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Abstract:

This homework sheet aims at the decision theory part, or, the Bayesian estimator 

part in both our lecture notes. The problems are labeled by the keywords in 
characterizing what concepts we are dealing with along with the symbol  which 
measures the hardness of the problem, the more , the harder the problem. For 

the solutions in finding exact result and the remarks, the end of solution is 
labeled by “||”, for those problems asking us in proving or disproving some 

statements, the end is labeled by the usual .


   The problem sheet is divided into two sections. In the first section we have three 
problems treating the concept of loss and risk, where, of course, involving optimizing 
the decision. In the second section we focus on finding the posterior distribution and 
the Bayesian estimator. We do not cover a section in solving problems with respect to 
the interval estimation and hypothesis testing for Bayesian estimators since it invol-
ves too many calculations.


Section I: Loss and Risk

Problem 1: 

(Keywords: Loss Function, Risk Function) 

	 A random variable has the uniform density given by


	 	 	 	       


	 and we want to estimate the parameter  on the basis of a single observation.

	 If the decision function is to be of the form , where  and the 

	 losses are proportional to the absolute allure of the errors, i.e. 

	 	 	 	 	 ,

	 where  is a positive constant, find the value of  that minimizes the risk.


Problem 2: 

(Keywords: Loss Function, Risk Function)

	 Use the minimal criterion to estimate the parameter  of a binomial 

	 distribution on the basis of the random variable , the observed number of 

	 successes in  trials, when the decision function is of the form

	 	 	 	 	 	 ,


	 where  and  are constants, and the loss function is given by


	 	 	 	 ,


	 where  is a positive constant.
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Problem 3: 

(Keyword: Bayes Risk, Bayes Rule)

	 With reference to Problem 1, suppose that the parameter of the uniform 

	 density is looked upon as a random variable with the probability density given 

	 by


	 	 	 	 	 .


	 If there is no restriction on the form of the decision function and the loss 

	 function is quadratic, i.e. 

	 	 	 	 	 .

	 Find the decision function that minimizes the Bayes risk.


Section II: Prior and Posterior of Bayesian Estimators

    The following three problems are treatment with respect to finding the posterior di-
stribution of the Bayesian statistics. We introduce again the algorithm in finding the 
Bayesian posterior.

Algorithm 1: Finding Poseterior

	 Given  random variables wih likelihood function 

	  and  has density , then

	 Step I: Joint Density

	 	 .

	 Step II: Marginal Density


	 	 	 .


	 Step III: Posterior Density


	 	 .	 	 	 ||


    Problem 4 is solved by applying this algorithm directly.


Problem 4: 

(Keywords: Prior, Bernoulli, Beta, Posterior)

	 Let  denote a random sample from a Bernoulli distribution where 

	  and  and assume that the prior distribution for

	  is . Find the posterior distribution for .

  In practice, having the prior density and the distribution of the data does not secure 
us the posterior distribution, we need further, as (2.6) in Notes 2 suggests, find the 
marginal distribution of the data, this could be cumbersome in some cases, especially 
when we are not dealing with the familiar distribution families.

   In this problem sheet, we in saying a Bayesian estimator we use the following con-
vention.

Definition: Bayesian Estimator

	 Let  be a random sample with likelihood function 

	  and let  have prior density . The posterior Bayes 
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	 estimator for  is given by .


Problem 5: 

(Keyword: Prior, Gamma, Posterior, Bayesian Estimator)

	 In Problem 4, we found the posterior distribution of the Bernoulli parameter 

	 based on a beta prior distribution with parameters  and . In this problem we 

	 want to find the Bayes estimators for  and .

   The last problem treats the problem in estimating the parameter with unknown me-
an but known variance. Before we proceed to the last problem in this section, let us 
recall the Bayesian conjugate.

Definition: Conjugate

	 A family of prior distributions  is conjugate to the model  if the 	 	
	 posterior distribution belongs to the same family.

    Also it is helpful ro recall the definition of conjugate family.

Definition: Conjugate Family

	 Let  denote the class of pdfs or pmfs  indexed by . A class  of prior

	 distributions is a conjugate family for  if the posterior distribution is in the 

	 class  , all priors in , and all .

Problem 6: 

(Keywords: Prior, Posterior, Conjugate Family, Bayesian Estimator)

	 Let  denote a random sample from a normal population with 

	 unknown mean  and known variance . The conjugate prior distribution for 

	  is a normal distribution with known mean  and knwon variance . Find the

	 posterior distribution and the Bayes estimator for .

   In this section we have introduced the concept of Bayesian inference. This approa-
ch involves both the data distribution and the experimenter’s belief. The calculation 
could be very cumbersome, as we mentioned in our lecture notes 2, the invovment of 
the convolution may ease the calculation. However, such a treatment contains advan-
ced materials in both mathematics and statistics, interested readers may find the refer-
ences offered in the second lecture notes, pp. 21 valable.
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