

Homework III Interval Estimators, Problem Sheet

Abstract:

The problems are labeled by the keywords in characterizing what concepts we are dealing with along with the symbol \star which measures the hardness of the problem, the more \star , the harder the problem. For the solutions in finding exact result and the remarks, the end of solution is labeled by “||”, for those problems asking us in proving or disproving some statements, the end is labeled by the usual \square .

Recall that in using the pivotal quantity we require two conditions (i) it is a function of the sample measurements and the unknown parameter θ , where θ is the only unknown parameter, and (ii) its probability distribution does not depend on the parameter θ .

Problem 1: \star

(Keywords: Pivotal Quantity, Exponential, Confidence Interval, Confidence Coefficient)

Suppose that we are to obtain a single observation Y from an exponential distribution with mean θ . Use Y to form a confidence interval for θ with confidence coefficient 0.90.

Problem 2: \star

(Keywords: Pivotal Quantity, Uniform, Confidence Interval, Confidence Coefficient)

Suppose that we take a sample of size $n = 1$ from a uniform distribution defined on the interval $[0, \theta]$, where θ is unknown. Find a 95% lower confidence bound for θ .

Remark: Location-Scale Pivots

Form of PDF	Type of PDF	Pivot	
$f(x - \mu)$	Location	$\bar{X} - \mu$	
$\frac{1}{\sigma} f\left(\frac{x}{\sigma}\right)$	Scale	$\frac{\bar{X}}{\sigma}$	
$\frac{1}{\sigma} f\left(\frac{x - \mu}{\sigma}\right)$	Location-Scale	$\frac{\bar{X} - \mu}{\sigma}$	

Problem 3: \star

(Keywords: Pivotal Quantity, Normal, Confidence Interval, Confidence Coefficient)

Let $\hat{\theta}$ be a statistic that is normally distributed with mean θ and standard error $\sigma_{\hat{\theta}}$. Find a confidence interval for θ that possesses a confidence coefficient equal to $(1 - \alpha)$.

Problem 4: $\star \star$

(Keywords: Interval Estimation, Confidence Coefficient)

If $\hat{\theta}_L(x)$ and $\hat{\theta}_U(x)$ satisfy $\mathbb{P}(\hat{\theta}_L(x) \leq \theta) = 1 - \alpha_1$ and $\mathbb{P}(\hat{\theta}_U(x) \geq \theta) = 1 - \alpha_2$ and we know $\hat{\theta}_L(x) \leq \hat{\theta}_U(x)$ for all x . Show that

$$\mathbb{P}(\hat{\theta}_L(X) \leq \theta \leq \hat{\theta}_U(X)) = 1 - \alpha_1 - \alpha_2.$$

Problem 5: \star

(Keywords: Confidence Interval)

Find a $1 - \alpha$ confidence interval for θ , given X_1, \dots, X_n i.i.d. with pdf

- (i) $f(x|\theta) = 1, \theta - \frac{1}{2} < x < \theta + \frac{1}{2}.$
- (ii) $f(x|\theta) = 2x/\theta^2, 0 < x < \theta.$

Problem 6: ★ ★

(Keywords: Location Family, Confidence Set, Coverage Probability)

If X_1, \dots, X_n are i.i.d. from a location pdf $f(x - \theta)$, show that the confidence set $C(x_1, \dots, x_n) = \{\theta | \bar{x} - k_1 \leq \theta \leq \bar{x} + k_2\}$, where k_1 and k_2 are constants, has constant coverage probability.

Problem 7: ★ ★ ★

(Keywords: Normal, Confidence Bound, Unbiased)

Let X_1, \dots, X_n be a random sample from a $N(\theta, \sigma^2)$ population, where σ^2 is known. Show that the usual one-sided $(1 - \alpha)$ 100% upper confidence bound $\{\theta | \theta \leq \bar{x} + z_\alpha \sigma / \sqrt{n}\}$ is unbiased, and so is the corresponding lower confidence bound.