condition  as  means that as 
the samlpe grows we continue to observe sufficient variation in explanatory variables 

.

    This consequence may look surprising since it states that the larger the deviation 
between  and  is, the better performance of  is guaranteed. One good interpreta-
tion for this anti-intuitive result may be that, loosely speaking, consider  are from 
the probability space  and  are from  along with a mapp-
ing , then the “larger” the space  is, i.e. the more values we can take 
for , the more possible we can find a  to achieve our requirement, or, equivalently, 
the more confident we are at this . Now we proceed to the proof.

Proof of Theorem 2.2:

	 It is convenient to work with the modified form (2.1), i.e. 

	 	 	 	 	 .	 	 	 

	 Note that , , and  are not random. One has

	 	 	 	 

	 	 	       	 (  is not random)

	 	 	       .	 	 (sum of variance is always 0)

	 Step I: .


	 	 		 (by Theorem 2.1)


	 	       


	 	       	 (by (2.1))


	 	       


	 	       	 (sum of variance is always 0)


	 	       	 (by the definition of )

	 Step II: Var .

	 Similarly, we calculate the variance, it is helpful to denote .

	 One has, taking the variance operation with respect to 


	 	 	 	 (by Theorem 2.1)


εi
̂β1

̂β1

β1 Sxx =
n

∑
i=1

(xi − x )2 → ∞ n → ∞

̂β1 β1 Sxx → ∞ n → ∞

xi

x xi
̂β1

xi
(ΩX, 𝒮X, ℙX) yi (ΩY, 𝒮Y, ℙY)

f : ΩX → ΩY ΩX
x ̂β1

̂β1

yi = α0 + (xi − x ) + εi
xi x y

Sxy := ∑ (xi − x )(yi − y)
= ∑ (xi − x )yi − y∑ (xi − x ) y
= ∑ (xi − x )yi

𝔼 ̂β1 = β1

𝔼 ̂β1 = 𝔼
Sxy

Sxx

=
1

Sxx ∑ (xi − x )𝔼yi

=
1

Sxx ∑ (xi − x )(α0 + β1(xi − x ))
=

1
Sxx

α0 ∑ (xi − x ) + ∑
1

Sxx
β1 ∑ (xi − x )(xi − x )

= ∑
1

Sxx
β1 ∑ (xi − x )(xi − x )

= β1 Sxx
̂β1 = σ2 /Sxx

Varyi = Varεi = σ2

̂β1

Var ̂β1 = Var
Sxy

Sxx
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    	 	          	 	 (definition of  and )


	 	          .

	 Step III:  normal   normal.

	 Finally, if  are normal, then  are also normal. Note that  is a weighted sum

	 of  and the coefficients in this sum are non-random. We know that this 

	 implies that the sum itself is also normal.

	 	 	 	 	 	 	 	 	 	 	 	 	 

    In addition, we need to point out that the variance of  in Theorem 2.2, defined as 

, is necessarily to be finite. For other estimators we have the similar results.

Theorem 2.3:

	 Assume that the error terms in the simple linear regression model 	 

	  has the property that  and Var .

	 Then,

	 (i)	 .

	 (ii)	 .

	 (iii)	 Cov .

	 If, in addition,  is normal, then  is also normal.

Proof:

	 (i):

	 For the expectation, one has

	 	     	 	 	 	 	 (Theorem 2.1)


	 	 	 		 	 	 (Definition)


	 	 	 	 ( )


	 	 	 .		 	 	 	 (sum of variance is always 0)

	 (ii):

	 For the variance, simple calculation yields

	 	  Var 	 	 (Theorem 2.1)


	 	 	 	 (Definition and property of Var)


	 	 	 	 	 (Variance provided by ’s)


	 	 	 .

	 (iii):

	 Finally, if  are normal, then  are also normal, and since  is the average of 

	 ,  is also normal.

	 	 	 	 	 	 	 	 	 	 	 	 	 


=
1

S2
xx ∑ (xi − x )2Varyi

=
1

S2
xx

Sxxσ2 Sxx Varyi = σ2

= σ2 /Sxx
εi ⇒ ̂β1

εi yi
̂β1

yi

□
εi

σ2

yi = α0 + β1(xi − x ) + εi 𝔼εi = 0 εi = σ2

𝔼α̂0 = α0
Varα̂0 = σ2 /n

(α̂0, ̂β1) = 0
εi α̂0

𝔼α̂0 = y

=
1
n ∑ 𝔼yi

=
1
n ∑ (α0 + β1(xi − x )) 𝔼εi = 0

= α0

α̂0 = Vary

=
1
n2 ∑ Varyi

=
1
n2

nσ2 εi

= σ2 /n

εi yi α̂0
yi α̂0

□
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    Therefore,  is an unbiased and consistent estimator of . Since  
and both  and  are unbiased and consistent estimators, we can conclude the same 
result for .

Theorem 2.4:

	 Assume that the error terms of the simple linear regression model 

	  has the property that  and . Then

	 (i)	 .


	 (ii)	 Var .


	 (iii)	 Cov .


	 In addition, if  are normal, then  is also normal.

    We state one last result to conclude this subsection.

Theorem 2.5:


	  is an unbiased 


	 estimator of . If the error terms are normal, then  is independent from ,

	 , and  and  has the  distribution with  degrees of 

	 freedom.


    The reason we define  is that as a consequence of Theorem 2.4 (ii) 

we see that the original definition of  as an estimator of  is not appropriate since 
 are no longer identically distributed. The fact that we have  in the denomi-

nator instead of  could be interpreted as we are now treating two parameters 
instead of one and so lost two degress of freedom.

    We now summarize the properties of the Least-Squares estimators for simple linear 
regression to close this subsection.

Properties of LS Estimators:

	 (1)	 The estimators  and  are unbiased, i.e.  for .


	 (2)	 , where .


	 (3)	 , where .


	 (4)	 Cov , where .


	 (5)	 An unbiased estimator of  is , where 


	 	 and .

If, in addition, the , for  are normally distributed.

	 (6)	 Both  and  are normally distributed.


α̂0 α0
̂β0 = α̂0 − ̂β1x

α̂0
̂β1

̂β0

yi = α0 + β1(xi − x ) + εi 𝔼εi = 0 Varεi = σ2

𝔼 ̂β0 = β0

̂β0 = σ2( 1
n

+
x2

Sxx
)

( ̂β0, ̂β1) = σ2( x
Sxx

)
εi

̂β0

̂σ2 :=
1

n − 1
SSE ≡

1
n − 2

n

∑
i=1

(yi − ̂yi)2 ≡
n

∑
i=1

(yi − ̂β0 − ̂β1xi)2

σ2 ̂σ2 ̂β1
α̂0

̂β0 (n − 2) ̂σ2 /σ2 χ2 n − 2

̂σ2 =
1

n − 1
SSE

S2 σ2

yi n − 2
n − 1

̂β0
̂β1 𝔼 ̂βi = βi i = 0,1

Var ̂β0 = c00σ2 c00 :=
Σxi

nSxx

Var ̂β1 = c11σ2 c11 =
1

Sxx

( ̂β0, ̂β1) = c01σ2 c01 =
−x
Sxx

σ2 S2 =
SSE

(n − 2)
SSE := Syy − ̂β1Sxy

Syy := ∑ (yi − y)2

εI i = 1,2,⋯, n
̂β0

̂β1
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	 (7)	 The random variable  has a  distribution with degree of 


	 	 freedom .

	 (8)	 The statistic  is independent of both  and .


2.3 Confidence Intervals and Hypothesis Tests for Coefficients

   Once we know the variances of the parameters, it is easy to construct the confide-
nce intervals. The procedure is essentially the same as what we did when we estima-
te the mean of a sample.

    For example, a large sample two-sided confidence interval for the parameter  can 
be written as follows


	 	 	 	 ,	 	 	 (2.2)


where  is the confidence level.

   If the sample is small, on the other hand, but we assume that the error terms are 
normal, we can use our previous theorems to come to conclusion that


	 	 	 	 	 	 


is a pivotal quantity (i.e. the distribution is dependent on all parameters) that has  
distribution with  degrees of freedom. In this case an appropriate confidence 
interval is


	 	 	 .		 	 	 (2.3)


Similarly, if the null hypothesis is  we can form the test statistic as


	 	 	 	 	 	 	 	 	 	 (2.4)


and use the test statistic to test the null hypothesis against various alternative. 

Summary:

	 If the sample is large (e.g. ) then  is distributed as a standard normal 

	 random variable. If the sample is small, then we rely on the assumption that  

	 have normal distribution and then  has the  distribution with degrees of 

	 freedom being .

   Similar procedures can be easily established for other parameters, that is for  or 

. We only need to use the appropriate variance of the estimator instead of the 
.


2.4 Statistical Inference for the Regression Mean

    In applications we sometimes want to make some inferences about linera combina-
tions of parameters. In this section we study a particular example of this problem. 
Suppose that we want to build the confidence interval for the regression mean of , 
when  is equal to some specific value, namely , 


(n − 2)S2

σ2
χ2

n − 2
S2 ̂β0

̂β1

β1

( ̂β1 − zα/2
̂σ

Sxx
, ̂β1 + zα/2

̂σ
Sxx

)
α

̂β1 − β1

̂σ / Sxx
t

n − 2

( ̂β1 − t(n−2)
α/2

̂σ
Sxx

, ̂β1 + t(n−2)
α/2

̂σ
Sxx

)
β1 = β(0)

1

T =
̂β1 − β(0)

1

̂σ / Sxx

n > 30 T
εi

T t
n − 2

α0
β0

̂σ2 /Sxx

Y
x x*
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	 	 	 	 	 .	 	 	 	 (2.5)

The natural estimator for this quantity is the predicted value given by

	 	 	 	               .

This estimator is unbiased since both  and  are unbiased estimators of  and . 
In order to build the confidence interval, we also need to calculate its variance. It is 
more convenient to use the other form of the regression for this task:

	 	 	 	 	 .	 	 	 	 (2.6)

That is, centering  around its mean. Then

	 	 (By (2.6))


	           .	 	 	 	 	 	 	 (2.7)


    Using this information we can build the confidence interval for . For example, if 
the sample size is large then the two-sided confidence interval with significance level 

 is


	 	 	 	 ,


Where  is the estimate for .


    If the sample is small, on the other hand, but we assume that  are normal, then we 
can use the  distribution with  degrees of freedom and the confidence interval 
because


	 	 	 	     .


And for testing hypothesis , we use the statistic


	 	 	 	 	 .


2.5 Prediction Interval

    When predicting  we are often interested not in variation of our predictions  aro-
und the true regression mean but rather in variations of the actual quantities  around 
the true regression mean. The random quantity  has larger variation than  since in 
addition to uncertainty due to the error in parameter estimation it also includes the 
variation due to the error terms .

    We define the prediction interval with confidence level  as a random interval:

Definition: Prediction Interval

	 The prediction interval with confidence level  is given by the random 

	 interval  such that , where  and  are some

	 statistics, so they msut be computable from data.


𝔼(Y |x*) = β0 + β1x*

̂y* = ̂β0 + ̂β1x*
̂β0

̂β1 β0 β1

̂y* = α̂0 + ̂β1(x* − x )
x*

Var ̂y* = Varα̂0 + (x* − x )2Var ̂β1 + 2(x* − x )Cov(α̂0, ̂β1)

= σ2( 1
n

+
(x* − x )2

Sxx
)

y*

α

̂y* ± zα/2 ̂σ
1
n

+
(x* − x )2

Sxx

̂σ =
SSE
n − 2

σ = Varεi

εi
t n − 2

̂y* ± t(n−2)
α/2 ̂σ

1
n

+
(x* − x )2

Sxx

H0 : y* = y0

T =
y* − y0

̂σ 1
n + (x* − x)

Sxx

Y ̂y
y

y ̂y

εi
1 − α

1 − α
(L, U ) ℙ(L ≤ yi ≤ U ) = 1 − α L U
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  In order to construct the prediction interval we use the pivotal quantity technique 
and consider


	 	 	 	 	 ,


where SE stands for “stand error”. Here  is a new observation which we try to 
predict and  is the prediction.

    Note that

	 	 	 

	 	 	 	   .

Since  and  are unbiased estimators of  and , we see that this quantity has 
expectation 0.

    Moreover, if  are normal then we see that  is also normal. What is the sta-
ndard error of ? Note that we have

	 	 ,

because the new error term  is uncorrelated with the prediction . Indeed, the 
coefficients  and  were estimated using the old error terms  and  is not 
random.

    We calculated the variance of  in the previous subsection, so we have


	 	 	 (by (2.7))


	 	          .


It follows that


	 	 	 	 	 


has the standard normal distribution.


   It can be shown that if we use the estimator  instead of the unknown 

, then the quantity	 


	 	 	 	 


has the  distribution with  degrees of freedom.

    So it follows that the prediction interval for  can be written as


  .


The interpretation is that with probability  the deviation of our prediction  
from the actual realization of  will be smaller than the value


T =
y* − ̂y*

SE(y* − ̂y*)
y*

̂y*

y* − ̂y* = β0 + β1x* + ε* − ( ̂β0 + ̂β1x*)
= (β0 − ̂β0) + (β1 − ̂β1)x* + ε*

̂β0
̂β1 β0 β1

εi y* − ̂y*
y* − ̂y*

Var(y* − ̂y*) = Var(β0 + β1x* + ε* − ̂y*) = Varε*+Var ̂y*
ε* ̂y*

̂β0
̂β1 εi x*

̂y*

Var(y* − y) = σ2 + σ2( 1
n

+
(x* − x )2

Sxx
)

= σ2(1 +
1
n

+
(x* − x )2

Sxx
)

Z =
y* − ̂y*

σ 1 + 1
n + (x* − x)2

Sxx

̂σ =
SSE
n − 2

σ

T =
y* − ̂y*

̂σ 1 + [1
n + (x* − x)2

Sxx

t n − 2
y*

̂y* ± t(n−2)
α/2 ̂σ 1 +

1
n

+
(x* − x )2

Sxx
= ̂β0 + ̂β1x* ± t(n−2)

α/2 ̂σ 1 +
1
n

+
(x* − x )2

Sxx

1 − α ̂y*
y*
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	 	 	 	 .


2.6 Correlation and R-Squared

  Sometimes,  can be interpreted as observed values of some random quantity . 
That is, we have  observations  sampled from the joint distribution of the 
random quantities  and . In this case, the coefficient  in the regression 

 can be interpreted as a measure of dependence between  and .

    On the other hand, we know that another measure of dependence between  and  
is the correlation coefficient given by


	 	 	 	 	 ,	 	 	 	 (2.8)


and we can estimate it as


	 	 	 	 	   .	 	 	 	 	 (2.9)


Since  we see that we have the following relation between the estimates of 

correlation coefficient  and linear regression parameter :


	 	 	 	 	    .	 	 	 	 	 (2.10)


So there is a clear relationship between these two measures of association. 

   The statistic  (called R-squared) has another useful interpreation, which will be 
later generalized for multiple linear regression model. Namely, it measures the 
goodness of fit in the simple linear regression model.

    Indeed, it is possible to derive the following useful formula.

	    


	 	  


	 	  .


Now  can be thought as the variation in the response variable if no 

explanatory variable is used, and  is the variation in the response after the explan-
atory variable is used. So the difference is the reduction in the variation due to the 
explanatory variable . In particular, one has


	 	 	 	 	    	 	 	 	 	 (2.11)


t(n−2)
α/2 ̂σ 1 +

1
n

+
(x* − x )2

Sxx

xi X
n (xi, yi)

X Y β1
yi = β0 + β1xi + εi X Y

Y X

ρ :=
Cov(X, Y )

VarX VarY

R :=
Sxy

SxxSyy

̂β1 =
Sxy

Sxx
ρ β

R = β1
Syy

Sxx

r2

SSE := ∑
i

(yi − ̂yi)2 = ∑
i

(yi − y − ̂β1(xi − x ))2

= ∑
i

(yi − y)2 − 2 ̂β1 ∑
i

(yi − y)(xi − x ) + ̂β2
1 ∑

i

(xi − x )2

= Syy − ̂β2
1Sxx = Syy −

S2
xy

Sxx
Syy = ∑

i

(yi − y)2

SSE

X

R2 =
S2

xy

SxxSyy
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Being the reduction measured in percentage terms. To summarize,  is the 
proportion of response variable variation that is explained by the explanatory variable 

 once it is brought into observation.


3. Multiple Linear Regression

    A more general version of linear regression reads:

	 	 	 	 ,

where we have  explanatory variables. In fact this stands for  separate equations, 
one for each observation

	 	 	 	 .

    Once we treat 


	 	 , , 


and the vectors of coefficients and error terms

	 	 	  and .

Then we can write our model as

	 	 	 	 	 .		 	 	 	 (3.1)

The sum of squared errors can also be written very simply in the matrix notation:

	 	 	 	 .	 	 	 (3.2)

    To summarize , we need to write the first order conditions, which can also be 
written in matrix form. Namely, for each  we have


	 .


If we stack these  equations together, we obtain the matrix form of these system 
of equations


	 	     .


Or, re-arranging the terms and simplifying

	 	 	 	 	       .

This system of  equations in  unknowns  is called the normal equati-
ons. In matrix form, its solution can be written as 

	 	 	 	 	 .


3.1 Properties of LS Estimators

    Recall that  is a -vector  and . We have

Theorem 5.6: Expectaion and Variance of 

	 The LS estimator of  is unbiased, i.e. . Its variance matrix is the 

	  matrix .


R2

X

y = β0 + β1x(1) + ⋯ + βpx( p) + ε
p n

yi = β0 + β1x(1)
i + ⋯ + βpx( p)

i + εi

y =

y1
y2
⋅
⋅
⋅
yn

X =

1 x11 x12 ⋯ x1p

1 x21 x22 ⋯ x2p
⋯ ⋯ ⋯ ⋯ ⋯
1 xn1 xn2 ⋯ xnp

=

x1
x2
⋅
⋅
⋅

xn

β = [β0, β1, ⋯, βp]T ε = [ε1, ε2⋯, εn]T

y = Xβ + ε

SSE ̂β = [y − X ̂β ]T[y − X ̂β ]T

SSE ̂β
j = 1,⋯, p

∂SSE( ̂β )
∂βj

= − 2
n

∑
i=1

xij{yi − ( ̂β0 + ̂β1xi1 + ̂β2xi2 + ⋯ + ̂βpxip)} = 0

p + 1

∂SSE( ̂β )
∂ ̂β

= − 2XT[y − X ̂β ] = − 2XT y + 2XT X ̂β = 0

XT X ̂β = XT y
(p + 1) p + 1 ̂βi

̂βLS = (XT X )−1XT y

̂β p [ ̂β0, ̂β1, ⋯, ̂βp]T ̂β = (XT X )−1XT y
β

β 𝔼 ̂β = β
(p + 1) × (p + 1) Var ̂β = σ(XT X )−1
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   If, in addition, , then it can be shown that  is the multivariate normal 
with mean  and variance .

   Now it is clear how to build confidence intervals and test the hypothesis for the 
parameters . We simply notice that

	 	 	 	               ,

where  is the th element on the main diagonal of the matrix  given by

	 	 	 	 	 .	 	 	 	 	 (3.3)

So if  is known, then the confidence interval for  is

	 	 	 	 	    .

    In practice,  is not known and have to be estimated from data. We can do it using 
SSE, which is defined similarly to the case of the simple linear regression:

	 	 	                     ,


where  are fitted values for the response variable.

Theorem 3.1:


	  is an unbiased estimator of .


   Moreover, if  are independent normal random variables and . It fol-
lows that 


	 	 	 	 	 	  


has the  distribution with  degrees of freedom. Therefore, in this case the 
confidence interval is given by

	 	 	 	 	 .		 	 	 	 (3.4)


3.2 Confidence Interval 

   If we have  parameters we might be interested in finding the confidence interval 
for the linear combination

	 	 	 	     ,

which can be written as  where  is the column vector. The confidence interval 
should be centered at  and the main question is about the standard error of this 
estimator.


    Since Var , we have


	 	 	     ,	 	 	 (3.5)

where we used the formula for the variance-covariance matrix of the estimator .

    It follows that the confidence interval for  can be written as


	 	 	 	   .	 	 	 	 (3.6)


εi ∼ N(0,σ) ̂β
β σ2(XT X )−1

βi
Varβi = σ2cii

cii i (XT X )−1

cii = [(XT X )−1]ii
σ2 βi

̂βi ± zα/2σ cii
σ2

SSE := ∑
i

(yi − ̂yi)2

̂yi

̂σ2 :=
SSE

n − p − 1
σ2

εi εi ∼ N(0,σ2)

̂βi − βi

̂σ cii
t n − p − 1

̂βi ± t(n−p−1)
α/2 ̂σ cii

p

a0β0 + a1β1 + ⋯ + apβp
aT β a

aT ̂β

p

∑
i=0

ai
̂βi = ∑

i, j

aiajCov( ̂βi, ̂βj)

VaraT ̂β = aT Var ̂βa = σ2aT(XT X )−1a
β

aT β
aT

̂β ± zα/2σ aT(XT X )−1a

88



Lecture Notes on Statistical Inference Tsinghua University

Since  is unknown, we susbstitute it with its estimator. In the case of normal errors, 
it gives the following confidence interval


	 	 	 	 .


3.3 Prediction

   Suppose that we obtained a new observation with predictor variables  
and we want to predict the response variables .

    The natural predicor is given by

	 	 	     	   ,

where  is the column vector .

    This expected value of this predictor equals the regression mean , 

	 	 	 	 	 .

Let us define the prediction error as the difference between the prediction and the 
realized response variable, namely,

	 	 	 	 	       .

Then the expected value of error is zero and it is easy to comput its variance

	 	 	 	 .

This allows us to write the prediction interval

	 	 	      .


4. Some Inference Results

    In this section we introduce some inference results, we start with the inference con-
cerning the parameters .

Test of Hypothesis for :

	 .


	 .


	 Test statistic .


	 Rejection region: ,


	 where  and . Notice that  is based on  degrees of 		

	 freedom.

A  100% Confidence Interval for :


σ

aT ̂β ± t(n−p−1)
α/2 ̂σ aT(XT X )−1a
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* , x2

* , ⋯, xp
*
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* , ⋯, xp
* ]T

𝔼y*
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* 𝔼 ̂β = xT
* β
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Varε* = σ2 + σ2xT
* (XT X )−1x*

xT
*

̂β ± t(n−p−1)
α/2 ̂σ 1 + xT

* (XT X )−1x*

βi
βi

H0 : βi = βi0

Ha :
βi > βi0 upper-tail rejection region
βi < βi0 lower-tail rejection region
βi ≠ βi0 two-tailed rejection region

T =
̂βi − βi0

S cii

t > tα upper-tail alternative
t < − tα lower-tail alternative
| t | > tα/2 two-tailed alternative

c00 =
Σx2

i

nSxx
c11 =

1
Sxx

tα n − 2

(1 − α) βi

89



Lecture Notes on Statistical Inference Tsinghua University

	 , where  and .


    As for the inferences concerning the linear functions of the model parameters, i.e. 
the simple linear regression, , we have the following results.

A Test for :

	 ,


	 


	 Test statistic:	 .


	 Rejection Region:	 


	 Here  and  are based on  degrees of freedom.

    The corresponding  100% confidence interval for  is given 
by

A  100% Confidence Interval for :


	 , where  is based on  degrees of 


	 freedom.

    One useful application of the hypothesis-testing and confidence interval techniques 
just presented is to the problem of estimating , the mean of , for a fixed value of 
the independent variable . In particular, if  denotes a specific value of  that is of 
interest, then

	 	 	 	 	          .	 	 	 	 (4.1)

Notice that  is a special case of , with  and . Thus, an 
inference about  when  can be made by using the techniques developed 
earlier for general linear combinations of the ’s.

A ) 100% Confidence Interval for :


	 , where  is based on  degrees of 	


	 freedom.

    Assume that a linear model of the form  is in the interest of our 
inference, then:

A  100% Prediction Interval for  when :


̂βi ± tα/2S cii c00 =
Σx2

i

nSxx
c11 =

1
Sxx

θ = a0β0 + a1β1
θ = a0β0 + a1β1

H0 : θ = θ0

Ha :
θ > θ0,
θ < θ0,
θ ≠ θ0

T =
̂θ − θ0

S
a 2

0
Σx2

i
n + a2

1 − 2a0a1x

Sxx

t > tα,
t < − tα,
| t | > tα/2

tα tα/2 n − 2
(1 − α) θ = a0β0 + a1β1

(1 − α) θ = a0β0 + a1β1

̂θ ± tα/2S
a2

0
Σx2

i

n + a2
1 − 2a0a1x

Sxx
tα/2 n − 2

𝔼Y Y
x x* x

𝔼Y = β0 + β1x*
𝔼Y a0β0 + a1β1 a0 = 1 a1 = x*

𝔼Y x = x*
β

(α − 1 𝔼Y = β0 + β1x*

̂β0 + ̂β1x* ± tα/2S
1
n

+
(x* − x )2

Sxx
tα/2 n − 2

Y = β0 + β1x + ε

(1 − α) Y x = x*
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