

Homework IV Hypothesis Testing, Problem Sheet

Abstract:

The problems are labeled by the keywords in characterizing what concepts we are dealing with along with the symbol \star which measures the hardness of the problem, the more \star , the harder the problem. For the solutions in finding exact result and the remarks, the end of solution is labeled by “||”, for those problems asking us in proving or disproving some statements, the end is labeled by the usual \square .

Problem 1: $\star \star \star$

(Keywords: Exponential, LRT, Test Statistic)

Suppose that we have two independent random samples X_1, \dots, X_n are such that $X_i \sim \text{Exponential}(\theta) \forall i = 1, \dots, n$ and Y_1, \dots, Y_m are such that $Y_j \sim \text{Exponential}(\mu) \forall j = 1, \dots, m$.

- (a) Find the LRT of $H_0 : \theta = \mu$ versus $H_1 : \theta \neq \mu$.
- (b) Show that the test in (a) can be based on the statistic $T = \frac{\sum X_i}{\sum X_i + \sum Y_i}$.
- (c) Find the distribution of T when H_0 is true.

Problem 2: $\star \star$

(Keywords: Uniform, Power Function, Size)

Let X_1, X_2 be i.i.d. $\text{Uniform}(\theta, \theta + 1)$. For testing $H_0 : \theta = 0$ versus $H_1 : \theta > 0$, we have two competing test:

$$\begin{aligned}\varphi_1(X_1) &: \text{Reject } H_0 \text{ if } X_1 > 0.95, \\ \varphi_2(X_1, X_2) &: \text{Reject } H_0 \text{ if } X_1 + X_2 > C.\end{aligned}$$

- (a) Find the value of C so that φ has the same size as φ_1 .
- (b) Calculate the power function of each test.

Problem 3: $\star \star$

(Keywords: Bernoulli, CLT, Test Function)

For a random sample X_1, \dots, X_n of $\text{Bernoulli}(p)$ variables, it is desired to test

$$H_0 : p = 0.49 \text{ versus } H_1 : p = 0.51.$$

Use the **Central Limit Theorem** to determine, approximately, the sample size needed so that the two probabilities of error are both about 0.01. Use a test

function that rejects H_0 if $\sum_{i=1}^n X_i$ is large.

Problem 4: \star

(Keywords: Normal, Type I Error, UMP Test, Neyman-Pearson Lemma)

Show that for a random sample X_1, \dots, X_n from a $N(0, \sigma^2)$ population, the most powerful test of $H_0 : \sigma = \sigma_0$ versus $H_1 : \sigma = \sigma_1$, where $\sigma_0 < \sigma_1$, is given by

$$\varphi\left(\sum X_i^2\right) = \begin{cases} 1 & , \text{ if } \sum X_i^2 > c \\ 0 & , \text{ if } \sum X_i^2 \leq c \end{cases}$$

For a given value of α , the size of the Type I Error, show how the value of c is explicitly determined.

Problem 5: ★★

(Keywords: Beta, LRT, Test Statistic)

Suppose that X_1, \dots, X_n are i.i.d. with a $\text{Beta}(\mu, 1)$ pdf and Y_1, \dots, Y_m are i.i.d. with a $\text{Beta}(\theta, 1)$ pdf. Also assume that the X s are independent of the Y s.

- (a) Find an LRT of $H_0 : \theta = \mu$ versus $H_1 : \theta \neq \mu$.
- (b) Show that the test in part (a) can be based on the statistic

$$T = \frac{\sum \log X_i}{\sum \log X_i + \sum \log Y_i}.$$